1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 44 * bad. 45 * 46 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 47 * in a physical eraseblock, it has to be moved. Technically this is the same 48 * as moving it for wear-leveling reasons. 49 * 50 * As it was said, for the UBI sub-system all physical eraseblocks are either 51 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 52 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 53 * RB-trees, as well as (temporarily) in the @wl->pq queue. 54 * 55 * When the WL sub-system returns a physical eraseblock, the physical 56 * eraseblock is protected from being moved for some "time". For this reason, 57 * the physical eraseblock is not directly moved from the @wl->free tree to the 58 * @wl->used tree. There is a protection queue in between where this 59 * physical eraseblock is temporarily stored (@wl->pq). 60 * 61 * All this protection stuff is needed because: 62 * o we don't want to move physical eraseblocks just after we have given them 63 * to the user; instead, we first want to let users fill them up with data; 64 * 65 * o there is a chance that the user will put the physical eraseblock very 66 * soon, so it makes sense not to move it for some time, but wait. 67 * 68 * Physical eraseblocks stay protected only for limited time. But the "time" is 69 * measured in erase cycles in this case. This is implemented with help of the 70 * protection queue. Eraseblocks are put to the tail of this queue when they 71 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 72 * head of the queue on each erase operation (for any eraseblock). So the 73 * length of the queue defines how may (global) erase cycles PEBs are protected. 74 * 75 * To put it differently, each physical eraseblock has 2 main states: free and 76 * used. The former state corresponds to the @wl->free tree. The latter state 77 * is split up on several sub-states: 78 * o the WL movement is allowed (@wl->used tree); 79 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 80 * erroneous - e.g., there was a read error; 81 * o the WL movement is temporarily prohibited (@wl->pq queue); 82 * o scrubbing is needed (@wl->scrub tree). 83 * 84 * Depending on the sub-state, wear-leveling entries of the used physical 85 * eraseblocks may be kept in one of those structures. 86 * 87 * Note, in this implementation, we keep a small in-RAM object for each physical 88 * eraseblock. This is surely not a scalable solution. But it appears to be good 89 * enough for moderately large flashes and it is simple. In future, one may 90 * re-work this sub-system and make it more scalable. 91 * 92 * At the moment this sub-system does not utilize the sequence number, which 93 * was introduced relatively recently. But it would be wise to do this because 94 * the sequence number of a logical eraseblock characterizes how old is it. For 95 * example, when we move a PEB with low erase counter, and we need to pick the 96 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 97 * pick target PEB with an average EC if our PEB is not very "old". This is a 98 * room for future re-works of the WL sub-system. 99 */ 100 101 #include <linux/slab.h> 102 #include <linux/crc32.h> 103 #include <linux/freezer.h> 104 #include <linux/kthread.h> 105 #include "ubi.h" 106 107 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 108 #define WL_RESERVED_PEBS 1 109 110 /* 111 * Maximum difference between two erase counters. If this threshold is 112 * exceeded, the WL sub-system starts moving data from used physical 113 * eraseblocks with low erase counter to free physical eraseblocks with high 114 * erase counter. 115 */ 116 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 117 118 /* 119 * When a physical eraseblock is moved, the WL sub-system has to pick the target 120 * physical eraseblock to move to. The simplest way would be just to pick the 121 * one with the highest erase counter. But in certain workloads this could lead 122 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 123 * situation when the picked physical eraseblock is constantly erased after the 124 * data is written to it. So, we have a constant which limits the highest erase 125 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 126 * does not pick eraseblocks with erase counter greater than the lowest erase 127 * counter plus %WL_FREE_MAX_DIFF. 128 */ 129 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 130 131 /* 132 * Maximum number of consecutive background thread failures which is enough to 133 * switch to read-only mode. 134 */ 135 #define WL_MAX_FAILURES 32 136 137 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec); 138 static int self_check_in_wl_tree(const struct ubi_device *ubi, 139 struct ubi_wl_entry *e, struct rb_root *root); 140 static int self_check_in_pq(const struct ubi_device *ubi, 141 struct ubi_wl_entry *e); 142 143 #ifdef CONFIG_MTD_UBI_FASTMAP 144 /** 145 * update_fastmap_work_fn - calls ubi_update_fastmap from a work queue 146 * @wrk: the work description object 147 */ 148 static void update_fastmap_work_fn(struct work_struct *wrk) 149 { 150 struct ubi_device *ubi = container_of(wrk, struct ubi_device, fm_work); 151 ubi_update_fastmap(ubi); 152 } 153 154 /** 155 * ubi_ubi_is_fm_block - returns 1 if a PEB is currently used in a fastmap. 