xref: /linux/drivers/mtd/ubi/wl.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e, *prev_e = NULL;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			prev_e = e;
338 			e = e1;
339 		}
340 	}
341 
342 	return e;
343 }
344 
345 /**
346  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
347  * @ubi: UBI device description object
348  * @root: the RB-tree where to look for
349  *
350  * This function looks for a wear leveling entry with medium erase counter,
351  * but not greater or equivalent than the lowest erase counter plus
352  * %WL_FREE_MAX_DIFF/2.
353  */
354 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
355 					       struct rb_root *root)
356 {
357 	struct ubi_wl_entry *e, *first, *last;
358 
359 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
360 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
361 
362 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
363 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
364 
365 		/* If no fastmap has been written and this WL entry can be used
366 		 * as anchor PEB, hold it back and return the second best
367 		 * WL entry such that fastmap can use the anchor PEB later. */
368 		e = may_reserve_for_fm(ubi, e, root);
369 	} else
370 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
371 
372 	return e;
373 }
374 
375 /**
376  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
377  * refill_wl_user_pool().
378  * @ubi: UBI device description object
379  *
380  * This function returns a a wear leveling entry in case of success and
381  * NULL in case of failure.
382  */
383 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
384 {
385 	struct ubi_wl_entry *e;
386 
387 	e = find_mean_wl_entry(ubi, &ubi->free);
388 	if (!e) {
389 		ubi_err(ubi, "no free eraseblocks");
390 		return NULL;
391 	}
392 
393 	self_check_in_wl_tree(ubi, e, &ubi->free);
394 
395 	/*
396 	 * Move the physical eraseblock to the protection queue where it will
397 	 * be protected from being moved for some time.
398 	 */
399 	rb_erase(&e->u.rb, &ubi->free);
400 	ubi->free_count--;
401 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
402 
403 	return e;
404 }
405 
406 /**
407  * prot_queue_del - remove a physical eraseblock from the protection queue.
408  * @ubi: UBI device description object
409  * @pnum: the physical eraseblock to remove
410  *
411  * This function deletes PEB @pnum from the protection queue and returns zero
412  * in case of success and %-ENODEV if the PEB was not found.
413  */
414 static int prot_queue_del(struct ubi_device *ubi, int pnum)
415 {
416 	struct ubi_wl_entry *e;
417 
418 	e = ubi->lookuptbl[pnum];
419 	if (!e)
420 		return -ENODEV;
421 
422 	if (self_check_in_pq(ubi, e))
423 		return -ENODEV;
424 
425 	list_del(&e->u.list);
426 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
427 	return 0;
428 }
429 
430 /**
431  * sync_erase - synchronously erase a physical eraseblock.
432  * @ubi: UBI device description object
433  * @e: the the physical eraseblock to erase
434  * @torture: if the physical eraseblock has to be tortured
435  *
436  * This function returns zero in case of success and a negative error code in
437  * case of failure.
438  */
439 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
440 		      int torture)
441 {
442 	int err;
443 	struct ubi_ec_hdr *ec_hdr;
444 	unsigned long long ec = e->ec;
445 
446 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
447 
448 	err = self_check_ec(ubi, e->pnum, e->ec);
449 	if (err)
450 		return -EINVAL;
451 
452 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
453 	if (!ec_hdr)
454 		return -ENOMEM;
455 
456 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
457 	if (err < 0)
458 		goto out_free;
459 
460 	ec += err;
461 	if (ec > UBI_MAX_ERASECOUNTER) {
462 		/*
463 		 * Erase counter overflow. Upgrade UBI and use 64-bit
464 		 * erase counters internally.
465 		 */
466 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
467 			e->pnum, ec);
468 		err = -EINVAL;
469 		goto out_free;
470 	}
471 
472 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
473 
474 	ec_hdr->ec = cpu_to_be64(ec);
475 
476 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
477 	if (err)
478 		goto out_free;
479 
480 	e->ec = ec;
481 	spin_lock(&ubi->wl_lock);
482 	if (e->ec > ubi->max_ec)
483 		ubi->max_ec = e->ec;
484 	spin_unlock(&ubi->wl_lock);
485 
486 out_free:
487 	kfree(ec_hdr);
488 	return err;
489 }
490 
491 /**
492  * serve_prot_queue - check if it is time to stop protecting PEBs.
493  * @ubi: UBI device description object
494  *
495  * This function is called after each erase operation and removes PEBs from the
496  * tail of the protection queue. These PEBs have been protected for long enough
497  * and should be moved to the used tree.
498  */
499 static void serve_prot_queue(struct ubi_device *ubi)
500 {
501 	struct ubi_wl_entry *e, *tmp;
502 	int count;
503 
504 	/*
505 	 * There may be several protected physical eraseblock to remove,
506 	 * process them all.
507 	 */
508 repeat:
509 	count = 0;
510 	spin_lock(&ubi->wl_lock);
511 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
512 		dbg_wl("PEB %d EC %d protection over, move to used tree",
513 			e->pnum, e->ec);
514 
515 		list_del(&e->u.list);
516 		wl_tree_add(e, &ubi->used);
517 		if (count++ > 32) {
518 			/*
519 			 * Let's be nice and avoid holding the spinlock for
520 			 * too long.
521 			 */
522 			spin_unlock(&ubi->wl_lock);
523 			cond_resched();
524 			goto repeat;
525 		}
526 	}
527 
528 	ubi->pq_head += 1;
529 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
530 		ubi->pq_head = 0;
531 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
532 	spin_unlock(&ubi->wl_lock);
533 }
534 
535 /**
536  * __schedule_ubi_work - schedule a work.
537  * @ubi: UBI device description object
538  * @wrk: the work to schedule
539  *
540  * This function adds a work defined by @wrk to the tail of the pending works
541  * list. Can only be used if ubi->work_sem is already held in read mode!
542  */
543 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
544 {
545 	spin_lock(&ubi->wl_lock);
546 	list_add_tail(&wrk->list, &ubi->works);
547 	ubi_assert(ubi->works_count >= 0);
548 	ubi->works_count += 1;
549 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
550 		wake_up_process(ubi->bgt_thread);
551 	spin_unlock(&ubi->wl_lock);
552 }
553 
554 /**
555  * schedule_ubi_work - schedule a work.
556  * @ubi: UBI device description object
557  * @wrk: the work to schedule
558  *
559  * This function adds a work defined by @wrk to the tail of the pending works
560  * list.
561  */
562 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
563 {
564 	down_read(&ubi->work_sem);
565 	__schedule_ubi_work(ubi, wrk);
566 	up_read(&ubi->work_sem);
567 }
568 
569 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
570 			int shutdown);
571 
572 /**
573  * schedule_erase - schedule an erase work.
574  * @ubi: UBI device description object
575  * @e: the WL entry of the physical eraseblock to erase
576  * @vol_id: the volume ID that last used this PEB
577  * @lnum: the last used logical eraseblock number for the PEB
578  * @torture: if the physical eraseblock has to be tortured
579  *
580  * This function returns zero in case of success and a %-ENOMEM in case of
581  * failure.
