1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_entry_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * @executed: whether there is one work is executed 185 * 186 * This function returns zero in case of success and a negative error code in 187 * case of failure. If @executed is not NULL and there is one work executed, 188 * @executed is set as %1, otherwise @executed is set as %0. 189 */ 190 static int do_work(struct ubi_device *ubi, int *executed) 191 { 192 int err; 193 struct ubi_work *wrk; 194 195 cond_resched(); 196 197 /* 198 * @ubi->work_sem is used to synchronize with the workers. Workers take 199 * it in read mode, so many of them may be doing works at a time. But 200 * the queue flush code has to be sure the whole queue of works is 201 * done, and it takes the mutex in write mode. 202 */ 203 down_read(&ubi->work_sem); 204 spin_lock(&ubi->wl_lock); 205 if (list_empty(&ubi->works)) { 206 spin_unlock(&ubi->wl_lock); 207 up_read(&ubi->work_sem); 208 if (executed) 209 *executed = 0; 210 return 0; 211 } 212 213 if (executed) 214 *executed = 1; 215 wrk = list_entry(ubi->works.next, struct ubi_work, list); 216 list_del(&wrk->list); 217 ubi->works_count -= 1; 218 ubi_assert(ubi->works_count >= 0); 219 spin_unlock(&ubi->wl_lock); 220 221 /* 222 * Call the worker function. Do not touch the work structure 223 * after this call as it will have been freed or reused by that 224 * time by the worker function. 225 */ 226 err = wrk->func(ubi, wrk, 0); 227 if (err) 228 ubi_err(ubi, "work failed with error code %d", err); 229 up_read(&ubi->work_sem); 230 231 return err; 232 } 233 234 /** 235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 236 * @e: the wear-leveling entry to check 237 * @root: the root of the tree 238 * 239 * This function returns non-zero if @e is in the @root RB-tree and zero if it 240 * is not. 241 */ 242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 243 { 244 struct rb_node *p; 245 246 p = root->rb_node; 247 while (p) { 248 struct ubi_wl_entry *e1; 249 250 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 251 252 if (e->pnum == e1->pnum) { 253 ubi_assert(e == e1); 254 return 1; 255 } 256 257 if (e->ec < e1->ec) 258 p = p->rb_left; 259 else if (e->ec > e1->ec) 260 p = p->rb_right; 261 else { 262 ubi_assert(e->pnum != e1->pnum); 263 if (e->pnum < e1->pnum) 264 p = p->rb_left; 265 else 266 p = p->rb_right; 267 } 268 } 269 270 return 0; 271 } 272 273 /** 274 * in_pq - check if a wear-leveling entry is present in the protection queue. 275 * @ubi: UBI device description object 276 * @e: the wear-leveling entry to check 277 * 278 * This function returns non-zero if @e is in the protection queue and zero 279 * if it is not. 280 */ 281 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 282 { 283 struct ubi_wl_entry *p; 284 int i; 285 286 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 287 list_for_each_entry(p, &ubi->pq[i], u.list) 288 if (p == e) 289 return 1; 290 291 return 0; 292 } 293 294 /** 295 * prot_queue_add - add physical eraseblock to the protection queue. 296 * @ubi: UBI device description object 297 * @e: the physical eraseblock to add 298 * 299 * This function adds @e to the tail of the protection queue @ubi->pq, where 300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 302 * be locked. 303 */ 304 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 305 { 306 int pq_tail = ubi->pq_head - 1; 307 308 if (pq_tail < 0) 309 pq_tail = UBI_PROT_QUEUE_LEN - 1; 310 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 311 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 312 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 313 } 314 315 /** 316 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 317 * @ubi: UBI device description object 318 * @root: the RB-tree where to look for 319 * @diff: maximum possible difference from the smallest erase counter 320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff' 321 * 322 * This function looks for a wear leveling entry with erase counter closest to 323 * min + @diff, where min is the smallest erase counter. 324 */ 325 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 326 struct rb_root *root, int diff, 327 int pick_max) 328 { 329 struct rb_node *p; 330 struct ubi_wl_entry *e; 331 int max; 332 333 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 334 max = e->ec + diff; 335 336 p = root->rb_node; 337 while (p) { 338 struct ubi_wl_entry *e1; 339 340 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 341 if (e1->ec >= max) { 342 if (pick_max) 343 e = e1; 344 p = p->rb_left; 345 } else { 346 p = p->rb_right; 347 e = e1; 348 } 349 } 350 351 return e; 352 } 353 354 /** 355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 356 * @ubi: UBI device description object 357 * @root: the RB-tree where to look for 358 * 359 * This function looks for a wear leveling entry with medium erase counter, 360 * but not greater or equivalent than the lowest erase counter plus 361 * %WL_FREE_MAX_DIFF/2. 362 */ 363 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 364 struct rb_root *root) 365 { 366 struct ubi_wl_entry *e, *first, *last; 367 368 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 369 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 370 371 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 372 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 373 374 /* 375 * If no fastmap has been written and fm_anchor is not 376 * reserved and this WL entry can be used as anchor PEB 377 * hold it back and return the second best WL entry such 378 * that fastmap can use the anchor PEB later. 379 */ 380 e = may_reserve_for_fm(ubi, e, root); 381 } else 382 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0); 383 384 return e; 385 } 386 387 /** 388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 389 * refill_wl_user_pool(). 390 * @ubi: UBI device description object 391 * 392 * This function returns a wear leveling entry in case of success and 393 * NULL in case of failure. 394 */ 395 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 396 { 397 struct ubi_wl_entry *e; 398 399 e = find_mean_wl_entry(ubi, &ubi->free); 400 if (!e) { 401 ubi_err(ubi, "no free eraseblocks"); 402 return NULL; 403 } 404 405 self_check_in_wl_tree(ubi, e, &ubi->free); 406 407 /* 408 * Move the physical eraseblock to the protection queue where it will 409 * be protected from being moved for some time. 410 */ 411 rb_erase(&e->u.rb, &ubi->free); 412 ubi->free_count--; 413 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 414 415 return e; 416 } 417 418 /** 419 * prot_queue_del - remove a physical eraseblock from the protection queue. 420 * @ubi: UBI device description object 421 * @pnum: the physical eraseblock to remove 422 * 423 * This function deletes PEB @pnum from the protection queue and returns zero 424 * in case of success and %-ENODEV if the PEB was not found. 