156 * @ubi: UBI device description object 157 * @pnum: the to be checked PEB 158 */ 159 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 160 { 161 int i; 162 163 if (!ubi->fm) 164 return 0; 165 166 for (i = 0; i < ubi->fm->used_blocks; i++) 167 if (ubi->fm->e[i]->pnum == pnum) 168 return 1; 169 170 return 0; 171 } 172 #else 173 static int ubi_is_fm_block(struct ubi_device *ubi, int pnum) 174 { 175 return 0; 176 } 177 #endif 178 179 /** 180 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 181 * @e: the wear-leveling entry to add 182 * @root: the root of the tree 183 * 184 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 185 * the @ubi->used and @ubi->free RB-trees. 186 */ 187 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 188 { 189 struct rb_node **p, *parent = NULL; 190 191 p = &root->rb_node; 192 while (*p) { 193 struct ubi_wl_entry *e1; 194 195 parent = *p; 196 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 197 198 if (e->ec < e1->ec) 199 p = &(*p)->rb_left; 200 else if (e->ec > e1->ec) 201 p = &(*p)->rb_right; 202 else { 203 ubi_assert(e->pnum != e1->pnum); 204 if (e->pnum < e1->pnum) 205 p = &(*p)->rb_left; 206 else 207 p = &(*p)->rb_right; 208 } 209 } 210 211 rb_link_node(&e->u.rb, parent, p); 212 rb_insert_color(&e->u.rb, root); 213 } 214 215 /** 216 * do_work - do one pending work. 217 * @ubi: UBI device description object 218 * 219 * This function returns zero in case of success and a negative error code in 220 * case of failure. 221 */ 222 static int do_work(struct ubi_device *ubi) 223 { 224 int err; 225 struct ubi_work *wrk; 226 227 cond_resched(); 228 229 /* 230 * @ubi->work_sem is used to synchronize with the workers. Workers take 231 * it in read mode, so many of them may be doing works at a time. But 232 * the queue flush code has to be sure the whole queue of works is 233 * done, and it takes the mutex in write mode. 234 */ 235 down_read(&ubi->work_sem); 236 spin_lock(&ubi->wl_lock); 237 if (list_empty(&ubi->works)) { 238 spin_unlock(&ubi->wl_lock); 239 up_read(&ubi->work_sem); 240 return 0; 241 } 242 243 wrk = list_entry(ubi->works.next, struct ubi_work, list); 244 list_del(&wrk->list); 245 ubi->works_count -= 1; 246 ubi_assert(ubi->works_count >= 0); 247 spin_unlock(&ubi->wl_lock); 248 249 /* 250 * Call the worker function. Do not touch the work structure 251 * after this call as it will have been freed or reused by that 252 * time by the worker function. 253 */ 254 err = wrk->func(ubi, wrk, 0); 255 if (err) 256 ubi_err("work failed with error code %d", err); 257 up_read(&ubi->work_sem); 258 259 return err; 260 } 261 262 /** 263 * produce_free_peb - produce a free physical eraseblock. 264 * @ubi: UBI device description object 265 * 266 * This function tries to make a free PEB by means of synchronous execution of 267 * pending works. This may be needed if, for example the background thread is 268 * disabled. Returns zero in case of success and a negative error code in case 269 * of failure. 270 */ 271 static int produce_free_peb(struct ubi_device *ubi) 272 { 273 int err; 274 275 while (!ubi->free.rb_node) { 276 spin_unlock(&ubi->wl_lock); 277 278 dbg_wl("do one work synchronously"); 279 err = do_work(ubi); 280 281 spin_lock(&ubi->wl_lock); 282 if (err) 283 return err; 284 } 285 286 return 0; 287 } 288 289 /** 290 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 291 * @e: the wear-leveling entry to check 292 * @root: the root of the tree 293 * 294 * This function returns non-zero if @e is in the @root RB-tree and zero if it 295 * is not. 296 */ 297 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 298 { 299 struct rb_node *p; 300 301 p = root->rb_node; 302 while (p) { 303 struct ubi_wl_entry *e1; 304 305 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 306 307 if (e->pnum == e1->pnum) { 308 ubi_assert(e == e1); 309 return 1; 310 } 311 312 if (e->ec < e1->ec) 313 p = p->rb_left; 314 else if (e->ec > e1->ec) 315 p = p->rb_right; 316 else { 317 ubi_assert(e->pnum != e1->pnum); 318 if (e->pnum < e1->pnum) 319 p = p->rb_left; 320 else 321 p = p->rb_right; 322 } 323 } 324 325 return 0; 326 } 327 328 /** 329 * prot_queue_add - add physical eraseblock to the protection queue. 330 * @ubi: UBI device description object 331 * @e: the physical eraseblock to add 332 * 333 * This function adds @e to the tail of the protection queue @ubi->pq, where 334 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 335 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 336 * be locked. 