582  */
583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 			  int vol_id, int lnum, int torture, bool nested)
585 {
586 	struct ubi_work *wl_wrk;
587 
588 	ubi_assert(e);
589 
590 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 	       e->pnum, e->ec, torture);
592 
593 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 	if (!wl_wrk)
595 		return -ENOMEM;
596 
597 	wl_wrk->func = &erase_worker;
598 	wl_wrk->e = e;
599 	wl_wrk->vol_id = vol_id;
600 	wl_wrk->lnum = lnum;
601 	wl_wrk->torture = torture;
602 
603 	if (nested)
604 		__schedule_ubi_work(ubi, wl_wrk);
605 	else
606 		schedule_ubi_work(ubi, wl_wrk);
607 	return 0;
608 }
609 
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612  * do_sync_erase - run the erase worker synchronously.
613  * @ubi: UBI device description object
614  * @e: the WL entry of the physical eraseblock to erase
615  * @vol_id: the volume ID that last used this PEB
616  * @lnum: the last used logical eraseblock number for the PEB
617  * @torture: if the physical eraseblock has to be tortured
618  *
619  */
620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 			 int vol_id, int lnum, int torture)
622 {
623 	struct ubi_work wl_wrk;
624 
625 	dbg_wl("sync erase of PEB %i", e->pnum);
626 
627 	wl_wrk.e = e;
628 	wl_wrk.vol_id = vol_id;
629 	wl_wrk.lnum = lnum;
630 	wl_wrk.torture = torture;
631 
632 	return __erase_worker(ubi, &wl_wrk);
633 }
634 
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637  * wear_leveling_worker - wear-leveling worker function.
638  * @ubi: UBI device description object
639  * @wrk: the work object
640  * @shutdown: non-zero if the worker has to free memory and exit
641  * because the WL-subsystem is shutting down
642  *
643  * This function copies a more worn out physical eraseblock to a less worn out
644  * one. Returns zero in case of success and a negative error code in case of
645  * failure.
646  */
647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 				int shutdown)
649 {
650 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 	struct ubi_wl_entry *e1, *e2;
653 	struct ubi_vid_io_buf *vidb;
654 	struct ubi_vid_hdr *vid_hdr;
655 	int dst_leb_clean = 0;
656 
657 	kfree(wrk);
658 	if (shutdown)
659 		return 0;
660 
661 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 	if (!vidb)
663 		return -ENOMEM;
664 
665 	vid_hdr = ubi_get_vid_hdr(vidb);
666 
667 	down_read(&ubi->fm_eba_sem);
668 	mutex_lock(&ubi->move_mutex);
669 	spin_lock(&ubi->wl_lock);
670 	ubi_assert(!ubi->move_from && !ubi->move_to);
671 	ubi_assert(!ubi->move_to_put);
672 
673 	if (!ubi->free.rb_node ||
674 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 		/*
676 		 * No free physical eraseblocks? Well, they must be waiting in
677 		 * the queue to be erased. Cancel movement - it will be
678 		 * triggered again when a free physical eraseblock appears.
679 		 *
680 		 * No used physical eraseblocks? They must be temporarily
681 		 * protected from being moved. They will be moved to the
682 		 * @ubi->used tree later and the wear-leveling will be
683 		 * triggered again.
684 		 */
685 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 		       !ubi->free.rb_node, !ubi->used.rb_node);
687 		goto out_cancel;
688 	}
689 
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 	if (ubi->fm_do_produce_anchor) {
692 		e1 = find_anchor_wl_entry(&ubi->used);
693 		if (!e1)
694 			goto out_cancel;
695 		e2 = get_peb_for_wl(ubi);
696 		if (!e2)
697 			goto out_cancel;
698 
699 		/*
700 		 * Anchor move within the anchor area is useless.
701 		 */
702 		if (e2->pnum < UBI_FM_MAX_START)
703 			goto out_cancel;
704 
705 		self_check_in_wl_tree(ubi, e1, &ubi->used);
706 		rb_erase(&e1->u.rb, &ubi->used);
707 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
708 		ubi->fm_do_produce_anchor = 0;
709 	} else if (!ubi->scrub.rb_node) {
710 #else
711 	if (!ubi->scrub.rb_node) {
712 #endif
713 		/*
714 		 * Now pick the least worn-out used physical eraseblock and a
715 		 * highly worn-out free physical eraseblock. If the erase
716 		 * counters differ much enough, start wear-leveling.
717 		 */
718 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
719 		e2 = get_peb_for_wl(ubi);
720 		if (!e2)
721 			goto out_cancel;
722 
723 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
724 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
725 			       e1->ec, e2->ec);
726 
727 			/* Give the unused PEB back */
728 			wl_tree_add(e2, &ubi->free);
729 			ubi->free_count++;
730 			goto out_cancel;
731 		}
732 		self_check_in_wl_tree(ubi, e1, &ubi->used);
733 		rb_erase(&e1->u.rb, &ubi->used);
734 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
735 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
736 	} else {
737 		/* Perform scrubbing */
738 		scrubbing = 1;
739 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
740 		e2 = get_peb_for_wl(ubi);
741 		if (!e2)
742 			goto out_cancel;
743 
744 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
745 		rb_erase(&e1->u.rb, &ubi->scrub);
746 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
747 	}
748 
749 	ubi->move_from = e1;
750 	ubi->move_to = e2;
751 	spin_unlock(&ubi->wl_lock);
752 
753 	/*
754 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
755 	 * We so far do not know which logical eraseblock our physical
756 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
757 	 * header first.
758 	 *
759 	 * Note, we are protected from this PEB being unmapped and erased. The
760 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
761 	 * which is being moved was unmapped.
762 	 */
763 
764 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
765 	if (err && err != UBI_IO_BITFLIPS) {
766 		dst_leb_clean = 1;
767 		if (err == UBI_IO_FF) {
768 			/*
769 			 * We are trying to move PEB without a VID header. UBI
770 			 * always write VID headers shortly after the PEB was
771 			 * given, so we have a situation when it has not yet
772 			 * had a chance to write it, because it was preempted.
773 			 * So add this PEB to the protection queue so far,
774 			 * because presumably more data will be written there
775 			 * (including the missing VID header), and then we'll
776 			 * move it.
777 			 */
778 			dbg_wl("PEB %d has no VID header", e1->pnum);
779 			protect = 1;
780 			goto out_not_moved;
781 		} else if (err == UBI_IO_FF_BITFLIPS) {
782 			/*
783 			 * The same situation as %UBI_IO_FF, but bit-flips were
784 			 * detected. It is better to schedule this PEB for
785 			 * scrubbing.
786 			 */
787 			dbg_wl("PEB %d has no VID header but has bit-flips",
788 			       e1->pnum);
789 			scrubbing = 1;
790 			goto out_not_moved;
791 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
792 			/*
793 			 * While a full scan would detect interrupted erasures
794 			 * at attach time we can face them here when attached from
795 			 * Fastmap.
