xref: /linux/drivers/mtd/ubi/wl.c (revision 7ff836f064e2c814a7504c91a4464eea45d475bd)
1 /*
2  * Copyright (c) International Business Machines Corp., 2006
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12  * the GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
19  */
20 
21 /*
22  * UBI wear-leveling sub-system.
23  *
24  * This sub-system is responsible for wear-leveling. It works in terms of
25  * physical eraseblocks and erase counters and knows nothing about logical
26  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
27  * eraseblocks are of two types - used and free. Used physical eraseblocks are
28  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
29  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
30  *
31  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
32  * header. The rest of the physical eraseblock contains only %0xFF bytes.
33  *
34  * When physical eraseblocks are returned to the WL sub-system by means of the
35  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
36  * done asynchronously in context of the per-UBI device background thread,
37  * which is also managed by the WL sub-system.
38  *
39  * The wear-leveling is ensured by means of moving the contents of used
40  * physical eraseblocks with low erase counter to free physical eraseblocks
41  * with high erase counter.
42  *
43  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
44  * bad.
45  *
46  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
47  * in a physical eraseblock, it has to be moved. Technically this is the same
48  * as moving it for wear-leveling reasons.
49  *
50  * As it was said, for the UBI sub-system all physical eraseblocks are either
51  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
52  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
53  * RB-trees, as well as (temporarily) in the @wl->pq queue.
54  *
55  * When the WL sub-system returns a physical eraseblock, the physical
56  * eraseblock is protected from being moved for some "time". For this reason,
57  * the physical eraseblock is not directly moved from the @wl->free tree to the
58  * @wl->used tree. There is a protection queue in between where this
59  * physical eraseblock is temporarily stored (@wl->pq).
60  *
61  * All this protection stuff is needed because:
62  *  o we don't want to move physical eraseblocks just after we have given them
63  *    to the user; instead, we first want to let users fill them up with data;
64  *
65  *  o there is a chance that the user will put the physical eraseblock very
66  *    soon, so it makes sense not to move it for some time, but wait.
67  *
68  * Physical eraseblocks stay protected only for limited time. But the "time" is
69  * measured in erase cycles in this case. This is implemented with help of the
70  * protection queue. Eraseblocks are put to the tail of this queue when they
71  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
72  * head of the queue on each erase operation (for any eraseblock). So the
73  * length of the queue defines how may (global) erase cycles PEBs are protected.
74  *
75  * To put it differently, each physical eraseblock has 2 main states: free and
76  * used. The former state corresponds to the @wl->free tree. The latter state
77  * is split up on several sub-states:
78  * o the WL movement is allowed (@wl->used tree);
79  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
80  *   erroneous - e.g., there was a read error;
81  * o the WL movement is temporarily prohibited (@wl->pq queue);
82  * o scrubbing is needed (@wl->scrub tree).
83  *
84  * Depending on the sub-state, wear-leveling entries of the used physical
85  * eraseblocks may be kept in one of those structures.
86  *
87  * Note, in this implementation, we keep a small in-RAM object for each physical
88  * eraseblock. This is surely not a scalable solution. But it appears to be good
89  * enough for moderately large flashes and it is simple. In future, one may
90  * re-work this sub-system and make it more scalable.
91  *
92  * At the moment this sub-system does not utilize the sequence number, which
93  * was introduced relatively recently. But it would be wise to do this because
94  * the sequence number of a logical eraseblock characterizes how old is it. For
95  * example, when we move a PEB with low erase counter, and we need to pick the
96  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
97  * pick target PEB with an average EC if our PEB is not very "old". This is a
98  * room for future re-works of the WL sub-system.
99  */
100 
101 #include <linux/slab.h>
102 #include <linux/crc32.h>
103 #include <linux/freezer.h>
104 #include <linux/kthread.h>
105 #include "ubi.h"
106 #include "wl.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
139 static int self_check_in_wl_tree(const struct ubi_device *ubi,
140 				 struct ubi_wl_entry *e, struct rb_root *root);
141 static int self_check_in_pq(const struct ubi_device *ubi,
142 			    struct ubi_wl_entry *e);
143 
144 /**
145  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
146  * @e: the wear-leveling entry to add
147  * @root: the root of the tree
148  *
149  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
150  * the @ubi->used and @ubi->free RB-trees.
151  */
152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
153 {
154 	struct rb_node **p, *parent = NULL;
155 
156 	p = &root->rb_node;
157 	while (*p) {
158 		struct ubi_wl_entry *e1;
159 
160 		parent = *p;
161 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
162 
163 		if (e->ec < e1->ec)
164 			p = &(*p)->rb_left;
165 		else if (e->ec > e1->ec)
166 			p = &(*p)->rb_right;
167 		else {
168 			ubi_assert(e->pnum != e1->pnum);
169 			if (e->pnum < e1->pnum)
170 				p = &(*p)->rb_left;
171 			else
172 				p = &(*p)->rb_right;
173 		}
174 	}
175 
176 	rb_link_node(&e->u.rb, parent, p);
177 	rb_insert_color(&e->u.rb, root);
178 }
179 
180 /**
181  * wl_tree_destroy - destroy a wear-leveling entry.
182  * @ubi: UBI device description object
183  * @e: the wear-leveling entry to add
184  *
185  * This function destroys a wear leveling entry and removes
186  * the reference from the lookup table.
187  */
188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
189 {
190 	ubi->lookuptbl[e->pnum] = NULL;
191 	kmem_cache_free(ubi_wl_entry_slab, e);
192 }
193 
194 /**
195  * do_work - do one pending work.
196  * @ubi: UBI device description object
197  *
198  * This function returns zero in case of success and a negative error code in
199  * case of failure.
200  */
201 static int do_work(struct ubi_device *ubi)
202 {
203 	int err;
204 	struct ubi_work *wrk;
205 
206 	cond_resched();
207 
208 	/*
209 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
210 	 * it in read mode, so many of them may be doing works at a time. But
211 	 * the queue flush code has to be sure the whole queue of works is
212 	 * done, and it takes the mutex in write mode.
213 	 */
214 	down_read(&ubi->work_sem);
215 	spin_lock(&ubi->wl_lock);
216 	if (list_empty(&ubi->works)) {
217 		spin_unlock(&ubi->wl_lock);
218 		up_read(&ubi->work_sem);
219 		return 0;
220 	}
221 
222 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
223 	list_del(&wrk->list);
224 	ubi->works_count -= 1;
225 	ubi_assert(ubi->works_count >= 0);
226 	spin_unlock(&ubi->wl_lock);
227 
228 	/*
229 	 * Call the worker function. Do not touch the work structure
230 	 * after this call as it will have been freed or reused by that
231 	 * time by the worker function.
232 	 */
233 	err = wrk->func(ubi, wrk, 0);
234 	if (err)
235 		ubi_err(ubi, "work failed with error code %d", err);
236 	up_read(&ubi->work_sem);
237 
238 	return err;
239 }
240 
241 /**
242  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
243  * @e: the wear-leveling entry to check
244  * @root: the root of the tree
245  *
246  * This function returns non-zero if @e is in the @root RB-tree and zero if it
247  * is not.
248  */
249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
250 {
251 	struct rb_node *p;
252 
253 	p = root->rb_node;
254 	while (p) {
255 		struct ubi_wl_entry *e1;
256 
257 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
258 
259 		if (e->pnum == e1->pnum) {
260 			ubi_assert(e == e1);
261 			return 1;
262 		}
263 
264 		if (e->ec < e1->ec)
265 			p = p->rb_left;
266 		else if (e->ec > e1->ec)
267 			p = p->rb_right;
268 		else {
269 			ubi_assert(e->pnum != e1->pnum);
270 			if (e->pnum < e1->pnum)
271 				p = p->rb_left;
272 			else
273 				p = p->rb_right;
274 		}
275 	}
276 
277 	return 0;
278 }
279 
280 /**
281  * in_pq - check if a wear-leveling entry is present in the protection queue.
282  * @ubi: UBI device description object
283  * @e: the wear-leveling entry to check
284  *
285  * This function returns non-zero if @e is in the protection queue and zero
286  * if it is not.