425 */ 426 static int prot_queue_del(struct ubi_device *ubi, int pnum) 427 { 428 struct ubi_wl_entry *e; 429 430 e = ubi->lookuptbl[pnum]; 431 if (!e) 432 return -ENODEV; 433 434 if (self_check_in_pq(ubi, e)) 435 return -ENODEV; 436 437 list_del(&e->u.list); 438 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 439 return 0; 440 } 441 442 /** 443 * ubi_sync_erase - synchronously erase a physical eraseblock. 444 * @ubi: UBI device description object 445 * @e: the physical eraseblock to erase 446 * @torture: if the physical eraseblock has to be tortured 447 * 448 * This function returns zero in case of success and a negative error code in 449 * case of failure. 450 */ 451 int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) 452 { 453 int err; 454 struct ubi_ec_hdr *ec_hdr; 455 unsigned long long ec = e->ec; 456 457 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 458 459 err = self_check_ec(ubi, e->pnum, e->ec); 460 if (err) 461 return -EINVAL; 462 463 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 464 if (!ec_hdr) 465 return -ENOMEM; 466 467 err = ubi_io_sync_erase(ubi, e->pnum, torture); 468 if (err < 0) 469 goto out_free; 470 471 ec += err; 472 if (ec > UBI_MAX_ERASECOUNTER) { 473 /* 474 * Erase counter overflow. Upgrade UBI and use 64-bit 475 * erase counters internally. 476 */ 477 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 478 e->pnum, ec); 479 err = -EINVAL; 480 goto out_free; 481 } 482 483 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 484 485 ec_hdr->ec = cpu_to_be64(ec); 486 487 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 488 if (err) 489 goto out_free; 490 491 e->ec = ec; 492 spin_lock(&ubi->wl_lock); 493 if (e->ec > ubi->max_ec) 494 ubi->max_ec = e->ec; 495 spin_unlock(&ubi->wl_lock); 496 497 out_free: 498 kfree(ec_hdr); 499 return err; 500 } 501 502 /** 503 * serve_prot_queue - check if it is time to stop protecting PEBs. 504 * @ubi: UBI device description object 505 * 506 * This function is called after each erase operation and removes PEBs from the 507 * tail of the protection queue. These PEBs have been protected for long enough 508 * and should be moved to the used tree. 509 */ 510 static void serve_prot_queue(struct ubi_device *ubi) 511 { 512 struct ubi_wl_entry *e, *tmp; 513 int count; 514 515 /* 516 * There may be several protected physical eraseblock to remove, 517 * process them all. 518 */ 519 repeat: 520 count = 0; 521 spin_lock(&ubi->wl_lock); 522 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 523 dbg_wl("PEB %d EC %d protection over, move to used tree", 524 e->pnum, e->ec); 525 526 list_del(&e->u.list); 527 wl_tree_add(e, &ubi->used); 528 if (count++ > 32) { 529 /* 530 * Let's be nice and avoid holding the spinlock for 531 * too long. 532 */ 533 spin_unlock(&ubi->wl_lock); 534 cond_resched(); 535 goto repeat; 536 } 537 } 538 539 ubi->pq_head += 1; 540 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 541 ubi->pq_head = 0; 542 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 543 spin_unlock(&ubi->wl_lock); 544 } 545 546 /** 547 * __schedule_ubi_work - schedule a work. 548 * @ubi: UBI device description object 549 * @wrk: the work to schedule 550 * 551 * This function adds a work defined by @wrk to the tail of the pending works 552 * list. Can only be used if ubi->work_sem is already held in read mode! 553 */ 554 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 555 { 556 spin_lock(&ubi->wl_lock); 557 list_add_tail(&wrk->list, &ubi->works); 558 ubi_assert(ubi->works_count >= 0); 559 ubi->works_count += 1; 560 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 561 wake_up_process(ubi->bgt_thread); 562 spin_unlock(&ubi->wl_lock); 563 } 564 565 /** 566 * schedule_ubi_work - schedule a work. 567 * @ubi: UBI device description object 568 * @wrk: the work to schedule 569 * 570 * This function adds a work defined by @wrk to the tail of the pending works 571 * list. 572 */ 573 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 574 { 575 down_read(&ubi->work_sem); 576 __schedule_ubi_work(ubi, wrk); 577 up_read(&ubi->work_sem); 578 } 579 580 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 581 int shutdown); 582 583 /** 584 * schedule_erase - schedule an erase work. 585 * @ubi: UBI device description object 586 * @e: the WL entry of the physical eraseblock to erase 587 * @vol_id: the volume ID that last used this PEB 588 * @lnum: the last used logical eraseblock number for the PEB 589 * @torture: if the physical eraseblock has to be tortured 590 * @nested: denotes whether the work_sem is already held 591 * 592 * This function returns zero in case of success and a %-ENOMEM in case of 593 * failure. 594 */ 595 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 596 int vol_id, int lnum, int torture, bool nested) 597 { 598 struct ubi_work *wl_wrk; 599 600 ubi_assert(e); 601 602 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 603 e->pnum, e->ec, torture); 604 605 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 606 if (!wl_wrk) 607 return -ENOMEM; 608 609 wl_wrk->func = &erase_worker; 610 wl_wrk->e = e; 611 wl_wrk->vol_id = vol_id; 612 wl_wrk->lnum = lnum; 613 wl_wrk->torture = torture; 614 615 if (nested) 616 __schedule_ubi_work(ubi, wl_wrk); 617 else 618 schedule_ubi_work(ubi, wl_wrk); 619 return 0; 620 } 621 622 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 623 /** 624 * do_sync_erase - run the erase worker synchronously. 625 * @ubi: UBI device description object 626 * @e: the WL entry of the physical eraseblock to erase 627 * @vol_id: the volume ID that last used this PEB 628 * @lnum: the last used logical eraseblock number for the PEB 629 * @torture: if the physical eraseblock has to be tortured 630 * 631 */ 632 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 633 int vol_id, int lnum, int torture) 634 { 635 struct ubi_work wl_wrk; 636 637 dbg_wl("sync erase of PEB %i", e->pnum); 638 639 wl_wrk.e = e; 640 wl_wrk.vol_id = vol_id; 641 wl_wrk.lnum = lnum; 642 wl_wrk.torture = torture; 643 644 return __erase_worker(ubi, &wl_wrk); 645 } 646 647 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 648 /** 649 * wear_leveling_worker - wear-leveling worker function. 650 * @ubi: UBI device description object 651 * @wrk: the work object 652 * @shutdown: non-zero if the worker has to free memory and exit 653 * because the WL-subsystem is shutting down 654 * 655 * This function copies a more worn out physical eraseblock to a less worn out 656 * one. Returns zero in case of success and a negative error code in case of 657 * failure. 