796 			 */
797 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
798 			       e1->pnum);
799 			erase = 1;
800 			goto out_not_moved;
801 		}
802 
803 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
804 			err, e1->pnum);
805 		goto out_error;
806 	}
807 
808 	vol_id = be32_to_cpu(vid_hdr->vol_id);
809 	lnum = be32_to_cpu(vid_hdr->lnum);
810 
811 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
812 	if (err) {
813 		if (err == MOVE_CANCEL_RACE) {
814 			/*
815 			 * The LEB has not been moved because the volume is
816 			 * being deleted or the PEB has been put meanwhile. We
817 			 * should prevent this PEB from being selected for
818 			 * wear-leveling movement again, so put it to the
819 			 * protection queue.
820 			 */
821 			protect = 1;
822 			dst_leb_clean = 1;
823 			goto out_not_moved;
824 		}
825 		if (err == MOVE_RETRY) {
826 			scrubbing = 1;
827 			dst_leb_clean = 1;
828 			goto out_not_moved;
829 		}
830 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
831 		    err == MOVE_TARGET_RD_ERR) {
832 			/*
833 			 * Target PEB had bit-flips or write error - torture it.
834 			 */
835 			torture = 1;
836 			keep = 1;
837 			goto out_not_moved;
838 		}
839 
840 		if (err == MOVE_SOURCE_RD_ERR) {
841 			/*
842 			 * An error happened while reading the source PEB. Do
843 			 * not switch to R/O mode in this case, and give the
844 			 * upper layers a possibility to recover from this,
845 			 * e.g. by unmapping corresponding LEB. Instead, just
846 			 * put this PEB to the @ubi->erroneous list to prevent
847 			 * UBI from trying to move it over and over again.
848 			 */
849 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
850 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
851 					ubi->erroneous_peb_count);
852 				goto out_error;
853 			}
854 			dst_leb_clean = 1;
855 			erroneous = 1;
856 			goto out_not_moved;
857 		}
858 
859 		if (err < 0)
860 			goto out_error;
861 
862 		ubi_assert(0);
863 	}
864 
865 	/* The PEB has been successfully moved */
866 	if (scrubbing)
867 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
868 			e1->pnum, vol_id, lnum, e2->pnum);
869 	ubi_free_vid_buf(vidb);
870 
871 	spin_lock(&ubi->wl_lock);
872 	if (!ubi->move_to_put) {
873 		wl_tree_add(e2, &ubi->used);
874 		e2 = NULL;
875 	}
876 	ubi->move_from = ubi->move_to = NULL;
877 	ubi->move_to_put = ubi->wl_scheduled = 0;
878 	spin_unlock(&ubi->wl_lock);
879 
880 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
881 	if (err) {
882 		if (e2)
883 			wl_entry_destroy(ubi, e2);
884 		goto out_ro;
885 	}
886 
887 	if (e2) {
888 		/*
889 		 * Well, the target PEB was put meanwhile, schedule it for
890 		 * erasure.
891 		 */
892 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
893 		       e2->pnum, vol_id, lnum);
894 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
895 		if (err)
896 			goto out_ro;
897 	}
898 
899 	dbg_wl("done");
900 	mutex_unlock(&ubi->move_mutex);
901 	up_read(&ubi->fm_eba_sem);
902 	return 0;
903 
904 	/*
905 	 * For some reasons the LEB was not moved, might be an error, might be
906 	 * something else. @e1 was not changed, so return it back. @e2 might
907 	 * have been changed, schedule it for erasure.
908 	 */
909 out_not_moved:
910 	if (vol_id != -1)
911 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
912 		       e1->pnum, vol_id, lnum, e2->pnum, err);
913 	else
914 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
915 		       e1->pnum, e2->pnum, err);
916 	spin_lock(&ubi->wl_lock);
917 	if (protect)
918 		prot_queue_add(ubi, e1);
919 	else if (erroneous) {
920 		wl_tree_add(e1, &ubi->erroneous);
921 		ubi->erroneous_peb_count += 1;
922 	} else if (scrubbing)
923 		wl_tree_add(e1, &ubi->scrub);
924 	else if (keep)
925 		wl_tree_add(e1, &ubi->used);
926 	if (dst_leb_clean) {
927 		wl_tree_add(e2, &ubi->free);
928 		ubi->free_count++;
929 	}
930 
931 	ubi_assert(!ubi->move_to_put);
932 	ubi->move_from = ubi->move_to = NULL;
933 	ubi->wl_scheduled = 0;
934 	spin_unlock(&ubi->wl_lock);
935 
936 	ubi_free_vid_buf(vidb);
937 	if (dst_leb_clean) {
938 		ensure_wear_leveling(ubi, 1);
939 	} else {
940 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
941 		if (err)
942 			goto out_ro;
943 	}
944 
945 	if (erase) {
946 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
947 		if (err)
948 			goto out_ro;
949 	}
950 
951 	mutex_unlock(&ubi->move_mutex);
952 	up_read(&ubi->fm_eba_sem);
953 	return 0;
954 
955 out_error:
956 	if (vol_id != -1)
957 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
958 			err, e1->pnum, e2->pnum);
959 	else
960 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
961 			err, e1->pnum, vol_id, lnum, e2->pnum);
962 	spin_lock(&ubi->wl_lock);
963 	ubi->move_from = ubi->move_to = NULL;
964 	ubi->move_to_put = ubi->wl_scheduled = 0;
965 	spin_unlock(&ubi->wl_lock);
966 
967 	ubi_free_vid_buf(vidb);
968 	wl_entry_destroy(ubi, e1);
969 	wl_entry_destroy(ubi, e2);
970 
971 out_ro:
972 	ubi_ro_mode(ubi);
973 	mutex_unlock(&ubi->move_mutex);
974 	up_read(&ubi->fm_eba_sem);
975 	ubi_assert(err != 0);
976 	return err < 0 ? err : -EIO;
977 
978 out_cancel:
979 	ubi->wl_scheduled = 0;
980 	spin_unlock(&ubi->wl_lock);
981 	mutex_unlock(&ubi->move_mutex);
982 	up_read(&ubi->fm_eba_sem);
983 	ubi_free_vid_buf(vidb);
984 	return 0;
985 }
986 
987 /**
988  * ensure_wear_leveling - schedule wear-leveling if it is needed.
989  * @ubi: UBI device description object
990  * @nested: set to non-zero if this function is called from UBI worker
991  *
992  * This function checks if it is time to start wear-leveling and schedules it
993  * if yes. This function returns zero in case of success and a negative error
994  * code in case of failure.
995  */
996 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
997 {
998 	int err = 0;
999 	struct ubi_wl_entry *e1;
1000 	struct ubi_wl_entry *e2;
1001 	struct ubi_work *wrk;
1002 
1003 	spin_lock(&ubi->wl_lock);
1004 	if (ubi->wl_scheduled)
1005 		/* Wear-leveling is already in the work queue */
1006 		goto out_unlock;
1007 
1008 	/*
1009 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1010 	 * the WL worker has to be scheduled anyway.