287  */
288 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
289 {
290 	struct ubi_wl_entry *p;
291 	int i;
292 
293 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
294 		list_for_each_entry(p, &ubi->pq[i], u.list)
295 			if (p == e)
296 				return 1;
297 
298 	return 0;
299 }
300 
301 /**
302  * prot_queue_add - add physical eraseblock to the protection queue.
303  * @ubi: UBI device description object
304  * @e: the physical eraseblock to add
305  *
306  * This function adds @e to the tail of the protection queue @ubi->pq, where
307  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
308  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
309  * be locked.
310  */
311 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
312 {
313 	int pq_tail = ubi->pq_head - 1;
314 
315 	if (pq_tail < 0)
316 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
317 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
318 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
319 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
320 }
321 
322 /**
323  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
324  * @ubi: UBI device description object
325  * @root: the RB-tree where to look for
326  * @diff: maximum possible difference from the smallest erase counter
327  *
328  * This function looks for a wear leveling entry with erase counter closest to
329  * min + @diff, where min is the smallest erase counter.
330  */
331 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
332 					  struct rb_root *root, int diff)
333 {
334 	struct rb_node *p;
335 	struct ubi_wl_entry *e, *prev_e = NULL;
336 	int max;
337 
338 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
339 	max = e->ec + diff;
340 
341 	p = root->rb_node;
342 	while (p) {
343 		struct ubi_wl_entry *e1;
344 
345 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
346 		if (e1->ec >= max)
347 			p = p->rb_left;
348 		else {
349 			p = p->rb_right;
350 			prev_e = e;
351 			e = e1;
352 		}
353 	}
354 
355 	/* If no fastmap has been written and this WL entry can be used
356 	 * as anchor PEB, hold it back and return the second best WL entry
357 	 * such that fastmap can use the anchor PEB later. */
358 	if (prev_e && !ubi->fm_disabled &&
359 	    !ubi->fm && e->pnum < UBI_FM_MAX_START)
360 		return prev_e;
361 
362 	return e;
363 }
364 
365 /**
366  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
367  * @ubi: UBI device description object
368  * @root: the RB-tree where to look for
369  *
370  * This function looks for a wear leveling entry with medium erase counter,
371  * but not greater or equivalent than the lowest erase counter plus
372  * %WL_FREE_MAX_DIFF/2.
373  */
374 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
375 					       struct rb_root *root)
376 {
377 	struct ubi_wl_entry *e, *first, *last;
378 
379 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
380 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
381 
382 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
383 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
384 
385 		/* If no fastmap has been written and this WL entry can be used
386 		 * as anchor PEB, hold it back and return the second best
387 		 * WL entry such that fastmap can use the anchor PEB later. */
388 		e = may_reserve_for_fm(ubi, e, root);
389 	} else
390 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
391 
392 	return e;
393 }
394 
395 /**
396  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
397  * refill_wl_user_pool().
398  * @ubi: UBI device description object
399  *
400  * This function returns a a wear leveling entry in case of success and
401  * NULL in case of failure.
402  */
403 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
404 {
405 	struct ubi_wl_entry *e;
406 
407 	e = find_mean_wl_entry(ubi, &ubi->free);
408 	if (!e) {
409 		ubi_err(ubi, "no free eraseblocks");
410 		return NULL;
411 	}
412 
413 	self_check_in_wl_tree(ubi, e, &ubi->free);
414 
415 	/*
416 	 * Move the physical eraseblock to the protection queue where it will
417 	 * be protected from being moved for some time.
418 	 */
419 	rb_erase(&e->u.rb, &ubi->free);
420 	ubi->free_count--;
421 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
422 
423 	return e;
424 }
425 
426 /**
427  * prot_queue_del - remove a physical eraseblock from the protection queue.
428  * @ubi: UBI device description object
429  * @pnum: the physical eraseblock to remove
430  *
431  * This function deletes PEB @pnum from the protection queue and returns zero
432  * in case of success and %-ENODEV if the PEB was not found.
433  */
434 static int prot_queue_del(struct ubi_device *ubi, int pnum)
435 {
436 	struct ubi_wl_entry *e;
437 
438 	e = ubi->lookuptbl[pnum];
439 	if (!e)
440 		return -ENODEV;
441 
442 	if (self_check_in_pq(ubi, e))
443 		return -ENODEV;
444 
445 	list_del(&e->u.list);
446 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
447 	return 0;
448 }
449 
450 /**
451  * sync_erase - synchronously erase a physical eraseblock.
452  * @ubi: UBI device description object
453  * @e: the the physical eraseblock to erase
454  * @torture: if the physical eraseblock has to be tortured
455  *
456  * This function returns zero in case of success and a negative error code in
457  * case of failure.
458  */
459 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
460 		      int torture)
461 {
462 	int err;
463 	struct ubi_ec_hdr *ec_hdr;
464 	unsigned long long ec = e->ec;
465 
466 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
467 
468 	err = self_check_ec(ubi, e->pnum, e->ec);
469 	if (err)
470 		return -EINVAL;
471 
472 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
473 	if (!ec_hdr)
474 		return -ENOMEM;
475 
476 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
477 	if (err < 0)
478 		goto out_free;
479 
480 	ec += err;
481 	if (ec > UBI_MAX_ERASECOUNTER) {
482 		/*
483 		 * Erase counter overflow. Upgrade UBI and use 64-bit
484 		 * erase counters internally.
485 		 */
486 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
487 			e->pnum, ec);
488 		err = -EINVAL;
489 		goto out_free;
490 	}
491 
492 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
493 
494 	ec_hdr->ec = cpu_to_be64(ec);
495 
496 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
497 	if (err)
498 		goto out_free;
499 
500 	e->ec = ec;
501 	spin_lock(&ubi->wl_lock);
502 	if (e->ec > ubi->max_ec)
503 		ubi->max_ec = e->ec;
504 	spin_unlock(&ubi->wl_lock);
505 
506 out_free:
507 	kfree(ec_hdr);
508 	return err;
509 }
510 
511 /**
512  * serve_prot_queue - check if it is time to stop protecting PEBs.
513  * @ubi: UBI device description object
514  *
515  * This function is called after each erase operation and removes PEBs from the
516  * tail of the protection queue. These PEBs have been protected for long enough
517  * and should be moved to the used tree.
518  */
519 static void serve_prot_queue(struct ubi_device *ubi)
520 {
521 	struct ubi_wl_entry *e, *tmp;
522 	int count;
523 
524 	/*
525 	 * There may be several protected physical eraseblock to remove,
526 	 * process them all.
527 	 */
528 repeat:
529 	count = 0;
530 	spin_lock(&ubi->wl_lock);
531 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
532 		dbg_wl("PEB %d EC %d protection over, move to used tree",
533 			e->pnum, e->ec);
534 
535 		list_del(&e->u.list);
536 		wl_tree_add(e, &ubi->used);
537 		if (count++ > 32) {
538 			/*
539 			 * Let's be nice and avoid holding the spinlock for
540 			 * too long.
541 			 */
542 			spin_unlock(&ubi->wl_lock);
543 			cond_resched();
544 			goto repeat;
545 		}
546 	}
547 
548 	ubi->pq_head += 1;
549 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
550 		ubi->pq_head = 0;
551 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
552 	spin_unlock(&ubi->wl_lock);
553 }
554 
555 /**
556  * __schedule_ubi_work - schedule a work.
557  * @ubi: UBI device description object
558  * @wrk: the work to schedule
559  *
560  * This function adds a work defined by @wrk to the tail of the pending works
561  * list. Can only be used if ubi->work_sem is already held in read mode!
562  */
563 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
564 {
565 	spin_lock(&ubi->wl_lock);
566 	list_add_tail(&wrk->list, &ubi->works);
567 	ubi_assert(ubi->works_count >= 0);
568 	ubi->works_count += 1;
569 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
570 		wake_up_process(ubi->bgt_thread);
571 	spin_unlock(&ubi->wl_lock);
572 }
573 
574 /**
575  * schedule_ubi_work - schedule a work.
576  * @ubi: UBI device description object
577  * @wrk: the work to schedule
578  *
579  * This function adds a work defined by @wrk to the tail of the pending works
580  * list.
581  */
582 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
583 {
584 	down_read(&ubi->work_sem);
585 	__schedule_ubi_work(ubi, wrk);
586 	up_read(&ubi->work_sem);
587 }
588 
589 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
590 			int shutdown);
591 
592 /**
593  * schedule_erase - schedule an erase work.