337 */ 338 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 339 { 340 int pq_tail = ubi->pq_head - 1; 341 342 if (pq_tail < 0) 343 pq_tail = UBI_PROT_QUEUE_LEN - 1; 344 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 345 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 346 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 347 } 348 349 /** 350 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 351 * @ubi: UBI device description object 352 * @root: the RB-tree where to look for 353 * @diff: maximum possible difference from the smallest erase counter 354 * 355 * This function looks for a wear leveling entry with erase counter closest to 356 * min + @diff, where min is the smallest erase counter. 357 */ 358 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi, 359 struct rb_root *root, int diff) 360 { 361 struct rb_node *p; 362 struct ubi_wl_entry *e, *prev_e = NULL; 363 int max; 364 365 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 366 max = e->ec + diff; 367 368 p = root->rb_node; 369 while (p) { 370 struct ubi_wl_entry *e1; 371 372 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 373 if (e1->ec >= max) 374 p = p->rb_left; 375 else { 376 p = p->rb_right; 377 prev_e = e; 378 e = e1; 379 } 380 } 381 382 /* If no fastmap has been written and this WL entry can be used 383 * as anchor PEB, hold it back and return the second best WL entry 384 * such that fastmap can use the anchor PEB later. */ 385 if (prev_e && !ubi->fm_disabled && 386 !ubi->fm && e->pnum < UBI_FM_MAX_START) 387 return prev_e; 388 389 return e; 390 } 391 392 /** 393 * find_mean_wl_entry - find wear-leveling entry with medium erase counter. 394 * @ubi: UBI device description object 395 * @root: the RB-tree where to look for 396 * 397 * This function looks for a wear leveling entry with medium erase counter, 398 * but not greater or equivalent than the lowest erase counter plus 399 * %WL_FREE_MAX_DIFF/2. 400 */ 401 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi, 402 struct rb_root *root) 403 { 404 struct ubi_wl_entry *e, *first, *last; 405 406 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 407 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb); 408 409 if (last->ec - first->ec < WL_FREE_MAX_DIFF) { 410 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb); 411 412 #ifdef CONFIG_MTD_UBI_FASTMAP 413 /* If no fastmap has been written and this WL entry can be used 414 * as anchor PEB, hold it back and return the second best 415 * WL entry such that fastmap can use the anchor PEB later. */ 416 if (e && !ubi->fm_disabled && !ubi->fm && 417 e->pnum < UBI_FM_MAX_START) 418 e = rb_entry(rb_next(root->rb_node), 419 struct ubi_wl_entry, u.rb); 420 #endif 421 } else 422 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2); 423 424 return e; 425 } 426 427 #ifdef CONFIG_MTD_UBI_FASTMAP 428 /** 429 * find_anchor_wl_entry - find wear-leveling entry to used as anchor PEB. 430 * @root: the RB-tree where to look for 431 */ 432 static struct ubi_wl_entry *find_anchor_wl_entry(struct rb_root *root) 433 { 434 struct rb_node *p; 435 struct ubi_wl_entry *e, *victim = NULL; 436 int max_ec = UBI_MAX_ERASECOUNTER; 437 438 ubi_rb_for_each_entry(p, e, root, u.rb) { 439 if (e->pnum < UBI_FM_MAX_START && e->ec < max_ec) { 440 victim = e; 441 max_ec = e->ec; 442 } 443 } 444 445 return victim; 446 } 447 448 static int anchor_pebs_avalible(struct rb_root *root) 449 { 450 struct rb_node *p; 451 struct ubi_wl_entry *e; 452 453 ubi_rb_for_each_entry(p, e, root, u.rb) 454 if (e->pnum < UBI_FM_MAX_START) 455 return 1; 456 457 return 0; 458 } 459 460 /** 461 * ubi_wl_get_fm_peb - find a physical erase block with a given maximal number. 462 * @ubi: UBI device description object 463 * @anchor: This PEB will be used as anchor PEB by fastmap 464 * 465 * The function returns a physical erase block with a given maximal number 466 * and removes it from the wl subsystem. 467 * Must be called with wl_lock held! 468 */ 469 struct ubi_wl_entry *ubi_wl_get_fm_peb(struct ubi_device *ubi, int anchor) 470 { 471 struct ubi_wl_entry *e = NULL; 472 473 if (!ubi->free.rb_node || (ubi->free_count - ubi->beb_rsvd_pebs < 1)) 474 goto out; 475 476 if (anchor) 477 e = find_anchor_wl_entry(&ubi->free); 478 else 479 e = find_mean_wl_entry(ubi, &ubi->free); 480 481 if (!e) 482 goto out; 483 484 self_check_in_wl_tree(ubi, e, &ubi->free); 485 486 /* remove it from the free list, 487 * the wl subsystem does no longer know this erase block */ 488 rb_erase(&e->u.rb, &ubi->free); 489 ubi->free_count--; 490 out: 491 return e; 492 } 493 #endif 494 495 /** 496 * __wl_get_peb - get a physical eraseblock. 497 * @ubi: UBI device description object 498 * 499 * This function returns a physical eraseblock in case of success and a 500 * negative error code in case of failure. 