658 */ 659 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 660 int shutdown) 661 { 662 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 663 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 664 struct ubi_wl_entry *e1, *e2; 665 struct ubi_vid_io_buf *vidb; 666 struct ubi_vid_hdr *vid_hdr; 667 int dst_leb_clean = 0; 668 669 kfree(wrk); 670 if (shutdown) 671 return 0; 672 673 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 674 if (!vidb) 675 return -ENOMEM; 676 677 vid_hdr = ubi_get_vid_hdr(vidb); 678 679 down_read(&ubi->fm_eba_sem); 680 mutex_lock(&ubi->move_mutex); 681 spin_lock(&ubi->wl_lock); 682 ubi_assert(!ubi->move_from && !ubi->move_to); 683 ubi_assert(!ubi->move_to_put); 684 685 #ifdef CONFIG_MTD_UBI_FASTMAP 686 if (!next_peb_for_wl(ubi) || 687 #else 688 if (!ubi->free.rb_node || 689 #endif 690 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 691 /* 692 * No free physical eraseblocks? Well, they must be waiting in 693 * the queue to be erased. Cancel movement - it will be 694 * triggered again when a free physical eraseblock appears. 695 * 696 * No used physical eraseblocks? They must be temporarily 697 * protected from being moved. They will be moved to the 698 * @ubi->used tree later and the wear-leveling will be 699 * triggered again. 700 */ 701 dbg_wl("cancel WL, a list is empty: free %d, used %d", 702 !ubi->free.rb_node, !ubi->used.rb_node); 703 goto out_cancel; 704 } 705 706 #ifdef CONFIG_MTD_UBI_FASTMAP 707 e1 = find_anchor_wl_entry(&ubi->used); 708 if (e1 && ubi->fm_anchor && 709 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 710 ubi->fm_do_produce_anchor = 1; 711 /* 712 * fm_anchor is no longer considered a good anchor. 713 * NULL assignment also prevents multiple wear level checks 714 * of this PEB. 715 */ 716 wl_tree_add(ubi->fm_anchor, &ubi->free); 717 ubi->fm_anchor = NULL; 718 ubi->free_count++; 719 } 720 721 if (ubi->fm_do_produce_anchor) { 722 if (!e1) 723 goto out_cancel; 724 e2 = get_peb_for_wl(ubi); 725 if (!e2) 726 goto out_cancel; 727 728 self_check_in_wl_tree(ubi, e1, &ubi->used); 729 rb_erase(&e1->u.rb, &ubi->used); 730 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 731 ubi->fm_do_produce_anchor = 0; 732 } else if (!ubi->scrub.rb_node) { 733 #else 734 if (!ubi->scrub.rb_node) { 735 #endif 736 /* 737 * Now pick the least worn-out used physical eraseblock and a 738 * highly worn-out free physical eraseblock. If the erase 739 * counters differ much enough, start wear-leveling. 740 */ 741 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 742 e2 = get_peb_for_wl(ubi); 743 if (!e2) 744 goto out_cancel; 745 746 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 747 dbg_wl("no WL needed: min used EC %d, max free EC %d", 748 e1->ec, e2->ec); 749 750 /* Give the unused PEB back */ 751 wl_tree_add(e2, &ubi->free); 752 ubi->free_count++; 753 goto out_cancel; 754 } 755 self_check_in_wl_tree(ubi, e1, &ubi->used); 756 rb_erase(&e1->u.rb, &ubi->used); 757 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 758 e1->pnum, e1->ec, e2->pnum, e2->ec); 759 } else { 760 /* Perform scrubbing */ 761 scrubbing = 1; 762 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 763 e2 = get_peb_for_wl(ubi); 764 if (!e2) 765 goto out_cancel; 766 767 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 768 rb_erase(&e1->u.rb, &ubi->scrub); 769 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 770 } 771 772 ubi->move_from = e1; 773 ubi->move_to = e2; 774 spin_unlock(&ubi->wl_lock); 775 776 /* 777 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 778 * We so far do not know which logical eraseblock our physical 779 * eraseblock (@e1) belongs to. We have to read the volume identifier 780 * header first. 781 * 782 * Note, we are protected from this PEB being unmapped and erased. The 783 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 784 * which is being moved was unmapped. 785 */ 786 787 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 788 if (err && err != UBI_IO_BITFLIPS) { 789 dst_leb_clean = 1; 790 if (err == UBI_IO_FF) { 791 /* 792 * We are trying to move PEB without a VID header. UBI 793 * always write VID headers shortly after the PEB was 794 * given, so we have a situation when it has not yet 795 * had a chance to write it, because it was preempted. 796 * So add this PEB to the protection queue so far, 797 * because presumably more data will be written there 798 * (including the missing VID header), and then we'll 799 * move it. 800 */ 801 dbg_wl("PEB %d has no VID header", e1->pnum); 802 protect = 1; 803 goto out_not_moved; 804 } else if (err == UBI_IO_FF_BITFLIPS) { 805 /* 806 * The same situation as %UBI_IO_FF, but bit-flips were 807 * detected. It is better to schedule this PEB for 808 * scrubbing. 809 */ 810 dbg_wl("PEB %d has no VID header but has bit-flips", 811 e1->pnum); 812 scrubbing = 1; 813 goto out_not_moved; 814 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 815 /* 816 * While a full scan would detect interrupted erasures 817 * at attach time we can face them here when attached from 818 * Fastmap. 819 */ 820 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 821 e1->pnum); 822 erase = 1; 823 goto out_not_moved; 824 } 825 826 ubi_err(ubi, "error %d while reading VID header from PEB %d", 827 err, e1->pnum); 828 goto out_error; 829 } 830 831 vol_id = be32_to_cpu(vid_hdr->vol_id); 832 lnum = be32_to_cpu(vid_hdr->lnum); 833 834 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 835 if (err) { 836 if (err == MOVE_CANCEL_RACE) { 837 /* 838 * The LEB has not been moved because the volume is 839 * being deleted or the PEB has been put meanwhile. We 840 * should prevent this PEB from being selected for 841 * wear-leveling movement again, so put it to the 842 * protection queue. 843 */ 844 protect = 1; 845 dst_leb_clean = 1; 846 goto out_not_moved; 847 } 848 if (err == MOVE_RETRY) { 849 scrubbing = 1; 850 dst_leb_clean = 1; 851 goto out_not_moved; 852 } 853 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 854 err == MOVE_TARGET_RD_ERR) { 855 /* 856 * Target PEB had bit-flips or write error - torture it. 857 */ 858 torture = 1; 859 keep = 1; 860 goto out_not_moved; 861 } 862 863 if (err == MOVE_SOURCE_RD_ERR) { 864 /* 865 * An error happened while reading the source PEB. Do 866 * not switch to R/O mode in this case, and give the 867 * upper layers a possibility to recover from this, 868 * e.g. by unmapping corresponding LEB. Instead, just 869 * put this PEB to the @ubi->erroneous list to prevent 870 * UBI from trying to move it over and over again. 871 */ 872 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 873 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 874 ubi->erroneous_peb_count); 875 goto out_error; 876 } 877 dst_leb_clean = 1; 878 erroneous = 1; 879 goto out_not_moved; 880 } 881 882 if (err < 0) 883 goto out_error; 884 885 ubi_assert(0); 886 } 887 888 /* The PEB has been successfully moved */ 889 if (scrubbing) 890 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 891 e1->pnum, vol_id, lnum, e2->pnum); 892 ubi_free_vid_buf(vidb); 893 894 spin_lock(&ubi->wl_lock); 895 if (!ubi->move_to_put) { 896 wl_tree_add(e2, &ubi->used); 897 e2 = NULL; 898 } 899 ubi->move_from = ubi->move_to = NULL; 900 ubi->move_to_put = ubi->wl_scheduled = 0; 901 spin_unlock(&ubi->wl_lock); 902 903 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 904 if (err) { 905 if (e2) { 906 spin_lock(&ubi->wl_lock); 907 wl_entry_destroy(ubi, e2); 908 spin_unlock(&ubi->wl_lock); 909 } 910 goto out_ro; 911 } 912 913 if (e2) { 914 /* 915 * Well, the target PEB was put meanwhile, schedule it for 916 * erasure. 