594  * @ubi: UBI device description object
595  * @e: the WL entry of the physical eraseblock to erase
596  * @vol_id: the volume ID that last used this PEB
597  * @lnum: the last used logical eraseblock number for the PEB
598  * @torture: if the physical eraseblock has to be tortured
599  *
600  * This function returns zero in case of success and a %-ENOMEM in case of
601  * failure.
602  */
603 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
604 			  int vol_id, int lnum, int torture, bool nested)
605 {
606 	struct ubi_work *wl_wrk;
607 
608 	ubi_assert(e);
609 
610 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
611 	       e->pnum, e->ec, torture);
612 
613 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
614 	if (!wl_wrk)
615 		return -ENOMEM;
616 
617 	wl_wrk->func = &erase_worker;
618 	wl_wrk->e = e;
619 	wl_wrk->vol_id = vol_id;
620 	wl_wrk->lnum = lnum;
621 	wl_wrk->torture = torture;
622 
623 	if (nested)
624 		__schedule_ubi_work(ubi, wl_wrk);
625 	else
626 		schedule_ubi_work(ubi, wl_wrk);
627 	return 0;
628 }
629 
630 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
631 /**
632  * do_sync_erase - run the erase worker synchronously.
633  * @ubi: UBI device description object
634  * @e: the WL entry of the physical eraseblock to erase
635  * @vol_id: the volume ID that last used this PEB
636  * @lnum: the last used logical eraseblock number for the PEB
637  * @torture: if the physical eraseblock has to be tortured
638  *
639  */
640 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
641 			 int vol_id, int lnum, int torture)
642 {
643 	struct ubi_work wl_wrk;
644 
645 	dbg_wl("sync erase of PEB %i", e->pnum);
646 
647 	wl_wrk.e = e;
648 	wl_wrk.vol_id = vol_id;
649 	wl_wrk.lnum = lnum;
650 	wl_wrk.torture = torture;
651 
652 	return __erase_worker(ubi, &wl_wrk);
653 }
654 
655 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
656 /**
657  * wear_leveling_worker - wear-leveling worker function.
658  * @ubi: UBI device description object
659  * @wrk: the work object
660  * @shutdown: non-zero if the worker has to free memory and exit
661  * because the WL-subsystem is shutting down
662  *
663  * This function copies a more worn out physical eraseblock to a less worn out
664  * one. Returns zero in case of success and a negative error code in case of
665  * failure.
666  */
667 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
668 				int shutdown)
669 {
670 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
671 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
672 #ifdef CONFIG_MTD_UBI_FASTMAP
673 	int anchor = wrk->anchor;
674 #endif
675 	struct ubi_wl_entry *e1, *e2;
676 	struct ubi_vid_io_buf *vidb;
677 	struct ubi_vid_hdr *vid_hdr;
678 	int dst_leb_clean = 0;
679 
680 	kfree(wrk);
681 	if (shutdown)
682 		return 0;
683 
684 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
685 	if (!vidb)
686 		return -ENOMEM;
687 
688 	vid_hdr = ubi_get_vid_hdr(vidb);
689 
690 	down_read(&ubi->fm_eba_sem);
691 	mutex_lock(&ubi->move_mutex);
692 	spin_lock(&ubi->wl_lock);
693 	ubi_assert(!ubi->move_from && !ubi->move_to);
694 	ubi_assert(!ubi->move_to_put);
695 
696 	if (!ubi->free.rb_node ||
697 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
698 		/*
699 		 * No free physical eraseblocks? Well, they must be waiting in
700 		 * the queue to be erased. Cancel movement - it will be
701 		 * triggered again when a free physical eraseblock appears.
702 		 *
703 		 * No used physical eraseblocks? They must be temporarily
704 		 * protected from being moved. They will be moved to the
705 		 * @ubi->used tree later and the wear-leveling will be
706 		 * triggered again.
707 		 */
708 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
709 		       !ubi->free.rb_node, !ubi->used.rb_node);
710 		goto out_cancel;
711 	}
712 
713 #ifdef CONFIG_MTD_UBI_FASTMAP
714 	/* Check whether we need to produce an anchor PEB */
715 	if (!anchor)
716 		anchor = !anchor_pebs_available(&ubi->free);
717 
718 	if (anchor) {
719 		e1 = find_anchor_wl_entry(&ubi->used);
720 		if (!e1)
721 			goto out_cancel;
722 		e2 = get_peb_for_wl(ubi);
723 		if (!e2)
724 			goto out_cancel;
725 
726 		self_check_in_wl_tree(ubi, e1, &ubi->used);
727 		rb_erase(&e1->u.rb, &ubi->used);
728 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
729 	} else if (!ubi->scrub.rb_node) {
730 #else
731 	if (!ubi->scrub.rb_node) {
732 #endif
733 		/*
734 		 * Now pick the least worn-out used physical eraseblock and a
735 		 * highly worn-out free physical eraseblock. If the erase
736 		 * counters differ much enough, start wear-leveling.
737 		 */
738 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
739 		e2 = get_peb_for_wl(ubi);
740 		if (!e2)
741 			goto out_cancel;
742 
743 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
744 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
745 			       e1->ec, e2->ec);
746 
747 			/* Give the unused PEB back */
748 			wl_tree_add(e2, &ubi->free);
749 			ubi->free_count++;
750 			goto out_cancel;
751 		}
752 		self_check_in_wl_tree(ubi, e1, &ubi->used);
753 		rb_erase(&e1->u.rb, &ubi->used);
754 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
755 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
756 	} else {
757 		/* Perform scrubbing */
758 		scrubbing = 1;
759 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
760 		e2 = get_peb_for_wl(ubi);
761 		if (!e2)
762 			goto out_cancel;
763 
764 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
765 		rb_erase(&e1->u.rb, &ubi->scrub);
766 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
767 	}
768 
769 	ubi->move_from = e1;
770 	ubi->move_to = e2;
771 	spin_unlock(&ubi->wl_lock);
772 
773 	/*
774 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
775 	 * We so far do not know which logical eraseblock our physical
776 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
777 	 * header first.
778 	 *
779 	 * Note, we are protected from this PEB being unmapped and erased. The
780 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
781 	 * which is being moved was unmapped.
782 	 */
783 
784 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
785 	if (err && err != UBI_IO_BITFLIPS) {
786 		dst_leb_clean = 1;
787 		if (err == UBI_IO_FF) {
788 			/*
789 			 * We are trying to move PEB without a VID header. UBI
790 			 * always write VID headers shortly after the PEB was
791 			 * given, so we have a situation when it has not yet
792 			 * had a chance to write it, because it was preempted.
793 			 * So add this PEB to the protection queue so far,
794 			 * because presumably more data will be written there
795 			 * (including the missing VID header), and then we'll
796 			 * move it.
797 			 */
798 			dbg_wl("PEB %d has no VID header", e1->pnum);
799 			protect = 1;
800 			goto out_not_moved;
801 		} else if (err == UBI_IO_FF_BITFLIPS) {
802 			/*
803 			 * The same situation as %UBI_IO_FF, but bit-flips were
804 			 * detected. It is better to schedule this PEB for
805 			 * scrubbing.
806 			 */
807 			dbg_wl("PEB %d has no VID header but has bit-flips",
808 			       e1->pnum);
809 			scrubbing = 1;
810 			goto out_not_moved;
811 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
812 			/*
813 			 * While a full scan would detect interrupted erasures
814 			 * at attach time we can face them here when attached from
815 			 * Fastmap.
816 			 */
817 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
818 			       e1->pnum);
819 			erase = 1;
820 			goto out_not_moved;
821 		}
822 
823 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
824 			err, e1->pnum);
825 		goto out_error;
826 	}
827 
828 	vol_id = be32_to_cpu(vid_hdr->vol_id);
829 	lnum = be32_to_cpu(vid_hdr->lnum);
830 
831 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
832 	if (err) {
833 		if (err == MOVE_CANCEL_RACE) {
834 			/*
835 			 * The LEB has not been moved because the volume is
836 			 * being deleted or the PEB has been put meanwhile. We
837 			 * should prevent this PEB from being selected for
838 			 * wear-leveling movement again, so put it to the
839 			 * protection queue.
