1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (c) International Business Machines Corp., 2006 4 * 5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 6 */ 7 8 /* 9 * UBI wear-leveling sub-system. 10 * 11 * This sub-system is responsible for wear-leveling. It works in terms of 12 * physical eraseblocks and erase counters and knows nothing about logical 13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 14 * eraseblocks are of two types - used and free. Used physical eraseblocks are 15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 17 * 18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 19 * header. The rest of the physical eraseblock contains only %0xFF bytes. 20 * 21 * When physical eraseblocks are returned to the WL sub-system by means of the 22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 23 * done asynchronously in context of the per-UBI device background thread, 24 * which is also managed by the WL sub-system. 25 * 26 * The wear-leveling is ensured by means of moving the contents of used 27 * physical eraseblocks with low erase counter to free physical eraseblocks 28 * with high erase counter. 29 * 30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 31 * bad. 32 * 33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 34 * in a physical eraseblock, it has to be moved. Technically this is the same 35 * as moving it for wear-leveling reasons. 36 * 37 * As it was said, for the UBI sub-system all physical eraseblocks are either 38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 40 * RB-trees, as well as (temporarily) in the @wl->pq queue. 41 * 42 * When the WL sub-system returns a physical eraseblock, the physical 43 * eraseblock is protected from being moved for some "time". For this reason, 44 * the physical eraseblock is not directly moved from the @wl->free tree to the 45 * @wl->used tree. There is a protection queue in between where this 46 * physical eraseblock is temporarily stored (@wl->pq). 47 * 48 * All this protection stuff is needed because: 49 * o we don't want to move physical eraseblocks just after we have given them 50 * to the user; instead, we first want to let users fill them up with data; 51 * 52 * o there is a chance that the user will put the physical eraseblock very 53 * soon, so it makes sense not to move it for some time, but wait. 54 * 55 * Physical eraseblocks stay protected only for limited time. But the "time" is 56 * measured in erase cycles in this case. This is implemented with help of the 57 * protection queue. Eraseblocks are put to the tail of this queue when they 58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 59 * head of the queue on each erase operation (for any eraseblock). So the 60 * length of the queue defines how may (global) erase cycles PEBs are protected. 61 * 62 * To put it differently, each physical eraseblock has 2 main states: free and 63 * used. The former state corresponds to the @wl->free tree. The latter state 64 * is split up on several sub-states: 65 * o the WL movement is allowed (@wl->used tree); 66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 67 * erroneous - e.g., there was a read error; 68 * o the WL movement is temporarily prohibited (@wl->pq queue); 69 * o scrubbing is needed (@wl->scrub tree). 70 * 71 * Depending on the sub-state, wear-leveling entries of the used physical 72 * eraseblocks may be kept in one of those structures. 73 * 74 * Note, in this implementation, we keep a small in-RAM object for each physical 75 * eraseblock. This is surely not a scalable solution. But it appears to be good 76 * enough for moderately large flashes and it is simple. In future, one may 77 * re-work this sub-system and make it more scalable. 78 * 79 * At the moment this sub-system does not utilize the sequence number, which 80 * was introduced relatively recently. But it would be wise to do this because 81 * the sequence number of a logical eraseblock characterizes how old is it. For 82 * example, when we move a PEB with low erase counter, and we need to pick the 83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 84 * pick target PEB with an average EC if our PEB is not very "old". This is a 85 * room for future re-works of the WL sub-system. 86 */ 87 88 #include <linux/slab.h> 89 #include <linux/crc32.h> 90 #include <linux/freezer.h> 91 #include <linux/kthread.h> 92 #include "ubi.h" 93 #include "wl.h" 94 95 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 96 #define WL_RESERVED_PEBS 1 97 98 /* 99 * Maximum difference between two erase counters. If this threshold is 100 * exceeded, the WL sub-system starts moving data from used physical 101 * eraseblocks with low erase counter to free physical eraseblocks with high 102 * erase counter. 103 */ 104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 105 106 /* 107 * When a physical eraseblock is moved, the WL sub-system has to pick the target 108 * physical eraseblock to move to. The simplest way would be just to pick the 109 * one with the highest erase counter. But in certain workloads this could lead 110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 111 * situation when the picked physical eraseblock is constantly erased after the 112 * data is written to it. So, we have a constant which limits the highest erase 113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 114 * does not pick eraseblocks with erase counter greater than the lowest erase 115 * counter plus %WL_FREE_MAX_DIFF. 116 */ 117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 118 119 /* 120 * Maximum number of consecutive background thread failures which is enough to 121 * switch to read-only mode. 122 */ 123 #define WL_MAX_FAILURES 32 124 125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 126 static int self_check_in_wl_tree(const struct ubi_device *ubi, 127 struct ubi_wl_entry *e, struct rb_root *root); 128 static int self_check_in_pq(const struct ubi_device *ubi, 129 struct ubi_wl_entry *e); 130 131 /** 132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 133 * @e: the wear-leveling entry to add 134 * @root: the root of the tree 135 * 136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 137 * the @ubi->used and @ubi->free RB-trees. 138 */ 139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 140 { 141 struct rb_node **p, *parent = NULL; 142 143 p = &root->rb_node; 144 while (*p) { 145 struct ubi_wl_entry *e1; 146 147 parent = *p; 148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 149 150 if (e->ec < e1->ec) 151 p = &(*p)->rb_left; 152 else if (e->ec > e1->ec) 153 p = &(*p)->rb_right; 154 else { 155 ubi_assert(e->pnum != e1->pnum); 156 if (e->pnum < e1->pnum) 157 p = &(*p)->rb_left; 158 else 159 p = &(*p)->rb_right; 160 } 161 } 162 163 rb_link_node(&e->u.rb, parent, p); 164 rb_insert_color(&e->u.rb, root); 165 } 166 167 /** 168 * wl_entry_destroy - destroy a wear-leveling entry. 169 * @ubi: UBI device description object 170 * @e: the wear-leveling entry to add 171 * 172 * This function destroys a wear leveling entry and removes 173 * the reference from the lookup table. 174 */ 175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 176 { 177 ubi->lookuptbl[e->pnum] = NULL; 178 kmem_cache_free(ubi_wl_entry_slab, e); 179 } 180 181 /** 182 * do_work - do one pending work. 183 * @ubi: UBI device description object 184 * @executed: whether there is one work is executed 185 * 186 * This function returns zero in case of success and a negative error code in 187 * case of failure. If @executed is not NULL and there is one work executed, 188 * @executed is set as %1, otherwise @executed is set as %0. 