1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 #include "wl.h" 107 108 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 109 #define WL_RESERVED_PEBS 1 110 111 /* 112 * Maximum difference between two erase counters. If this threshold is 113 * exceeded, the WL sub-system starts moving data from used physical 114 * eraseblocks with low erase counter to free physical eraseblocks with high 115 * erase counter. 116 */ 117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 118 119 /* 120 * When a physical eraseblock is moved, the WL sub-system has to pick the target 121 * physical eraseblock to move to. The simplest way would be just to pick the 122 * one with the highest erase counter. But in certain workloads this could lead 123 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 124 * situation when the picked physical eraseblock is constantly erased after the 125 * data is written to it. So, we have a constant which limits the highest erase 126 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 127 * does not pick eraseblocks with erase counter greater than the lowest erase 128 * counter plus %WL_FREE_MAX_DIFF. 129 */ 130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 131 132 /* 133 * Maximum number of consecutive background thread failures which is enough to 134 * switch to read-only mode. 135 */ 136 #define WL_MAX_FAILURES 32 137 138 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 139 static int self_check_in_wl_tree(const struct ubi_device *ubi, 140 struct ubi_wl_entry *e, struct rb_root *root); 141 static int self_check_in_pq(const struct ubi_device *ubi, 142 struct ubi_wl_entry *e); 143 144 /** 145 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 146 * @e: the wear-leveling entry to add 147 * @root: the root of the tree 148 * 149 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 150 * the @ubi->used and @ubi->free RB-trees. 151 */ 152 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 153 { 154 struct rb_node **p, *parent = NULL; 155 156 p = &root->rb_node; 157 while (*p) { 158 struct ubi_wl_entry *e1; 159 160 parent = *p; 161 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 162 163 if (e->ec < e1->ec) 164 p = &(*p)->rb_left; 165 else if (e->ec > e1->ec) 166 p = &(*p)->rb_right; 167 else { 168 ubi_assert(e->pnum != e1->pnum); 169 if (e->pnum < e1->pnum) 170 p = &(*p)->rb_left; 171 else 172 p = &(*p)->rb_right; 173 } 174 } 175 176 rb_link_node(&e->u.rb, parent, p); 177 rb_insert_color(&e->u.rb, root); 178 } 179 180 /** 181 * wl_tree_destroy - destroy a wear-leveling entry. 182 * @ubi: UBI device description object 183 * @e: the wear-leveling entry to add 184 * 185 * This function destroys a wear leveling entry and removes 186 * the reference from the lookup table. 187 */ 188 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e) 189 { 190 ubi->lookuptbl[e->pnum] = NULL; 191 kmem_cache_free(ubi_wl_entry_slab, e); 192 } 193 194 /** 195 * do_work - do one pending work. 196 * @ubi: UBI device description object 197 * 198 * This function returns zero in case of success and a negative error code in 199 * case of failure. 200 */ 201 static int do_work(struct ubi_device *ubi) 202 { 203 int err; 204 struct ubi_work *wrk; 205 206 cond_resched(); 207 208 /* 209 * @ubi->work_sem is used to synchronize with the workers. Workers take 210 * it in read mode, so many of them may be doing works at a time. But 211 * the queue flush code has to be sure the whole queue of works is 212 * done, and it takes the mutex in write mode. 213 */ 214 down_read(&ubi->work_sem); 215 spin_lock(&ubi->wl_lock); 216 if (list_empty(&ubi->works)) { 217 spin_unlock(&ubi->wl_lock); 218 up_read(&ubi->work_sem); 219 return 0; 220 } 221 222 wrk = list_entry(ubi->works.next, struct ubi_work, list); 223 list_del(&wrk->list); 224 ubi->works_count -= 1; 225 ubi_assert(ubi->works_count >= 0); 226 spin_unlock(&ubi->wl_lock); 227 228 /* 229 * Call the worker function. Do not touch the work structure 230 * after this call as it will have been freed or reused by that 231 * time by the worker function. 232 */ 233 err = wrk->func(ubi, wrk, 0); 234 if (err) 235 ubi_err(ubi, "work failed with error code %d", err); 236 up_read(&ubi->work_sem); 237 238 return err; 239 } 240 241 /** 242 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 243 * @e: the wear-leveling entry to check 244 * @root: the root of the tree 245 * 246 * This function returns non-zero if @e is in the @root RB-tree and zero if it 247 * is not. 248 */ 249 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 250 { 251 struct rb_node *p; 252 253 p = root->rb_node; 254 while (p) { 255 struct ubi_wl_entry *e1; 256 257 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 258 259 if (e->pnum == e1->pnum) { 260 ubi_assert(e == e1); 261 return 1; 262 } 263 264 if (e->ec < e1->ec) 265 p = p->rb_left; 266 else if (e->ec > e1->ec) 267 p = p->rb_right; 268 else { 269 ubi_assert(e->pnum != e1->pnum); 270 if (e->pnum < e1->pnum) 271 p = p->rb_left; 272 else 273 p = p->rb_right; 274 } 275 } 276 277 return 0; 278 } 279 280 /** 281 * prot_queue_add - add physical eraseblock to the protection queue. 282 * @ubi: UBI device description object 283 * @e: the physical eraseblock to add 284 * 285 * This function adds @e to the tail of the protection queue @ubi->pq, where 286 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 287 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 288 * be locked. 289 */ 290 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 291 { 292 int pq_tail = ubi->pq_head - 1; 293 294 if (pq_tail < 0) 295 pq_tail = UBI_PROT_QUEUE_LEN - 1; 296 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 297 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 298 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 299 } 300 301 /** 302 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 303 * @ubi: UBI device description object 304 * @root: the RB-tree where to look for 305 * @diff: maximum possible difference from the smallest erase counter 306 * 307 * This function looks for a wear leveling entry with erase counter closest to 308 * min + @diff, where min is the smallest erase counter. 