840 			 */
841 			protect = 1;
842 			dst_leb_clean = 1;
843 			goto out_not_moved;
844 		}
845 		if (err == MOVE_RETRY) {
846 			scrubbing = 1;
847 			dst_leb_clean = 1;
848 			goto out_not_moved;
849 		}
850 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
851 		    err == MOVE_TARGET_RD_ERR) {
852 			/*
853 			 * Target PEB had bit-flips or write error - torture it.
854 			 */
855 			torture = 1;
856 			keep = 1;
857 			goto out_not_moved;
858 		}
859 
860 		if (err == MOVE_SOURCE_RD_ERR) {
861 			/*
862 			 * An error happened while reading the source PEB. Do
863 			 * not switch to R/O mode in this case, and give the
864 			 * upper layers a possibility to recover from this,
865 			 * e.g. by unmapping corresponding LEB. Instead, just
866 			 * put this PEB to the @ubi->erroneous list to prevent
867 			 * UBI from trying to move it over and over again.
868 			 */
869 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
870 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
871 					ubi->erroneous_peb_count);
872 				goto out_error;
873 			}
874 			dst_leb_clean = 1;
875 			erroneous = 1;
876 			goto out_not_moved;
877 		}
878 
879 		if (err < 0)
880 			goto out_error;
881 
882 		ubi_assert(0);
883 	}
884 
885 	/* The PEB has been successfully moved */
886 	if (scrubbing)
887 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
888 			e1->pnum, vol_id, lnum, e2->pnum);
889 	ubi_free_vid_buf(vidb);
890 
891 	spin_lock(&ubi->wl_lock);
892 	if (!ubi->move_to_put) {
893 		wl_tree_add(e2, &ubi->used);
894 		e2 = NULL;
895 	}
896 	ubi->move_from = ubi->move_to = NULL;
897 	ubi->move_to_put = ubi->wl_scheduled = 0;
898 	spin_unlock(&ubi->wl_lock);
899 
900 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
901 	if (err) {
902 		if (e2)
903 			wl_entry_destroy(ubi, e2);
904 		goto out_ro;
905 	}
906 
907 	if (e2) {
908 		/*
909 		 * Well, the target PEB was put meanwhile, schedule it for
910 		 * erasure.
911 		 */
912 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
913 		       e2->pnum, vol_id, lnum);
914 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
915 		if (err)
916 			goto out_ro;
917 	}
918 
919 	dbg_wl("done");
920 	mutex_unlock(&ubi->move_mutex);
921 	up_read(&ubi->fm_eba_sem);
922 	return 0;
923 
924 	/*
925 	 * For some reasons the LEB was not moved, might be an error, might be
926 	 * something else. @e1 was not changed, so return it back. @e2 might
927 	 * have been changed, schedule it for erasure.
928 	 */
929 out_not_moved:
930 	if (vol_id != -1)
931 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
932 		       e1->pnum, vol_id, lnum, e2->pnum, err);
933 	else
934 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
935 		       e1->pnum, e2->pnum, err);
936 	spin_lock(&ubi->wl_lock);
937 	if (protect)
938 		prot_queue_add(ubi, e1);
939 	else if (erroneous) {
940 		wl_tree_add(e1, &ubi->erroneous);
941 		ubi->erroneous_peb_count += 1;
942 	} else if (scrubbing)
943 		wl_tree_add(e1, &ubi->scrub);
944 	else if (keep)
945 		wl_tree_add(e1, &ubi->used);
946 	if (dst_leb_clean) {
947 		wl_tree_add(e2, &ubi->free);
948 		ubi->free_count++;
949 	}
950 
951 	ubi_assert(!ubi->move_to_put);
952 	ubi->move_from = ubi->move_to = NULL;
953 	ubi->wl_scheduled = 0;
954 	spin_unlock(&ubi->wl_lock);
955 
956 	ubi_free_vid_buf(vidb);
957 	if (dst_leb_clean) {
958 		ensure_wear_leveling(ubi, 1);
959 	} else {
960 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
961 		if (err)
962 			goto out_ro;
963 	}
964 
965 	if (erase) {
966 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
967 		if (err)
968 			goto out_ro;
969 	}
970 
971 	mutex_unlock(&ubi->move_mutex);
972 	up_read(&ubi->fm_eba_sem);
973 	return 0;
974 
975 out_error:
976 	if (vol_id != -1)
977 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
978 			err, e1->pnum, e2->pnum);
979 	else
980 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
981 			err, e1->pnum, vol_id, lnum, e2->pnum);
982 	spin_lock(&ubi->wl_lock);
983 	ubi->move_from = ubi->move_to = NULL;
984 	ubi->move_to_put = ubi->wl_scheduled = 0;
985 	spin_unlock(&ubi->wl_lock);
986 
987 	ubi_free_vid_buf(vidb);
988 	wl_entry_destroy(ubi, e1);
989 	wl_entry_destroy(ubi, e2);
990 
991 out_ro:
992 	ubi_ro_mode(ubi);
993 	mutex_unlock(&ubi->move_mutex);
994 	up_read(&ubi->fm_eba_sem);
995 	ubi_assert(err != 0);
996 	return err < 0 ? err : -EIO;
997 
998 out_cancel:
999 	ubi->wl_scheduled = 0;
1000 	spin_unlock(&ubi->wl_lock);
1001 	mutex_unlock(&ubi->move_mutex);
1002 	up_read(&ubi->fm_eba_sem);
1003 	ubi_free_vid_buf(vidb);
1004 	return 0;
1005 }
1006 
1007 /**
1008  * ensure_wear_leveling - schedule wear-leveling if it is needed.
1009  * @ubi: UBI device description object
1010  * @nested: set to non-zero if this function is called from UBI worker
1011  *
1012  * This function checks if it is time to start wear-leveling and schedules it
1013  * if yes. This function returns zero in case of success and a negative error
1014  * code in case of failure.
1015  */
1016 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1017 {
1018 	int err = 0;
1019 	struct ubi_wl_entry *e1;
1020 	struct ubi_wl_entry *e2;
1021 	struct ubi_work *wrk;
1022 
1023 	spin_lock(&ubi->wl_lock);
1024 	if (ubi->wl_scheduled)
1025 		/* Wear-leveling is already in the work queue */
1026 		goto out_unlock;
1027 
1028 	/*
1029 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1030 	 * the WL worker has to be scheduled anyway.
1031 	 */
1032 	if (!ubi->scrub.rb_node) {
1033 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1034 			/* No physical eraseblocks - no deal */
1035 			goto out_unlock;
1036 
1037 		/*
1038 		 * We schedule wear-leveling only if the difference between the
1039 		 * lowest erase counter of used physical eraseblocks and a high
1040 		 * erase counter of free physical eraseblocks is greater than
1041 		 * %UBI_WL_THRESHOLD.
1042 		 */
1043 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1044 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1045 
1046 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1047 			goto out_unlock;
1048 		dbg_wl("schedule wear-leveling");
1049 	} else
1050 		dbg_wl("schedule scrubbing");
1051 
1052 	ubi->wl_scheduled = 1;
1053 	spin_unlock(&ubi->wl_lock);
1054 
1055 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1056 	if (!wrk) {
1057 		err = -ENOMEM;
1058 		goto out_cancel;
1059 	}
1060 
1061 	wrk->anchor = 0;
1062 	wrk->func = &wear_leveling_worker;
1063 	if (nested)
1064 		__schedule_ubi_work(ubi, wrk);
1065 	else
1066 		schedule_ubi_work(ubi, wrk);
1067 	return err;
1068 
1069 out_cancel:
1070 	spin_lock(&ubi->wl_lock);
1071 	ubi->wl_scheduled = 0;
1072 out_unlock:
1073 	spin_unlock(&ubi->wl_lock);
1074 	return err;
1075 }
1076 
1077 /**
1078  * __erase_worker - physical eraseblock erase worker function.
1079  * @ubi: UBI device description object
1080  * @wl_wrk: the work object
1081  * @shutdown: non-zero if the worker has to free memory and exit
1082  * because the WL sub-system is shutting down
1083  *
1084  * This function erases a physical eraseblock and perform torture testing if
1085  * needed. It also takes care about marking the physical eraseblock bad if
1086  * needed. Returns zero in case of success and a negative error code in case of
1087  * failure.