1011 	 */
1012 	if (!ubi->scrub.rb_node) {
1013 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1014 			/* No physical eraseblocks - no deal */
1015 			goto out_unlock;
1016 
1017 		/*
1018 		 * We schedule wear-leveling only if the difference between the
1019 		 * lowest erase counter of used physical eraseblocks and a high
1020 		 * erase counter of free physical eraseblocks is greater than
1021 		 * %UBI_WL_THRESHOLD.
1022 		 */
1023 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1024 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1025 
1026 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1027 			goto out_unlock;
1028 		dbg_wl("schedule wear-leveling");
1029 	} else
1030 		dbg_wl("schedule scrubbing");
1031 
1032 	ubi->wl_scheduled = 1;
1033 	spin_unlock(&ubi->wl_lock);
1034 
1035 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1036 	if (!wrk) {
1037 		err = -ENOMEM;
1038 		goto out_cancel;
1039 	}
1040 
1041 	wrk->func = &wear_leveling_worker;
1042 	if (nested)
1043 		__schedule_ubi_work(ubi, wrk);
1044 	else
1045 		schedule_ubi_work(ubi, wrk);
1046 	return err;
1047 
1048 out_cancel:
1049 	spin_lock(&ubi->wl_lock);
1050 	ubi->wl_scheduled = 0;
1051 out_unlock:
1052 	spin_unlock(&ubi->wl_lock);
1053 	return err;
1054 }
1055 
1056 /**
1057  * __erase_worker - physical eraseblock erase worker function.
1058  * @ubi: UBI device description object
1059  * @wl_wrk: the work object
1060  * @shutdown: non-zero if the worker has to free memory and exit
1061  * because the WL sub-system is shutting down
1062  *
1063  * This function erases a physical eraseblock and perform torture testing if
1064  * needed. It also takes care about marking the physical eraseblock bad if
1065  * needed. Returns zero in case of success and a negative error code in case of
1066  * failure.
1067  */
1068 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1069 {
1070 	struct ubi_wl_entry *e = wl_wrk->e;
1071 	int pnum = e->pnum;
1072 	int vol_id = wl_wrk->vol_id;
1073 	int lnum = wl_wrk->lnum;
1074 	int err, available_consumed = 0;
1075 
1076 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1077 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1078 
1079 	err = sync_erase(ubi, e, wl_wrk->torture);
1080 	if (!err) {
1081 		spin_lock(&ubi->wl_lock);
1082 
1083 		if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1084 			ubi->fm_anchor = e;
1085 			ubi->fm_do_produce_anchor = 0;
1086 		} else {
1087 			wl_tree_add(e, &ubi->free);
1088 			ubi->free_count++;
1089 		}
1090 
1091 		spin_unlock(&ubi->wl_lock);
1092 
1093 		/*
1094 		 * One more erase operation has happened, take care about
1095 		 * protected physical eraseblocks.
1096 		 */
1097 		serve_prot_queue(ubi);
1098 
1099 		/* And take care about wear-leveling */
1100 		err = ensure_wear_leveling(ubi, 1);
1101 		return err;
1102 	}
1103 
1104 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1105 
1106 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1107 	    err == -EBUSY) {
1108 		int err1;
1109 
1110 		/* Re-schedule the LEB for erasure */
1111 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1112 		if (err1) {
1113 			wl_entry_destroy(ubi, e);
1114 			err = err1;
1115 			goto out_ro;
1116 		}
1117 		return err;
1118 	}
1119 
1120 	wl_entry_destroy(ubi, e);
1121 	if (err != -EIO)
1122 		/*
1123 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1124 		 * this physical eraseblock for erasure again would cause
1125 		 * errors again and again. Well, lets switch to R/O mode.
1126 		 */
1127 		goto out_ro;
1128 
1129 	/* It is %-EIO, the PEB went bad */
1130 
1131 	if (!ubi->bad_allowed) {
1132 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1133 		goto out_ro;
1134 	}
1135 
1136 	spin_lock(&ubi->volumes_lock);
1137 	if (ubi->beb_rsvd_pebs == 0) {
1138 		if (ubi->avail_pebs == 0) {
1139 			spin_unlock(&ubi->volumes_lock);
1140 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1141 			goto out_ro;
1142 		}
1143 		ubi->avail_pebs -= 1;
1144 		available_consumed = 1;
1145 	}
1146 	spin_unlock(&ubi->volumes_lock);
1147 
1148 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1149 	err = ubi_io_mark_bad(ubi, pnum);
1150 	if (err)
1151 		goto out_ro;
1152 
1153 	spin_lock(&ubi->volumes_lock);
1154 	if (ubi->beb_rsvd_pebs > 0) {
1155 		if (available_consumed) {
1156 			/*
1157 			 * The amount of reserved PEBs increased since we last
1158 			 * checked.
1159 			 */
1160 			ubi->avail_pebs += 1;
1161 			available_consumed = 0;
1162 		}
1163 		ubi->beb_rsvd_pebs -= 1;
1164 	}
1165 	ubi->bad_peb_count += 1;
1166 	ubi->good_peb_count -= 1;
1167 	ubi_calculate_reserved(ubi);
1168 	if (available_consumed)
1169 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1170 	else if (ubi->beb_rsvd_pebs)
1171 		ubi_msg(ubi, "%d PEBs left in the reserve",
1172 			ubi->beb_rsvd_pebs);
1173 	else
1174 		ubi_warn(ubi, "last PEB from the reserve was used");
1175 	spin_unlock(&ubi->volumes_lock);
1176 
1177 	return err;
1178 
1179 out_ro:
1180 	if (available_consumed) {
1181 		spin_lock(&ubi->volumes_lock);
1182 		ubi->avail_pebs += 1;
1183 		spin_unlock(&ubi->volumes_lock);
1184 	}
1185 	ubi_ro_mode(ubi);
1186 	return err;
1187 }
1188 
1189 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1190 			  int shutdown)
1191 {
1192 	int ret;
1193 
1194 	if (shutdown) {
1195 		struct ubi_wl_entry *e = wl_wrk->e;
1196 
1197 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1198 		kfree(wl_wrk);
1199 		wl_entry_destroy(ubi, e);
1200 		return 0;
1201 	}
1202 
1203 	ret = __erase_worker(ubi, wl_wrk);
1204 	kfree(wl_wrk);
1205 	return ret;
1206 }
1207 
1208 /**
1209  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1210  * @ubi: UBI device description object
1211  * @vol_id: the volume ID that last used this PEB
1212  * @lnum: the last used logical eraseblock number for the PEB
1213  * @pnum: physical eraseblock to return
1214  * @torture: if this physical eraseblock has to be tortured
1215  *
1216  * This function is called to return physical eraseblock @pnum to the pool of
1217  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1218  * occurred to this @pnum and it has to be tested. This function returns zero
1219  * in case of success, and a negative error code in case of failure.
1220  */
1221 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1222 		   int pnum, int torture)
1223 {
1224 	int err;
1225 	struct ubi_wl_entry *e;
1226 
1227 	dbg_wl("PEB %d", pnum);
1228 	ubi_assert(pnum >= 0);
1229 	ubi_assert(pnum < ubi->peb_count);
1230 
1231 	down_read(&ubi->fm_protect);
1232 
1233 retry:
1234 	spin_lock(&ubi->wl_lock);
1235 	e = ubi->lookuptbl[pnum];
1236 	if (e == ubi->move_from) {
1237 		/*
1238 		 * User is putting the physical eraseblock which was selected to
1239 		 * be moved. It will be scheduled for erasure in the
1240 		 * wear-leveling worker.