501 */ 502 static int __wl_get_peb(struct ubi_device *ubi) 503 { 504 int err; 505 struct ubi_wl_entry *e; 506 507 retry: 508 if (!ubi->free.rb_node) { 509 if (ubi->works_count == 0) { 510 ubi_err("no free eraseblocks"); 511 ubi_assert(list_empty(&ubi->works)); 512 return -ENOSPC; 513 } 514 515 err = produce_free_peb(ubi); 516 if (err < 0) 517 return err; 518 goto retry; 519 } 520 521 e = find_mean_wl_entry(ubi, &ubi->free); 522 if (!e) { 523 ubi_err("no free eraseblocks"); 524 return -ENOSPC; 525 } 526 527 self_check_in_wl_tree(ubi, e, &ubi->free); 528 529 /* 530 * Move the physical eraseblock to the protection queue where it will 531 * be protected from being moved for some time. 532 */ 533 rb_erase(&e->u.rb, &ubi->free); 534 ubi->free_count--; 535 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 536 #ifndef CONFIG_MTD_UBI_FASTMAP 537 /* We have to enqueue e only if fastmap is disabled, 538 * is fastmap enabled prot_queue_add() will be called by 539 * ubi_wl_get_peb() after removing e from the pool. */ 540 prot_queue_add(ubi, e); 541 #endif 542 return e->pnum; 543 } 544 545 #ifdef CONFIG_MTD_UBI_FASTMAP 546 /** 547 * return_unused_pool_pebs - returns unused PEB to the free tree. 548 * @ubi: UBI device description object 549 * @pool: fastmap pool description object 550 */ 551 static void return_unused_pool_pebs(struct ubi_device *ubi, 552 struct ubi_fm_pool *pool) 553 { 554 int i; 555 struct ubi_wl_entry *e; 556 557 for (i = pool->used; i < pool->size; i++) { 558 e = ubi->lookuptbl[pool->pebs[i]]; 559 wl_tree_add(e, &ubi->free); 560 ubi->free_count++; 561 } 562 } 563 564 /** 565 * refill_wl_pool - refills all the fastmap pool used by the 566 * WL sub-system. 567 * @ubi: UBI device description object 568 */ 569 static void refill_wl_pool(struct ubi_device *ubi) 570 { 571 struct ubi_wl_entry *e; 572 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 573 574 return_unused_pool_pebs(ubi, pool); 575 576 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 577 if (!ubi->free.rb_node || 578 (ubi->free_count - ubi->beb_rsvd_pebs < 5)) 579 break; 580 581 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 582 self_check_in_wl_tree(ubi, e, &ubi->free); 583 rb_erase(&e->u.rb, &ubi->free); 584 ubi->free_count--; 585 586 pool->pebs[pool->size] = e->pnum; 587 } 588 pool->used = 0; 589 } 590 591 /** 592 * refill_wl_user_pool - refills all the fastmap pool used by ubi_wl_get_peb. 593 * @ubi: UBI device description object 594 */ 595 static void refill_wl_user_pool(struct ubi_device *ubi) 596 { 597 struct ubi_fm_pool *pool = &ubi->fm_pool; 598 599 return_unused_pool_pebs(ubi, pool); 600 601 for (pool->size = 0; pool->size < pool->max_size; pool->size++) { 602 pool->pebs[pool->size] = __wl_get_peb(ubi); 603 if (pool->pebs[pool->size] < 0) 604 break; 605 } 606 pool->used = 0; 607 } 608 609 /** 610 * ubi_refill_pools - refills all fastmap PEB pools. 611 * @ubi: UBI device description object 612 */ 613 void ubi_refill_pools(struct ubi_device *ubi) 614 { 615 spin_lock(&ubi->wl_lock); 616 refill_wl_pool(ubi); 617 refill_wl_user_pool(ubi); 618 spin_unlock(&ubi->wl_lock); 619 } 620 621 /* ubi_wl_get_peb - works exaclty like __wl_get_peb but keeps track of 622 * the fastmap pool. 623 */ 624 int ubi_wl_get_peb(struct ubi_device *ubi) 625 { 626 int ret; 627 struct ubi_fm_pool *pool = &ubi->fm_pool; 628 struct ubi_fm_pool *wl_pool = &ubi->fm_wl_pool; 629 630 if (!pool->size || !wl_pool->size || pool->used == pool->size || 631 wl_pool->used == wl_pool->size) 632 ubi_update_fastmap(ubi); 633 634 /* we got not a single free PEB */ 635 if (!pool->size) 636 ret = -ENOSPC; 637 else { 638 spin_lock(&ubi->wl_lock); 639 ret = pool->pebs[pool->used++]; 640 prot_queue_add(ubi, ubi->lookuptbl[ret]); 641 spin_unlock(&ubi->wl_lock); 642 } 643 644 return ret; 645 } 646 647 /* get_peb_for_wl - returns a PEB to be used internally by the WL sub-system. 648 * 649 * @ubi: UBI device description object 650 */ 651 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 652 { 653 struct ubi_fm_pool *pool = &ubi->fm_wl_pool; 654 int pnum; 655 656 if (pool->used == pool->size || !pool->size) { 657 /* We cannot update the fastmap here because this 658 * function is called in atomic context. 659 * Let's fail here and refill/update it as soon as possible. */ 660 schedule_work(&ubi->fm_work); 661 return NULL; 662 } else { 663 pnum = pool->pebs[pool->used++]; 664 return ubi->lookuptbl[pnum]; 665 } 666 } 667 #else 668 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi) 669 { 670 struct ubi_wl_entry *e; 671 672 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 673 self_check_in_wl_tree(ubi, e, &ubi->free); 674 ubi->free_count--; 675 ubi_assert(ubi->free_count >= 0); 676 rb_erase(&e->u.rb, &ubi->free); 677 678 return e; 679 } 680 681 int ubi_wl_get_peb(struct ubi_device *ubi) 682 { 683 int peb, err; 684 685 spin_lock(&ubi->wl_lock); 686 peb = __wl_get_peb(ubi); 687 spin_unlock(&ubi->wl_lock); 688 689 if (peb < 0) 690 return peb; 691 692 err = ubi_self_check_all_ff(ubi, peb, ubi->vid_hdr_aloffset, 693 ubi->peb_size - ubi->vid_hdr_aloffset); 694 if (err) { 695 ubi_err("new PEB %d does not contain all 0xFF bytes", peb); 696 return err; 697 } 698 699 return peb; 700 } 701 #endif 702 703 /** 704 * prot_queue_del - remove a physical eraseblock from the protection queue. 