917 */ 918 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 919 e2->pnum, vol_id, lnum); 920 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 921 if (err) 922 goto out_ro; 923 } 924 925 dbg_wl("done"); 926 mutex_unlock(&ubi->move_mutex); 927 up_read(&ubi->fm_eba_sem); 928 return 0; 929 930 /* 931 * For some reasons the LEB was not moved, might be an error, might be 932 * something else. @e1 was not changed, so return it back. @e2 might 933 * have been changed, schedule it for erasure. 934 */ 935 out_not_moved: 936 if (vol_id != -1) 937 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 938 e1->pnum, vol_id, lnum, e2->pnum, err); 939 else 940 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 941 e1->pnum, e2->pnum, err); 942 spin_lock(&ubi->wl_lock); 943 if (protect) 944 prot_queue_add(ubi, e1); 945 else if (erroneous) { 946 wl_tree_add(e1, &ubi->erroneous); 947 ubi->erroneous_peb_count += 1; 948 } else if (scrubbing) 949 wl_tree_add(e1, &ubi->scrub); 950 else if (keep) 951 wl_tree_add(e1, &ubi->used); 952 if (dst_leb_clean) { 953 wl_tree_add(e2, &ubi->free); 954 ubi->free_count++; 955 } 956 957 ubi_assert(!ubi->move_to_put); 958 ubi->move_from = ubi->move_to = NULL; 959 ubi->wl_scheduled = 0; 960 spin_unlock(&ubi->wl_lock); 961 962 ubi_free_vid_buf(vidb); 963 if (dst_leb_clean) { 964 ensure_wear_leveling(ubi, 1); 965 } else { 966 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 967 if (err) 968 goto out_ro; 969 } 970 971 if (erase) { 972 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 973 if (err) 974 goto out_ro; 975 } 976 977 mutex_unlock(&ubi->move_mutex); 978 up_read(&ubi->fm_eba_sem); 979 return 0; 980 981 out_error: 982 if (vol_id != -1) 983 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 984 err, e1->pnum, e2->pnum); 985 else 986 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 987 err, e1->pnum, vol_id, lnum, e2->pnum); 988 spin_lock(&ubi->wl_lock); 989 ubi->move_from = ubi->move_to = NULL; 990 ubi->move_to_put = ubi->wl_scheduled = 0; 991 wl_entry_destroy(ubi, e1); 992 wl_entry_destroy(ubi, e2); 993 spin_unlock(&ubi->wl_lock); 994 995 ubi_free_vid_buf(vidb); 996 997 out_ro: 998 ubi_ro_mode(ubi); 999 mutex_unlock(&ubi->move_mutex); 1000 up_read(&ubi->fm_eba_sem); 1001 ubi_assert(err != 0); 1002 return err < 0 ? err : -EIO; 1003 1004 out_cancel: 1005 ubi->wl_scheduled = 0; 1006 spin_unlock(&ubi->wl_lock); 1007 mutex_unlock(&ubi->move_mutex); 1008 up_read(&ubi->fm_eba_sem); 1009 ubi_free_vid_buf(vidb); 1010 return 0; 1011 } 1012 1013 /** 1014 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1015 * @ubi: UBI device description object 1016 * @nested: set to non-zero if this function is called from UBI worker 1017 * 1018 * This function checks if it is time to start wear-leveling and schedules it 1019 * if yes. This function returns zero in case of success and a negative error 1020 * code in case of failure. 1021 */ 1022 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1023 { 1024 int err = 0; 1025 struct ubi_work *wrk; 1026 1027 spin_lock(&ubi->wl_lock); 1028 if (ubi->wl_scheduled) 1029 /* Wear-leveling is already in the work queue */ 1030 goto out_unlock; 1031 1032 /* 1033 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1034 * WL worker has to be scheduled anyway. 1035 */ 1036 if (!ubi->scrub.rb_node) { 1037 #ifdef CONFIG_MTD_UBI_FASTMAP 1038 if (!need_wear_leveling(ubi)) 1039 goto out_unlock; 1040 #else 1041 struct ubi_wl_entry *e1; 1042 struct ubi_wl_entry *e2; 1043 1044 if (!ubi->used.rb_node || !ubi->free.rb_node) 1045 /* No physical eraseblocks - no deal */ 1046 goto out_unlock; 1047 1048 /* 1049 * We schedule wear-leveling only if the difference between the 1050 * lowest erase counter of used physical eraseblocks and a high 1051 * erase counter of free physical eraseblocks is greater than 1052 * %UBI_WL_THRESHOLD. 1053 */ 1054 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1055 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0); 1056 1057 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1058 goto out_unlock; 1059 #endif 1060 dbg_wl("schedule wear-leveling"); 1061 } else 1062 dbg_wl("schedule scrubbing"); 1063 1064 ubi->wl_scheduled = 1; 1065 spin_unlock(&ubi->wl_lock); 1066 1067 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1068 if (!wrk) { 1069 err = -ENOMEM; 1070 goto out_cancel; 1071 } 1072 1073 wrk->func = &wear_leveling_worker; 1074 if (nested) 1075 __schedule_ubi_work(ubi, wrk); 1076 else 1077 schedule_ubi_work(ubi, wrk); 1078 return err; 1079 1080 out_cancel: 1081 spin_lock(&ubi->wl_lock); 1082 ubi->wl_scheduled = 0; 1083 out_unlock: 1084 spin_unlock(&ubi->wl_lock); 1085 return err; 1086 } 1087 1088 /** 1089 * __erase_worker - physical eraseblock erase worker function. 1090 * @ubi: UBI device description object 1091 * @wl_wrk: the work object 1092 * 1093 * This function erases a physical eraseblock and perform torture testing if 1094 * needed. It also takes care about marking the physical eraseblock bad if 1095 * needed. Returns zero in case of success and a negative error code in case of 1096 * failure. 1097 */ 1098 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1099 { 1100 struct ubi_wl_entry *e = wl_wrk->e; 1101 int pnum = e->pnum; 1102 int vol_id = wl_wrk->vol_id; 1103 int lnum = wl_wrk->lnum; 1104 int err, available_consumed = 0; 1105 1106 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1107 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1108 1109 err = ubi_sync_erase(ubi, e, wl_wrk->torture); 1110 if (!err) { 1111 spin_lock(&ubi->wl_lock); 1112 1113 if (!ubi->fm_disabled && !ubi->fm_anchor && 1114 e->pnum < UBI_FM_MAX_START) { 1115 /* 1116 * Abort anchor production, if needed it will be 1117 * enabled again in the wear leveling started below. 1118 */ 1119 ubi->fm_anchor = e; 1120 ubi->fm_do_produce_anchor = 0; 1121 } else { 1122 wl_tree_add(e, &ubi->free); 1123 ubi->free_count++; 1124 } 1125 1126 spin_unlock(&ubi->wl_lock); 1127 1128 /* 1129 * One more erase operation has happened, take care about 1130 * protected physical eraseblocks. 