1241 		 */
1242 		dbg_wl("PEB %d is being moved, wait", pnum);
1243 		spin_unlock(&ubi->wl_lock);
1244 
1245 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1246 		mutex_lock(&ubi->move_mutex);
1247 		mutex_unlock(&ubi->move_mutex);
1248 		goto retry;
1249 	} else if (e == ubi->move_to) {
1250 		/*
1251 		 * User is putting the physical eraseblock which was selected
1252 		 * as the target the data is moved to. It may happen if the EBA
1253 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1254 		 * but the WL sub-system has not put the PEB to the "used" tree
1255 		 * yet, but it is about to do this. So we just set a flag which
1256 		 * will tell the WL worker that the PEB is not needed anymore
1257 		 * and should be scheduled for erasure.
1258 		 */
1259 		dbg_wl("PEB %d is the target of data moving", pnum);
1260 		ubi_assert(!ubi->move_to_put);
1261 		ubi->move_to_put = 1;
1262 		spin_unlock(&ubi->wl_lock);
1263 		up_read(&ubi->fm_protect);
1264 		return 0;
1265 	} else {
1266 		if (in_wl_tree(e, &ubi->used)) {
1267 			self_check_in_wl_tree(ubi, e, &ubi->used);
1268 			rb_erase(&e->u.rb, &ubi->used);
1269 		} else if (in_wl_tree(e, &ubi->scrub)) {
1270 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1271 			rb_erase(&e->u.rb, &ubi->scrub);
1272 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1273 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1274 			rb_erase(&e->u.rb, &ubi->erroneous);
1275 			ubi->erroneous_peb_count -= 1;
1276 			ubi_assert(ubi->erroneous_peb_count >= 0);
1277 			/* Erroneous PEBs should be tortured */
1278 			torture = 1;
1279 		} else {
1280 			err = prot_queue_del(ubi, e->pnum);
1281 			if (err) {
1282 				ubi_err(ubi, "PEB %d not found", pnum);
1283 				ubi_ro_mode(ubi);
1284 				spin_unlock(&ubi->wl_lock);
1285 				up_read(&ubi->fm_protect);
1286 				return err;
1287 			}
1288 		}
1289 	}
1290 	spin_unlock(&ubi->wl_lock);
1291 
1292 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1293 	if (err) {
1294 		spin_lock(&ubi->wl_lock);
1295 		wl_tree_add(e, &ubi->used);
1296 		spin_unlock(&ubi->wl_lock);
1297 	}
1298 
1299 	up_read(&ubi->fm_protect);
1300 	return err;
1301 }
1302 
1303 /**
1304  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1305  * @ubi: UBI device description object
1306  * @pnum: the physical eraseblock to schedule
1307  *
1308  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1309  * needs scrubbing. This function schedules a physical eraseblock for
1310  * scrubbing which is done in background. This function returns zero in case of
1311  * success and a negative error code in case of failure.
1312  */
1313 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1314 {
1315 	struct ubi_wl_entry *e;
1316 
1317 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1318 
1319 retry:
1320 	spin_lock(&ubi->wl_lock);
1321 	e = ubi->lookuptbl[pnum];
1322 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1323 				   in_wl_tree(e, &ubi->erroneous)) {
1324 		spin_unlock(&ubi->wl_lock);
1325 		return 0;
1326 	}
1327 
1328 	if (e == ubi->move_to) {
1329 		/*
1330 		 * This physical eraseblock was used to move data to. The data
1331 		 * was moved but the PEB was not yet inserted to the proper
1332 		 * tree. We should just wait a little and let the WL worker
1333 		 * proceed.
1334 		 */
1335 		spin_unlock(&ubi->wl_lock);
1336 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1337 		yield();
1338 		goto retry;
1339 	}
1340 
1341 	if (in_wl_tree(e, &ubi->used)) {
1342 		self_check_in_wl_tree(ubi, e, &ubi->used);
1343 		rb_erase(&e->u.rb, &ubi->used);
1344 	} else {
1345 		int err;
1346 
1347 		err = prot_queue_del(ubi, e->pnum);
1348 		if (err) {
1349 			ubi_err(ubi, "PEB %d not found", pnum);
1350 			ubi_ro_mode(ubi);
1351 			spin_unlock(&ubi->wl_lock);
1352 			return err;
1353 		}
1354 	}
1355 
1356 	wl_tree_add(e, &ubi->scrub);
1357 	spin_unlock(&ubi->wl_lock);
1358 
1359 	/*
1360 	 * Technically scrubbing is the same as wear-leveling, so it is done
1361 	 * by the WL worker.
1362 	 */
1363 	return ensure_wear_leveling(ubi, 0);
1364 }
1365 
1366 /**
1367  * ubi_wl_flush - flush all pending works.
1368  * @ubi: UBI device description object
1369  * @vol_id: the volume id to flush for
1370  * @lnum: the logical eraseblock number to flush for
1371  *
1372  * This function executes all pending works for a particular volume id /
1373  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1374  * acts as a wildcard for all of the corresponding volume numbers or logical
1375  * eraseblock numbers. It returns zero in case of success and a negative error
1376  * code in case of failure.
1377  */
1378 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1379 {
1380 	int err = 0;
1381 	int found = 1;
1382 
1383 	/*
1384 	 * Erase while the pending works queue is not empty, but not more than
1385 	 * the number of currently pending works.
1386 	 */
1387 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1388 	       vol_id, lnum, ubi->works_count);
1389 
1390 	while (found) {
1391 		struct ubi_work *wrk, *tmp;
1392 		found = 0;
1393 
1394 		down_read(&ubi->work_sem);
1395 		spin_lock(&ubi->wl_lock);
1396 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1397 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1398 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1399 				list_del(&wrk->list);
1400 				ubi->works_count -= 1;
1401 				ubi_assert(ubi->works_count >= 0);
1402 				spin_unlock(&ubi->wl_lock);
1403 
1404 				err = wrk->func(ubi, wrk, 0);
1405 				if (err) {
1406 					up_read(&ubi->work_sem);
1407 					return err;
1408 				}
1409 
1410 				spin_lock(&ubi->wl_lock);
1411 				found = 1;
1412 				break;
1413 			}
1414 		}
1415 		spin_unlock(&ubi->wl_lock);
1416 		up_read(&ubi->work_sem);
1417 	}
1418 
1419 	/*
1420 	 * Make sure all the works which have been done in parallel are
1421 	 * finished.