189 */ 190 static int do_work(struct ubi_device *ubi, int *executed) 191 { 192 int err; 193 struct ubi_work *wrk; 194 195 cond_resched(); 196 197 /* 198 * @ubi->work_sem is used to synchronize with the workers. Workers take 199 * it in read mode, so many of them may be doing works at a time. But 200 * the queue flush code has to be sure the whole queue of works is 201 * done, and it takes the mutex in write mode. 202 */ 203 down_read(&ubi->work_sem); 204 spin_lock(&ubi->wl_lock); 205 if (list_empty(&ubi->works)) { 206 spin_unlock(&ubi->wl_lock); 207 up_read(&ubi->work_sem); 208 if (executed) 209 *executed = 0; 210 return 0; 211 } 212 213 if (executed) 214 *executed = 1; 215 wrk = list_entry(ubi->works.next, struct ubi_work, list); 216 list_del(&wrk->list); 217 ubi->works_count -= 1; 218 ubi_assert(ubi->works_count >= 0); 219 spin_unlock(&ubi->wl_lock); 220 221 /* 222 * Call the worker function. Do not touch the work structure 223 * after this call as it will have been freed or reused by that 224 * time by the worker function. 225 */ 226 err = wrk->func(ubi, wrk, 0); 227 if (err) 228 ubi_err(ubi, "work failed with error code %d", err); 229 up_read(&ubi->work_sem); 230 231 return err; 232 } 233 234 /** 235 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 236 * @e: the wear-leveling entry to check 237 * @root: the root of the tree 238 * 239 * This function returns non-zero if @e is in the @root RB-tree and zero if it 240 * is not. 241 */ 242 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 243 { 244 struct rb_node *p; 245 246 p = root->rb_node; 247 while (p) { 248 struct ubi_wl_entry *e1; 249 250 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 251 252 if (e->pnum == e1->pnum) { 253 ubi_assert(e == e1); 254 return 1; 255 } 256 257 if (e->ec < e1->ec) 258 p = p->rb_left; 259 else if (e->ec > e1->ec) 260 p = p->rb_right; 261 else { 262 ubi_assert(e->pnum != e1->pnum); 263 if (e->pnum < e1->pnum) 264 p = p->rb_left; 265 else 266 p = p->rb_right; 267 } 268 } 269 270 return 0; 271 } 272 273 /** 274 * in_pq - check if a wear-leveling entry is present in the protection queue. 275 * @ubi: UBI device description object 276 * @e: the wear-leveling entry to check 277 * 278 * This function returns non-zero if @e is in the protection queue and zero 279 * if it is not. 280 */ 281 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e) 282 { 283 struct ubi_wl_entry *p; 284 int i; 285 286 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 287 list_for_each_entry(p, &ubi->pq[i], u.list) 288 if (p == e) 289 return 1; 290 291 return 0; 292 } 293 294 /** 295 * prot_queue_add - add physical eraseblock to the protection queue. 296 * @ubi: UBI device description object 297 * @e: the physical eraseblock to add 298 * 299 * This function adds @e to the tail of the protection queue @ubi->pq, where 300 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 301 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 302 * be locked. 303 */ 304 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 305 { 306 int pq_tail = ubi->pq_head - 1; 307 308 if (pq_tail < 0) 309 pq_tail = UBI_PROT_QUEUE_LEN - 1; 310 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 311 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 312 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 313 } 314 315 /** 316 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 317 * @ubi: UBI device description object 318 * @root: the RB-tree where to look for 319 * @diff: maximum possible difference from the smallest erase counter 320 * @pick_max: pick PEB even its erase counter beyonds 'min_ec + @diff' 321 * 322 * This function looks for a wear leveling entry with erase counter closest to 323 * min + @diff, where min is the smallest erase counter. 324 */ 325 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 326 struct rb_root *root, int diff, 327 int pick_max) 328 { 329 struct rb_node *p; 330 struct ubi_wl_entry *e; 331 int max; 332 333 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 334 max = e->ec + diff; 335 336 p = root->rb_node; 337 while (p) { 338 struct ubi_wl_entry *e1; 339 340 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 341 if (e1->ec >= max) { 342 if (pick_max) 343 e = e1; 344 p = p->rb_left; 345 } else { 346 p = p->rb_right; 347 e = e1; 348 } 349 } 350 351 return e; 352 } 353 354 /** 355 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 356 * @ubi: UBI device description object 357 * @root: the RB-tree where to look for 358 * 359 * This function looks for a wear leveling entry with medium erase counter, 360 * but not greater or equivalent than the lowest erase counter plus 361 * %WL_FREE_MAX_DIFF/2. 362 */ 363 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 364 struct rb_root *root) 365 { 366 struct ubi_wl_entry *e, *first, *last; 367 368 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 369 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 370 371 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 372 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 373 374 /* 375 * If no fastmap has been written and fm_anchor is not 376 * reserved and this WL entry can be used as anchor PEB 377 * hold it back and return the second best WL entry such 378 * that fastmap can use the anchor PEB later. 379 */ 380 e = may_reserve_for_fm(ubi, e, root); 381 } else 382 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2, 0); 383 384 return e; 385 } 386 387 /** 388 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 389 * refill_wl_user_pool(). 390 * @ubi: UBI device description object 391 * 392 * This function returns a wear leveling entry in case of success and 393 * NULL in case of failure. 394 */ 395 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 396 { 397 struct ubi_wl_entry *e; 398 399 e = find_mean_wl_entry(ubi, &ubi->free); 400 if (!e) { 401 ubi_err(ubi, "no free eraseblocks"); 402 return NULL; 403 } 404 405 self_check_in_wl_tree(ubi, e, &ubi->free); 406 407 /* 408 * Move the physical eraseblock to the protection queue where it will 409 * be protected from being moved for some time. 410 */ 411 rb_erase(&e->u.rb, &ubi->free); 412 ubi->free_count--; 413 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 414 415 return e; 416 } 417 418 /** 419 * prot_queue_del - remove a physical eraseblock from the protection queue. 420 * @ubi: UBI device description object 421 * @pnum: the physical eraseblock to remove 422 * 423 * This function deletes PEB @pnum from the protection queue and returns zero 424 * in case of success and %-ENODEV if the PEB was not found. 425 */ 426 static int prot_queue_del(struct ubi_device *ubi, int pnum) 427 { 428 struct ubi_wl_entry *e; 429 430 e = ubi->lookuptbl[pnum]; 431 if (!e) 432 return -ENODEV; 433 434 if (self_check_in_pq(ubi, e)) 435 return -ENODEV; 436 437 list_del(&e->u.list); 438 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 439 return 0; 440 } 441 442 /** 443 * ubi_sync_erase - synchronously erase a physical eraseblock. 444 * @ubi: UBI device description object 445 * @e: the physical eraseblock to erase 446 * @torture: if the physical eraseblock has to be tortured 447 * 448 * This function returns zero in case of success and a negative error code in 449 * case of failure. 450 */ 451 int ubi_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, int torture) 452 { 453 int err; 454 struct ubi_ec_hdr *ec_hdr; 455 unsigned long long ec = e->ec; 456 457 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 458 459 err = self_check_ec(ubi, e->pnum, e->ec); 460 if (err) 461 return -EINVAL; 462 463 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 464 if (!ec_hdr) 465 return -ENOMEM; 466 467 err = ubi_io_sync_erase(ubi, e->pnum, torture); 468 if (err < 0) 469 goto out_free; 470 471 ec += err; 472 if (ec > UBI_MAX_ERASECOUNTER) { 473 /* 474 * Erase counter overflow. Upgrade UBI and use 64-bit 475 * erase counters internally. 