309 */ 310 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 311 struct rb_root *root, int diff) 312 { 313 struct rb_node *p; 314 struct ubi_wl_entry *e, *prev_e = NULL; 315 int max; 316 317 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 318 max = e->ec + diff; 319 320 p = root->rb_node; 321 while (p) { 322 struct ubi_wl_entry *e1; 323 324 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 325 if (e1->ec >= max) 326 p = p->rb_left; 327 else { 328 p = p->rb_right; 329 prev_e = e; 330 e = e1; 331 } 332 } 333 334 /* If no fastmap has been written and this WL entry can be used 335 * as anchor PEB, hold it back and return the second best WL entry 336 * such that fastmap can use the anchor PEB later. */ 337 if (prev_e && !ubi->fm_disabled && 338 !ubi->fm && e->pnum < UBI_FM_MAX_START) 339 return prev_e; 340 341 return e; 342 } 343 344 /** 345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 346 * @ubi: UBI device description object 347 * @root: the RB-tree where to look for 348 * 349 * This function looks for a wear leveling entry with medium erase counter, 350 * but not greater or equivalent than the lowest erase counter plus 351 * %WL_FREE_MAX_DIFF/2. 352 */ 353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 354 struct rb_root *root) 355 { 356 struct ubi_wl_entry *e, *first, *last; 357 358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 360 361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 363 364 /* If no fastmap has been written and this WL entry can be used 365 * as anchor PEB, hold it back and return the second best 366 * WL entry such that fastmap can use the anchor PEB later. */ 367 e = may_reserve_for_fm(ubi, e, root); 368 } else 369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 370 371 return e; 372 } 373 374 /** 375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or 376 * refill_wl_user_pool(). 377 * @ubi: UBI device description object 378 * 379 * This function returns a a wear leveling entry in case of success and 380 * NULL in case of failure. 381 */ 382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi) 383 { 384 struct ubi_wl_entry *e; 385 386 e = find_mean_wl_entry(ubi, &ubi->free); 387 if (!e) { 388 ubi_err(ubi, "no free eraseblocks"); 389 return NULL; 390 } 391 392 self_check_in_wl_tree(ubi, e, &ubi->free); 393 394 /* 395 * Move the physical eraseblock to the protection queue where it will 396 * be protected from being moved for some time. 397 */ 398 rb_erase(&e->u.rb, &ubi->free); 399 ubi->free_count--; 400 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 401 402 return e; 403 } 404 405 /** 406 * prot_queue_del - remove a physical eraseblock from the protection queue. 407 * @ubi: UBI device description object 408 * @pnum: the physical eraseblock to remove 409 * 410 * This function deletes PEB @pnum from the protection queue and returns zero 411 * in case of success and %-ENODEV if the PEB was not found. 412 */ 413 static int prot_queue_del(struct ubi_device *ubi, int pnum) 414 { 415 struct ubi_wl_entry *e; 416 417 e = ubi->lookuptbl[pnum]; 418 if (!e) 419 return -ENODEV; 420 421 if (self_check_in_pq(ubi, e)) 422 return -ENODEV; 423 424 list_del(&e->u.list); 425 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 426 return 0; 427 } 428 429 /** 430 * sync_erase - synchronously erase a physical eraseblock. 431 * @ubi: UBI device description object 432 * @e: the the physical eraseblock to erase 433 * @torture: if the physical eraseblock has to be tortured 434 * 435 * This function returns zero in case of success and a negative error code in 436 * case of failure. 437 */ 438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 439 int torture) 440 { 441 int err; 442 struct ubi_ec_hdr *ec_hdr; 443 unsigned long long ec = e->ec; 444 445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 446 447 err = self_check_ec(ubi, e->pnum, e->ec); 448 if (err) 449 return -EINVAL; 450 451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 452 if (!ec_hdr) 453 return -ENOMEM; 454 455 err = ubi_io_sync_erase(ubi, e->pnum, torture); 456 if (err < 0) 457 goto out_free; 458 459 ec += err; 460 if (ec > UBI_MAX_ERASECOUNTER) { 461 /* 462 * Erase counter overflow. Upgrade UBI and use 64-bit 463 * erase counters internally. 464 */ 465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu", 466 e->pnum, ec); 467 err = -EINVAL; 468 goto out_free; 469 } 470 471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 472 473 ec_hdr->ec = cpu_to_be64(ec); 474 475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 476 if (err) 477 goto out_free; 478 479 e->ec = ec; 480 spin_lock(&ubi->wl_lock); 481 if (e->ec > ubi->max_ec) 482 ubi->max_ec = e->ec; 483 spin_unlock(&ubi->wl_lock); 484 485 out_free: 486 kfree(ec_hdr); 487 return err; 488 } 489 490 /** 491 * serve_prot_queue - check if it is time to stop protecting PEBs. 492 * @ubi: UBI device description object 493 * 494 * This function is called after each erase operation and removes PEBs from the 495 * tail of the protection queue. These PEBs have been protected for long enough 496 * and should be moved to the used tree. 497 */ 498 static void serve_prot_queue(struct ubi_device *ubi) 499 { 500 struct ubi_wl_entry *e, *tmp; 501 int count; 502 503 /* 504 * There may be several protected physical eraseblock to remove, 505 * process them all. 506 */ 507 repeat: 508 count = 0; 509 spin_lock(&ubi->wl_lock); 510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 511 dbg_wl("PEB %d EC %d protection over, move to used tree", 512 e->pnum, e->ec); 513 514 list_del(&e->u.list); 515 wl_tree_add(e, &ubi->used); 516 if (count++ > 32) { 517 /* 518 * Let's be nice and avoid holding the spinlock for 519 * too long. 520 */ 521 spin_unlock(&ubi->wl_lock); 522 cond_resched(); 523 goto repeat; 524 } 525 } 526 527 ubi->pq_head += 1; 528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 529 ubi->pq_head = 0; 530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 531 spin_unlock(&ubi->wl_lock); 532 } 533 534 /** 535 * __schedule_ubi_work - schedule a work. 536 * @ubi: UBI device description object 537 * @wrk: the work to schedule 538 * 539 * This function adds a work defined by @wrk to the tail of the pending works 540 * list. Can only be used if ubi->work_sem is already held in read mode! 541 */ 542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 543 { 544 spin_lock(&ubi->wl_lock); 545 list_add_tail(&wrk->list, &ubi->works); 546 ubi_assert(ubi->works_count >= 0); 547 ubi->works_count += 1; 548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 549 wake_up_process(ubi->bgt_thread); 550 spin_unlock(&ubi->wl_lock); 551 } 552 553 /** 554 * schedule_ubi_work - schedule a work. 555 * @ubi: UBI device description object 556 * @wrk: the work to schedule 557 * 558 * This function adds a work defined by @wrk to the tail of the pending works 559 * list. 560 */ 561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 562 { 563 down_read(&ubi->work_sem); 564 __schedule_ubi_work(ubi, wrk); 565 up_read(&ubi->work_sem); 566 } 567 568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 569 int shutdown); 570 571 /** 572 * schedule_erase - schedule an erase work. 573 * @ubi: UBI device description object 574 * @e: the WL entry of the physical eraseblock to erase 575 * @vol_id: the volume ID that last used this PEB 576 * @lnum: the last used logical eraseblock number for the PEB 577 * @torture: if the physical eraseblock has to be tortured 578 * 579 * This function returns zero in case of success and a %-ENOMEM in case of 580 * failure. 