1088  */
1089 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1090 {
1091 	struct ubi_wl_entry *e = wl_wrk->e;
1092 	int pnum = e->pnum;
1093 	int vol_id = wl_wrk->vol_id;
1094 	int lnum = wl_wrk->lnum;
1095 	int err, available_consumed = 0;
1096 
1097 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1098 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1099 
1100 	err = sync_erase(ubi, e, wl_wrk->torture);
1101 	if (!err) {
1102 		spin_lock(&ubi->wl_lock);
1103 		wl_tree_add(e, &ubi->free);
1104 		ubi->free_count++;
1105 		spin_unlock(&ubi->wl_lock);
1106 
1107 		/*
1108 		 * One more erase operation has happened, take care about
1109 		 * protected physical eraseblocks.
1110 		 */
1111 		serve_prot_queue(ubi);
1112 
1113 		/* And take care about wear-leveling */
1114 		err = ensure_wear_leveling(ubi, 1);
1115 		return err;
1116 	}
1117 
1118 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1119 
1120 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1121 	    err == -EBUSY) {
1122 		int err1;
1123 
1124 		/* Re-schedule the LEB for erasure */
1125 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1126 		if (err1) {
1127 			wl_entry_destroy(ubi, e);
1128 			err = err1;
1129 			goto out_ro;
1130 		}
1131 		return err;
1132 	}
1133 
1134 	wl_entry_destroy(ubi, e);
1135 	if (err != -EIO)
1136 		/*
1137 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1138 		 * this physical eraseblock for erasure again would cause
1139 		 * errors again and again. Well, lets switch to R/O mode.
1140 		 */
1141 		goto out_ro;
1142 
1143 	/* It is %-EIO, the PEB went bad */
1144 
1145 	if (!ubi->bad_allowed) {
1146 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1147 		goto out_ro;
1148 	}
1149 
1150 	spin_lock(&ubi->volumes_lock);
1151 	if (ubi->beb_rsvd_pebs == 0) {
1152 		if (ubi->avail_pebs == 0) {
1153 			spin_unlock(&ubi->volumes_lock);
1154 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1155 			goto out_ro;
1156 		}
1157 		ubi->avail_pebs -= 1;
1158 		available_consumed = 1;
1159 	}
1160 	spin_unlock(&ubi->volumes_lock);
1161 
1162 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1163 	err = ubi_io_mark_bad(ubi, pnum);
1164 	if (err)
1165 		goto out_ro;
1166 
1167 	spin_lock(&ubi->volumes_lock);
1168 	if (ubi->beb_rsvd_pebs > 0) {
1169 		if (available_consumed) {
1170 			/*
1171 			 * The amount of reserved PEBs increased since we last
1172 			 * checked.
1173 			 */
1174 			ubi->avail_pebs += 1;
1175 			available_consumed = 0;
1176 		}
1177 		ubi->beb_rsvd_pebs -= 1;
1178 	}
1179 	ubi->bad_peb_count += 1;
1180 	ubi->good_peb_count -= 1;
1181 	ubi_calculate_reserved(ubi);
1182 	if (available_consumed)
1183 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1184 	else if (ubi->beb_rsvd_pebs)
1185 		ubi_msg(ubi, "%d PEBs left in the reserve",
1186 			ubi->beb_rsvd_pebs);
1187 	else
1188 		ubi_warn(ubi, "last PEB from the reserve was used");
1189 	spin_unlock(&ubi->volumes_lock);
1190 
1191 	return err;
1192 
1193 out_ro:
1194 	if (available_consumed) {
1195 		spin_lock(&ubi->volumes_lock);
1196 		ubi->avail_pebs += 1;
1197 		spin_unlock(&ubi->volumes_lock);
1198 	}
1199 	ubi_ro_mode(ubi);
1200 	return err;
1201 }
1202 
1203 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1204 			  int shutdown)
1205 {
1206 	int ret;
1207 
1208 	if (shutdown) {
1209 		struct ubi_wl_entry *e = wl_wrk->e;
1210 
1211 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1212 		kfree(wl_wrk);
1213 		wl_entry_destroy(ubi, e);
1214 		return 0;
1215 	}
1216 
1217 	ret = __erase_worker(ubi, wl_wrk);
1218 	kfree(wl_wrk);
1219 	return ret;
1220 }
1221 
1222 /**
1223  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1224  * @ubi: UBI device description object
1225  * @vol_id: the volume ID that last used this PEB
1226  * @lnum: the last used logical eraseblock number for the PEB
1227  * @pnum: physical eraseblock to return
1228  * @torture: if this physical eraseblock has to be tortured
1229  *
1230  * This function is called to return physical eraseblock @pnum to the pool of
1231  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1232  * occurred to this @pnum and it has to be tested. This function returns zero
1233  * in case of success, and a negative error code in case of failure.
1234  */
1235 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1236 		   int pnum, int torture)
1237 {
1238 	int err;
1239 	struct ubi_wl_entry *e;
1240 
1241 	dbg_wl("PEB %d", pnum);
1242 	ubi_assert(pnum >= 0);
1243 	ubi_assert(pnum < ubi->peb_count);
1244 
1245 	down_read(&ubi->fm_protect);
1246 
1247 retry:
1248 	spin_lock(&ubi->wl_lock);
1249 	e = ubi->lookuptbl[pnum];
1250 	if (e == ubi->move_from) {
1251 		/*
1252 		 * User is putting the physical eraseblock which was selected to
1253 		 * be moved. It will be scheduled for erasure in the
1254 		 * wear-leveling worker.
1255 		 */
1256 		dbg_wl("PEB %d is being moved, wait", pnum);
1257 		spin_unlock(&ubi->wl_lock);
1258 
1259 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1260 		mutex_lock(&ubi->move_mutex);
1261 		mutex_unlock(&ubi->move_mutex);
1262 		goto retry;
1263 	} else if (e == ubi->move_to) {
1264 		/*
1265 		 * User is putting the physical eraseblock which was selected
1266 		 * as the target the data is moved to. It may happen if the EBA
1267 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1268 		 * but the WL sub-system has not put the PEB to the "used" tree
1269 		 * yet, but it is about to do this. So we just set a flag which
1270 		 * will tell the WL worker that the PEB is not needed anymore
1271 		 * and should be scheduled for erasure.
1272 		 */
1273 		dbg_wl("PEB %d is the target of data moving", pnum);
1274 		ubi_assert(!ubi->move_to_put);
1275 		ubi->move_to_put = 1;
1276 		spin_unlock(&ubi->wl_lock);
1277 		up_read(&ubi->fm_protect);
1278 		return 0;
1279 	} else {
1280 		if (in_wl_tree(e, &ubi->used)) {
1281 			self_check_in_wl_tree(ubi, e, &ubi->used);
1282 			rb_erase(&e->u.rb, &ubi->used);
1283 		} else if (in_wl_tree(e, &ubi->scrub)) {
1284 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1285 			rb_erase(&e->u.rb, &ubi->scrub);
1286 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1287 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1288 			rb_erase(&e->u.rb, &ubi->erroneous);
1289 			ubi->erroneous_peb_count -= 1;
1290 			ubi_assert(ubi->erroneous_peb_count >= 0);
1291 			/* Erroneous PEBs should be tortured */
1292 			torture = 1;
1293 		} else {
1294 			err = prot_queue_del(ubi, e->pnum);
1295 			if (err) {
1296 				ubi_err(ubi, "PEB %d not found", pnum);
1297 				ubi_ro_mode(ubi);
1298 				spin_unlock(&ubi->wl_lock);
1299 				up_read(&ubi->fm_protect);
1300 				return err;
1301 			}
1302 		}
1303 	}
1304 	spin_unlock(&ubi->wl_lock);
1305 
1306 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1307 	if (err) {
1308 		spin_lock(&ubi->wl_lock);
1309 		wl_tree_add(e, &ubi->used);
1310 		spin_unlock(&ubi->wl_lock);
1311 	}
1312 
1313 	up_read(&ubi->fm_protect);
1314 	return err;
1315 }
1316 
1317 /**
1318  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1319  * @ubi: UBI device description object
1320  * @pnum: the physical eraseblock to schedule
1321  *
1322  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1323  * needs scrubbing. This function schedules a physical eraseblock for
1324  * scrubbing which is done in background. This function returns zero in case of
1325  * success and a negative error code in case of failure.