476 */ 477 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 478 e->pnum, ec); 479 err = -EINVAL; 480 goto out_free; 481 } 482 483 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 484 485 ec_hdr->ec = cpu_to_be64(ec); 486 487 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 488 if (err) 489 goto out_free; 490 491 e->ec = ec; 492 spin_lock(&ubi->wl_lock); 493 if (e->ec > ubi->max_ec) 494 ubi->max_ec = e->ec; 495 spin_unlock(&ubi->wl_lock); 496 497 out_free: 498 kfree(ec_hdr); 499 return err; 500 } 501 502 /** 503 * serve_prot_queue - check if it is time to stop protecting PEBs. 504 * @ubi: UBI device description object 505 * 506 * This function is called after each erase operation and removes PEBs from the 507 * tail of the protection queue. These PEBs have been protected for long enough 508 * and should be moved to the used tree. 509 */ 510 static void serve_prot_queue(struct ubi_device *ubi) 511 { 512 struct ubi_wl_entry *e, *tmp; 513 int count; 514 515 /* 516 * There may be several protected physical eraseblock to remove, 517 * process them all. 518 */ 519 repeat: 520 count = 0; 521 spin_lock(&ubi->wl_lock); 522 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 523 dbg_wl("PEB %d EC %d protection over, move to used tree", 524 e->pnum, e->ec); 525 526 list_del(&e->u.list); 527 wl_tree_add(e, &ubi->used); 528 if (count++ > 32) { 529 /* 530 * Let's be nice and avoid holding the spinlock for 531 * too long. 532 */ 533 spin_unlock(&ubi->wl_lock); 534 cond_resched(); 535 goto repeat; 536 } 537 } 538 539 ubi->pq_head += 1; 540 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 541 ubi->pq_head = 0; 542 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 543 spin_unlock(&ubi->wl_lock); 544 } 545 546 /** 547 * __schedule_ubi_work - schedule a work. 548 * @ubi: UBI device description object 549 * @wrk: the work to schedule 550 * 551 * This function adds a work defined by @wrk to the tail of the pending works 552 * list. Can only be used if ubi->work_sem is already held in read mode! 553 */ 554 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 555 { 556 spin_lock(&ubi->wl_lock); 557 list_add_tail(&wrk->list, &ubi->works); 558 ubi_assert(ubi->works_count >= 0); 559 ubi->works_count += 1; 560 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 561 wake_up_process(ubi->bgt_thread); 562 spin_unlock(&ubi->wl_lock); 563 } 564 565 /** 566 * schedule_ubi_work - schedule a work. 567 * @ubi: UBI device description object 568 * @wrk: the work to schedule 569 * 570 * This function adds a work defined by @wrk to the tail of the pending works 571 * list. 572 */ 573 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 574 { 575 down_read(&ubi->work_sem); 576 __schedule_ubi_work(ubi, wrk); 577 up_read(&ubi->work_sem); 578 } 579 580 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 581 int shutdown); 582 583 /** 584 * schedule_erase - schedule an erase work. 585 * @ubi: UBI device description object 586 * @e: the WL entry of the physical eraseblock to erase 587 * @vol_id: the volume ID that last used this PEB 588 * @lnum: the last used logical eraseblock number for the PEB 589 * @torture: if the physical eraseblock has to be tortured 590 * @nested: denotes whether the work_sem is already held 591 * 592 * This function returns zero in case of success and a %-ENOMEM in case of 593 * failure. 594 */ 595 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 596 int vol_id, int lnum, int torture, bool nested) 597 { 598 struct ubi_work *wl_wrk; 599 600 ubi_assert(e); 601 602 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 603 e->pnum, e->ec, torture); 604 605 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 606 if (!wl_wrk) 607 return -ENOMEM; 608 609 wl_wrk->func = &erase_worker; 610 wl_wrk->e = e; 611 wl_wrk->vol_id = vol_id; 612 wl_wrk->lnum = lnum; 613 wl_wrk->torture = torture; 614 615 if (nested) 616 __schedule_ubi_work(ubi, wl_wrk); 617 else 618 schedule_ubi_work(ubi, wl_wrk); 619 return 0; 620 } 621 622 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 623 /** 624 * do_sync_erase - run the erase worker synchronously. 625 * @ubi: UBI device description object 626 * @e: the WL entry of the physical eraseblock to erase 627 * @vol_id: the volume ID that last used this PEB 628 * @lnum: the last used logical eraseblock number for the PEB 629 * @torture: if the physical eraseblock has to be tortured 630 * 631 */ 632 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 633 int vol_id, int lnum, int torture) 634 { 635 struct ubi_work wl_wrk; 636 637 dbg_wl("sync erase of PEB %i", e->pnum); 638 639 wl_wrk.e = e; 640 wl_wrk.vol_id = vol_id; 641 wl_wrk.lnum = lnum; 642 wl_wrk.torture = torture; 643 644 return __erase_worker(ubi, &wl_wrk); 645 } 646 647 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 648 /** 649 * wear_leveling_worker - wear-leveling worker function. 650 * @ubi: UBI device description object 651 * @wrk: the work object 652 * @shutdown: non-zero if the worker has to free memory and exit 653 * because the WL-subsystem is shutting down 654 * 655 * This function copies a more worn out physical eraseblock to a less worn out 656 * one. Returns zero in case of success and a negative error code in case of 657 * failure. 658 */ 659 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 660 int shutdown) 661 { 662 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 663 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 664 struct ubi_wl_entry *e1, *e2; 665 struct ubi_vid_io_buf *vidb; 666 struct ubi_vid_hdr *vid_hdr; 667 int dst_leb_clean = 0; 668 669 kfree(wrk); 670 if (shutdown) 671 return 0; 672 673 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 674 if (!vidb) 675 return -ENOMEM; 676 677 vid_hdr = ubi_get_vid_hdr(vidb); 678 679 down_read(&ubi->fm_eba_sem); 680 mutex_lock(&ubi->move_mutex); 681 spin_lock(&ubi->wl_lock); 682 ubi_assert(!ubi->move_from && !ubi->move_to); 683 ubi_assert(!ubi->move_to_put); 684 685 #ifdef CONFIG_MTD_UBI_FASTMAP 686 if (!next_peb_for_wl(ubi, true) || 687 #else 688 if (!ubi->free.rb_node || 689 #endif 690 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 691 /* 692 * No free physical eraseblocks? Well, they must be waiting in 693 * the queue to be erased. Cancel movement - it will be 694 * triggered again when a free physical eraseblock appears. 695 * 696 * No used physical eraseblocks? They must be temporarily 697 * protected from being moved. They will be moved to the 698 * @ubi->used tree later and the wear-leveling will be 699 * triggered again. 700 */ 701 dbg_wl("cancel WL, a list is empty: free %d, used %d", 702 !ubi->free.rb_node, !ubi->used.rb_node); 703 goto out_cancel; 704 } 705 706 #ifdef CONFIG_MTD_UBI_FASTMAP 707 e1 = find_anchor_wl_entry(&ubi->used); 708 if (e1 && ubi->fm_anchor && 709 (ubi->fm_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) { 710 ubi->fm_do_produce_anchor = 1; 711 /* 712 * fm_anchor is no longer considered a good anchor. 713 * NULL assignment also prevents multiple wear level checks 714 * of this PEB. 715 */ 716 wl_tree_add(ubi->fm_anchor, &ubi->free); 717 ubi->fm_anchor = NULL; 718 ubi->free_count++; 719 } 720 721 if (ubi->fm_do_produce_anchor) { 722 if (!e1) 723 goto out_cancel; 724 e2 = get_peb_for_wl(ubi); 725 if (!e2) 726 goto out_cancel; 727 728 self_check_in_wl_tree(ubi, e1, &ubi->used); 729 rb_erase(&e1->u.rb, &ubi->used); 730 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 731 ubi->fm_do_produce_anchor = 0; 732 } else if (!ubi->scrub.rb_node) { 733 #else 734 if (!ubi->scrub.rb_node) { 735 #endif 736 /* 737 * Now pick the least worn-out used physical eraseblock and a 738 * highly worn-out free physical eraseblock. If the erase 739 * counters differ much enough, start wear-leveling. 