581 */ 582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 583 int vol_id, int lnum, int torture, bool nested) 584 { 585 struct ubi_work *wl_wrk; 586 587 ubi_assert(e); 588 589 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 590 e->pnum, e->ec, torture); 591 592 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 593 if (!wl_wrk) 594 return -ENOMEM; 595 596 wl_wrk->func = &erase_worker; 597 wl_wrk->e = e; 598 wl_wrk->vol_id = vol_id; 599 wl_wrk->lnum = lnum; 600 wl_wrk->torture = torture; 601 602 if (nested) 603 __schedule_ubi_work(ubi, wl_wrk); 604 else 605 schedule_ubi_work(ubi, wl_wrk); 606 return 0; 607 } 608 609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk); 610 /** 611 * do_sync_erase - run the erase worker synchronously. 612 * @ubi: UBI device description object 613 * @e: the WL entry of the physical eraseblock to erase 614 * @vol_id: the volume ID that last used this PEB 615 * @lnum: the last used logical eraseblock number for the PEB 616 * @torture: if the physical eraseblock has to be tortured 617 * 618 */ 619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 620 int vol_id, int lnum, int torture) 621 { 622 struct ubi_work wl_wrk; 623 624 dbg_wl("sync erase of PEB %i", e->pnum); 625 626 wl_wrk.e = e; 627 wl_wrk.vol_id = vol_id; 628 wl_wrk.lnum = lnum; 629 wl_wrk.torture = torture; 630 631 return __erase_worker(ubi, &wl_wrk); 632 } 633 634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested); 635 /** 636 * wear_leveling_worker - wear-leveling worker function. 637 * @ubi: UBI device description object 638 * @wrk: the work object 639 * @shutdown: non-zero if the worker has to free memory and exit 640 * because the WL-subsystem is shutting down 641 * 642 * This function copies a more worn out physical eraseblock to a less worn out 643 * one. Returns zero in case of success and a negative error code in case of 644 * failure. 645 */ 646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 647 int shutdown) 648 { 649 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 650 int erase = 0, keep = 0, vol_id = -1, lnum = -1; 651 #ifdef CONFIG_MTD_UBI_FASTMAP 652 int anchor = wrk->anchor; 653 #endif 654 struct ubi_wl_entry *e1, *e2; 655 struct ubi_vid_io_buf *vidb; 656 struct ubi_vid_hdr *vid_hdr; 657 int dst_leb_clean = 0; 658 659 kfree(wrk); 660 if (shutdown) 661 return 0; 662 663 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS); 664 if (!vidb) 665 return -ENOMEM; 666 667 vid_hdr = ubi_get_vid_hdr(vidb); 668 669 down_read(&ubi->fm_eba_sem); 670 mutex_lock(&ubi->move_mutex); 671 spin_lock(&ubi->wl_lock); 672 ubi_assert(!ubi->move_from && !ubi->move_to); 673 ubi_assert(!ubi->move_to_put); 674 675 if (!ubi->free.rb_node || 676 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 677 /* 678 * No free physical eraseblocks? Well, they must be waiting in 679 * the queue to be erased. Cancel movement - it will be 680 * triggered again when a free physical eraseblock appears. 681 * 682 * No used physical eraseblocks? They must be temporarily 683 * protected from being moved. They will be moved to the 684 * @ubi->used tree later and the wear-leveling will be 685 * triggered again. 686 */ 687 dbg_wl("cancel WL, a list is empty: free %d, used %d", 688 !ubi->free.rb_node, !ubi->used.rb_node); 689 goto out_cancel; 690 } 691 692 #ifdef CONFIG_MTD_UBI_FASTMAP 693 /* Check whether we need to produce an anchor PEB */ 694 if (!anchor) 695 anchor = !anchor_pebs_avalible(&ubi->free); 696 697 if (anchor) { 698 e1 = find_anchor_wl_entry(&ubi->used); 699 if (!e1) 700 goto out_cancel; 701 e2 = get_peb_for_wl(ubi); 702 if (!e2) 703 goto out_cancel; 704 705 self_check_in_wl_tree(ubi, e1, &ubi->used); 706 rb_erase(&e1->u.rb, &ubi->used); 707 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 708 } else if (!ubi->scrub.rb_node) { 709 #else 710 if (!ubi->scrub.rb_node) { 711 #endif 712 /* 713 * Now pick the least worn-out used physical eraseblock and a 714 * highly worn-out free physical eraseblock. If the erase 715 * counters differ much enough, start wear-leveling. 716 */ 717 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 718 e2 = get_peb_for_wl(ubi); 719 if (!e2) 720 goto out_cancel; 721 722 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 723 dbg_wl("no WL needed: min used EC %d, max free EC %d", 724 e1->ec, e2->ec); 725 726 /* Give the unused PEB back */ 727 wl_tree_add(e2, &ubi->free); 728 ubi->free_count++; 729 goto out_cancel; 730 } 731 self_check_in_wl_tree(ubi, e1, &ubi->used); 732 rb_erase(&e1->u.rb, &ubi->used); 733 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 734 e1->pnum, e1->ec, e2->pnum, e2->ec); 735 } else { 736 /* Perform scrubbing */ 737 scrubbing = 1; 738 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 739 e2 = get_peb_for_wl(ubi); 740 if (!e2) 741 goto out_cancel; 742 743 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 744 rb_erase(&e1->u.rb, &ubi->scrub); 745 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 746 } 747 748 ubi->move_from = e1; 749 ubi->move_to = e2; 750 spin_unlock(&ubi->wl_lock); 751 752 /* 753 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 754 * We so far do not know which logical eraseblock our physical 755 * eraseblock (@e1) belongs to. We have to read the volume identifier 756 * header first. 757 * 758 * Note, we are protected from this PEB being unmapped and erased. The 759 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 760 * which is being moved was unmapped. 