1131 */ 1132 serve_prot_queue(ubi); 1133 1134 /* And take care about wear-leveling */ 1135 err = ensure_wear_leveling(ubi, 1); 1136 return err; 1137 } 1138 1139 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1140 1141 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1142 err == -EBUSY) { 1143 int err1; 1144 1145 /* Re-schedule the LEB for erasure */ 1146 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true); 1147 if (err1) { 1148 spin_lock(&ubi->wl_lock); 1149 wl_entry_destroy(ubi, e); 1150 spin_unlock(&ubi->wl_lock); 1151 err = err1; 1152 goto out_ro; 1153 } 1154 return err; 1155 } 1156 1157 spin_lock(&ubi->wl_lock); 1158 wl_entry_destroy(ubi, e); 1159 spin_unlock(&ubi->wl_lock); 1160 if (err != -EIO) 1161 /* 1162 * If this is not %-EIO, we have no idea what to do. Scheduling 1163 * this physical eraseblock for erasure again would cause 1164 * errors again and again. Well, lets switch to R/O mode. 1165 */ 1166 goto out_ro; 1167 1168 /* It is %-EIO, the PEB went bad */ 1169 1170 if (!ubi->bad_allowed) { 1171 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1172 goto out_ro; 1173 } 1174 1175 spin_lock(&ubi->volumes_lock); 1176 if (ubi->beb_rsvd_pebs == 0) { 1177 if (ubi->avail_pebs == 0) { 1178 spin_unlock(&ubi->volumes_lock); 1179 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1180 goto out_ro; 1181 } 1182 ubi->avail_pebs -= 1; 1183 available_consumed = 1; 1184 } 1185 spin_unlock(&ubi->volumes_lock); 1186 1187 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1188 err = ubi_io_mark_bad(ubi, pnum); 1189 if (err) 1190 goto out_ro; 1191 1192 spin_lock(&ubi->volumes_lock); 1193 if (ubi->beb_rsvd_pebs > 0) { 1194 if (available_consumed) { 1195 /* 1196 * The amount of reserved PEBs increased since we last 1197 * checked. 1198 */ 1199 ubi->avail_pebs += 1; 1200 available_consumed = 0; 1201 } 1202 ubi->beb_rsvd_pebs -= 1; 1203 } 1204 ubi->bad_peb_count += 1; 1205 ubi->good_peb_count -= 1; 1206 ubi_calculate_reserved(ubi); 1207 if (available_consumed) 1208 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1209 else if (ubi->beb_rsvd_pebs) 1210 ubi_msg(ubi, "%d PEBs left in the reserve", 1211 ubi->beb_rsvd_pebs); 1212 else 1213 ubi_warn(ubi, "last PEB from the reserve was used"); 1214 spin_unlock(&ubi->volumes_lock); 1215 1216 return err; 1217 1218 out_ro: 1219 if (available_consumed) { 1220 spin_lock(&ubi->volumes_lock); 1221 ubi->avail_pebs += 1; 1222 spin_unlock(&ubi->volumes_lock); 1223 } 1224 ubi_ro_mode(ubi); 1225 return err; 1226 } 1227 1228 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1229 int shutdown) 1230 { 1231 int ret; 1232 1233 if (shutdown) { 1234 struct ubi_wl_entry *e = wl_wrk->e; 1235 1236 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1237 kfree(wl_wrk); 1238 wl_entry_destroy(ubi, e); 1239 return 0; 1240 } 1241 1242 ret = __erase_worker(ubi, wl_wrk); 1243 kfree(wl_wrk); 1244 return ret; 1245 } 1246 1247 /** 1248 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1249 * @ubi: UBI device description object 1250 * @vol_id: the volume ID that last used this PEB 1251 * @lnum: the last used logical eraseblock number for the PEB 1252 * @pnum: physical eraseblock to return 1253 * @torture: if this physical eraseblock has to be tortured 1254 * 1255 * This function is called to return physical eraseblock @pnum to the pool of 1256 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1257 * occurred to this @pnum and it has to be tested. This function returns zero 1258 * in case of success, and a negative error code in case of failure. 1259 */ 1260 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1261 int pnum, int torture) 1262 { 1263 int err; 1264 struct ubi_wl_entry *e; 1265 1266 dbg_wl("PEB %d", pnum); 1267 ubi_assert(pnum >= 0); 1268 ubi_assert(pnum < ubi->peb_count); 1269 1270 down_read(&ubi->fm_protect); 1271 1272 retry: 1273 spin_lock(&ubi->wl_lock); 1274 e = ubi->lookuptbl[pnum]; 1275 if (!e) { 1276 /* 1277 * This wl entry has been removed for some errors by other 1278 * process (eg. wear leveling worker), corresponding process 1279 * (except __erase_worker, which cannot concurrent with 1280 * ubi_wl_put_peb) will set ubi ro_mode at the same time, 1281 * just ignore this wl entry. 1282 */ 1283 spin_unlock(&ubi->wl_lock); 1284 up_read(&ubi->fm_protect); 1285 return 0; 1286 } 1287 if (e == ubi->move_from) { 1288 /* 1289 * User is putting the physical eraseblock which was selected to 1290 * be moved. It will be scheduled for erasure in the 1291 * wear-leveling worker. 1292 */ 1293 dbg_wl("PEB %d is being moved, wait", pnum); 1294 spin_unlock(&ubi->wl_lock); 1295 1296 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1297 mutex_lock(&ubi->move_mutex); 1298 mutex_unlock(&ubi->move_mutex); 1299 goto retry; 1300 } else if (e == ubi->move_to) { 1301 /* 1302 * User is putting the physical eraseblock which was selected 1303 * as the target the data is moved to. It may happen if the EBA 1304 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1305 * but the WL sub-system has not put the PEB to the "used" tree 1306 * yet, but it is about to do this. So we just set a flag which 1307 * will tell the WL worker that the PEB is not needed anymore 1308 * and should be scheduled for erasure. 1309 */ 1310 dbg_wl("PEB %d is the target of data moving", pnum); 1311 ubi_assert(!ubi->move_to_put); 1312 ubi->move_to_put = 1; 1313 spin_unlock(&ubi->wl_lock); 1314 up_read(&ubi->fm_protect); 1315 return 0; 1316 } else { 1317 if (in_wl_tree(e, &ubi->used)) { 1318 self_check_in_wl_tree(ubi, e, &ubi->used); 1319 rb_erase(&e->u.rb, &ubi->used); 1320 } else if (in_wl_tree(e, &ubi->scrub)) { 1321 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1322 rb_erase(&e->u.rb, &ubi->scrub); 1323 } else if (in_wl_tree(e, &ubi->erroneous)) { 1324 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1325 rb_erase(&e->u.rb, &ubi->erroneous); 1326 ubi->erroneous_peb_count -= 1; 1327 ubi_assert(ubi->erroneous_peb_count >= 0); 1328 /* Erroneous PEBs should be tortured */ 1329 torture = 1; 1330 } else { 1331 err = prot_queue_del(ubi, e->pnum); 1332 if (err) { 1333 ubi_err(ubi, "PEB %d not found", pnum); 1334 ubi_ro_mode(ubi); 1335 spin_unlock(&ubi->wl_lock); 1336 up_read(&ubi->fm_protect); 1337 return err; 1338 } 1339 } 1340 } 1341 spin_unlock(&ubi->wl_lock); 1342 1343 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1344 if (err) { 1345 spin_lock(&ubi->wl_lock); 1346 wl_tree_add(e, &ubi->used); 1347 spin_unlock(&ubi->wl_lock); 1348 } 1349 1350 up_read(&ubi->fm_protect); 1351 return err; 1352 } 1353 1354 /** 1355 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1356 * @ubi: UBI device description object 1357 * @pnum: the physical eraseblock to schedule 1358 * 1359 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1360 * needs scrubbing. This function schedules a physical eraseblock for 1361 * scrubbing which is done in background. This function returns zero in case of 1362 * success and a negative error code in case of failure. 1363 */ 1364 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1365 { 1366 struct ubi_wl_entry *e; 1367 1368 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1369 1370 retry: 1371 spin_lock(&ubi->wl_lock); 1372 e = ubi->lookuptbl[pnum]; 1373 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1374 in_wl_tree(e, &ubi->erroneous)) { 1375 spin_unlock(&ubi->wl_lock); 1376 return 0; 1377 } 1378 1379 if (e == ubi->move_to) { 1380 /* 1381 * This physical eraseblock was used to move data to. The data 1382 * was moved but the PEB was not yet inserted to the proper 1383 * tree. We should just wait a little and let the WL worker 1384 * proceed. 