1422 	 */
1423 	down_write(&ubi->work_sem);
1424 	up_write(&ubi->work_sem);
1425 
1426 	return err;
1427 }
1428 
1429 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1430 {
1431 	if (in_wl_tree(e, &ubi->scrub))
1432 		return false;
1433 	else if (in_wl_tree(e, &ubi->erroneous))
1434 		return false;
1435 	else if (ubi->move_from == e)
1436 		return false;
1437 	else if (ubi->move_to == e)
1438 		return false;
1439 
1440 	return true;
1441 }
1442 
1443 /**
1444  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1445  * @ubi: UBI device description object
1446  * @pnum: the physical eraseblock to schedule
1447  * @force: dont't read the block, assume bitflips happened and take action.
1448  *
1449  * This function reads the given eraseblock and checks if bitflips occured.
1450  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1451  * If scrubbing is forced with @force, the eraseblock is not read,
1452  * but scheduled for scrubbing right away.
1453  *
1454  * Returns:
1455  * %EINVAL, PEB is out of range
1456  * %ENOENT, PEB is no longer used by UBI
1457  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1458  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1459  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1460  * %0, no bit flips detected
1461  */
1462 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1463 {
1464 	int err = 0;
1465 	struct ubi_wl_entry *e;
1466 
1467 	if (pnum < 0 || pnum >= ubi->peb_count) {
1468 		err = -EINVAL;
1469 		goto out;
1470 	}
1471 
1472 	/*
1473 	 * Pause all parallel work, otherwise it can happen that the
1474 	 * erase worker frees a wl entry under us.
1475 	 */
1476 	down_write(&ubi->work_sem);
1477 
1478 	/*
1479 	 * Make sure that the wl entry does not change state while
1480 	 * inspecting it.
1481 	 */
1482 	spin_lock(&ubi->wl_lock);
1483 	e = ubi->lookuptbl[pnum];
1484 	if (!e) {
1485 		spin_unlock(&ubi->wl_lock);
1486 		err = -ENOENT;
1487 		goto out_resume;
1488 	}
1489 
1490 	/*
1491 	 * Does it make sense to check this PEB?
1492 	 */
1493 	if (!scrub_possible(ubi, e)) {
1494 		spin_unlock(&ubi->wl_lock);
1495 		err = -EBUSY;
1496 		goto out_resume;
1497 	}
1498 	spin_unlock(&ubi->wl_lock);
1499 
1500 	if (!force) {
1501 		mutex_lock(&ubi->buf_mutex);
1502 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1503 		mutex_unlock(&ubi->buf_mutex);
1504 	}
1505 
1506 	if (force || err == UBI_IO_BITFLIPS) {
1507 		/*
1508 		 * Okay, bit flip happened, let's figure out what we can do.
1509 		 */
1510 		spin_lock(&ubi->wl_lock);
1511 
1512 		/*
1513 		 * Recheck. We released wl_lock, UBI might have killed the
1514 		 * wl entry under us.
1515 		 */
1516 		e = ubi->lookuptbl[pnum];
1517 		if (!e) {
1518 			spin_unlock(&ubi->wl_lock);
1519 			err = -ENOENT;
1520 			goto out_resume;
1521 		}
1522 
1523 		/*
1524 		 * Need to re-check state
1525 		 */
1526 		if (!scrub_possible(ubi, e)) {
1527 			spin_unlock(&ubi->wl_lock);
1528 			err = -EBUSY;
1529 			goto out_resume;
1530 		}
1531 
1532 		if (in_pq(ubi, e)) {
1533 			prot_queue_del(ubi, e->pnum);
1534 			wl_tree_add(e, &ubi->scrub);
1535 			spin_unlock(&ubi->wl_lock);
1536 
1537 			err = ensure_wear_leveling(ubi, 1);
1538 		} else if (in_wl_tree(e, &ubi->used)) {
1539 			rb_erase(&e->u.rb, &ubi->used);
1540 			wl_tree_add(e, &ubi->scrub);
1541 			spin_unlock(&ubi->wl_lock);
1542 
1543 			err = ensure_wear_leveling(ubi, 1);
1544 		} else if (in_wl_tree(e, &ubi->free)) {
1545 			rb_erase(&e->u.rb, &ubi->free);
1546 			ubi->free_count--;
1547 			spin_unlock(&ubi->wl_lock);
1548 
1549 			/*
1550 			 * This PEB is empty we can schedule it for
1551 			 * erasure right away. No wear leveling needed.
1552 			 */
1553 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1554 					     force ? 0 : 1, true);
1555 		} else {
1556 			spin_unlock(&ubi->wl_lock);
1557 			err = -EAGAIN;
1558 		}
1559 
1560 		if (!err && !force)
1561 			err = -EUCLEAN;
1562 	} else {
1563 		err = 0;
1564 	}
1565 
1566 out_resume:
1567 	up_write(&ubi->work_sem);
1568 out:
1569 
1570 	return err;
1571 }
1572 
1573 /**
1574  * tree_destroy - destroy an RB-tree.
1575  * @ubi: UBI device description object
1576  * @root: the root of the tree to destroy
1577  */
1578 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1579 {
1580 	struct rb_node *rb;
1581 	struct ubi_wl_entry *e;
1582 
1583 	rb = root->rb_node;
1584 	while (rb) {
1585 		if (rb->rb_left)
1586 			rb = rb->rb_left;
1587 		else if (rb->rb_right)
1588 			rb = rb->rb_right;
1589 		else {
1590 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1591 
1592 			rb = rb_parent(rb);
1593 			if (rb) {
1594 				if (rb->rb_left == &e->u.rb)
1595 					rb->rb_left = NULL;
1596 				else
1597 					rb->rb_right = NULL;
1598 			}
1599 
1600 			wl_entry_destroy(ubi, e);
1601 		}
1602 	}
1603 }
1604 
1605 /**
1606  * ubi_thread - UBI background thread.
1607  * @u: the UBI device description object pointer
1608  */
1609 int ubi_thread(void *u)
1610 {
1611 	int failures = 0;
1612 	struct ubi_device *ubi = u;
1613 
1614 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1615 		ubi->bgt_name, task_pid_nr(current));
1616 
1617 	set_freezable();
1618 	for (;;) {
1619 		int err;
1620 
1621 		if (kthread_should_stop())
1622 			break;
1623 
1624 		if (try_to_freeze())
1625 			continue;
1626 
1627 		spin_lock(&ubi->wl_lock);
1628 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1629 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1630 			set_current_state(TASK_INTERRUPTIBLE);
1631 			spin_unlock(&ubi->wl_lock);
1632 			schedule();
1633 			continue;
1634 		}
1635 		spin_unlock(&ubi->wl_lock);
1636 
1637 		err = do_work(ubi);
1638 		if (err) {
1639 			ubi_err(ubi, "%s: work failed with error code %d",
1640 				ubi->bgt_name, err);
1641 			if (failures++ > WL_MAX_FAILURES) {
1642 				/*
1643 				 * Too many failures, disable the thread and
1644 				 * switch to read-only mode.
1645 				 */
1646 				ubi_msg(ubi, "%s: %d consecutive failures",
1647 					ubi->bgt_name, WL_MAX_FAILURES);
1648 				ubi_ro_mode(ubi);
1649 				ubi->thread_enabled = 0;
1650 				continue;
1651 			}
1652 		} else
1653 			failures = 0;
1654 
1655 		cond_resched();
1656 	}
1657 
1658 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1659 	ubi->thread_enabled = 0;
1660 	return 0;
1661 }
1662 
1663 /**
1664  * shutdown_work - shutdown all pending works.