1326  */
1327 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1328 {
1329 	struct ubi_wl_entry *e;
1330 
1331 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1332 
1333 retry:
1334 	spin_lock(&ubi->wl_lock);
1335 	e = ubi->lookuptbl[pnum];
1336 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1337 				   in_wl_tree(e, &ubi->erroneous)) {
1338 		spin_unlock(&ubi->wl_lock);
1339 		return 0;
1340 	}
1341 
1342 	if (e == ubi->move_to) {
1343 		/*
1344 		 * This physical eraseblock was used to move data to. The data
1345 		 * was moved but the PEB was not yet inserted to the proper
1346 		 * tree. We should just wait a little and let the WL worker
1347 		 * proceed.
1348 		 */
1349 		spin_unlock(&ubi->wl_lock);
1350 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1351 		yield();
1352 		goto retry;
1353 	}
1354 
1355 	if (in_wl_tree(e, &ubi->used)) {
1356 		self_check_in_wl_tree(ubi, e, &ubi->used);
1357 		rb_erase(&e->u.rb, &ubi->used);
1358 	} else {
1359 		int err;
1360 
1361 		err = prot_queue_del(ubi, e->pnum);
1362 		if (err) {
1363 			ubi_err(ubi, "PEB %d not found", pnum);
1364 			ubi_ro_mode(ubi);
1365 			spin_unlock(&ubi->wl_lock);
1366 			return err;
1367 		}
1368 	}
1369 
1370 	wl_tree_add(e, &ubi->scrub);
1371 	spin_unlock(&ubi->wl_lock);
1372 
1373 	/*
1374 	 * Technically scrubbing is the same as wear-leveling, so it is done
1375 	 * by the WL worker.
1376 	 */
1377 	return ensure_wear_leveling(ubi, 0);
1378 }
1379 
1380 /**
1381  * ubi_wl_flush - flush all pending works.
1382  * @ubi: UBI device description object
1383  * @vol_id: the volume id to flush for
1384  * @lnum: the logical eraseblock number to flush for
1385  *
1386  * This function executes all pending works for a particular volume id /
1387  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1388  * acts as a wildcard for all of the corresponding volume numbers or logical
1389  * eraseblock numbers. It returns zero in case of success and a negative error
1390  * code in case of failure.
1391  */
1392 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1393 {
1394 	int err = 0;
1395 	int found = 1;
1396 
1397 	/*
1398 	 * Erase while the pending works queue is not empty, but not more than
1399 	 * the number of currently pending works.
1400 	 */
1401 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1402 	       vol_id, lnum, ubi->works_count);
1403 
1404 	while (found) {
1405 		struct ubi_work *wrk, *tmp;
1406 		found = 0;
1407 
1408 		down_read(&ubi->work_sem);
1409 		spin_lock(&ubi->wl_lock);
1410 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1411 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1412 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1413 				list_del(&wrk->list);
1414 				ubi->works_count -= 1;
1415 				ubi_assert(ubi->works_count >= 0);
1416 				spin_unlock(&ubi->wl_lock);
1417 
1418 				err = wrk->func(ubi, wrk, 0);
1419 				if (err) {
1420 					up_read(&ubi->work_sem);
1421 					return err;
1422 				}
1423 
1424 				spin_lock(&ubi->wl_lock);
1425 				found = 1;
1426 				break;
1427 			}
1428 		}
1429 		spin_unlock(&ubi->wl_lock);
1430 		up_read(&ubi->work_sem);
1431 	}
1432 
1433 	/*
1434 	 * Make sure all the works which have been done in parallel are
1435 	 * finished.
1436 	 */
1437 	down_write(&ubi->work_sem);
1438 	up_write(&ubi->work_sem);
1439 
1440 	return err;
1441 }
1442 
1443 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1444 {
1445 	if (in_wl_tree(e, &ubi->scrub))
1446 		return false;
1447 	else if (in_wl_tree(e, &ubi->erroneous))
1448 		return false;
1449 	else if (ubi->move_from == e)
1450 		return false;
1451 	else if (ubi->move_to == e)
1452 		return false;
1453 
1454 	return true;
1455 }
1456 
1457 /**
1458  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1459  * @ubi: UBI device description object
1460  * @pnum: the physical eraseblock to schedule
1461  * @force: dont't read the block, assume bitflips happened and take action.
1462  *
1463  * This function reads the given eraseblock and checks if bitflips occured.
1464  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1465  * If scrubbing is forced with @force, the eraseblock is not read,
1466  * but scheduled for scrubbing right away.
1467  *
1468  * Returns:
1469  * %EINVAL, PEB is out of range
1470  * %ENOENT, PEB is no longer used by UBI
1471  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1472  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1473  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1474  * %0, no bit flips detected
1475  */
1476 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1477 {
1478 	int err = 0;
1479 	struct ubi_wl_entry *e;
1480 
1481 	if (pnum < 0 || pnum >= ubi->peb_count) {
1482 		err = -EINVAL;
1483 		goto out;
1484 	}
1485 
1486 	/*
1487 	 * Pause all parallel work, otherwise it can happen that the
1488 	 * erase worker frees a wl entry under us.
1489 	 */
1490 	down_write(&ubi->work_sem);
1491 
1492 	/*
1493 	 * Make sure that the wl entry does not change state while
1494 	 * inspecting it.
1495 	 */
1496 	spin_lock(&ubi->wl_lock);
1497 	e = ubi->lookuptbl[pnum];
1498 	if (!e) {
1499 		spin_unlock(&ubi->wl_lock);
1500 		err = -ENOENT;
1501 		goto out_resume;
1502 	}
1503 
1504 	/*
1505 	 * Does it make sense to check this PEB?
1506 	 */
1507 	if (!scrub_possible(ubi, e)) {
1508 		spin_unlock(&ubi->wl_lock);
1509 		err = -EBUSY;
1510 		goto out_resume;
1511 	}
1512 	spin_unlock(&ubi->wl_lock);
1513 
1514 	if (!force) {
1515 		mutex_lock(&ubi->buf_mutex);
1516 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1517 		mutex_unlock(&ubi->buf_mutex);
1518 	}
1519 
1520 	if (force || err == UBI_IO_BITFLIPS) {
1521 		/*
1522 		 * Okay, bit flip happened, let's figure out what we can do.
1523 		 */
1524 		spin_lock(&ubi->wl_lock);
1525 
1526 		/*
1527 		 * Recheck. We released wl_lock, UBI might have killed the
1528 		 * wl entry under us.
1529 		 */
1530 		e = ubi->lookuptbl[pnum];
1531 		if (!e) {
1532 			spin_unlock(&ubi->wl_lock);
1533 			err = -ENOENT;
1534 			goto out_resume;
1535 		}
1536 
1537 		/*
1538 		 * Need to re-check state
1539 		 */
1540 		if (!scrub_possible(ubi, e)) {
1541 			spin_unlock(&ubi->wl_lock);
1542 			err = -EBUSY;
1543 			goto out_resume;
1544 		}
1545 
1546 		if (in_pq(ubi, e)) {
1547 			prot_queue_del(ubi, e->pnum);
1548 			wl_tree_add(e, &ubi->scrub);
1549 			spin_unlock(&ubi->wl_lock);
1550 
1551 			err = ensure_wear_leveling(ubi, 1);
1552 		} else if (in_wl_tree(e, &ubi->used)) {
1553 			rb_erase(&e->u.rb, &ubi->used);
1554 			wl_tree_add(e, &ubi->scrub);
1555 			spin_unlock(&ubi->wl_lock);
1556 
1557 			err = ensure_wear_leveling(ubi, 1);
1558 		} else if (in_wl_tree(e, &ubi->free)) {
1559 			rb_erase(&e->u.rb, &ubi->free);
1560 			ubi->free_count--;
1561 			spin_unlock(&ubi->wl_lock);
1562 
1563 			/*
1564 			 * This PEB is empty we can schedule it for
1565 			 * erasure right away. No wear leveling needed.
1566 			 */
1567 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1568 					     force ? 0 : 1, true);
1569 		} else {
1570 			spin_unlock(&ubi->wl_lock);
1571 			err = -EAGAIN;
1572 		}
1573 
1574 		if (!err && !force)
1575 			err = -EUCLEAN;
1576 	} else {
1577 		err = 0;
1578 	}
1579 
1580 out_resume:
1581 	up_write(&ubi->work_sem);
1582 out:
1583 
1584 	return err;
1585 }
1586 
1587 /**
1588  * tree_destroy - destroy an RB-tree.