1385 */ 1386 spin_unlock(&ubi->wl_lock); 1387 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1388 yield(); 1389 goto retry; 1390 } 1391 1392 if (in_wl_tree(e, &ubi->used)) { 1393 self_check_in_wl_tree(ubi, e, &ubi->used); 1394 rb_erase(&e->u.rb, &ubi->used); 1395 } else { 1396 int err; 1397 1398 err = prot_queue_del(ubi, e->pnum); 1399 if (err) { 1400 ubi_err(ubi, "PEB %d not found", pnum); 1401 ubi_ro_mode(ubi); 1402 spin_unlock(&ubi->wl_lock); 1403 return err; 1404 } 1405 } 1406 1407 wl_tree_add(e, &ubi->scrub); 1408 spin_unlock(&ubi->wl_lock); 1409 1410 /* 1411 * Technically scrubbing is the same as wear-leveling, so it is done 1412 * by the WL worker. 1413 */ 1414 return ensure_wear_leveling(ubi, 0); 1415 } 1416 1417 /** 1418 * ubi_wl_flush - flush all pending works. 1419 * @ubi: UBI device description object 1420 * @vol_id: the volume id to flush for 1421 * @lnum: the logical eraseblock number to flush for 1422 * 1423 * This function executes all pending works for a particular volume id / 1424 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1425 * acts as a wildcard for all of the corresponding volume numbers or logical 1426 * eraseblock numbers. It returns zero in case of success and a negative error 1427 * code in case of failure. 1428 */ 1429 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1430 { 1431 int err = 0; 1432 int found = 1; 1433 1434 /* 1435 * Erase while the pending works queue is not empty, but not more than 1436 * the number of currently pending works. 1437 */ 1438 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1439 vol_id, lnum, ubi->works_count); 1440 1441 while (found) { 1442 struct ubi_work *wrk, *tmp; 1443 found = 0; 1444 1445 down_read(&ubi->work_sem); 1446 spin_lock(&ubi->wl_lock); 1447 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1448 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1449 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1450 list_del(&wrk->list); 1451 ubi->works_count -= 1; 1452 ubi_assert(ubi->works_count >= 0); 1453 spin_unlock(&ubi->wl_lock); 1454 1455 err = wrk->func(ubi, wrk, 0); 1456 if (err) { 1457 up_read(&ubi->work_sem); 1458 return err; 1459 } 1460 1461 spin_lock(&ubi->wl_lock); 1462 found = 1; 1463 break; 1464 } 1465 } 1466 spin_unlock(&ubi->wl_lock); 1467 up_read(&ubi->work_sem); 1468 } 1469 1470 /* 1471 * Make sure all the works which have been done in parallel are 1472 * finished. 1473 */ 1474 down_write(&ubi->work_sem); 1475 up_write(&ubi->work_sem); 1476 1477 return err; 1478 } 1479 1480 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1481 { 1482 if (in_wl_tree(e, &ubi->scrub)) 1483 return false; 1484 else if (in_wl_tree(e, &ubi->erroneous)) 1485 return false; 1486 else if (ubi->move_from == e) 1487 return false; 1488 else if (ubi->move_to == e) 1489 return false; 1490 1491 return true; 1492 } 1493 1494 /** 1495 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1496 * @ubi: UBI device description object 1497 * @pnum: the physical eraseblock to schedule 1498 * @force: don't read the block, assume bitflips happened and take action. 1499 * 1500 * This function reads the given eraseblock and checks if bitflips occured. 1501 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1502 * If scrubbing is forced with @force, the eraseblock is not read, 1503 * but scheduled for scrubbing right away. 1504 * 1505 * Returns: 1506 * %EINVAL, PEB is out of range 1507 * %ENOENT, PEB is no longer used by UBI 1508 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1509 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1510 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1511 * %0, no bit flips detected 1512 */ 1513 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1514 { 1515 int err = 0; 1516 struct ubi_wl_entry *e; 1517 1518 if (pnum < 0 || pnum >= ubi->peb_count) { 1519 err = -EINVAL; 1520 goto out; 1521 } 1522 1523 /* 1524 * Pause all parallel work, otherwise it can happen that the 1525 * erase worker frees a wl entry under us. 1526 */ 1527 down_write(&ubi->work_sem); 1528 1529 /* 1530 * Make sure that the wl entry does not change state while 1531 * inspecting it. 1532 */ 1533 spin_lock(&ubi->wl_lock); 1534 e = ubi->lookuptbl[pnum]; 1535 if (!e) { 1536 spin_unlock(&ubi->wl_lock); 1537 err = -ENOENT; 1538 goto out_resume; 1539 } 1540 1541 /* 1542 * Does it make sense to check this PEB? 1543 */ 1544 if (!scrub_possible(ubi, e)) { 1545 spin_unlock(&ubi->wl_lock); 1546 err = -EBUSY; 1547 goto out_resume; 1548 } 1549 spin_unlock(&ubi->wl_lock); 1550 1551 if (!force) { 1552 mutex_lock(&ubi->buf_mutex); 1553 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1554 mutex_unlock(&ubi->buf_mutex); 1555 } 1556 1557 if (force || err == UBI_IO_BITFLIPS) { 1558 /* 1559 * Okay, bit flip happened, let's figure out what we can do. 1560 */ 1561 spin_lock(&ubi->wl_lock); 1562 1563 /* 1564 * Recheck. We released wl_lock, UBI might have killed the 1565 * wl entry under us. 1566 */ 1567 e = ubi->lookuptbl[pnum]; 1568 if (!e) { 1569 spin_unlock(&ubi->wl_lock); 1570 err = -ENOENT; 1571 goto out_resume; 1572 } 1573 1574 /* 1575 * Need to re-check state 1576 */ 1577 if (!scrub_possible(ubi, e)) { 1578 spin_unlock(&ubi->wl_lock); 1579 err = -EBUSY; 1580 goto out_resume; 1581 } 1582 1583 if (in_pq(ubi, e)) { 1584 prot_queue_del(ubi, e->pnum); 1585 wl_tree_add(e, &ubi->scrub); 1586 spin_unlock(&ubi->wl_lock); 1587 1588 err = ensure_wear_leveling(ubi, 1); 1589 } else if (in_wl_tree(e, &ubi->used)) { 1590 rb_erase(&e->u.rb, &ubi->used); 1591 wl_tree_add(e, &ubi->scrub); 1592 spin_unlock(&ubi->wl_lock); 1593 1594 err = ensure_wear_leveling(ubi, 1); 1595 } else if (in_wl_tree(e, &ubi->free)) { 1596 rb_erase(&e->u.rb, &ubi->free); 1597 ubi->free_count--; 1598 spin_unlock(&ubi->wl_lock); 1599 1600 /* 1601 * This PEB is empty we can schedule it for 1602 * erasure right away. No wear leveling needed. 1603 */ 1604 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1605 force ? 0 : 1, true); 1606 } else { 1607 spin_unlock(&ubi->wl_lock); 1608 err = -EAGAIN; 1609 } 1610 1611 if (!err && !force) 1612 err = -EUCLEAN; 1613 } else { 1614 err = 0; 1615 } 1616 1617 out_resume: 1618 up_write(&ubi->work_sem); 1619 out: 1620 1621 return err; 1622 } 1623 1624 /** 1625 * tree_destroy - destroy an RB-tree. 1626 * @ubi: UBI device description object 1627 * @root: the root of the tree to destroy 1628 */ 1629 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1630 { 1631 struct rb_node *rb; 1632 struct ubi_wl_entry *e; 1633 1634 rb = root->rb_node; 1635 while (rb) { 1636 if (rb->rb_left) 1637 rb = rb->rb_left; 1638 else if (rb->rb_right) 1639 rb = rb->rb_right; 1640 else { 1641 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1642 1643 rb = rb_parent(rb); 1644 if (rb) { 1645 if (rb->rb_left == &e->u.rb) 1646 rb->rb_left = NULL; 1647 else 1648 rb->rb_right = NULL; 1649 } 1650 1651 wl_entry_destroy(ubi, e); 1652 } 1653 } 1654 } 1655 1656 /** 1657 * ubi_thread - UBI background thread. 