705 * @ubi: UBI device description object 706 * @pnum: the physical eraseblock to remove 707 * 708 * This function deletes PEB @pnum from the protection queue and returns zero 709 * in case of success and %-ENODEV if the PEB was not found. 710 */ 711 static int prot_queue_del(struct ubi_device *ubi, int pnum) 712 { 713 struct ubi_wl_entry *e; 714 715 e = ubi->lookuptbl[pnum]; 716 if (!e) 717 return -ENODEV; 718 719 if (self_check_in_pq(ubi, e)) 720 return -ENODEV; 721 722 list_del(&e->u.list); 723 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 724 return 0; 725 } 726 727 /** 728 * sync_erase - synchronously erase a physical eraseblock. 729 * @ubi: UBI device description object 730 * @e: the the physical eraseblock to erase 731 * @torture: if the physical eraseblock has to be tortured 732 * 733 * This function returns zero in case of success and a negative error code in 734 * case of failure. 735 */ 736 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 737 int torture) 738 { 739 int err; 740 struct ubi_ec_hdr *ec_hdr; 741 unsigned long long ec = e->ec; 742 743 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 744 745 err = self_check_ec(ubi, e->pnum, e->ec); 746 if (err) 747 return -EINVAL; 748 749 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 750 if (!ec_hdr) 751 return -ENOMEM; 752 753 err = ubi_io_sync_erase(ubi, e->pnum, torture); 754 if (err < 0) 755 goto out_free; 756 757 ec += err; 758 if (ec > UBI_MAX_ERASECOUNTER) { 759 /* 760 * Erase counter overflow. Upgrade UBI and use 64-bit 761 * erase counters internally. 762 */ 763 ubi_err("erase counter overflow at PEB %d, EC %llu", 764 e->pnum, ec); 765 err = -EINVAL; 766 goto out_free; 767 } 768 769 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 770 771 ec_hdr->ec = cpu_to_be64(ec); 772 773 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 774 if (err) 775 goto out_free; 776 777 e->ec = ec; 778 spin_lock(&ubi->wl_lock); 779 if (e->ec > ubi->max_ec) 780 ubi->max_ec = e->ec; 781 spin_unlock(&ubi->wl_lock); 782 783 out_free: 784 kfree(ec_hdr); 785 return err; 786 } 787 788 /** 789 * serve_prot_queue - check if it is time to stop protecting PEBs. 790 * @ubi: UBI device description object 791 * 792 * This function is called after each erase operation and removes PEBs from the 793 * tail of the protection queue. These PEBs have been protected for long enough 794 * and should be moved to the used tree. 795 */ 796 static void serve_prot_queue(struct ubi_device *ubi) 797 { 798 struct ubi_wl_entry *e, *tmp; 799 int count; 800 801 /* 802 * There may be several protected physical eraseblock to remove, 803 * process them all. 804 */ 805 repeat: 806 count = 0; 807 spin_lock(&ubi->wl_lock); 808 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 809 dbg_wl("PEB %d EC %d protection over, move to used tree", 810 e->pnum, e->ec); 811 812 list_del(&e->u.list); 813 wl_tree_add(e, &ubi->used); 814 if (count++ > 32) { 815 /* 816 * Let's be nice and avoid holding the spinlock for 817 * too long. 818 */ 819 spin_unlock(&ubi->wl_lock); 820 cond_resched(); 821 goto repeat; 822 } 823 } 824 825 ubi->pq_head += 1; 826 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 827 ubi->pq_head = 0; 828 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 829 spin_unlock(&ubi->wl_lock); 830 } 831 832 /** 833 * __schedule_ubi_work - schedule a work. 834 * @ubi: UBI device description object 835 * @wrk: the work to schedule 836 * 837 * This function adds a work defined by @wrk to the tail of the pending works 838 * list. Can only be used of ubi->work_sem is already held in read mode! 839 */ 840 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 841 { 842 spin_lock(&ubi->wl_lock); 843 list_add_tail(&wrk->list, &ubi->works); 844 ubi_assert(ubi->works_count >= 0); 845 ubi->works_count += 1; 846 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi)) 847 wake_up_process(ubi->bgt_thread); 848 spin_unlock(&ubi->wl_lock); 849 } 850 851 /** 852 * schedule_ubi_work - schedule a work. 853 * @ubi: UBI device description object 854 * @wrk: the work to schedule 855 * 856 * This function adds a work defined by @wrk to the tail of the pending works 857 * list. 858 */ 859 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 860 { 861 down_read(&ubi->work_sem); 862 __schedule_ubi_work(ubi, wrk); 863 up_read(&ubi->work_sem); 864 } 865 866 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 867 int cancel); 868 869 #ifdef CONFIG_MTD_UBI_FASTMAP 870 /** 871 * ubi_is_erase_work - checks whether a work is erase work. 872 * @wrk: The work object to be checked 873 */ 874 int ubi_is_erase_work(struct ubi_work *wrk) 875 { 876 return wrk->func == erase_worker; 877 } 878 #endif 879 880 /** 881 * schedule_erase - schedule an erase work. 882 * @ubi: UBI device description object 883 * @e: the WL entry of the physical eraseblock to erase 884 * @vol_id: the volume ID that last used this PEB 885 * @lnum: the last used logical eraseblock number for the PEB 886 * @torture: if the physical eraseblock has to be tortured 887 * 888 * This function returns zero in case of success and a %-ENOMEM in case of 889 * failure. 