1665  * @ubi: UBI device description object
1666  */
1667 static void shutdown_work(struct ubi_device *ubi)
1668 {
1669 	while (!list_empty(&ubi->works)) {
1670 		struct ubi_work *wrk;
1671 
1672 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1673 		list_del(&wrk->list);
1674 		wrk->func(ubi, wrk, 1);
1675 		ubi->works_count -= 1;
1676 		ubi_assert(ubi->works_count >= 0);
1677 	}
1678 }
1679 
1680 /**
1681  * erase_aeb - erase a PEB given in UBI attach info PEB
1682  * @ubi: UBI device description object
1683  * @aeb: UBI attach info PEB
1684  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1685  */
1686 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1687 {
1688 	struct ubi_wl_entry *e;
1689 	int err;
1690 
1691 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1692 	if (!e)
1693 		return -ENOMEM;
1694 
1695 	e->pnum = aeb->pnum;
1696 	e->ec = aeb->ec;
1697 	ubi->lookuptbl[e->pnum] = e;
1698 
1699 	if (sync) {
1700 		err = sync_erase(ubi, e, false);
1701 		if (err)
1702 			goto out_free;
1703 
1704 		wl_tree_add(e, &ubi->free);
1705 		ubi->free_count++;
1706 	} else {
1707 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1708 		if (err)
1709 			goto out_free;
1710 	}
1711 
1712 	return 0;
1713 
1714 out_free:
1715 	wl_entry_destroy(ubi, e);
1716 
1717 	return err;
1718 }
1719 
1720 /**
1721  * ubi_wl_init - initialize the WL sub-system using attaching information.
1722  * @ubi: UBI device description object
1723  * @ai: attaching information
1724  *
1725  * This function returns zero in case of success, and a negative error code in
1726  * case of failure.
1727  */
1728 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1729 {
1730 	int err, i, reserved_pebs, found_pebs = 0;
1731 	struct rb_node *rb1, *rb2;
1732 	struct ubi_ainf_volume *av;
1733 	struct ubi_ainf_peb *aeb, *tmp;
1734 	struct ubi_wl_entry *e;
1735 
1736 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1737 	spin_lock_init(&ubi->wl_lock);
1738 	mutex_init(&ubi->move_mutex);
1739 	init_rwsem(&ubi->work_sem);
1740 	ubi->max_ec = ai->max_ec;
1741 	INIT_LIST_HEAD(&ubi->works);
1742 
1743 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1744 
1745 	err = -ENOMEM;
1746 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1747 	if (!ubi->lookuptbl)
1748 		return err;
1749 
1750 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1751 		INIT_LIST_HEAD(&ubi->pq[i]);
1752 	ubi->pq_head = 0;
1753 
1754 	ubi->free_count = 0;
1755 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1756 		cond_resched();
1757 
1758 		err = erase_aeb(ubi, aeb, false);
1759 		if (err)
1760 			goto out_free;
1761 
1762 		found_pebs++;
1763 	}
1764 
1765 	list_for_each_entry(aeb, &ai->free, u.list) {
1766 		cond_resched();
1767 
1768 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1769 		if (!e) {
1770 			err = -ENOMEM;
1771 			goto out_free;
1772 		}
1773 
1774 		e->pnum = aeb->pnum;
1775 		e->ec = aeb->ec;
1776 		ubi_assert(e->ec >= 0);
1777 
1778 		wl_tree_add(e, &ubi->free);
1779 		ubi->free_count++;
1780 
1781 		ubi->lookuptbl[e->pnum] = e;
1782 
1783 		found_pebs++;
1784 	}
1785 
1786 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1787 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1788 			cond_resched();
1789 
1790 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1791 			if (!e) {
1792 				err = -ENOMEM;
1793 				goto out_free;
1794 			}
1795 
1796 			e->pnum = aeb->pnum;
1797 			e->ec = aeb->ec;
1798 			ubi->lookuptbl[e->pnum] = e;
1799 
1800 			if (!aeb->scrub) {
1801 				dbg_wl("add PEB %d EC %d to the used tree",
1802 				       e->pnum, e->ec);
1803 				wl_tree_add(e, &ubi->used);
1804 			} else {
1805 				dbg_wl("add PEB %d EC %d to the scrub tree",
1806 				       e->pnum, e->ec);
1807 				wl_tree_add(e, &ubi->scrub);
1808 			}
1809 
1810 			found_pebs++;
1811 		}
1812 	}
1813 
1814 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1815 		cond_resched();
1816 
1817 		e = ubi_find_fm_block(ubi, aeb->pnum);
1818 
1819 		if (e) {
1820 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1821 			ubi->lookuptbl[e->pnum] = e;
1822 		} else {
1823 			bool sync = false;
1824 
1825 			/*
1826 			 * Usually old Fastmap PEBs are scheduled for erasure
1827 			 * and we don't have to care about them but if we face
1828 			 * an power cut before scheduling them we need to
1829 			 * take care of them here.
1830 			 */
1831 			if (ubi->lookuptbl[aeb->pnum])
1832 				continue;
1833 
1834 			/*
1835 			 * The fastmap update code might not find a free PEB for
1836 			 * writing the fastmap anchor to and then reuses the
1837 			 * current fastmap anchor PEB. When this PEB gets erased
1838 			 * and a power cut happens before it is written again we
1839 			 * must make sure that the fastmap attach code doesn't
1840 			 * find any outdated fastmap anchors, hence we erase the
1841 			 * outdated fastmap anchor PEBs synchronously here.
1842 			 */
1843 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1844 				sync = true;
1845 
1846 			err = erase_aeb(ubi, aeb, sync);
1847 			if (err)
1848 				goto out_free;
1849 		}
1850 
1851 		found_pebs++;
1852 	}
1853 
1854 	dbg_wl("found %i PEBs", found_pebs);
1855 
1856 	ubi_assert(ubi->good_peb_count == found_pebs);
1857 
1858 	reserved_pebs = WL_RESERVED_PEBS;
1859 	ubi_fastmap_init(ubi, &reserved_pebs);
1860 
1861 	if (ubi->avail_pebs < reserved_pebs) {
1862 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1863 			ubi->avail_pebs, reserved_pebs);
1864 		if (ubi->corr_peb_count)
1865 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1866 				ubi->corr_peb_count);
1867 		err = -ENOSPC;
1868 		goto out_free;
1869 	}
1870 	ubi->avail_pebs -= reserved_pebs;
1871 	ubi->rsvd_pebs += reserved_pebs;
1872 
1873 	/* Schedule wear-leveling if needed */
1874 	err = ensure_wear_leveling(ubi, 0);
1875 	if (err)
1876 		goto out_free;
1877 
1878 #ifdef CONFIG_MTD_UBI_FASTMAP
1879 	ubi_ensure_anchor_pebs(ubi);
1880 #endif
1881 	return 0;
1882 
1883 out_free:
1884 	shutdown_work(ubi);
1885 	tree_destroy(ubi, &ubi->used);
1886 	tree_destroy(ubi, &ubi->free);
1887 	tree_destroy(ubi, &ubi->scrub);
1888 	kfree(ubi->lookuptbl);
1889 	return err;
1890 }
1891 
1892 /**
1893  * protection_queue_destroy - destroy the protection queue.