1658 * @u: the UBI device description object pointer 1659 */ 1660 int ubi_thread(void *u) 1661 { 1662 int failures = 0; 1663 struct ubi_device *ubi = u; 1664 1665 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1666 ubi->bgt_name, task_pid_nr(current)); 1667 1668 set_freezable(); 1669 for (;;) { 1670 int err; 1671 1672 if (kthread_should_stop()) 1673 break; 1674 1675 if (try_to_freeze()) 1676 continue; 1677 1678 spin_lock(&ubi->wl_lock); 1679 if (list_empty(&ubi->works) || ubi->ro_mode || 1680 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1681 set_current_state(TASK_INTERRUPTIBLE); 1682 spin_unlock(&ubi->wl_lock); 1683 1684 /* 1685 * Check kthread_should_stop() after we set the task 1686 * state to guarantee that we either see the stop bit 1687 * and exit or the task state is reset to runnable such 1688 * that it's not scheduled out indefinitely and detects 1689 * the stop bit at kthread_should_stop(). 1690 */ 1691 if (kthread_should_stop()) { 1692 set_current_state(TASK_RUNNING); 1693 break; 1694 } 1695 1696 schedule(); 1697 continue; 1698 } 1699 spin_unlock(&ubi->wl_lock); 1700 1701 err = do_work(ubi, NULL); 1702 if (err) { 1703 ubi_err(ubi, "%s: work failed with error code %d", 1704 ubi->bgt_name, err); 1705 if (failures++ > WL_MAX_FAILURES) { 1706 /* 1707 * Too many failures, disable the thread and 1708 * switch to read-only mode. 1709 */ 1710 ubi_msg(ubi, "%s: %d consecutive failures", 1711 ubi->bgt_name, WL_MAX_FAILURES); 1712 ubi_ro_mode(ubi); 1713 ubi->thread_enabled = 0; 1714 continue; 1715 } 1716 } else 1717 failures = 0; 1718 1719 cond_resched(); 1720 } 1721 1722 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1723 ubi->thread_enabled = 0; 1724 return 0; 1725 } 1726 1727 /** 1728 * shutdown_work - shutdown all pending works. 1729 * @ubi: UBI device description object 1730 */ 1731 static void shutdown_work(struct ubi_device *ubi) 1732 { 1733 while (!list_empty(&ubi->works)) { 1734 struct ubi_work *wrk; 1735 1736 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1737 list_del(&wrk->list); 1738 wrk->func(ubi, wrk, 1); 1739 ubi->works_count -= 1; 1740 ubi_assert(ubi->works_count >= 0); 1741 } 1742 } 1743 1744 /** 1745 * erase_aeb - erase a PEB given in UBI attach info PEB 1746 * @ubi: UBI device description object 1747 * @aeb: UBI attach info PEB 1748 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1749 */ 1750 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1751 { 1752 struct ubi_wl_entry *e; 1753 int err; 1754 1755 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1756 if (!e) 1757 return -ENOMEM; 1758 1759 e->pnum = aeb->pnum; 1760 e->ec = aeb->ec; 1761 ubi->lookuptbl[e->pnum] = e; 1762 1763 if (sync) { 1764 err = ubi_sync_erase(ubi, e, false); 1765 if (err) 1766 goto out_free; 1767 1768 wl_tree_add(e, &ubi->free); 1769 ubi->free_count++; 1770 } else { 1771 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1772 if (err) 1773 goto out_free; 1774 } 1775 1776 return 0; 1777 1778 out_free: 1779 wl_entry_destroy(ubi, e); 1780 1781 return err; 1782 } 1783 1784 /** 1785 * ubi_wl_init - initialize the WL sub-system using attaching information. 1786 * @ubi: UBI device description object 1787 * @ai: attaching information 1788 * 1789 * This function returns zero in case of success, and a negative error code in 1790 * case of failure. 1791 */ 1792 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1793 { 1794 int err, i, reserved_pebs, found_pebs = 0; 1795 struct rb_node *rb1, *rb2; 1796 struct ubi_ainf_volume *av; 1797 struct ubi_ainf_peb *aeb, *tmp; 1798 struct ubi_wl_entry *e; 1799 1800 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1801 spin_lock_init(&ubi->wl_lock); 1802 mutex_init(&ubi->move_mutex); 1803 init_rwsem(&ubi->work_sem); 1804 ubi->max_ec = ai->max_ec; 1805 INIT_LIST_HEAD(&ubi->works); 1806 1807 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1808 1809 err = -ENOMEM; 1810 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1811 if (!ubi->lookuptbl) 1812 return err; 1813 1814 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1815 INIT_LIST_HEAD(&ubi->pq[i]); 1816 ubi->pq_head = 0; 1817 1818 ubi->free_count = 0; 1819 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1820 cond_resched(); 1821 1822 err = erase_aeb(ubi, aeb, false); 1823 if (err) 1824 goto out_free; 1825 1826 found_pebs++; 1827 } 1828 1829 list_for_each_entry(aeb, &ai->free, u.list) { 1830 cond_resched(); 1831 1832 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1833 if (!e) { 1834 err = -ENOMEM; 1835 goto out_free; 1836 } 1837 1838 e->pnum = aeb->pnum; 1839 e->ec = aeb->ec; 1840 ubi_assert(e->ec >= 0); 1841 1842 wl_tree_add(e, &ubi->free); 1843 ubi->free_count++; 1844 1845 ubi->lookuptbl[e->pnum] = e; 1846 1847 found_pebs++; 1848 } 1849 1850 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1851 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1852 cond_resched(); 1853 1854 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1855 if (!e) { 1856 err = -ENOMEM; 1857 goto out_free; 1858 } 1859 1860 e->pnum = aeb->pnum; 1861 e->ec = aeb->ec; 1862 ubi->lookuptbl[e->pnum] = e; 1863 1864 if (!aeb->scrub) { 1865 dbg_wl("add PEB %d EC %d to the used tree", 1866 e->pnum, e->ec); 1867 wl_tree_add(e, &ubi->used); 1868 } else { 1869 dbg_wl("add PEB %d EC %d to the scrub tree", 1870 e->pnum, e->ec); 1871 wl_tree_add(e, &ubi->scrub); 1872 } 1873 1874 found_pebs++; 1875 } 1876 } 1877 1878 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1879 cond_resched(); 1880 1881 e = ubi_find_fm_block(ubi, aeb->pnum); 1882 1883 if (e) { 1884 ubi_assert(!ubi->lookuptbl[e->pnum]); 1885 ubi->lookuptbl[e->pnum] = e; 1886 } else { 1887 bool sync = false; 1888 1889 /* 1890 * Usually old Fastmap PEBs are scheduled for erasure 1891 * and we don't have to care about them but if we face 1892 * an power cut before scheduling them we need to 1893 * take care of them here. 1894 */ 1895 if (ubi->lookuptbl[aeb->pnum]) 1896 continue; 1897 1898 /* 1899 * The fastmap update code might not find a free PEB for 1900 * writing the fastmap anchor to and then reuses the 1901 * current fastmap anchor PEB. When this PEB gets erased 1902 * and a power cut happens before it is written again we 1903 * must make sure that the fastmap attach code doesn't 1904 * find any outdated fastmap anchors, hence we erase the 1905 * outdated fastmap anchor PEBs synchronously here. 1906 */ 1907 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1908 sync = true; 1909 1910 err = erase_aeb(ubi, aeb, sync); 1911 if (err) 1912 