1589  * @ubi: UBI device description object
1590  * @root: the root of the tree to destroy
1591  */
1592 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1593 {
1594 	struct rb_node *rb;
1595 	struct ubi_wl_entry *e;
1596 
1597 	rb = root->rb_node;
1598 	while (rb) {
1599 		if (rb->rb_left)
1600 			rb = rb->rb_left;
1601 		else if (rb->rb_right)
1602 			rb = rb->rb_right;
1603 		else {
1604 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1605 
1606 			rb = rb_parent(rb);
1607 			if (rb) {
1608 				if (rb->rb_left == &e->u.rb)
1609 					rb->rb_left = NULL;
1610 				else
1611 					rb->rb_right = NULL;
1612 			}
1613 
1614 			wl_entry_destroy(ubi, e);
1615 		}
1616 	}
1617 }
1618 
1619 /**
1620  * ubi_thread - UBI background thread.
1621  * @u: the UBI device description object pointer
1622  */
1623 int ubi_thread(void *u)
1624 {
1625 	int failures = 0;
1626 	struct ubi_device *ubi = u;
1627 
1628 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1629 		ubi->bgt_name, task_pid_nr(current));
1630 
1631 	set_freezable();
1632 	for (;;) {
1633 		int err;
1634 
1635 		if (kthread_should_stop())
1636 			break;
1637 
1638 		if (try_to_freeze())
1639 			continue;
1640 
1641 		spin_lock(&ubi->wl_lock);
1642 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1643 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1644 			set_current_state(TASK_INTERRUPTIBLE);
1645 			spin_unlock(&ubi->wl_lock);
1646 			schedule();
1647 			continue;
1648 		}
1649 		spin_unlock(&ubi->wl_lock);
1650 
1651 		err = do_work(ubi);
1652 		if (err) {
1653 			ubi_err(ubi, "%s: work failed with error code %d",
1654 				ubi->bgt_name, err);
1655 			if (failures++ > WL_MAX_FAILURES) {
1656 				/*
1657 				 * Too many failures, disable the thread and
1658 				 * switch to read-only mode.
1659 				 */
1660 				ubi_msg(ubi, "%s: %d consecutive failures",
1661 					ubi->bgt_name, WL_MAX_FAILURES);
1662 				ubi_ro_mode(ubi);
1663 				ubi->thread_enabled = 0;
1664 				continue;
1665 			}
1666 		} else
1667 			failures = 0;
1668 
1669 		cond_resched();
1670 	}
1671 
1672 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1673 	ubi->thread_enabled = 0;
1674 	return 0;
1675 }
1676 
1677 /**
1678  * shutdown_work - shutdown all pending works.
1679  * @ubi: UBI device description object
1680  */
1681 static void shutdown_work(struct ubi_device *ubi)
1682 {
1683 	while (!list_empty(&ubi->works)) {
1684 		struct ubi_work *wrk;
1685 
1686 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1687 		list_del(&wrk->list);
1688 		wrk->func(ubi, wrk, 1);
1689 		ubi->works_count -= 1;
1690 		ubi_assert(ubi->works_count >= 0);
1691 	}
1692 }
1693 
1694 /**
1695  * erase_aeb - erase a PEB given in UBI attach info PEB
1696  * @ubi: UBI device description object
1697  * @aeb: UBI attach info PEB
1698  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1699  */
1700 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1701 {
1702 	struct ubi_wl_entry *e;
1703 	int err;
1704 
1705 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1706 	if (!e)
1707 		return -ENOMEM;
1708 
1709 	e->pnum = aeb->pnum;
1710 	e->ec = aeb->ec;
1711 	ubi->lookuptbl[e->pnum] = e;
1712 
1713 	if (sync) {
1714 		err = sync_erase(ubi, e, false);
1715 		if (err)
1716 			goto out_free;
1717 
1718 		wl_tree_add(e, &ubi->free);
1719 		ubi->free_count++;
1720 	} else {
1721 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1722 		if (err)
1723 			goto out_free;
1724 	}
1725 
1726 	return 0;
1727 
1728 out_free:
1729 	wl_entry_destroy(ubi, e);
1730 
1731 	return err;
1732 }
1733 
1734 /**
1735  * ubi_wl_init - initialize the WL sub-system using attaching information.
1736  * @ubi: UBI device description object
1737  * @ai: attaching information
1738  *
1739  * This function returns zero in case of success, and a negative error code in
1740  * case of failure.
1741  */
1742 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1743 {
1744 	int err, i, reserved_pebs, found_pebs = 0;
1745 	struct rb_node *rb1, *rb2;
1746 	struct ubi_ainf_volume *av;
1747 	struct ubi_ainf_peb *aeb, *tmp;
1748 	struct ubi_wl_entry *e;
1749 
1750 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1751 	spin_lock_init(&ubi->wl_lock);
1752 	mutex_init(&ubi->move_mutex);
1753 	init_rwsem(&ubi->work_sem);
1754 	ubi->max_ec = ai->max_ec;
1755 	INIT_LIST_HEAD(&ubi->works);
1756 
1757 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1758 
1759 	err = -ENOMEM;
1760 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1761 	if (!ubi->lookuptbl)
1762 		return err;
1763 
1764 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1765 		INIT_LIST_HEAD(&ubi->pq[i]);
1766 	ubi->pq_head = 0;
1767 
1768 	ubi->free_count = 0;
1769 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1770 		cond_resched();
1771 
1772 		err = erase_aeb(ubi, aeb, false);
1773 		if (err)
1774 			goto out_free;
1775 
1776 		found_pebs++;
1777 	}
1778 
1779 	list_for_each_entry(aeb, &ai->free, u.list) {
1780 		cond_resched();
1781 
1782 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1783 		if (!e) {
1784 			err = -ENOMEM;
1785 			goto out_free;
1786 		}
1787 
1788 		e->pnum = aeb->pnum;
1789 		e->ec = aeb->ec;
1790 		ubi_assert(e->ec >= 0);
1791 
1792 		wl_tree_add(e, &ubi->free);
1793 		ubi->free_count++;
1794 
1795 		ubi->lookuptbl[e->pnum] = e;
1796 
1797 		found_pebs++;
1798 	}
1799 
1800 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1801 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1802 			cond_resched();
1803 
1804 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1805 			if (!e) {
1806 				err = -ENOMEM;
1807 				goto out_free;
1808 			}
1809 
1810 			e->pnum = aeb->pnum;
1811 			e->ec = aeb->ec;
1812 			ubi->lookuptbl[e->pnum] = e;
1813 
1814 			if (!aeb->scrub) {
1815 				dbg_wl("add PEB %d EC %d to the used tree",
1816 				       e->pnum, e->ec);
1817 				wl_tree_add(e, &ubi->used);
1818 			} else {
1819 				dbg_wl("add PEB %d EC %d to the scrub tree",
1820 				       e->pnum, e->ec);
1821 				wl_tree_add(e, &ubi->scrub);
1822 			}
1823 
1824 			found_pebs++;
1825 		}
1826 	}
1827 
1828 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1829 		cond_resched();
1830 
1831 		e = ubi_find_fm_block(ubi, aeb->pnum);
1832 
1833 		if (e) {
1834 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1835 			ubi->lookuptbl[e->pnum] = e;
1836 		} else {
1837 			bool sync = false;
1838 
1839 			/*
1840 			 * Usually old Fastmap PEBs are scheduled for erasure
1841 			 * and we don't have to care about them but if we face
1842 			 * an power cut before scheduling them we need to
1843 			 * take care of them here.
1844 			 */
1845 			if (ubi->lookuptbl[aeb->pnum])
1846 				continue;
1847 
1848 			/*
1849 			 * The fastmap update code might not find a free PEB for
1850 			 * writing the fastmap anchor to and then reuses the
1851 			 * current fastmap anchor PEB. When this PEB gets erased
1852 			 * and a power cut happens before it is written again we
1853 			 * must make sure that the fastmap attach code doesn't
1854 			 * find any outdated fastmap anchors, hence we erase the
1855 			 * outdated fastmap anchor PEBs synchronously here.