740 */ 741 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 742 e2 = get_peb_for_wl(ubi); 743 if (!e2) 744 goto out_cancel; 745 746 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 747 dbg_wl("no WL needed: min used EC %d, max free EC %d", 748 e1->ec, e2->ec); 749 750 /* Give the unused PEB back */ 751 wl_tree_add(e2, &ubi->free); 752 ubi->free_count++; 753 goto out_cancel; 754 } 755 self_check_in_wl_tree(ubi, e1, &ubi->used); 756 rb_erase(&e1->u.rb, &ubi->used); 757 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 758 e1->pnum, e1->ec, e2->pnum, e2->ec); 759 } else { 760 /* Perform scrubbing */ 761 scrubbing = 1; 762 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 763 e2 = get_peb_for_wl(ubi); 764 if (!e2) 765 goto out_cancel; 766 767 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 768 rb_erase(&e1->u.rb, &ubi->scrub); 769 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 770 } 771 772 ubi->move_from = e1; 773 ubi->move_to = e2; 774 spin_unlock(&ubi->wl_lock); 775 776 /* 777 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 778 * We so far do not know which logical eraseblock our physical 779 * eraseblock (@e1) belongs to. We have to read the volume identifier 780 * header first. 781 * 782 * Note, we are protected from this PEB being unmapped and erased. The 783 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 784 * which is being moved was unmapped. 785 */ 786 787 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 788 if (err && err != UBI_IO_BITFLIPS) { 789 dst_leb_clean = 1; 790 if (err == UBI_IO_FF) { 791 /* 792 * We are trying to move PEB without a VID header. UBI 793 * always write VID headers shortly after the PEB was 794 * given, so we have a situation when it has not yet 795 * had a chance to write it, because it was preempted. 796 * So add this PEB to the protection queue so far, 797 * because presumably more data will be written there 798 * (including the missing VID header), and then we'll 799 * move it. 800 */ 801 dbg_wl("PEB %d has no VID header", e1->pnum); 802 protect = 1; 803 goto out_not_moved; 804 } else if (err == UBI_IO_FF_BITFLIPS) { 805 /* 806 * The same situation as %UBI_IO_FF, but bit-flips were 807 * detected. It is better to schedule this PEB for 808 * scrubbing. 809 */ 810 dbg_wl("PEB %d has no VID header but has bit-flips", 811 e1->pnum); 812 scrubbing = 1; 813 goto out_not_moved; 814 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 815 /* 816 * While a full scan would detect interrupted erasures 817 * at attach time we can face them here when attached from 818 * Fastmap. 819 */ 820 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 821 e1->pnum); 822 erase = 1; 823 goto out_not_moved; 824 } 825 826 ubi_err(ubi, "error %d while reading VID header from PEB %d", 827 err, e1->pnum); 828 goto out_error; 829 } 830 831 vol_id = be32_to_cpu(vid_hdr->vol_id); 832 lnum = be32_to_cpu(vid_hdr->lnum); 833 834 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 835 if (err) { 836 if (err == MOVE_CANCEL_RACE) { 837 /* 838 * The LEB has not been moved because the volume is 839 * being deleted or the PEB has been put meanwhile. We 840 * should prevent this PEB from being selected for 841 * wear-leveling movement again, so put it to the 842 * protection queue. 843 */ 844 protect = 1; 845 dst_leb_clean = 1; 846 goto out_not_moved; 847 } 848 if (err == MOVE_RETRY) { 849 /* 850 * For source PEB: 851 * 1. The scrubbing is set for scrub type PEB, it will 852 * be put back into ubi->scrub list. 853 * 2. Non-scrub type PEB will be put back into ubi->used 854 * list. 855 */ 856 keep = 1; 857 dst_leb_clean = 1; 858 goto out_not_moved; 859 } 860 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 861 err == MOVE_TARGET_RD_ERR) { 862 /* 863 * Target PEB had bit-flips or write error - torture it. 864 */ 865 torture = 1; 866 keep = 1; 867 goto out_not_moved; 868 } 869 870 if (err == MOVE_SOURCE_RD_ERR) { 871 /* 872 * An error happened while reading the source PEB. Do 873 * not switch to R/O mode in this case, and give the 874 * upper layers a possibility to recover from this, 875 * e.g. by unmapping corresponding LEB. Instead, just 876 * put this PEB to the @ubi->erroneous list to prevent 877 * UBI from trying to move it over and over again. 878 */ 879 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 880 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 881 ubi->erroneous_peb_count); 882 goto out_error; 883 } 884 dst_leb_clean = 1; 885 erroneous = 1; 886 goto out_not_moved; 887 } 888 889 if (err < 0) 890 goto out_error; 891 892 ubi_assert(0); 893 } 894 895 /* The PEB has been successfully moved */ 896 if (scrubbing) 897 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 898 e1->pnum, vol_id, lnum, e2->pnum); 899 ubi_free_vid_buf(vidb); 900 901 spin_lock(&ubi->wl_lock); 902 if (!ubi->move_to_put) { 903 wl_tree_add(e2, &ubi->used); 904 e2 = NULL; 905 } 906 ubi->move_from = ubi->move_to = NULL; 907 ubi->move_to_put = ubi->wl_scheduled = 0; 908 spin_unlock(&ubi->wl_lock); 909 910 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 911 if (err) { 912 if (e2) { 913 spin_lock(&ubi->wl_lock); 914 wl_entry_destroy(ubi, e2); 915 spin_unlock(&ubi->wl_lock); 916 } 917 goto out_ro; 918 } 919 920 if (e2) { 921 /* 922 * Well, the target PEB was put meanwhile, schedule it for 923 * erasure. 924 */ 925 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 926 e2->pnum, vol_id, lnum); 927 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 928 if (err) 929 goto out_ro; 930 } 931 932 dbg_wl("done"); 933 mutex_unlock(&ubi->move_mutex); 934 up_read(&ubi->fm_eba_sem); 935 return 0; 936 937 /* 938 * For some reasons the LEB was not moved, might be an error, might be 939 * something else. @e1 was not changed, so return it back. @e2 might 940 * have been changed, schedule it for erasure. 941 */ 942 out_not_moved: 943 if (vol_id != -1) 944 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 945 e1->pnum, vol_id, lnum, e2->pnum, err); 946 else 947 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 948 e1->pnum, e2->pnum, err); 949 spin_lock(&ubi->wl_lock); 950 if (protect) 951 prot_queue_add(ubi, e1); 952 else if (erroneous) { 953 wl_tree_add(e1, &ubi->erroneous); 954 ubi->erroneous_peb_count += 1; 955 } else if (scrubbing) 956 wl_tree_add(e1, &ubi->scrub); 957 else if (keep) 958 wl_tree_add(e1, &ubi->used); 959 if (dst_leb_clean) { 960 wl_tree_add(e2, &ubi->free); 961 ubi->free_count++; 962 } 963 964 ubi_assert(!ubi->move_to_put); 965 ubi->move_from = ubi->move_to = NULL; 966 ubi->wl_scheduled = 0; 967 spin_unlock(&ubi->wl_lock); 968 969 ubi_free_vid_buf(vidb); 970 if (dst_leb_clean) { 971 ensure_wear_leveling(ubi, 1); 972 } else { 973 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 974 if (err) 975 goto out_ro; 976 } 977 978 if (erase) { 979 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 980 if (err) 981 goto out_ro; 982 } 983 984 mutex_unlock(&ubi->move_mutex); 985 up_read(&ubi->fm_eba_sem); 986 return 0; 987 988 out_error: 989 if (vol_id != -1) 990 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 991 err, e1->pnum, e2->pnum); 992 else 993 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 994 err, e1->pnum, vol_id, lnum, e2->pnum); 995 spin_lock(&ubi->wl_lock); 996 ubi->move_from = ubi->move_to = NULL; 997 ubi->move_to_put = ubi->wl_scheduled = 0; 998 wl_entry_destroy(ubi, e1); 999 wl_entry_destroy(ubi, e2); 1000 spin_unlock(&ubi->wl_lock); 1001 1002 ubi_free_vid_buf(vidb); 1003 1004 out_ro: 1005 ubi_ro_mode(ubi); 1006 mutex_unlock(&ubi->move_mutex); 1007 up_read(&ubi->fm_eba_sem); 1008 ubi_assert(err != 0); 1009 return err < 0 ? err : -EIO; 1010 1011 out_cancel: 1012 ubi->wl_scheduled = 0; 1013 spin_unlock(&ubi->wl_lock); 1014 mutex_unlock(&ubi->move_mutex); 1015 up_read(&ubi->fm_eba_sem); 1016 ubi_free_vid_buf(vidb); 1017 return 0; 1018 } 1019 1020 /** 1021 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1022 * @ubi: UBI device description object 1023 * @nested: set to non-zero if this function is called from UBI worker 1024 * 1025 * This function checks if it is time to start wear-leveling and schedules it 1026 * if yes. This function returns zero in case of success and a negative error 1027 * code in case of failure. 