761 */ 762 763 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0); 764 if (err && err != UBI_IO_BITFLIPS) { 765 dst_leb_clean = 1; 766 if (err == UBI_IO_FF) { 767 /* 768 * We are trying to move PEB without a VID header. UBI 769 * always write VID headers shortly after the PEB was 770 * given, so we have a situation when it has not yet 771 * had a chance to write it, because it was preempted. 772 * So add this PEB to the protection queue so far, 773 * because presumably more data will be written there 774 * (including the missing VID header), and then we'll 775 * move it. 776 */ 777 dbg_wl("PEB %d has no VID header", e1->pnum); 778 protect = 1; 779 goto out_not_moved; 780 } else if (err == UBI_IO_FF_BITFLIPS) { 781 /* 782 * The same situation as %UBI_IO_FF, but bit-flips were 783 * detected. It is better to schedule this PEB for 784 * scrubbing. 785 */ 786 dbg_wl("PEB %d has no VID header but has bit-flips", 787 e1->pnum); 788 scrubbing = 1; 789 goto out_not_moved; 790 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) { 791 /* 792 * While a full scan would detect interrupted erasures 793 * at attach time we can face them here when attached from 794 * Fastmap. 795 */ 796 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure", 797 e1->pnum); 798 erase = 1; 799 goto out_not_moved; 800 } 801 802 ubi_err(ubi, "error %d while reading VID header from PEB %d", 803 err, e1->pnum); 804 goto out_error; 805 } 806 807 vol_id = be32_to_cpu(vid_hdr->vol_id); 808 lnum = be32_to_cpu(vid_hdr->lnum); 809 810 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb); 811 if (err) { 812 if (err == MOVE_CANCEL_RACE) { 813 /* 814 * The LEB has not been moved because the volume is 815 * being deleted or the PEB has been put meanwhile. We 816 * should prevent this PEB from being selected for 817 * wear-leveling movement again, so put it to the 818 * protection queue. 819 */ 820 protect = 1; 821 dst_leb_clean = 1; 822 goto out_not_moved; 823 } 824 if (err == MOVE_RETRY) { 825 scrubbing = 1; 826 dst_leb_clean = 1; 827 goto out_not_moved; 828 } 829 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 830 err == MOVE_TARGET_RD_ERR) { 831 /* 832 * Target PEB had bit-flips or write error - torture it. 833 */ 834 torture = 1; 835 keep = 1; 836 goto out_not_moved; 837 } 838 839 if (err == MOVE_SOURCE_RD_ERR) { 840 /* 841 * An error happened while reading the source PEB. Do 842 * not switch to R/O mode in this case, and give the 843 * upper layers a possibility to recover from this, 844 * e.g. by unmapping corresponding LEB. Instead, just 845 * put this PEB to the @ubi->erroneous list to prevent 846 * UBI from trying to move it over and over again. 847 */ 848 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 849 ubi_err(ubi, "too many erroneous eraseblocks (%d)", 850 ubi->erroneous_peb_count); 851 goto out_error; 852 } 853 dst_leb_clean = 1; 854 erroneous = 1; 855 goto out_not_moved; 856 } 857 858 if (err < 0) 859 goto out_error; 860 861 ubi_assert(0); 862 } 863 864 /* The PEB has been successfully moved */ 865 if (scrubbing) 866 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 867 e1->pnum, vol_id, lnum, e2->pnum); 868 ubi_free_vid_buf(vidb); 869 870 spin_lock(&ubi->wl_lock); 871 if (!ubi->move_to_put) { 872 wl_tree_add(e2, &ubi->used); 873 e2 = NULL; 874 } 875 ubi->move_from = ubi->move_to = NULL; 876 ubi->move_to_put = ubi->wl_scheduled = 0; 877 spin_unlock(&ubi->wl_lock); 878 879 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 880 if (err) { 881 if (e2) 882 wl_entry_destroy(ubi, e2); 883 goto out_ro; 884 } 885 886 if (e2) { 887 /* 888 * Well, the target PEB was put meanwhile, schedule it for 889 * erasure. 890 */ 891 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 892 e2->pnum, vol_id, lnum); 893 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 894 if (err) 895 goto out_ro; 896 } 897 898 dbg_wl("done"); 899 mutex_unlock(&ubi->move_mutex); 900 up_read(&ubi->fm_eba_sem); 901 return 0; 902 903 /* 904 * For some reasons the LEB was not moved, might be an error, might be 905 * something else. @e1 was not changed, so return it back. @e2 might 906 * have been changed, schedule it for erasure. 907 */ 908 out_not_moved: 909 if (vol_id != -1) 910 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 911 e1->pnum, vol_id, lnum, e2->pnum, err); 912 else 913 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 914 e1->pnum, e2->pnum, err); 915 spin_lock(&ubi->wl_lock); 916 if (protect) 917 prot_queue_add(ubi, e1); 918 else if (erroneous) { 919 wl_tree_add(e1, &ubi->erroneous); 920 ubi->erroneous_peb_count += 1; 921 } else if (scrubbing) 922 wl_tree_add(e1, &ubi->scrub); 923 else if (keep) 924 wl_tree_add(e1, &ubi->used); 925 if (dst_leb_clean) { 926 wl_tree_add(e2, &ubi->free); 927 ubi->free_count++; 928 } 929 930 ubi_assert(!ubi->move_to_put); 931 ubi->move_from = ubi->move_to = NULL; 932 ubi->wl_scheduled = 0; 933 spin_unlock(&ubi->wl_lock); 934 935 ubi_free_vid_buf(vidb); 936 if (dst_leb_clean) { 937 ensure_wear_leveling(ubi, 1); 938 } else { 939 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 940 if (err) 941 goto out_ro; 942 } 943 944 if (erase) { 945 err = do_sync_erase(ubi, e1, vol_id, lnum, 1); 946 if (err) 947 goto out_ro; 948 } 949 950 mutex_unlock(&ubi->move_mutex); 951 up_read(&ubi->fm_eba_sem); 952 return 0; 953 954 out_error: 955 if (vol_id != -1) 956 ubi_err(ubi, "error %d while moving PEB %d to PEB %d", 957 err, e1->pnum, e2->pnum); 958 else 959 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d", 960 err, e1->pnum, vol_id, lnum, e2->pnum); 961 spin_lock(&ubi->wl_lock); 962 ubi->move_from = ubi->move_to = NULL; 963 ubi->move_to_put = ubi->wl_scheduled = 0; 964 spin_unlock(&ubi->wl_lock); 965 966 ubi_free_vid_buf(vidb); 967 wl_entry_destroy(ubi, e1); 968 wl_entry_destroy(ubi, e2); 969 970 out_ro: 971 ubi_ro_mode(ubi); 972 mutex_unlock(&ubi->move_mutex); 973 up_read(&ubi->fm_eba_sem); 974 ubi_assert(err != 0); 975 return err < 0 ? err : -EIO; 976 977 out_cancel: 978 ubi->wl_scheduled = 0; 979 spin_unlock(&ubi->wl_lock); 980 mutex_unlock(&ubi->move_mutex); 981 up_read(&ubi->fm_eba_sem); 982 ubi_free_vid_buf(vidb); 983 return 0; 984 } 985 986 /** 987 * ensure_wear_leveling - schedule wear-leveling if it is needed. 