890 */ 891 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 892 int vol_id, int lnum, int torture) 893 { 894 struct ubi_work *wl_wrk; 895 896 ubi_assert(e); 897 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 898 899 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 900 e->pnum, e->ec, torture); 901 902 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 903 if (!wl_wrk) 904 return -ENOMEM; 905 906 wl_wrk->func = &erase_worker; 907 wl_wrk->e = e; 908 wl_wrk->vol_id = vol_id; 909 wl_wrk->lnum = lnum; 910 wl_wrk->torture = torture; 911 912 schedule_ubi_work(ubi, wl_wrk); 913 return 0; 914 } 915 916 /** 917 * do_sync_erase - run the erase worker synchronously. 918 * @ubi: UBI device description object 919 * @e: the WL entry of the physical eraseblock to erase 920 * @vol_id: the volume ID that last used this PEB 921 * @lnum: the last used logical eraseblock number for the PEB 922 * @torture: if the physical eraseblock has to be tortured 923 * 924 */ 925 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 926 int vol_id, int lnum, int torture) 927 { 928 struct ubi_work *wl_wrk; 929 930 dbg_wl("sync erase of PEB %i", e->pnum); 931 932 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 933 if (!wl_wrk) 934 return -ENOMEM; 935 936 wl_wrk->e = e; 937 wl_wrk->vol_id = vol_id; 938 wl_wrk->lnum = lnum; 939 wl_wrk->torture = torture; 940 941 return erase_worker(ubi, wl_wrk, 0); 942 } 943 944 #ifdef CONFIG_MTD_UBI_FASTMAP 945 /** 946 * ubi_wl_put_fm_peb - returns a PEB used in a fastmap to the wear-leveling 947 * sub-system. 948 * see: ubi_wl_put_peb() 949 * 950 * @ubi: UBI device description object 951 * @fm_e: physical eraseblock to return 952 * @lnum: the last used logical eraseblock number for the PEB 953 * @torture: if this physical eraseblock has to be tortured 954 */ 955 int ubi_wl_put_fm_peb(struct ubi_device *ubi, struct ubi_wl_entry *fm_e, 956 int lnum, int torture) 957 { 958 struct ubi_wl_entry *e; 959 int vol_id, pnum = fm_e->pnum; 960 961 dbg_wl("PEB %d", pnum); 962 963 ubi_assert(pnum >= 0); 964 ubi_assert(pnum < ubi->peb_count); 965 966 spin_lock(&ubi->wl_lock); 967 e = ubi->lookuptbl[pnum]; 968 969 /* This can happen if we recovered from a fastmap the very 970 * first time and writing now a new one. In this case the wl system 971 * has never seen any PEB used by the original fastmap. 972 */ 973 if (!e) { 974 e = fm_e; 975 ubi_assert(e->ec >= 0); 976 ubi->lookuptbl[pnum] = e; 977 } else { 978 e->ec = fm_e->ec; 979 kfree(fm_e); 980 } 981 982 spin_unlock(&ubi->wl_lock); 983 984 vol_id = lnum ? UBI_FM_DATA_VOLUME_ID : UBI_FM_SB_VOLUME_ID; 985 return schedule_erase(ubi, e, vol_id, lnum, torture); 986 } 987 #endif 988 989 /** 990 * wear_leveling_worker - wear-leveling worker function. 991 * @ubi: UBI device description object 992 * @wrk: the work object 993 * @cancel: non-zero if the worker has to free memory and exit 994 * 995 * This function copies a more worn out physical eraseblock to a less worn out 996 * one. Returns zero in case of success and a negative error code in case of 997 * failure. 998 */ 999 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 1000 int cancel) 1001 { 1002 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 1003 int vol_id = -1, uninitialized_var(lnum); 1004 #ifdef CONFIG_MTD_UBI_FASTMAP 1005 int anchor = wrk->anchor; 1006 #endif 1007 struct ubi_wl_entry *e1, *e2; 1008 struct ubi_vid_hdr *vid_hdr; 1009 1010 kfree(wrk); 1011 if (cancel) 1012 return 0; 1013 1014 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 1015 if (!vid_hdr) 1016 return -ENOMEM; 1017 1018 mutex_lock(&ubi->move_mutex); 1019 spin_lock(&ubi->wl_lock); 1020 ubi_assert(!ubi->move_from && !ubi->move_to); 1021 ubi_assert(!ubi->move_to_put); 1022 1023 if (!ubi->free.rb_node || 1024 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 1025 /* 1026 * No free physical eraseblocks? Well, they must be waiting in 1027 * the queue to be erased. Cancel movement - it will be 1028 * triggered again when a free physical eraseblock appears. 1029 * 1030 * No used physical eraseblocks? They must be temporarily 1031 * protected from being moved. They will be moved to the 1032 * @ubi->used tree later and the wear-leveling will be 1033 * triggered again. 1034 */ 1035 dbg_wl("cancel WL, a list is empty: free %d, used %d", 1036 !ubi->free.rb_node, !ubi->used.rb_node); 1037 goto out_cancel; 1038 } 1039 1040 #ifdef CONFIG_MTD_UBI_FASTMAP 1041 /* Check whether we need to produce an anchor PEB */ 1042 if (!anchor) 1043 anchor = !anchor_pebs_avalible(&ubi->free); 1044 1045 if (anchor) { 1046 e1 = find_anchor_wl_entry(&ubi->used); 1047 if (!e1) 1048 goto out_cancel; 1049 e2 = get_peb_for_wl(ubi); 1050 if (!e2) 1051 goto out_cancel; 1052 1053 self_check_in_wl_tree(ubi, e1, &ubi->used); 1054 rb_erase(&e1->u.rb, &ubi->used); 1055 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum); 1056 } else if (!ubi->scrub.rb_node) { 1057 #else 1058 if (!ubi->scrub.rb_node) { 1059 #endif 1060 /* 1061 * Now pick the least worn-out used physical eraseblock and a 1062 * highly worn-out free physical eraseblock. If the erase 1063 * counters differ much enough, start wear-leveling. 