1028 */ 1029 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1030 { 1031 int err = 0; 1032 struct ubi_work *wrk; 1033 1034 spin_lock(&ubi->wl_lock); 1035 if (ubi->wl_scheduled) 1036 /* Wear-leveling is already in the work queue */ 1037 goto out_unlock; 1038 1039 /* 1040 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1041 * WL worker has to be scheduled anyway. 1042 */ 1043 if (!ubi->scrub.rb_node) { 1044 #ifdef CONFIG_MTD_UBI_FASTMAP 1045 if (!need_wear_leveling(ubi)) 1046 goto out_unlock; 1047 #else 1048 struct ubi_wl_entry *e1; 1049 struct ubi_wl_entry *e2; 1050 1051 if (!ubi->used.rb_node || !ubi->free.rb_node) 1052 /* No physical eraseblocks - no deal */ 1053 goto out_unlock; 1054 1055 /* 1056 * We schedule wear-leveling only if the difference between the 1057 * lowest erase counter of used physical eraseblocks and a high 1058 * erase counter of free physical eraseblocks is greater than 1059 * %UBI_WL_THRESHOLD. 1060 */ 1061 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1062 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0); 1063 1064 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1065 goto out_unlock; 1066 #endif 1067 dbg_wl("schedule wear-leveling"); 1068 } else 1069 dbg_wl("schedule scrubbing"); 1070 1071 ubi->wl_scheduled = 1; 1072 spin_unlock(&ubi->wl_lock); 1073 1074 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1075 if (!wrk) { 1076 err = -ENOMEM; 1077 goto out_cancel; 1078 } 1079 1080 wrk->func = &wear_leveling_worker; 1081 if (nested) 1082 __schedule_ubi_work(ubi, wrk); 1083 else 1084 schedule_ubi_work(ubi, wrk); 1085 return err; 1086 1087 out_cancel: 1088 spin_lock(&ubi->wl_lock); 1089 ubi->wl_scheduled = 0; 1090 out_unlock: 1091 spin_unlock(&ubi->wl_lock); 1092 return err; 1093 } 1094 1095 /** 1096 * __erase_worker - physical eraseblock erase worker function. 1097 * @ubi: UBI device description object 1098 * @wl_wrk: the work object 1099 * 1100 * This function erases a physical eraseblock and perform torture testing if 1101 * needed. It also takes care about marking the physical eraseblock bad if 1102 * needed. Returns zero in case of success and a negative error code in case of 1103 * failure. 1104 */ 1105 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1106 { 1107 struct ubi_wl_entry *e = wl_wrk->e; 1108 int pnum = e->pnum; 1109 int vol_id = wl_wrk->vol_id; 1110 int lnum = wl_wrk->lnum; 1111 int err, available_consumed = 0; 1112 1113 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1114 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1115 1116 err = ubi_sync_erase(ubi, e, wl_wrk->torture); 1117 if (!err) { 1118 spin_lock(&ubi->wl_lock); 1119 1120 if (!ubi->fm_disabled && !ubi->fm_anchor && 1121 e->pnum < UBI_FM_MAX_START) { 1122 /* 1123 * Abort anchor production, if needed it will be 1124 * enabled again in the wear leveling started below. 1125 */ 1126 ubi->fm_anchor = e; 1127 ubi->fm_do_produce_anchor = 0; 1128 } else { 1129 wl_tree_add(e, &ubi->free); 1130 ubi->free_count++; 1131 } 1132 1133 spin_unlock(&ubi->wl_lock); 1134 1135 /* 1136 * One more erase operation has happened, take care about 1137 * protected physical eraseblocks. 1138 */ 1139 serve_prot_queue(ubi); 1140 1141 /* And take care about wear-leveling */ 1142 err = ensure_wear_leveling(ubi, 1); 1143 return err; 1144 } 1145 1146 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1147 1148 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1149 err == -EBUSY) { 1150 int err1; 1151 1152 /* Re-schedule the LEB for erasure */ 1153 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, true); 1154 if (err1) { 1155 spin_lock(&ubi->wl_lock); 1156 wl_entry_destroy(ubi, e); 1157 spin_unlock(&ubi->wl_lock); 1158 err = err1; 1159 goto out_ro; 1160 } 1161 return err; 1162 } 1163 1164 spin_lock(&ubi->wl_lock); 1165 wl_entry_destroy(ubi, e); 1166 spin_unlock(&ubi->wl_lock); 1167 if (err != -EIO) 1168 /* 1169 * If this is not %-EIO, we have no idea what to do. Scheduling 1170 * this physical eraseblock for erasure again would cause 1171 * errors again and again. Well, lets switch to R/O mode. 1172 */ 1173 goto out_ro; 1174 1175 /* It is %-EIO, the PEB went bad */ 1176 1177 if (!ubi->bad_allowed) { 1178 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1179 goto out_ro; 1180 } 1181 1182 spin_lock(&ubi->volumes_lock); 1183 if (ubi->beb_rsvd_pebs == 0) { 1184 if (ubi->avail_pebs == 0) { 1185 spin_unlock(&ubi->volumes_lock); 1186 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1187 goto out_ro; 1188 } 1189 ubi->avail_pebs -= 1; 1190 available_consumed = 1; 1191 } 1192 spin_unlock(&ubi->volumes_lock); 1193 1194 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1195 err = ubi_io_mark_bad(ubi, pnum); 1196 if (err) 1197 goto out_ro; 1198 1199 spin_lock(&ubi->volumes_lock); 1200 if (ubi->beb_rsvd_pebs > 0) { 1201 if (available_consumed) { 1202 /* 1203 * The amount of reserved PEBs increased since we last 1204 * checked. 1205 */ 1206 ubi->avail_pebs += 1; 1207 available_consumed = 0; 1208 } 1209 ubi->beb_rsvd_pebs -= 1; 1210 } 1211 ubi->bad_peb_count += 1; 1212 ubi->good_peb_count -= 1; 1213 ubi_calculate_reserved(ubi); 1214 if (available_consumed) 1215 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1216 else if (ubi->beb_rsvd_pebs) 1217 ubi_msg(ubi, "%d PEBs left in the reserve", 1218 ubi->beb_rsvd_pebs); 1219 else 1220 ubi_warn(ubi, "last PEB from the reserve was used"); 1221 spin_unlock(&ubi->volumes_lock); 1222 1223 return err; 1224 1225 out_ro: 1226 if (available_consumed) { 1227 spin_lock(&ubi->volumes_lock); 1228 ubi->avail_pebs += 1; 1229 spin_unlock(&ubi->volumes_lock); 1230 } 1231 ubi_ro_mode(ubi); 1232 return err; 1233 } 1234 1235 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1236 int shutdown) 1237 { 1238 int ret; 1239 1240 if (shutdown) { 1241 struct ubi_wl_entry *e = wl_wrk->e; 1242 1243 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1244 kfree(wl_wrk); 1245 wl_entry_destroy(ubi, e); 1246 return 0; 1247 } 1248 1249 ret = __erase_worker(ubi, wl_wrk); 1250 kfree(wl_wrk); 1251 return ret; 1252 } 1253 1254 /** 1255 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1256 * @ubi: UBI device description object 1257 * @vol_id: the volume ID that last used this PEB 1258 * @lnum: the last used logical eraseblock number for the PEB 1259 * @pnum: physical eraseblock to return 1260 * @torture: if this physical eraseblock has to be tortured 1261 * 1262 * This function is called to return physical eraseblock @pnum to the pool of 1263 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1264 * occurred to this @pnum and it has to be tested. This function returns zero 1265 * in case of success, and a negative error code in case of failure. 1266 */ 1267 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1268 int pnum, int torture) 1269 { 1270 int err; 1271 struct ubi_wl_entry *e; 1272 1273 dbg_wl("PEB %d", pnum); 1274 ubi_assert(pnum >= 0); 1275 ubi_assert(pnum < ubi->peb_count); 1276 1277 down_read(&ubi->fm_protect); 1278 1279 retry: 1280 spin_lock(&ubi->wl_lock); 1281 e = ubi->lookuptbl[pnum]; 1282 if (!e) { 1283 /* 1284 * This wl entry has been removed for some errors by other 1285 * process (eg. wear leveling worker), corresponding process 1286 * (except __erase_worker, which cannot concurrent with 1287 * ubi_wl_put_peb) will set ubi ro_mode at the same time, 1288 * just ignore this wl entry. 1289 */ 1290 spin_unlock(&ubi->wl_lock); 1291 up_read(&ubi->fm_protect); 1292 return 0; 1293 } 1294 if (e == ubi->move_from) { 1295 /* 1296 * User is putting the physical eraseblock which was selected to 1297 * be moved. It will be scheduled for erasure in the 1298 * wear-leveling worker. 