988 * @ubi: UBI device description object 989 * @nested: set to non-zero if this function is called from UBI worker 990 * 991 * This function checks if it is time to start wear-leveling and schedules it 992 * if yes. This function returns zero in case of success and a negative error 993 * code in case of failure. 994 */ 995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 996 { 997 int err = 0; 998 struct ubi_wl_entry *e1; 999 struct ubi_wl_entry *e2; 1000 struct ubi_work *wrk; 1001 1002 spin_lock(&ubi->wl_lock); 1003 if (ubi->wl_scheduled) 1004 /* Wear-leveling is already in the work queue */ 1005 goto out_unlock; 1006 1007 /* 1008 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1009 * the WL worker has to be scheduled anyway. 1010 */ 1011 if (!ubi->scrub.rb_node) { 1012 if (!ubi->used.rb_node || !ubi->free.rb_node) 1013 /* No physical eraseblocks - no deal */ 1014 goto out_unlock; 1015 1016 /* 1017 * We schedule wear-leveling only if the difference between the 1018 * lowest erase counter of used physical eraseblocks and a high 1019 * erase counter of free physical eraseblocks is greater than 1020 * %UBI_WL_THRESHOLD. 1021 */ 1022 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1023 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1024 1025 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1026 goto out_unlock; 1027 dbg_wl("schedule wear-leveling"); 1028 } else 1029 dbg_wl("schedule scrubbing"); 1030 1031 ubi->wl_scheduled = 1; 1032 spin_unlock(&ubi->wl_lock); 1033 1034 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1035 if (!wrk) { 1036 err = -ENOMEM; 1037 goto out_cancel; 1038 } 1039 1040 wrk->anchor = 0; 1041 wrk->func = &wear_leveling_worker; 1042 if (nested) 1043 __schedule_ubi_work(ubi, wrk); 1044 else 1045 schedule_ubi_work(ubi, wrk); 1046 return err; 1047 1048 out_cancel: 1049 spin_lock(&ubi->wl_lock); 1050 ubi->wl_scheduled = 0; 1051 out_unlock: 1052 spin_unlock(&ubi->wl_lock); 1053 return err; 1054 } 1055 1056 /** 1057 * __erase_worker - physical eraseblock erase worker function. 1058 * @ubi: UBI device description object 1059 * @wl_wrk: the work object 1060 * @shutdown: non-zero if the worker has to free memory and exit 1061 * because the WL sub-system is shutting down 1062 * 1063 * This function erases a physical eraseblock and perform torture testing if 1064 * needed. It also takes care about marking the physical eraseblock bad if 1065 * needed. Returns zero in case of success and a negative error code in case of 1066 * failure. 1067 */ 1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk) 1069 { 1070 struct ubi_wl_entry *e = wl_wrk->e; 1071 int pnum = e->pnum; 1072 int vol_id = wl_wrk->vol_id; 1073 int lnum = wl_wrk->lnum; 1074 int err, available_consumed = 0; 1075 1076 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1077 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1078 1079 err = sync_erase(ubi, e, wl_wrk->torture); 1080 if (!err) { 1081 spin_lock(&ubi->wl_lock); 1082 wl_tree_add(e, &ubi->free); 1083 ubi->free_count++; 1084 spin_unlock(&ubi->wl_lock); 1085 1086 /* 1087 * One more erase operation has happened, take care about 1088 * protected physical eraseblocks. 1089 */ 1090 serve_prot_queue(ubi); 1091 1092 /* And take care about wear-leveling */ 1093 err = ensure_wear_leveling(ubi, 1); 1094 return err; 1095 } 1096 1097 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err); 1098 1099 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1100 err == -EBUSY) { 1101 int err1; 1102 1103 /* Re-schedule the LEB for erasure */ 1104 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false); 1105 if (err1) { 1106 wl_entry_destroy(ubi, e); 1107 err = err1; 1108 goto out_ro; 1109 } 1110 return err; 1111 } 1112 1113 wl_entry_destroy(ubi, e); 1114 if (err != -EIO) 1115 /* 1116 * If this is not %-EIO, we have no idea what to do. Scheduling 1117 * this physical eraseblock for erasure again would cause 1118 * errors again and again. Well, lets switch to R/O mode. 1119 */ 1120 goto out_ro; 1121 1122 /* It is %-EIO, the PEB went bad */ 1123 1124 if (!ubi->bad_allowed) { 1125 ubi_err(ubi, "bad physical eraseblock %d detected", pnum); 1126 goto out_ro; 1127 } 1128 1129 spin_lock(&ubi->volumes_lock); 1130 if (ubi->beb_rsvd_pebs == 0) { 1131 if (ubi->avail_pebs == 0) { 1132 spin_unlock(&ubi->volumes_lock); 1133 ubi_err(ubi, "no reserved/available physical eraseblocks"); 1134 goto out_ro; 1135 } 1136 ubi->avail_pebs -= 1; 1137 available_consumed = 1; 1138 } 1139 spin_unlock(&ubi->volumes_lock); 1140 1141 ubi_msg(ubi, "mark PEB %d as bad", pnum); 1142 err = ubi_io_mark_bad(ubi, pnum); 1143 if (err) 1144 goto out_ro; 1145 1146 spin_lock(&ubi->volumes_lock); 1147 if (ubi->beb_rsvd_pebs > 0) { 1148 if (available_consumed) { 1149 /* 1150 * The amount of reserved PEBs increased since we last 1151 * checked. 1152 */ 1153 ubi->avail_pebs += 1; 1154 available_consumed = 0; 1155 } 1156 ubi->beb_rsvd_pebs -= 1; 1157 } 1158 ubi->bad_peb_count += 1; 1159 ubi->good_peb_count -= 1; 1160 ubi_calculate_reserved(ubi); 1161 if (available_consumed) 1162 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB"); 1163 else if (ubi->beb_rsvd_pebs) 1164 ubi_msg(ubi, "%d PEBs left in the reserve", 1165 ubi->beb_rsvd_pebs); 1166 else 1167 ubi_warn(ubi, "last PEB from the reserve was used"); 1168 spin_unlock(&ubi->volumes_lock); 1169 1170 return err; 1171 1172 out_ro: 1173 if (available_consumed) { 1174 spin_lock(&ubi->volumes_lock); 1175 ubi->avail_pebs += 1; 1176 spin_unlock(&ubi->volumes_lock); 1177 } 1178 ubi_ro_mode(ubi); 1179 return err; 1180 } 1181 1182 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1183 int shutdown) 1184 { 1185 int ret; 1186 1187 if (shutdown) { 1188 struct ubi_wl_entry *e = wl_wrk->e; 1189 1190 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec); 1191 kfree(wl_wrk); 1192 wl_entry_destroy(ubi, e); 1193 return 0; 1194 } 1195 1196 ret = __erase_worker(ubi, wl_wrk); 1197 kfree(wl_wrk); 1198 return ret; 1199 } 1200 1201 /** 1202 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1203 * @ubi: UBI device description object 1204 * @vol_id: the volume ID that last used this PEB 1205 * @lnum: the last used logical eraseblock number for the PEB 1206 * @pnum: physical eraseblock to return 1207 * @torture: if this physical eraseblock has to be tortured 1208 * 1209 * This function is called to return physical eraseblock @pnum to the pool of 1210 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1211 * occurred to this @pnum and it has to be tested. This function returns zero 1212 * in case of success, and a negative error code in case of failure. 