1064 */ 1065 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1066 e2 = get_peb_for_wl(ubi); 1067 if (!e2) 1068 goto out_cancel; 1069 1070 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 1071 dbg_wl("no WL needed: min used EC %d, max free EC %d", 1072 e1->ec, e2->ec); 1073 1074 /* Give the unused PEB back */ 1075 wl_tree_add(e2, &ubi->free); 1076 ubi->free_count++; 1077 goto out_cancel; 1078 } 1079 self_check_in_wl_tree(ubi, e1, &ubi->used); 1080 rb_erase(&e1->u.rb, &ubi->used); 1081 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 1082 e1->pnum, e1->ec, e2->pnum, e2->ec); 1083 } else { 1084 /* Perform scrubbing */ 1085 scrubbing = 1; 1086 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 1087 e2 = get_peb_for_wl(ubi); 1088 if (!e2) 1089 goto out_cancel; 1090 1091 self_check_in_wl_tree(ubi, e1, &ubi->scrub); 1092 rb_erase(&e1->u.rb, &ubi->scrub); 1093 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 1094 } 1095 1096 ubi->move_from = e1; 1097 ubi->move_to = e2; 1098 spin_unlock(&ubi->wl_lock); 1099 1100 /* 1101 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 1102 * We so far do not know which logical eraseblock our physical 1103 * eraseblock (@e1) belongs to. We have to read the volume identifier 1104 * header first. 1105 * 1106 * Note, we are protected from this PEB being unmapped and erased. The 1107 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 1108 * which is being moved was unmapped. 1109 */ 1110 1111 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 1112 if (err && err != UBI_IO_BITFLIPS) { 1113 if (err == UBI_IO_FF) { 1114 /* 1115 * We are trying to move PEB without a VID header. UBI 1116 * always write VID headers shortly after the PEB was 1117 * given, so we have a situation when it has not yet 1118 * had a chance to write it, because it was preempted. 1119 * So add this PEB to the protection queue so far, 1120 * because presumably more data will be written there 1121 * (including the missing VID header), and then we'll 1122 * move it. 1123 */ 1124 dbg_wl("PEB %d has no VID header", e1->pnum); 1125 protect = 1; 1126 goto out_not_moved; 1127 } else if (err == UBI_IO_FF_BITFLIPS) { 1128 /* 1129 * The same situation as %UBI_IO_FF, but bit-flips were 1130 * detected. It is better to schedule this PEB for 1131 * scrubbing. 1132 */ 1133 dbg_wl("PEB %d has no VID header but has bit-flips", 1134 e1->pnum); 1135 scrubbing = 1; 1136 goto out_not_moved; 1137 } 1138 1139 ubi_err("error %d while reading VID header from PEB %d", 1140 err, e1->pnum); 1141 goto out_error; 1142 } 1143 1144 vol_id = be32_to_cpu(vid_hdr->vol_id); 1145 lnum = be32_to_cpu(vid_hdr->lnum); 1146 1147 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 1148 if (err) { 1149 if (err == MOVE_CANCEL_RACE) { 1150 /* 1151 * The LEB has not been moved because the volume is 1152 * being deleted or the PEB has been put meanwhile. We 1153 * should prevent this PEB from being selected for 1154 * wear-leveling movement again, so put it to the 1155 * protection queue. 1156 */ 1157 protect = 1; 1158 goto out_not_moved; 1159 } 1160 if (err == MOVE_RETRY) { 1161 scrubbing = 1; 1162 goto out_not_moved; 1163 } 1164 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR || 1165 err == MOVE_TARGET_RD_ERR) { 1166 /* 1167 * Target PEB had bit-flips or write error - torture it. 1168 */ 1169 torture = 1; 1170 goto out_not_moved; 1171 } 1172 1173 if (err == MOVE_SOURCE_RD_ERR) { 1174 /* 1175 * An error happened while reading the source PEB. Do 1176 * not switch to R/O mode in this case, and give the 1177 * upper layers a possibility to recover from this, 1178 * e.g. by unmapping corresponding LEB. Instead, just 1179 * put this PEB to the @ubi->erroneous list to prevent 1180 * UBI from trying to move it over and over again. 1181 */ 1182 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 1183 ubi_err("too many erroneous eraseblocks (%d)", 1184 ubi->erroneous_peb_count); 1185 goto out_error; 1186 } 1187 erroneous = 1; 1188 goto out_not_moved; 1189 } 1190 1191 if (err < 0) 1192 goto out_error; 1193 1194 ubi_assert(0); 1195 } 1196 1197 /* The PEB has been successfully moved */ 1198 if (scrubbing) 1199 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 1200 e1->pnum, vol_id, lnum, e2->pnum); 1201 ubi_free_vid_hdr(ubi, vid_hdr); 1202 1203 spin_lock(&ubi->wl_lock); 1204 if (!ubi->move_to_put) { 1205 wl_tree_add(e2, &ubi->used); 1206 e2 = NULL; 1207 } 1208 ubi->move_from = ubi->move_to = NULL; 1209 ubi->move_to_put = ubi->wl_scheduled = 0; 1210 spin_unlock(&ubi->wl_lock); 1211 1212 err = do_sync_erase(ubi, e1, vol_id, lnum, 0); 1213 if (err) { 1214 kmem_cache_free(ubi_wl_entry_slab, e1); 1215 if (e2) 1216 kmem_cache_free(ubi_wl_entry_slab, e2); 1217 goto out_ro; 1218 } 1219 1220 if (e2) { 1221 /* 1222 * Well, the target PEB was put meanwhile, schedule it for 1223 * erasure. 