1299 */ 1300 dbg_wl("PEB %d is being moved, wait", pnum); 1301 spin_unlock(&ubi->wl_lock); 1302 1303 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1304 mutex_lock(&ubi->move_mutex); 1305 mutex_unlock(&ubi->move_mutex); 1306 goto retry; 1307 } else if (e == ubi->move_to) { 1308 /* 1309 * User is putting the physical eraseblock which was selected 1310 * as the target the data is moved to. It may happen if the EBA 1311 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1312 * but the WL sub-system has not put the PEB to the "used" tree 1313 * yet, but it is about to do this. So we just set a flag which 1314 * will tell the WL worker that the PEB is not needed anymore 1315 * and should be scheduled for erasure. 1316 */ 1317 dbg_wl("PEB %d is the target of data moving", pnum); 1318 ubi_assert(!ubi->move_to_put); 1319 ubi->move_to_put = 1; 1320 spin_unlock(&ubi->wl_lock); 1321 up_read(&ubi->fm_protect); 1322 return 0; 1323 } else { 1324 if (in_wl_tree(e, &ubi->used)) { 1325 self_check_in_wl_tree(ubi, e, &ubi->used); 1326 rb_erase(&e->u.rb, &ubi->used); 1327 } else if (in_wl_tree(e, &ubi->scrub)) { 1328 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1329 rb_erase(&e->u.rb, &ubi->scrub); 1330 } else if (in_wl_tree(e, &ubi->erroneous)) { 1331 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1332 rb_erase(&e->u.rb, &ubi->erroneous); 1333 ubi->erroneous_peb_count -= 1; 1334 ubi_assert(ubi->erroneous_peb_count >= 0); 1335 /* Erroneous PEBs should be tortured */ 1336 torture = 1; 1337 } else { 1338 err = prot_queue_del(ubi, e->pnum); 1339 if (err) { 1340 ubi_err(ubi, "PEB %d not found", pnum); 1341 ubi_ro_mode(ubi); 1342 spin_unlock(&ubi->wl_lock); 1343 up_read(&ubi->fm_protect); 1344 return err; 1345 } 1346 } 1347 } 1348 spin_unlock(&ubi->wl_lock); 1349 1350 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1351 if (err) { 1352 spin_lock(&ubi->wl_lock); 1353 wl_tree_add(e, &ubi->used); 1354 spin_unlock(&ubi->wl_lock); 1355 } 1356 1357 up_read(&ubi->fm_protect); 1358 return err; 1359 } 1360 1361 /** 1362 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1363 * @ubi: UBI device description object 1364 * @pnum: the physical eraseblock to schedule 1365 * 1366 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1367 * needs scrubbing. This function schedules a physical eraseblock for 1368 * scrubbing which is done in background. This function returns zero in case of 1369 * success and a negative error code in case of failure. 1370 */ 1371 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1372 { 1373 struct ubi_wl_entry *e; 1374 1375 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1376 1377 retry: 1378 spin_lock(&ubi->wl_lock); 1379 e = ubi->lookuptbl[pnum]; 1380 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1381 in_wl_tree(e, &ubi->erroneous)) { 1382 spin_unlock(&ubi->wl_lock); 1383 return 0; 1384 } 1385 1386 if (e == ubi->move_to) { 1387 /* 1388 * This physical eraseblock was used to move data to. The data 1389 * was moved but the PEB was not yet inserted to the proper 1390 * tree. We should just wait a little and let the WL worker 1391 * proceed. 1392 */ 1393 spin_unlock(&ubi->wl_lock); 1394 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1395 yield(); 1396 goto retry; 1397 } 1398 1399 if (in_wl_tree(e, &ubi->used)) { 1400 self_check_in_wl_tree(ubi, e, &ubi->used); 1401 rb_erase(&e->u.rb, &ubi->used); 1402 } else { 1403 int err; 1404 1405 err = prot_queue_del(ubi, e->pnum); 1406 if (err) { 1407 ubi_err(ubi, "PEB %d not found", pnum); 1408 ubi_ro_mode(ubi); 1409 spin_unlock(&ubi->wl_lock); 1410 return err; 1411 } 1412 } 1413 1414 wl_tree_add(e, &ubi->scrub); 1415 spin_unlock(&ubi->wl_lock); 1416 1417 /* 1418 * Technically scrubbing is the same as wear-leveling, so it is done 1419 * by the WL worker. 1420 */ 1421 return ensure_wear_leveling(ubi, 0); 1422 } 1423 1424 /** 1425 * ubi_wl_flush - flush all pending works. 1426 * @ubi: UBI device description object 1427 * @vol_id: the volume id to flush for 1428 * @lnum: the logical eraseblock number to flush for 1429 * 1430 * This function executes all pending works for a particular volume id / 1431 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1432 * acts as a wildcard for all of the corresponding volume numbers or logical 1433 * eraseblock numbers. It returns zero in case of success and a negative error 1434 * code in case of failure. 1435 */ 1436 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1437 { 1438 int err = 0; 1439 int found = 1; 1440 1441 /* 1442 * Erase while the pending works queue is not empty, but not more than 1443 * the number of currently pending works. 1444 */ 1445 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1446 vol_id, lnum, ubi->works_count); 1447 1448 while (found) { 1449 struct ubi_work *wrk, *tmp; 1450 found = 0; 1451 1452 down_read(&ubi->work_sem); 1453 spin_lock(&ubi->wl_lock); 1454 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1455 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1456 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1457 list_del(&wrk->list); 1458 ubi->works_count -= 1; 1459 ubi_assert(ubi->works_count >= 0); 1460 spin_unlock(&ubi->wl_lock); 1461 1462 err = wrk->func(ubi, wrk, 0); 1463 if (err) { 1464 up_read(&ubi->work_sem); 1465 return err; 1466 } 1467 1468 spin_lock(&ubi->wl_lock); 1469 found = 1; 1470 break; 1471 } 1472 } 1473 spin_unlock(&ubi->wl_lock); 1474 up_read(&ubi->work_sem); 1475 } 1476 1477 /* 1478 * Make sure all the works which have been done in parallel are 1479 * finished. 1480 */ 1481 down_write(&ubi->work_sem); 1482 up_write(&ubi->work_sem); 1483 1484 return err; 1485 } 1486 1487 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e) 1488 { 1489 if (in_wl_tree(e, &ubi->scrub)) 1490 return false; 1491 else if (in_wl_tree(e, &ubi->erroneous)) 1492 return false; 1493 else if (ubi->move_from == e) 1494 return false; 1495 else if (ubi->move_to == e) 1496 return false; 1497 1498 return true; 1499 } 1500 1501 /** 1502 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed. 1503 * @ubi: UBI device description object 1504 * @pnum: the physical eraseblock to schedule 1505 * @force: don't read the block, assume bitflips happened and take action. 1506 * 1507 * This function reads the given eraseblock and checks if bitflips occured. 1508 * In case of bitflips, the eraseblock is scheduled for scrubbing. 1509 * If scrubbing is forced with @force, the eraseblock is not read, 1510 * but scheduled for scrubbing right away. 1511 * 1512 * Returns: 1513 * %EINVAL, PEB is out of range 1514 * %ENOENT, PEB is no longer used by UBI 1515 * %EBUSY, PEB cannot be checked now or a check is currently running on it 1516 * %EAGAIN, bit flips happened but scrubbing is currently not possible 1517 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing 1518 * %0, no bit flips detected 1519 */ 1520 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force) 1521 { 1522 int err = 0; 1523 struct ubi_wl_entry *e; 1524 1525 if (pnum < 0 || pnum >= ubi->peb_count) { 1526 err = -EINVAL; 1527 goto out; 1528 } 1529 1530 /* 1531 * Pause all parallel work, otherwise it can happen that the 1532 * erase worker frees a wl entry under us. 1533 */ 1534 down_write(&ubi->work_sem); 1535 1536 /* 1537 * Make sure that the wl entry does not change state while 1538 * inspecting it. 1539 */ 1540 spin_lock(&ubi->wl_lock); 1541 e = ubi->lookuptbl[pnum]; 1542 if (!e) { 1543 spin_unlock(&ubi->wl_lock); 1544 err = -ENOENT; 1545 goto out_resume; 1546 } 1547 1548 /* 1549 * Does it make sense to check this PEB? 1550 */ 1551 if (!scrub_possible(ubi, e)) { 1552 spin_unlock(&ubi->wl_lock); 1553 err = -EBUSY; 1554 goto out_resume; 1555 } 1556 spin_unlock(&ubi->wl_lock); 1557 1558 if (!force) { 1559 mutex_lock(&ubi->buf_mutex); 1560 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size); 1561 mutex_unlock(&ubi->buf_mutex); 1562 } 1563 1564 if (force || err == UBI_IO_BITFLIPS) { 1565 /* 1566 * Okay, bit flip happened, let's figure out what we can do. 1567 */ 1568 spin_lock(&ubi->wl_lock); 1569 1570 /* 1571 * Recheck. We released wl_lock, UBI might have killed the 1572 * wl entry under us. 1573 */ 1574 e = ubi->lookuptbl[pnum]; 1575 if (!e) { 1576 spin_unlock(&ubi->wl_lock); 1577 err = -ENOENT; 1578 goto out_resume; 1579 } 1580 1581 /* 1582 * Need to re-check state 1583 */ 1584 if (!scrub_possible(ubi, e)) { 1585 spin_unlock(&ubi->wl_lock); 1586 err = -EBUSY; 1587 goto out_resume; 1588 } 1589 1590 if (in_pq(ubi, e)) { 1591 prot_queue_del(ubi, e->pnum); 1592 wl_tree_add(e, &ubi->scrub); 1593 spin_unlock(&ubi->wl_lock); 1594 1595 err = ensure_wear_leveling(ubi, 1); 1596 } else if (in_wl_tree(e, &ubi->used)) { 1597 rb_erase(&e->u.rb, &ubi->used); 1598 wl_tree_add(e, &ubi->scrub); 1599 spin_unlock(&ubi->wl_lock); 1600 1601 err = ensure_wear_leveling(ubi, 1); 1602 } else if (in_wl_tree(e, &ubi->free)) { 1603 rb_erase(&e->u.rb, &ubi->free); 1604 ubi->free_count--; 1605 spin_unlock(&ubi->wl_lock); 1606 1607 /* 1608 * This PEB is empty we can schedule it for 1609 * erasure right away. No wear leveling needed. 