1213 */ 1214 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1215 int pnum, int torture) 1216 { 1217 int err; 1218 struct ubi_wl_entry *e; 1219 1220 dbg_wl("PEB %d", pnum); 1221 ubi_assert(pnum >= 0); 1222 ubi_assert(pnum < ubi->peb_count); 1223 1224 down_read(&ubi->fm_protect); 1225 1226 retry: 1227 spin_lock(&ubi->wl_lock); 1228 e = ubi->lookuptbl[pnum]; 1229 if (e == ubi->move_from) { 1230 /* 1231 * User is putting the physical eraseblock which was selected to 1232 * be moved. It will be scheduled for erasure in the 1233 * wear-leveling worker. 1234 */ 1235 dbg_wl("PEB %d is being moved, wait", pnum); 1236 spin_unlock(&ubi->wl_lock); 1237 1238 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1239 mutex_lock(&ubi->move_mutex); 1240 mutex_unlock(&ubi->move_mutex); 1241 goto retry; 1242 } else if (e == ubi->move_to) { 1243 /* 1244 * User is putting the physical eraseblock which was selected 1245 * as the target the data is moved to. It may happen if the EBA 1246 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1247 * but the WL sub-system has not put the PEB to the "used" tree 1248 * yet, but it is about to do this. So we just set a flag which 1249 * will tell the WL worker that the PEB is not needed anymore 1250 * and should be scheduled for erasure. 1251 */ 1252 dbg_wl("PEB %d is the target of data moving", pnum); 1253 ubi_assert(!ubi->move_to_put); 1254 ubi->move_to_put = 1; 1255 spin_unlock(&ubi->wl_lock); 1256 up_read(&ubi->fm_protect); 1257 return 0; 1258 } else { 1259 if (in_wl_tree(e, &ubi->used)) { 1260 self_check_in_wl_tree(ubi, e, &ubi->used); 1261 rb_erase(&e->u.rb, &ubi->used); 1262 } else if (in_wl_tree(e, &ubi->scrub)) { 1263 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1264 rb_erase(&e->u.rb, &ubi->scrub); 1265 } else if (in_wl_tree(e, &ubi->erroneous)) { 1266 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1267 rb_erase(&e->u.rb, &ubi->erroneous); 1268 ubi->erroneous_peb_count -= 1; 1269 ubi_assert(ubi->erroneous_peb_count >= 0); 1270 /* Erroneous PEBs should be tortured */ 1271 torture = 1; 1272 } else { 1273 err = prot_queue_del(ubi, e->pnum); 1274 if (err) { 1275 ubi_err(ubi, "PEB %d not found", pnum); 1276 ubi_ro_mode(ubi); 1277 spin_unlock(&ubi->wl_lock); 1278 up_read(&ubi->fm_protect); 1279 return err; 1280 } 1281 } 1282 } 1283 spin_unlock(&ubi->wl_lock); 1284 1285 err = schedule_erase(ubi, e, vol_id, lnum, torture, false); 1286 if (err) { 1287 spin_lock(&ubi->wl_lock); 1288 wl_tree_add(e, &ubi->used); 1289 spin_unlock(&ubi->wl_lock); 1290 } 1291 1292 up_read(&ubi->fm_protect); 1293 return err; 1294 } 1295 1296 /** 1297 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1298 * @ubi: UBI device description object 1299 * @pnum: the physical eraseblock to schedule 1300 * 1301 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1302 * needs scrubbing. This function schedules a physical eraseblock for 1303 * scrubbing which is done in background. This function returns zero in case of 1304 * success and a negative error code in case of failure. 1305 */ 1306 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1307 { 1308 struct ubi_wl_entry *e; 1309 1310 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum); 1311 1312 retry: 1313 spin_lock(&ubi->wl_lock); 1314 e = ubi->lookuptbl[pnum]; 1315 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1316 in_wl_tree(e, &ubi->erroneous)) { 1317 spin_unlock(&ubi->wl_lock); 1318 return 0; 1319 } 1320 1321 if (e == ubi->move_to) { 1322 /* 1323 * This physical eraseblock was used to move data to. The data 1324 * was moved but the PEB was not yet inserted to the proper 1325 * tree. We should just wait a little and let the WL worker 1326 * proceed. 1327 */ 1328 spin_unlock(&ubi->wl_lock); 1329 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1330 yield(); 1331 goto retry; 1332 } 1333 1334 if (in_wl_tree(e, &ubi->used)) { 1335 self_check_in_wl_tree(ubi, e, &ubi->used); 1336 rb_erase(&e->u.rb, &ubi->used); 1337 } else { 1338 int err; 1339 1340 err = prot_queue_del(ubi, e->pnum); 1341 if (err) { 1342 ubi_err(ubi, "PEB %d not found", pnum); 1343 ubi_ro_mode(ubi); 1344 spin_unlock(&ubi->wl_lock); 1345 return err; 1346 } 1347 } 1348 1349 wl_tree_add(e, &ubi->scrub); 1350 spin_unlock(&ubi->wl_lock); 1351 1352 /* 1353 * Technically scrubbing is the same as wear-leveling, so it is done 1354 * by the WL worker. 1355 */ 1356 return ensure_wear_leveling(ubi, 0); 1357 } 1358 1359 /** 1360 * ubi_wl_flush - flush all pending works. 1361 * @ubi: UBI device description object 1362 * @vol_id: the volume id to flush for 1363 * @lnum: the logical eraseblock number to flush for 1364 * 1365 * This function executes all pending works for a particular volume id / 1366 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1367 * acts as a wildcard for all of the corresponding volume numbers or logical 1368 * eraseblock numbers. It returns zero in case of success and a negative error 1369 * code in case of failure. 1370 */ 1371 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1372 { 1373 int err = 0; 1374 int found = 1; 1375 1376 /* 1377 * Erase while the pending works queue is not empty, but not more than 1378 * the number of currently pending works. 1379 */ 1380 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1381 vol_id, lnum, ubi->works_count); 1382 1383 while (found) { 1384 struct ubi_work *wrk, *tmp; 1385 found = 0; 1386 1387 down_read(&ubi->work_sem); 1388 spin_lock(&ubi->wl_lock); 1389 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) { 1390 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1391 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1392 list_del(&wrk->list); 1393 ubi->works_count -= 1; 1394 ubi_assert(ubi->works_count >= 0); 1395 spin_unlock(&ubi->wl_lock); 1396 1397 err = wrk->func(ubi, wrk, 0); 1398 if (err) { 1399 up_read(&ubi->work_sem); 1400 return err; 1401 } 1402 1403 spin_lock(&ubi->wl_lock); 1404 found = 1; 1405 break; 1406 } 1407 } 1408 spin_unlock(&ubi->wl_lock); 1409 up_read(&ubi->work_sem); 1410 } 1411 1412 /* 1413 * Make sure all the works which have been done in parallel are 1414 * finished. 