1856 			 */
1857 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1858 				sync = true;
1859 
1860 			err = erase_aeb(ubi, aeb, sync);
1861 			if (err)
1862 				goto out_free;
1863 		}
1864 
1865 		found_pebs++;
1866 	}
1867 
1868 	dbg_wl("found %i PEBs", found_pebs);
1869 
1870 	ubi_assert(ubi->good_peb_count == found_pebs);
1871 
1872 	reserved_pebs = WL_RESERVED_PEBS;
1873 	ubi_fastmap_init(ubi, &reserved_pebs);
1874 
1875 	if (ubi->avail_pebs < reserved_pebs) {
1876 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1877 			ubi->avail_pebs, reserved_pebs);
1878 		if (ubi->corr_peb_count)
1879 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1880 				ubi->corr_peb_count);
1881 		err = -ENOSPC;
1882 		goto out_free;
1883 	}
1884 	ubi->avail_pebs -= reserved_pebs;
1885 	ubi->rsvd_pebs += reserved_pebs;
1886 
1887 	/* Schedule wear-leveling if needed */
1888 	err = ensure_wear_leveling(ubi, 0);
1889 	if (err)
1890 		goto out_free;
1891 
1892 	return 0;
1893 
1894 out_free:
1895 	shutdown_work(ubi);
1896 	tree_destroy(ubi, &ubi->used);
1897 	tree_destroy(ubi, &ubi->free);
1898 	tree_destroy(ubi, &ubi->scrub);
1899 	kfree(ubi->lookuptbl);
1900 	return err;
1901 }
1902 
1903 /**
1904  * protection_queue_destroy - destroy the protection queue.
1905  * @ubi: UBI device description object
1906  */
1907 static void protection_queue_destroy(struct ubi_device *ubi)
1908 {
1909 	int i;
1910 	struct ubi_wl_entry *e, *tmp;
1911 
1912 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1913 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1914 			list_del(&e->u.list);
1915 			wl_entry_destroy(ubi, e);
1916 		}
1917 	}
1918 }
1919 
1920 /**
1921  * ubi_wl_close - close the wear-leveling sub-system.
1922  * @ubi: UBI device description object
1923  */
1924 void ubi_wl_close(struct ubi_device *ubi)
1925 {
1926 	dbg_wl("close the WL sub-system");
1927 	ubi_fastmap_close(ubi);
1928 	shutdown_work(ubi);
1929 	protection_queue_destroy(ubi);
1930 	tree_destroy(ubi, &ubi->used);
1931 	tree_destroy(ubi, &ubi->erroneous);
1932 	tree_destroy(ubi, &ubi->free);
1933 	tree_destroy(ubi, &ubi->scrub);
1934 	kfree(ubi->lookuptbl);
1935 }
1936 
1937 /**
1938  * self_check_ec - make sure that the erase counter of a PEB is correct.
1939  * @ubi: UBI device description object
1940  * @pnum: the physical eraseblock number to check
1941  * @ec: the erase counter to check
1942  *
1943  * This function returns zero if the erase counter of physical eraseblock @pnum
1944  * is equivalent to @ec, and a negative error code if not or if an error
1945  * occurred.
1946  */
1947 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1948 {
1949 	int err;
1950 	long long read_ec;
1951 	struct ubi_ec_hdr *ec_hdr;
1952 
1953 	if (!ubi_dbg_chk_gen(ubi))
1954 		return 0;
1955 
1956 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1957 	if (!ec_hdr)
1958 		return -ENOMEM;
1959 
1960 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1961 	if (err && err != UBI_IO_BITFLIPS) {
1962 		/* The header does not have to exist */
1963 		err = 0;
1964 		goto out_free;
1965 	}
1966 
1967 	read_ec = be64_to_cpu(ec_hdr->ec);
1968 	if (ec != read_ec && read_ec - ec > 1) {
1969 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1970 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1971 		dump_stack();
1972 		err = 1;
1973 	} else
1974 		err = 0;
1975 
1976 out_free:
1977 	kfree(ec_hdr);
1978 	return err;
1979 }
1980 
1981 /**
1982  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1983  * @ubi: UBI device description object
1984  * @e: the wear-leveling entry to check
1985  * @root: the root of the tree
1986  *
1987  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1988  * is not.
1989  */
1990 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1991 				 struct ubi_wl_entry *e, struct rb_root *root)
1992 {
1993 	if (!ubi_dbg_chk_gen(ubi))
1994 		return 0;
1995 
1996 	if (in_wl_tree(e, root))
1997 		return 0;
1998 
1999 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2000 		e->pnum, e->ec, root);
2001 	dump_stack();
2002 	return -EINVAL;
2003 }
2004 
2005 /**
2006  * self_check_in_pq - check if wear-leveling entry is in the protection
2007  *                        queue.
2008  * @ubi: UBI device description object
2009  * @e: the wear-leveling entry to check
2010  *
2011  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2012  */
2013 static int self_check_in_pq(const struct ubi_device *ubi,
2014 			    struct ubi_wl_entry *e)
2015 {
2016 	if (!ubi_dbg_chk_gen(ubi))
2017 		return 0;
2018 
2019 	if (in_pq(ubi, e))
2020 		return 0;
2021 
2022 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2023 		e->pnum, e->ec);
2024 	dump_stack();
2025 	return -EINVAL;
2026 }
2027 #ifndef CONFIG_MTD_UBI_FASTMAP
2028 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2029 {
2030 	struct ubi_wl_entry *e;
2031 
2032 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2033 	self_check_in_wl_tree(ubi, e, &ubi->free);
2034 	ubi->free_count--;
2035 	ubi_assert(ubi->free_count >= 0);
2036 	rb_erase(&e->u.rb, &ubi->free);
2037 
2038 	return e;
2039 }
2040 
2041 /**
2042  * produce_free_peb - produce a free physical eraseblock.
2043  * @ubi: UBI device description object
2044  *
2045  * This function tries to make a free PEB by means of synchronous execution of
2046  * pending works. This may be needed if, for example the background thread is
2047  * disabled. Returns zero in case of success and a negative error code in case
2048  * of failure.
2049  */
2050 static int produce_free_peb(struct ubi_device *ubi)
2051 {
2052 	int err;
2053 
2054 	while (!ubi->free.rb_node && ubi->works_count) {
2055 		spin_unlock(&ubi->wl_lock);
2056 
2057 		dbg_wl("do one work synchronously");
2058 		err = do_work(ubi);
2059 
2060 		spin_lock(&ubi->wl_lock);
2061 		if (err)
2062 			return err;
2063 	}
2064 
2065 	return 0;
2066 }
2067 
2068 /**
2069  * ubi_wl_get_peb - get a physical eraseblock.
2070  * @ubi: UBI device description object
2071  *
2072  * This function returns a physical eraseblock in case of success and a
2073  * negative error code in case of failure.
2074  * Returns with ubi->fm_eba_sem held in read mode!
2075  */
2076 int ubi_wl_get_peb(struct ubi_device *ubi)
2077 {
2078 	int err;
2079 	struct ubi_wl_entry *e;
2080 
2081 retry:
2082 	down_read(&ubi->fm_eba_sem);
2083 	spin_lock(&ubi->wl_lock);
2084 	if (!ubi->free.rb_node) {
2085 		if (ubi->works_count == 0) {
2086 			ubi_err(ubi, "no free eraseblocks");
2087 			ubi_assert(list_empty(&ubi->works));
2088 			spin_unlock(&ubi->wl_lock);
2089 			return -ENOSPC;
2090 		}
2091 
2092 		err = produce_free_peb(ubi);
2093 		if (err < 0) {
2094 			spin_unlock(&ubi->wl_lock);
2095 			return err;
2096 		}
2097 		spin_unlock(&ubi->wl_lock);
2098 		up_read(&ubi->fm_eba_sem);
2099 		goto retry;
2100 
2101 	}
2102 	e = wl_get_wle(ubi);
2103 	prot_queue_add(ubi, e);
2104 	spin_unlock(&ubi->wl_lock);
2105 
2106 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2107 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2108 	if (err) {
2109 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2110 		return err;
2111 	}
2112 
2113 	return e->pnum;
2114 }
2115 #else
2116 #include "fastmap-wl.c"
2117 #endif
2118