1610 */ 1611 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN, 1612 force ? 0 : 1, true); 1613 } else { 1614 spin_unlock(&ubi->wl_lock); 1615 err = -EAGAIN; 1616 } 1617 1618 if (!err && !force) 1619 err = -EUCLEAN; 1620 } else { 1621 err = 0; 1622 } 1623 1624 out_resume: 1625 up_write(&ubi->work_sem); 1626 out: 1627 1628 return err; 1629 } 1630 1631 /** 1632 * tree_destroy - destroy an RB-tree. 1633 * @ubi: UBI device description object 1634 * @root: the root of the tree to destroy 1635 */ 1636 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1637 { 1638 struct rb_node *rb; 1639 struct ubi_wl_entry *e; 1640 1641 rb = root->rb_node; 1642 while (rb) { 1643 if (rb->rb_left) 1644 rb = rb->rb_left; 1645 else if (rb->rb_right) 1646 rb = rb->rb_right; 1647 else { 1648 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1649 1650 rb = rb_parent(rb); 1651 if (rb) { 1652 if (rb->rb_left == &e->u.rb) 1653 rb->rb_left = NULL; 1654 else 1655 rb->rb_right = NULL; 1656 } 1657 1658 wl_entry_destroy(ubi, e); 1659 } 1660 } 1661 } 1662 1663 /** 1664 * ubi_thread - UBI background thread. 1665 * @u: the UBI device description object pointer 1666 */ 1667 int ubi_thread(void *u) 1668 { 1669 int failures = 0; 1670 struct ubi_device *ubi = u; 1671 1672 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1673 ubi->bgt_name, task_pid_nr(current)); 1674 1675 set_freezable(); 1676 for (;;) { 1677 int err; 1678 1679 if (kthread_should_stop()) 1680 break; 1681 1682 if (try_to_freeze()) 1683 continue; 1684 1685 spin_lock(&ubi->wl_lock); 1686 if (list_empty(&ubi->works) || ubi->ro_mode || 1687 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1688 set_current_state(TASK_INTERRUPTIBLE); 1689 spin_unlock(&ubi->wl_lock); 1690 1691 /* 1692 * Check kthread_should_stop() after we set the task 1693 * state to guarantee that we either see the stop bit 1694 * and exit or the task state is reset to runnable such 1695 * that it's not scheduled out indefinitely and detects 1696 * the stop bit at kthread_should_stop(). 1697 */ 1698 if (kthread_should_stop()) { 1699 set_current_state(TASK_RUNNING); 1700 break; 1701 } 1702 1703 schedule(); 1704 continue; 1705 } 1706 spin_unlock(&ubi->wl_lock); 1707 1708 err = do_work(ubi, NULL); 1709 if (err) { 1710 ubi_err(ubi, "%s: work failed with error code %d", 1711 ubi->bgt_name, err); 1712 if (failures++ > WL_MAX_FAILURES) { 1713 /* 1714 * Too many failures, disable the thread and 1715 * switch to read-only mode. 1716 */ 1717 ubi_msg(ubi, "%s: %d consecutive failures", 1718 ubi->bgt_name, WL_MAX_FAILURES); 1719 ubi_ro_mode(ubi); 1720 ubi->thread_enabled = 0; 1721 continue; 1722 } 1723 } else 1724 failures = 0; 1725 1726 cond_resched(); 1727 } 1728 1729 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1730 ubi->thread_enabled = 0; 1731 return 0; 1732 } 1733 1734 /** 1735 * shutdown_work - shutdown all pending works. 1736 * @ubi: UBI device description object 1737 */ 1738 static void shutdown_work(struct ubi_device *ubi) 1739 { 1740 while (!list_empty(&ubi->works)) { 1741 struct ubi_work *wrk; 1742 1743 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1744 list_del(&wrk->list); 1745 wrk->func(ubi, wrk, 1); 1746 ubi->works_count -= 1; 1747 ubi_assert(ubi->works_count >= 0); 1748 } 1749 } 1750 1751 /** 1752 * erase_aeb - erase a PEB given in UBI attach info PEB 1753 * @ubi: UBI device description object 1754 * @aeb: UBI attach info PEB 1755 * @sync: If true, erase synchronously. Otherwise schedule for erasure 1756 */ 1757 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync) 1758 { 1759 struct ubi_wl_entry *e; 1760 int err; 1761 1762 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1763 if (!e) 1764 return -ENOMEM; 1765 1766 e->pnum = aeb->pnum; 1767 e->ec = aeb->ec; 1768 ubi->lookuptbl[e->pnum] = e; 1769 1770 if (sync) { 1771 err = ubi_sync_erase(ubi, e, false); 1772 if (err) 1773 goto out_free; 1774 1775 wl_tree_add(e, &ubi->free); 1776 ubi->free_count++; 1777 } else { 1778 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false); 1779 if (err) 1780 goto out_free; 1781 } 1782 1783 return 0; 1784 1785 out_free: 1786 wl_entry_destroy(ubi, e); 1787 1788 return err; 1789 } 1790 1791 /** 1792 * ubi_wl_init - initialize the WL sub-system using attaching information. 1793 * @ubi: UBI device description object 1794 * @ai: attaching information 1795 * 1796 * This function returns zero in case of success, and a negative error code in 1797 * case of failure. 1798 */ 1799 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1800 { 1801 int err, i, reserved_pebs, found_pebs = 0; 1802 struct rb_node *rb1, *rb2; 1803 struct ubi_ainf_volume *av; 1804 struct ubi_ainf_peb *aeb, *tmp; 1805 struct ubi_wl_entry *e; 1806 1807 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1808 spin_lock_init(&ubi->wl_lock); 1809 mutex_init(&ubi->move_mutex); 1810 init_rwsem(&ubi->work_sem); 1811 ubi->max_ec = ai->max_ec; 1812 INIT_LIST_HEAD(&ubi->works); 1813 1814 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1815 1816 err = -ENOMEM; 1817 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL); 1818 if (!ubi->lookuptbl) 1819 return err; 1820 1821 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1822 INIT_LIST_HEAD(&ubi->pq[i]); 1823 ubi->pq_head = 0; 1824 1825 ubi->free_count = 0; 1826 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1827 cond_resched(); 1828 1829 err = erase_aeb(ubi, aeb, false); 1830 if (err) 1831 goto out_free; 1832 1833 found_pebs++; 1834 } 1835 1836 list_for_each_entry(aeb, &ai->free, u.list) { 1837 cond_resched(); 1838 1839 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1840 if (!e) { 1841 err = -ENOMEM; 1842 goto out_free; 1843 } 1844 1845 e->pnum = aeb->pnum; 1846 e->ec = aeb->ec; 1847 ubi_assert(e->ec >= 0); 1848 1849 wl_tree_add(e, &ubi->free); 1850 ubi->free_count++; 1851 1852 ubi->lookuptbl[e->pnum] = e; 1853 1854 found_pebs++; 1855 } 1856 1857 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1858 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1859 cond_resched(); 1860 1861 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1862 if (!e) { 1863 err = -ENOMEM; 1864 goto out_free; 1865 } 1866 1867 e->pnum = aeb->pnum; 1868 e->ec = aeb->ec; 1869 ubi->lookuptbl[e->pnum] = e; 1870 1871 if (!aeb->scrub) { 1872 dbg_wl("add PEB %d EC %d to the used tree", 1873 e->pnum, e->ec); 1874 wl_tree_add(e, &ubi->used); 1875 } else { 1876 dbg_wl("add PEB %d EC %d to the scrub tree", 1877 e->pnum, e->ec); 1878 wl_tree_add(e, &ubi->scrub); 1879 } 1880 1881 found_pebs++; 1882 } 1883 } 1884 1885 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1886 cond_resched(); 1887 1888 e = ubi_find_fm_block(ubi, aeb->pnum); 1889 1890 if (e) { 1891 