1894  * @ubi: UBI device description object
1895  */
1896 static void protection_queue_destroy(struct ubi_device *ubi)
1897 {
1898 	int i;
1899 	struct ubi_wl_entry *e, *tmp;
1900 
1901 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1902 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1903 			list_del(&e->u.list);
1904 			wl_entry_destroy(ubi, e);
1905 		}
1906 	}
1907 }
1908 
1909 /**
1910  * ubi_wl_close - close the wear-leveling sub-system.
1911  * @ubi: UBI device description object
1912  */
1913 void ubi_wl_close(struct ubi_device *ubi)
1914 {
1915 	dbg_wl("close the WL sub-system");
1916 	ubi_fastmap_close(ubi);
1917 	shutdown_work(ubi);
1918 	protection_queue_destroy(ubi);
1919 	tree_destroy(ubi, &ubi->used);
1920 	tree_destroy(ubi, &ubi->erroneous);
1921 	tree_destroy(ubi, &ubi->free);
1922 	tree_destroy(ubi, &ubi->scrub);
1923 	kfree(ubi->lookuptbl);
1924 }
1925 
1926 /**
1927  * self_check_ec - make sure that the erase counter of a PEB is correct.
1928  * @ubi: UBI device description object
1929  * @pnum: the physical eraseblock number to check
1930  * @ec: the erase counter to check
1931  *
1932  * This function returns zero if the erase counter of physical eraseblock @pnum
1933  * is equivalent to @ec, and a negative error code if not or if an error
1934  * occurred.
1935  */
1936 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1937 {
1938 	int err;
1939 	long long read_ec;
1940 	struct ubi_ec_hdr *ec_hdr;
1941 
1942 	if (!ubi_dbg_chk_gen(ubi))
1943 		return 0;
1944 
1945 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1946 	if (!ec_hdr)
1947 		return -ENOMEM;
1948 
1949 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1950 	if (err && err != UBI_IO_BITFLIPS) {
1951 		/* The header does not have to exist */
1952 		err = 0;
1953 		goto out_free;
1954 	}
1955 
1956 	read_ec = be64_to_cpu(ec_hdr->ec);
1957 	if (ec != read_ec && read_ec - ec > 1) {
1958 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1959 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1960 		dump_stack();
1961 		err = 1;
1962 	} else
1963 		err = 0;
1964 
1965 out_free:
1966 	kfree(ec_hdr);
1967 	return err;
1968 }
1969 
1970 /**
1971  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1972  * @ubi: UBI device description object
1973  * @e: the wear-leveling entry to check
1974  * @root: the root of the tree
1975  *
1976  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1977  * is not.
1978  */
1979 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1980 				 struct ubi_wl_entry *e, struct rb_root *root)
1981 {
1982 	if (!ubi_dbg_chk_gen(ubi))
1983 		return 0;
1984 
1985 	if (in_wl_tree(e, root))
1986 		return 0;
1987 
1988 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1989 		e->pnum, e->ec, root);
1990 	dump_stack();
1991 	return -EINVAL;
1992 }
1993 
1994 /**
1995  * self_check_in_pq - check if wear-leveling entry is in the protection
1996  *                        queue.
1997  * @ubi: UBI device description object
1998  * @e: the wear-leveling entry to check
1999  *
2000  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2001  */
2002 static int self_check_in_pq(const struct ubi_device *ubi,
2003 			    struct ubi_wl_entry *e)
2004 {
2005 	if (!ubi_dbg_chk_gen(ubi))
2006 		return 0;
2007 
2008 	if (in_pq(ubi, e))
2009 		return 0;
2010 
2011 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2012 		e->pnum, e->ec);
2013 	dump_stack();
2014 	return -EINVAL;
2015 }
2016 #ifndef CONFIG_MTD_UBI_FASTMAP
2017 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2018 {
2019 	struct ubi_wl_entry *e;
2020 
2021 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2022 	self_check_in_wl_tree(ubi, e, &ubi->free);
2023 	ubi->free_count--;
2024 	ubi_assert(ubi->free_count >= 0);
2025 	rb_erase(&e->u.rb, &ubi->free);
2026 
2027 	return e;
2028 }
2029 
2030 /**
2031  * produce_free_peb - produce a free physical eraseblock.
2032  * @ubi: UBI device description object
2033  *
2034  * This function tries to make a free PEB by means of synchronous execution of
2035  * pending works. This may be needed if, for example the background thread is
2036  * disabled. Returns zero in case of success and a negative error code in case
2037  * of failure.
2038  */
2039 static int produce_free_peb(struct ubi_device *ubi)
2040 {
2041 	int err;
2042 
2043 	while (!ubi->free.rb_node && ubi->works_count) {
2044 		spin_unlock(&ubi->wl_lock);
2045 
2046 		dbg_wl("do one work synchronously");
2047 		err = do_work(ubi);
2048 
2049 		spin_lock(&ubi->wl_lock);
2050 		if (err)
2051 			return err;
2052 	}
2053 
2054 	return 0;
2055 }
2056 
2057 /**
2058  * ubi_wl_get_peb - get a physical eraseblock.
2059  * @ubi: UBI device description object
2060  *
2061  * This function returns a physical eraseblock in case of success and a
2062  * negative error code in case of failure.
2063  * Returns with ubi->fm_eba_sem held in read mode!
2064  */
2065 int ubi_wl_get_peb(struct ubi_device *ubi)
2066 {
2067 	int err;
2068 	struct ubi_wl_entry *e;
2069 
2070 retry:
2071 	down_read(&ubi->fm_eba_sem);
2072 	spin_lock(&ubi->wl_lock);
2073 	if (!ubi->free.rb_node) {
2074 		if (ubi->works_count == 0) {
2075 			ubi_err(ubi, "no free eraseblocks");
2076 			ubi_assert(list_empty(&ubi->works));
2077 			spin_unlock(&ubi->wl_lock);
2078 			return -ENOSPC;
2079 		}
2080 
2081 		err = produce_free_peb(ubi);
2082 		if (err < 0) {
2083 			spin_unlock(&ubi->wl_lock);
2084 			return err;
2085 		}
2086 		spin_unlock(&ubi->wl_lock);
2087 		up_read(&ubi->fm_eba_sem);
2088 		goto retry;
2089 
2090 	}
2091 	e = wl_get_wle(ubi);
2092 	prot_queue_add(ubi, e);
2093 	spin_unlock(&ubi->wl_lock);
2094 
2095 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2096 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2097 	if (err) {
2098 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2099 		return err;
2100 	}
2101 
2102 	return e->pnum;
2103 }
2104 #else
2105 #include "fastmap-wl.c"
2106 #endif
2107