1415 */ 1416 down_write(&ubi->work_sem); 1417 up_write(&ubi->work_sem); 1418 1419 return err; 1420 } 1421 1422 /** 1423 * tree_destroy - destroy an RB-tree. 1424 * @ubi: UBI device description object 1425 * @root: the root of the tree to destroy 1426 */ 1427 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root) 1428 { 1429 struct rb_node *rb; 1430 struct ubi_wl_entry *e; 1431 1432 rb = root->rb_node; 1433 while (rb) { 1434 if (rb->rb_left) 1435 rb = rb->rb_left; 1436 else if (rb->rb_right) 1437 rb = rb->rb_right; 1438 else { 1439 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1440 1441 rb = rb_parent(rb); 1442 if (rb) { 1443 if (rb->rb_left == &e->u.rb) 1444 rb->rb_left = NULL; 1445 else 1446 rb->rb_right = NULL; 1447 } 1448 1449 wl_entry_destroy(ubi, e); 1450 } 1451 } 1452 } 1453 1454 /** 1455 * ubi_thread - UBI background thread. 1456 * @u: the UBI device description object pointer 1457 */ 1458 int ubi_thread(void *u) 1459 { 1460 int failures = 0; 1461 struct ubi_device *ubi = u; 1462 1463 ubi_msg(ubi, "background thread \"%s\" started, PID %d", 1464 ubi->bgt_name, task_pid_nr(current)); 1465 1466 set_freezable(); 1467 for (;;) { 1468 int err; 1469 1470 if (kthread_should_stop()) 1471 break; 1472 1473 if (try_to_freeze()) 1474 continue; 1475 1476 spin_lock(&ubi->wl_lock); 1477 if (list_empty(&ubi->works) || ubi->ro_mode || 1478 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1479 set_current_state(TASK_INTERRUPTIBLE); 1480 spin_unlock(&ubi->wl_lock); 1481 schedule(); 1482 continue; 1483 } 1484 spin_unlock(&ubi->wl_lock); 1485 1486 err = do_work(ubi); 1487 if (err) { 1488 ubi_err(ubi, "%s: work failed with error code %d", 1489 ubi->bgt_name, err); 1490 if (failures++ > WL_MAX_FAILURES) { 1491 /* 1492 * Too many failures, disable the thread and 1493 * switch to read-only mode. 1494 */ 1495 ubi_msg(ubi, "%s: %d consecutive failures", 1496 ubi->bgt_name, WL_MAX_FAILURES); 1497 ubi_ro_mode(ubi); 1498 ubi->thread_enabled = 0; 1499 continue; 1500 } 1501 } else 1502 failures = 0; 1503 1504 cond_resched(); 1505 } 1506 1507 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1508 return 0; 1509 } 1510 1511 /** 1512 * shutdown_work - shutdown all pending works. 1513 * @ubi: UBI device description object 1514 */ 1515 static void shutdown_work(struct ubi_device *ubi) 1516 { 1517 #ifdef CONFIG_MTD_UBI_FASTMAP 1518 flush_work(&ubi->fm_work); 1519 #endif 1520 while (!list_empty(&ubi->works)) { 1521 struct ubi_work *wrk; 1522 1523 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1524 list_del(&wrk->list); 1525 wrk->func(ubi, wrk, 1); 1526 ubi->works_count -= 1; 1527 ubi_assert(ubi->works_count >= 0); 1528 } 1529 } 1530 1531 /** 1532 * ubi_wl_init - initialize the WL sub-system using attaching information. 1533 * @ubi: UBI device description object 1534 * @ai: attaching information 1535 * 1536 * This function returns zero in case of success, and a negative error code in 1537 * case of failure. 1538 */ 1539 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1540 { 1541 int err, i, reserved_pebs, found_pebs = 0; 1542 struct rb_node *rb1, *rb2; 1543 struct ubi_ainf_volume *av; 1544 struct ubi_ainf_peb *aeb, *tmp; 1545 struct ubi_wl_entry *e; 1546 1547 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1548 spin_lock_init(&ubi->wl_lock); 1549 mutex_init(&ubi->move_mutex); 1550 init_rwsem(&ubi->work_sem); 1551 ubi->max_ec = ai->max_ec; 1552 INIT_LIST_HEAD(&ubi->works); 1553 1554 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1555 1556 err = -ENOMEM; 1557 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1558 if (!ubi->lookuptbl) 1559 return err; 1560 1561 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1562 INIT_LIST_HEAD(&ubi->pq[i]); 1563 ubi->pq_head = 0; 1564 1565 ubi->free_count = 0; 1566 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1567 cond_resched(); 1568 1569 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1570 if (!e) 1571 goto out_free; 1572 1573 e->pnum = aeb->pnum; 1574 e->ec = aeb->ec; 1575 ubi->lookuptbl[e->pnum] = e; 1576 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) { 1577 wl_entry_destroy(ubi, e); 1578 goto out_free; 1579 } 1580 1581 found_pebs++; 1582 } 1583 1584 list_for_each_entry(aeb, &ai->free, u.list) { 1585 cond_resched(); 1586 1587 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1588 if (!e) 1589 goto out_free; 1590 1591 e->pnum = aeb->pnum; 1592 e->ec = aeb->ec; 1593 ubi_assert(e->ec >= 0); 1594 1595 wl_tree_add(e, &ubi->free); 1596 ubi->free_count++; 1597 1598 ubi->lookuptbl[e->pnum] = e; 1599 1600 found_pebs++; 1601 } 1602 1603 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1604 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1605 cond_resched(); 1606 1607 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1608 if (!e) 1609 goto out_free; 1610 1611 e->pnum = aeb->pnum; 1612 e->ec = aeb->ec; 1613 ubi->lookuptbl[e->pnum] = e; 1614 1615 if (!aeb->scrub) { 1616 dbg_wl("add PEB %d EC %d to the used tree", 1617 e->pnum, e->ec); 1618 wl_tree_add(e, &ubi->used); 1619 } else { 1620 dbg_wl("add PEB %d EC %d to the scrub tree", 1621 e->pnum, e->ec); 1622 wl_tree_add(e, &ubi->scrub); 1623 } 1624 1625 found_pebs++; 1626 } 1627 } 1628 1629 list_for_each_entry(aeb, &ai->fastmap, u.list) { 1630 cond_resched(); 1631 1632 e = ubi_find_fm_block(ubi, aeb->pnum); 1633 1634 if (e) { 1635 ubi_assert(!ubi->lookuptbl[e->pnum]); 1636 ubi->lookuptbl[e->pnum] = e; 1637 } else { 1638 /* 1639 * Usually old Fastmap PEBs are scheduled for erasure 1640 * and we don't have to care about them but if we face 1641 * an power cut before scheduling them we need to 1642 * take care of them here. 1643 */ 1644 if (ubi->lookuptbl[aeb->pnum]) 1645 continue; 1646 1647 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1648 if (!e) 1649 goto out_free; 1650 1651 e->pnum = aeb->pnum; 1652 e->ec = aeb->ec; 1653 ubi_assert(!ubi->lookuptbl[e->pnum]); 1654 ubi->lookuptbl[e->pnum] = e; 1655 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false)) { 1656 wl_entry_destroy(ubi, e); 1657 goto out_free; 1658 } 1659 } 1660 1661 found_pebs++; 1662 } 1663 1664 dbg_wl("found %i PEBs", found_pebs); 1665 1666 ubi_assert(ubi->good_peb_count == found_pebs); 1667 1668 reserved_pebs = WL_RESERVED_PEBS; 1669 ubi_fastmap_init(ubi, &reserved_pebs); 1670 1671 if (ubi->avail_pebs < reserved_pebs) { 1672 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)", 1673 ubi->avail_pebs, reserved_pebs); 1674 if (ubi->corr_peb_count) 1675 ubi_err(ubi, "%d PEBs are corrupted and not used", 1676 ubi->corr_peb_count); 1677 err = -ENOSPC; 1678 goto out_free; 1679 } 1680 ubi->avail_pebs -= reserved_pebs; 1681 ubi->rsvd_pebs += reserved_pebs; 1682 1683 /* Schedule wear-leveling if needed */ 1684 err = ensure_wear_leveling(ubi, 0); 1685 if (err) 1686 goto out_free; 1687 1688 return 0; 1689 1690 out_free: 1691 shutdown_work(ubi); 1692 tree_destroy(ubi, &ubi->used); 1693 tree_destroy(ubi, &ubi->free); 1694 tree_destroy(ubi, &ubi->scrub); 1695 kfree(ubi->lookuptbl); 1696 return err; 1697 } 1698 1699 /** 1700 * protection_queue_destroy - destroy the protection queue. 