goto out_free; 1913 } 1914 1915 found_pebs++; 1916 } 1917 1918 dbg_wl("found %i PEBs", found_pebs); 1919 1920 ubi_assert(ubi->good_peb_count == found_pebs); 1921 1922 reserved_pebs = WL_RESERVED_PEBS; 1923 ubi_fastmap_init(ubi, &reserved_pebs); 1924 1925 if (ubi->avail_pebs < reserved_pebs) { 1926 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1927 ubi->avail_pebs, reserved_pebs); 1928 if (ubi->corr_peb_count) 1929 ubi_err(ubi, "%d PEBs are corrupted and not used", 1930 ubi->corr_peb_count); 1931 err = -ENOSPC; 1932 goto out_free; 1933 } 1934 ubi->avail_pebs -= reserved_pebs; 1935 ubi->rsvd_pebs += reserved_pebs; 1936 1937 /* Schedule wear-leveling if needed */ 1938 err = ensure_wear_leveling(ubi, 0); 1939 if (err) 1940 goto out_free; 1941 1942 #ifdef CONFIG_MTD_UBI_FASTMAP 1943 if (!ubi->ro_mode && !ubi->fm_disabled) 1944 ubi_ensure_anchor_pebs(ubi); 1945 #endif 1946 return 0; 1947 1948 out_free: 1949 shutdown_work(ubi); 1950 tree_destroy(ubi, &ubi->used); 1951 tree_destroy(ubi, &ubi->free); 1952 tree_destroy(ubi, &ubi->scrub); 1953 kfree(ubi->lookuptbl); 1954 return err; 1955 } 1956 1957 /** 1958 * protection_queue_destroy - destroy the protection queue. 1959 * @ubi: UBI device description object 1960 */ 1961 static void protection_queue_destroy(struct ubi_device *ubi) 1962 { 1963 int i; 1964 struct ubi_wl_entry *e, *tmp; 1965 1966 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1967 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1968 list_del(&e->u.list); 1969 wl_entry_destroy(ubi, e); 1970 } 1971 } 1972 } 1973 1974 /** 1975 * ubi_wl_close - close the wear-leveling sub-system. 1976 * @ubi: UBI device description object 1977 */ 1978 void ubi_wl_close(struct ubi_device *ubi) 1979 { 1980 dbg_wl("close the WL sub-system"); 1981 ubi_fastmap_close(ubi); 1982 shutdown_work(ubi); 1983 protection_queue_destroy(ubi); 1984 tree_destroy(ubi, &ubi->used); 1985 tree_destroy(ubi, &ubi->erroneous); 1986 tree_destroy(ubi, &ubi->free); 1987 tree_destroy(ubi, &ubi->scrub); 1988 kfree(ubi->lookuptbl); 1989 } 1990 1991 /** 1992 * self_check_ec - make sure that the erase counter of a PEB is correct. 1993 * @ubi: UBI device description object 1994 * @pnum: the physical eraseblock number to check 1995 * @ec: the erase counter to check 1996 * 1997 * This function returns zero if the erase counter of physical eraseblock @pnum 1998 * is equivalent to @ec, and a negative error code if not or if an error 1999 * occurred. 2000 */ 2001 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2002 { 2003 int err; 2004 long long read_ec; 2005 struct ubi_ec_hdr *ec_hdr; 2006 2007 if (!ubi_dbg_chk_gen(ubi)) 2008 return 0; 2009 2010 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2011 if (!ec_hdr) 2012 return -ENOMEM; 2013 2014 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2015 if (err && err != UBI_IO_BITFLIPS) { 2016 /* The header does not have to exist */ 2017 err = 0; 2018 goto out_free; 2019 } 2020 2021 read_ec = be64_to_cpu(ec_hdr->ec); 2022 if (ec != read_ec && read_ec - ec > 1) { 2023 ubi_err(ubi, "self-check failed for PEB %d", pnum); 2024 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 2025 dump_stack(); 2026 err = 1; 2027 } else 2028 err = 0; 2029 2030 out_free: 2031 kfree(ec_hdr); 2032 return err; 2033 } 2034 2035 /** 2036 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2037 * @ubi: UBI device description object 2038 * @e: the wear-leveling entry to check 2039 * @root: the root of the tree 2040 * 2041 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2042 * is not. 2043 */ 2044 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2045 struct ubi_wl_entry *e, struct rb_root *root) 2046 { 2047 if (!ubi_dbg_chk_gen(ubi)) 2048 return 0; 2049 2050 if (in_wl_tree(e, root)) 2051 return 0; 2052 2053 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2054 e->pnum, e->ec, root); 2055 dump_stack(); 2056 return -EINVAL; 2057 } 2058 2059 /** 2060 * self_check_in_pq - check if wear-leveling entry is in the protection 2061 * queue. 2062 * @ubi: UBI device description object 2063 * @e: the wear-leveling entry to check 2064 * 2065 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2066 */ 2067 static int self_check_in_pq(const struct ubi_device *ubi, 2068 struct ubi_wl_entry *e) 2069 { 2070 if (!ubi_dbg_chk_gen(ubi)) 2071 return 0; 2072 2073 if (in_pq(ubi, e)) 2074 return 0; 2075 2076 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2077 e->pnum, e->ec); 2078 dump_stack(); 2079 return -EINVAL; 2080 } 2081 #ifndef CONFIG_MTD_UBI_FASTMAP 2082 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2083 { 2084 struct ubi_wl_entry *e; 2085 2086 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0); 2087 self_check_in_wl_tree(ubi, e, &ubi->free); 2088 ubi->free_count--; 2089 ubi_assert(ubi->free_count >= 0); 2090 rb_erase(&e->u.rb, &ubi->free); 2091 2092 return e; 2093 } 2094 2095 /** 2096 * produce_free_peb - produce a free physical eraseblock. 2097 * @ubi: UBI device description object 2098 * 2099 * This function tries to make a free PEB by means of synchronous execution of 2100 * pending works. This may be needed if, for example the background thread is 2101 * disabled. Returns zero in case of success and a negative error code in case 2102 * of failure. 2103 */ 2104 static int produce_free_peb(struct ubi_device *ubi) 2105 { 2106 int err; 2107 2108 while (!ubi->free.rb_node && ubi->works_count) { 2109 spin_unlock(&ubi->wl_lock); 2110 2111 dbg_wl("do one work synchronously"); 2112 err = do_work(ubi, NULL); 2113 2114 spin_lock(&ubi->wl_lock); 2115 if (err) 2116 return err; 2117 } 2118 2119 return 0; 2120 } 2121 2122 /** 2123 * ubi_wl_get_peb - get a physical eraseblock. 2124 * @ubi: UBI device description object 2125 * 2126 * This function returns a physical eraseblock in case of success and a 2127 * negative error code in case of failure. 2128 * Returns with ubi->fm_eba_sem held in read mode! 2129 */ 2130 int ubi_wl_get_peb(struct ubi_device *ubi) 2131 { 2132 int err; 2133 struct ubi_wl_entry *e; 2134 2135 retry: 2136 down_read(&ubi->fm_eba_sem); 2137 spin_lock(&ubi->wl_lock); 2138 if (!ubi->free.rb_node) { 2139 if (ubi->works_count == 0) { 2140 ubi_err(ubi, "no free eraseblocks"); 2141 ubi_assert(list_empty(&ubi->works)); 2142 spin_unlock(&ubi->wl_lock); 2143 return -ENOSPC; 2144 } 2145 2146 err = produce_free_peb(ubi); 2147 if (err < 0) { 2148 spin_unlock(&ubi->wl_lock); 2149 return err; 2150 } 2151 spin_unlock(&ubi->wl_lock); 2152 up_read(&ubi->fm_eba_sem); 2153 goto retry; 2154 2155 } 2156 e = wl_get_wle(ubi); 2157 prot_queue_add(ubi, e); 2158 spin_unlock(&ubi->wl_lock); 2159 2160 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2161 ubi->peb_size - ubi->vid_hdr_aloffset); 2162 if (err) { 2163 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2164 return err; 2165 } 2166 2167 return e->pnum; 2168 } 2169 #else 2170 #include "fastmap-wl.c" 2171 #endif 2172