ubi_assert(!ubi->lookuptbl[e->pnum]); 1892 ubi->lookuptbl[e->pnum] = e; 1893 } else { 1894 bool sync = false; 1895 1896 /* 1897 * Usually old Fastmap PEBs are scheduled for erasure 1898 * and we don't have to care about them but if we face 1899 * an power cut before scheduling them we need to 1900 * take care of them here. 1901 */ 1902 if (ubi->lookuptbl[aeb->pnum]) 1903 continue; 1904 1905 /* 1906 * The fastmap update code might not find a free PEB for 1907 * writing the fastmap anchor to and then reuses the 1908 * current fastmap anchor PEB. When this PEB gets erased 1909 * and a power cut happens before it is written again we 1910 * must make sure that the fastmap attach code doesn't 1911 * find any outdated fastmap anchors, hence we erase the 1912 * outdated fastmap anchor PEBs synchronously here. 1913 */ 1914 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID) 1915 sync = true; 1916 1917 err = erase_aeb(ubi, aeb, sync); 1918 if (err) 1919 goto out_free; 1920 } 1921 1922 found_pebs++; 1923 } 1924 1925 dbg_wl("found %i PEBs", found_pebs); 1926 1927 ubi_assert(ubi->good_peb_count == found_pebs); 1928 1929 reserved_pebs = WL_RESERVED_PEBS; 1930 ubi_fastmap_init(ubi, &reserved_pebs); 1931 1932 if (ubi->avail_pebs < reserved_pebs) { 1933 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1934 ubi->avail_pebs, reserved_pebs); 1935 if (ubi->corr_peb_count) 1936 ubi_err(ubi, "%d PEBs are corrupted and not used", 1937 ubi->corr_peb_count); 1938 err = -ENOSPC; 1939 goto out_free; 1940 } 1941 ubi->avail_pebs -= reserved_pebs; 1942 ubi->rsvd_pebs += reserved_pebs; 1943 1944 /* Schedule wear-leveling if needed */ 1945 err = ensure_wear_leveling(ubi, 0); 1946 if (err) 1947 goto out_free; 1948 1949 #ifdef CONFIG_MTD_UBI_FASTMAP 1950 if (!ubi->ro_mode && !ubi->fm_disabled) 1951 ubi_ensure_anchor_pebs(ubi); 1952 #endif 1953 return 0; 1954 1955 out_free: 1956 shutdown_work(ubi); 1957 tree_destroy(ubi, &ubi->used); 1958 tree_destroy(ubi, &ubi->free); 1959 tree_destroy(ubi, &ubi->scrub); 1960 kfree(ubi->lookuptbl); 1961 return err; 1962 } 1963 1964 /** 1965 * protection_queue_destroy - destroy the protection queue. 1966 * @ubi: UBI device description object 1967 */ 1968 static void protection_queue_destroy(struct ubi_device *ubi) 1969 { 1970 int i; 1971 struct ubi_wl_entry *e, *tmp; 1972 1973 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1974 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1975 list_del(&e->u.list); 1976 wl_entry_destroy(ubi, e); 1977 } 1978 } 1979 } 1980 1981 /** 1982 * ubi_wl_close - close the wear-leveling sub-system. 1983 * @ubi: UBI device description object 1984 */ 1985 void ubi_wl_close(struct ubi_device *ubi) 1986 { 1987 dbg_wl("close the WL sub-system"); 1988 ubi_fastmap_close(ubi); 1989 shutdown_work(ubi); 1990 protection_queue_destroy(ubi); 1991 tree_destroy(ubi, &ubi->used); 1992 tree_destroy(ubi, &ubi->erroneous); 1993 tree_destroy(ubi, &ubi->free); 1994 tree_destroy(ubi, &ubi->scrub); 1995 kfree(ubi->lookuptbl); 1996 } 1997 1998 /** 1999 * self_check_ec - make sure that the erase counter of a PEB is correct. 2000 * @ubi: UBI device description object 2001 * @pnum: the physical eraseblock number to check 2002 * @ec: the erase counter to check 2003 * 2004 * This function returns zero if the erase counter of physical eraseblock @pnum 2005 * is equivalent to @ec, and a negative error code if not or if an error 2006 * occurred. 2007 */ 2008 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2009 { 2010 int err; 2011 long long read_ec; 2012 struct ubi_ec_hdr *ec_hdr; 2013 2014 if (!ubi_dbg_chk_gen(ubi)) 2015 return 0; 2016 2017 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2018 if (!ec_hdr) 2019 return -ENOMEM; 2020 2021 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2022 if (err && err != UBI_IO_BITFLIPS) { 2023 /* The header does not have to exist */ 2024 err = 0; 2025 goto out_free; 2026 } 2027 2028 read_ec = be64_to_cpu(ec_hdr->ec); 2029 if (ec != read_ec && read_ec - ec > 1) { 2030 ubi_err(ubi, "self-check failed for PEB %d", pnum); 2031 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 2032 dump_stack(); 2033 err = 1; 2034 } else 2035 err = 0; 2036 2037 out_free: 2038 kfree(ec_hdr); 2039 return err; 2040 } 2041 2042 /** 2043 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2044 * @ubi: UBI device description object 2045 * @e: the wear-leveling entry to check 2046 * @root: the root of the tree 2047 * 2048 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2049 * is not. 2050 */ 2051 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2052 struct ubi_wl_entry *e, struct rb_root *root) 2053 { 2054 if (!ubi_dbg_chk_gen(ubi)) 2055 return 0; 2056 2057 if (in_wl_tree(e, root)) 2058 return 0; 2059 2060 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 2061 e->pnum, e->ec, root); 2062 dump_stack(); 2063 return -EINVAL; 2064 } 2065 2066 /** 2067 * self_check_in_pq - check if wear-leveling entry is in the protection 2068 * queue. 2069 * @ubi: UBI device description object 2070 * @e: the wear-leveling entry to check 2071 * 2072 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2073 */ 2074 static int self_check_in_pq(const struct ubi_device *ubi, 2075 struct ubi_wl_entry *e) 2076 { 2077 if (!ubi_dbg_chk_gen(ubi)) 2078 return 0; 2079 2080 if (in_pq(ubi, e)) 2081 return 0; 2082 2083 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 2084 e->pnum, e->ec); 2085 dump_stack(); 2086 return -EINVAL; 2087 } 2088 #ifndef CONFIG_MTD_UBI_FASTMAP 2089 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 2090 { 2091 struct ubi_wl_entry *e; 2092 2093 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF, 0); 2094 self_check_in_wl_tree(ubi, e, &ubi->free); 2095 ubi->free_count--; 2096 ubi_assert(ubi->free_count >= 0); 2097 rb_erase(&e->u.rb, &ubi->free); 2098 2099 return e; 2100 } 2101 2102 /** 2103 * produce_free_peb - produce a free physical eraseblock. 2104 * @ubi: UBI device description object 2105 * 2106 * This function tries to make a free PEB by means of synchronous execution of 2107 * pending works. This may be needed if, for example the background thread is 2108 * disabled. Returns zero in case of success and a negative error code in case 2109 * of failure. 2110 */ 2111 static int produce_free_peb(struct ubi_device *ubi) 2112 { 2113 int err; 2114 2115 while (!ubi->free.rb_node && ubi->works_count) { 2116 spin_unlock(&ubi->wl_lock); 2117 2118 dbg_wl("do one work synchronously"); 2119 err = do_work(ubi, NULL); 2120 2121 spin_lock(&ubi->wl_lock); 2122 if (err) 2123 return err; 2124 } 2125 2126 return 0; 2127 } 2128 2129 /** 2130 * ubi_wl_get_peb - get a physical eraseblock. 2131 * @ubi: UBI device description object 2132 * 2133 * This function returns a physical eraseblock in case of success and a 2134 * negative error code in case of failure. 2135 * Returns with ubi->fm_eba_sem held in read mode! 2136 */ 2137 int ubi_wl_get_peb(struct ubi_device *ubi) 2138 { 2139 int err; 2140 struct ubi_wl_entry *e; 2141 2142 retry: 2143 down_read(&ubi->fm_eba_sem); 2144 spin_lock(&ubi->wl_lock); 2145 if (!ubi->free.rb_node) { 2146 if (ubi->works_count == 0) { 2147 ubi_err(ubi, "no free eraseblocks"); 2148 ubi_assert(list_empty(&ubi->works)); 2149 spin_unlock(&ubi->wl_lock); 2150 return -ENOSPC; 2151 } 2152 2153 err = produce_free_peb(ubi); 2154 if (err < 0) { 2155 spin_unlock(&ubi->wl_lock); 2156 return err; 2157 } 2158 spin_unlock(&ubi->wl_lock); 2159 up_read(&ubi->fm_eba_sem); 2160 goto retry; 2161 2162 } 2163 e = wl_get_wle(ubi); 2164 prot_queue_add(ubi, e); 2165 spin_unlock(&ubi->wl_lock); 2166 2167 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 2168 ubi->peb_size - ubi->vid_hdr_aloffset); 2169 if (err) { 2170 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 2171 return err; 2172 } 2173 2174 return e->pnum; 2175 } 2176 #else 2177 #include "fastmap-wl.c" 2178 #endif 2179