1701 * @ubi: UBI device description object 1702 */ 1703 static void protection_queue_destroy(struct ubi_device *ubi) 1704 { 1705 int i; 1706 struct ubi_wl_entry *e, *tmp; 1707 1708 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1709 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1710 list_del(&e->u.list); 1711 wl_entry_destroy(ubi, e); 1712 } 1713 } 1714 } 1715 1716 /** 1717 * ubi_wl_close - close the wear-leveling sub-system. 1718 * @ubi: UBI device description object 1719 */ 1720 void ubi_wl_close(struct ubi_device *ubi) 1721 { 1722 dbg_wl("close the WL sub-system"); 1723 ubi_fastmap_close(ubi); 1724 shutdown_work(ubi); 1725 protection_queue_destroy(ubi); 1726 tree_destroy(ubi, &ubi->used); 1727 tree_destroy(ubi, &ubi->erroneous); 1728 tree_destroy(ubi, &ubi->free); 1729 tree_destroy(ubi, &ubi->scrub); 1730 kfree(ubi->lookuptbl); 1731 } 1732 1733 /** 1734 * self_check_ec - make sure that the erase counter of a PEB is correct. 1735 * @ubi: UBI device description object 1736 * @pnum: the physical eraseblock number to check 1737 * @ec: the erase counter to check 1738 * 1739 * This function returns zero if the erase counter of physical eraseblock @pnum 1740 * is equivalent to @ec, and a negative error code if not or if an error 1741 * occurred. 1742 */ 1743 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 1744 { 1745 int err; 1746 long long read_ec; 1747 struct ubi_ec_hdr *ec_hdr; 1748 1749 if (!ubi_dbg_chk_gen(ubi)) 1750 return 0; 1751 1752 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1753 if (!ec_hdr) 1754 return -ENOMEM; 1755 1756 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1757 if (err && err != UBI_IO_BITFLIPS) { 1758 /* The header does not have to exist */ 1759 err = 0; 1760 goto out_free; 1761 } 1762 1763 read_ec = be64_to_cpu(ec_hdr->ec); 1764 if (ec != read_ec && read_ec - ec > 1) { 1765 ubi_err(ubi, "self-check failed for PEB %d", pnum); 1766 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec); 1767 dump_stack(); 1768 err = 1; 1769 } else 1770 err = 0; 1771 1772 out_free: 1773 kfree(ec_hdr); 1774 return err; 1775 } 1776 1777 /** 1778 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1779 * @ubi: UBI device description object 1780 * @e: the wear-leveling entry to check 1781 * @root: the root of the tree 1782 * 1783 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1784 * is not. 1785 */ 1786 static int self_check_in_wl_tree(const struct ubi_device *ubi, 1787 struct ubi_wl_entry *e, struct rb_root *root) 1788 { 1789 if (!ubi_dbg_chk_gen(ubi)) 1790 return 0; 1791 1792 if (in_wl_tree(e, root)) 1793 return 0; 1794 1795 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ", 1796 e->pnum, e->ec, root); 1797 dump_stack(); 1798 return -EINVAL; 1799 } 1800 1801 /** 1802 * self_check_in_pq - check if wear-leveling entry is in the protection 1803 * queue. 1804 * @ubi: UBI device description object 1805 * @e: the wear-leveling entry to check 1806 * 1807 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1808 */ 1809 static int self_check_in_pq(const struct ubi_device *ubi, 1810 struct ubi_wl_entry *e) 1811 { 1812 struct ubi_wl_entry *p; 1813 int i; 1814 1815 if (!ubi_dbg_chk_gen(ubi)) 1816 return 0; 1817 1818 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1819 list_for_each_entry(p, &ubi->pq[i], u.list) 1820 if (p == e) 1821 return 0; 1822 1823 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue", 1824 e->pnum, e->ec); 1825 dump_stack(); 1826 return -EINVAL; 1827 } 1828 #ifndef CONFIG_MTD_UBI_FASTMAP 1829 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 1830 { 1831 struct ubi_wl_entry *e; 1832 1833 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1834 self_check_in_wl_tree(ubi, e, &ubi->free); 1835 ubi->free_count--; 1836 ubi_assert(ubi->free_count >= 0); 1837 rb_erase(&e->u.rb, &ubi->free); 1838 1839 return e; 1840 } 1841 1842 /** 1843 * produce_free_peb - produce a free physical eraseblock. 1844 * @ubi: UBI device description object 1845 * 1846 * This function tries to make a free PEB by means of synchronous execution of 1847 * pending works. This may be needed if, for example the background thread is 1848 * disabled. Returns zero in case of success and a negative error code in case 1849 * of failure. 1850 */ 1851 static int produce_free_peb(struct ubi_device *ubi) 1852 { 1853 int err; 1854 1855 while (!ubi->free.rb_node && ubi->works_count) { 1856 spin_unlock(&ubi->wl_lock); 1857 1858 dbg_wl("do one work synchronously"); 1859 err = do_work(ubi); 1860 1861 spin_lock(&ubi->wl_lock); 1862 if (err) 1863 return err; 1864 } 1865 1866 return 0; 1867 } 1868 1869 /** 1870 * ubi_wl_get_peb - get a physical eraseblock. 1871 * @ubi: UBI device description object 1872 * 1873 * This function returns a physical eraseblock in case of success and a 1874 * negative error code in case of failure. 1875 * Returns with ubi->fm_eba_sem held in read mode! 1876 */ 1877 int ubi_wl_get_peb(struct ubi_device *ubi) 1878 { 1879 int err; 1880 struct ubi_wl_entry *e; 1881 1882 retry: 1883 down_read(&ubi->fm_eba_sem); 1884 spin_lock(&ubi->wl_lock); 1885 if (!ubi->free.rb_node) { 1886 if (ubi->works_count == 0) { 1887 ubi_err(ubi, "no free eraseblocks"); 1888 ubi_assert(list_empty(&ubi->works)); 1889 spin_unlock(&ubi->wl_lock); 1890 return -ENOSPC; 1891 } 1892 1893 err = produce_free_peb(ubi); 1894 if (err < 0) { 1895 spin_unlock(&ubi->wl_lock); 1896 return err; 1897 } 1898 spin_unlock(&ubi->wl_lock); 1899 up_read(&ubi->fm_eba_sem); 1900 goto retry; 1901 1902 } 1903 e = wl_get_wle(ubi); 1904 prot_queue_add(ubi, e); 1905 spin_unlock(&ubi->wl_lock); 1906 1907 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 1908 ubi->peb_size - ubi->vid_hdr_aloffset); 1909 if (err) { 1910 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum); 1911 return err; 1912 } 1913 1914 return e->pnum; 1915 } 1916 #else 1917 #include "fastmap-wl.c" 1918 #endif 1919