1224 */ 1225 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 1226 e2->pnum, vol_id, lnum); 1227 err = do_sync_erase(ubi, e2, vol_id, lnum, 0); 1228 if (err) { 1229 kmem_cache_free(ubi_wl_entry_slab, e2); 1230 goto out_ro; 1231 } 1232 } 1233 1234 dbg_wl("done"); 1235 mutex_unlock(&ubi->move_mutex); 1236 return 0; 1237 1238 /* 1239 * For some reasons the LEB was not moved, might be an error, might be 1240 * something else. @e1 was not changed, so return it back. @e2 might 1241 * have been changed, schedule it for erasure. 1242 */ 1243 out_not_moved: 1244 if (vol_id != -1) 1245 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 1246 e1->pnum, vol_id, lnum, e2->pnum, err); 1247 else 1248 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 1249 e1->pnum, e2->pnum, err); 1250 spin_lock(&ubi->wl_lock); 1251 if (protect) 1252 prot_queue_add(ubi, e1); 1253 else if (erroneous) { 1254 wl_tree_add(e1, &ubi->erroneous); 1255 ubi->erroneous_peb_count += 1; 1256 } else if (scrubbing) 1257 wl_tree_add(e1, &ubi->scrub); 1258 else 1259 wl_tree_add(e1, &ubi->used); 1260 ubi_assert(!ubi->move_to_put); 1261 ubi->move_from = ubi->move_to = NULL; 1262 ubi->wl_scheduled = 0; 1263 spin_unlock(&ubi->wl_lock); 1264 1265 ubi_free_vid_hdr(ubi, vid_hdr); 1266 err = do_sync_erase(ubi, e2, vol_id, lnum, torture); 1267 if (err) { 1268 kmem_cache_free(ubi_wl_entry_slab, e2); 1269 goto out_ro; 1270 } 1271 mutex_unlock(&ubi->move_mutex); 1272 return 0; 1273 1274 out_error: 1275 if (vol_id != -1) 1276 ubi_err("error %d while moving PEB %d to PEB %d", 1277 err, e1->pnum, e2->pnum); 1278 else 1279 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 1280 err, e1->pnum, vol_id, lnum, e2->pnum); 1281 spin_lock(&ubi->wl_lock); 1282 ubi->move_from = ubi->move_to = NULL; 1283 ubi->move_to_put = ubi->wl_scheduled = 0; 1284 spin_unlock(&ubi->wl_lock); 1285 1286 ubi_free_vid_hdr(ubi, vid_hdr); 1287 kmem_cache_free(ubi_wl_entry_slab, e1); 1288 kmem_cache_free(ubi_wl_entry_slab, e2); 1289 1290 out_ro: 1291 ubi_ro_mode(ubi); 1292 mutex_unlock(&ubi->move_mutex); 1293 ubi_assert(err != 0); 1294 return err < 0 ? err : -EIO; 1295 1296 out_cancel: 1297 ubi->wl_scheduled = 0; 1298 spin_unlock(&ubi->wl_lock); 1299 mutex_unlock(&ubi->move_mutex); 1300 ubi_free_vid_hdr(ubi, vid_hdr); 1301 return 0; 1302 } 1303 1304 /** 1305 * ensure_wear_leveling - schedule wear-leveling if it is needed. 1306 * @ubi: UBI device description object 1307 * @nested: set to non-zero if this function is called from UBI worker 1308 * 1309 * This function checks if it is time to start wear-leveling and schedules it 1310 * if yes. This function returns zero in case of success and a negative error 1311 * code in case of failure. 1312 */ 1313 static int ensure_wear_leveling(struct ubi_device *ubi, int nested) 1314 { 1315 int err = 0; 1316 struct ubi_wl_entry *e1; 1317 struct ubi_wl_entry *e2; 1318 struct ubi_work *wrk; 1319 1320 spin_lock(&ubi->wl_lock); 1321 if (ubi->wl_scheduled) 1322 /* Wear-leveling is already in the work queue */ 1323 goto out_unlock; 1324 1325 /* 1326 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 1327 * the WL worker has to be scheduled anyway. 1328 */ 1329 if (!ubi->scrub.rb_node) { 1330 if (!ubi->used.rb_node || !ubi->free.rb_node) 1331 /* No physical eraseblocks - no deal */ 1332 goto out_unlock; 1333 1334 /* 1335 * We schedule wear-leveling only if the difference between the 1336 * lowest erase counter of used physical eraseblocks and a high 1337 * erase counter of free physical eraseblocks is greater than 1338 * %UBI_WL_THRESHOLD. 1339 */ 1340 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 1341 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF); 1342 1343 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 1344 goto out_unlock; 1345 dbg_wl("schedule wear-leveling"); 1346 } else 1347 dbg_wl("schedule scrubbing"); 1348 1349 ubi->wl_scheduled = 1; 1350 spin_unlock(&ubi->wl_lock); 1351 1352 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1353 if (!wrk) { 1354 err = -ENOMEM; 1355 goto out_cancel; 1356 } 1357 1358 wrk->anchor = 0; 1359 wrk->func = &wear_leveling_worker; 1360 if (nested) 1361 __schedule_ubi_work(ubi, wrk); 1362 else 1363 schedule_ubi_work(ubi, wrk); 1364 return err; 1365 1366 out_cancel: 1367 spin_lock(&ubi->wl_lock); 1368 ubi->wl_scheduled = 0; 1369 out_unlock: 1370 spin_unlock(&ubi->wl_lock); 1371 return err; 1372 } 1373 1374 #ifdef CONFIG_MTD_UBI_FASTMAP 1375 /** 1376 * ubi_ensure_anchor_pebs - schedule wear-leveling to produce an anchor PEB. 1377 * @ubi: UBI device description object 1378 */ 1379 int ubi_ensure_anchor_pebs(struct ubi_device *ubi) 1380 { 1381 struct ubi_work *wrk; 1382 1383 spin_lock(&ubi->wl_lock); 1384 if (ubi->wl_scheduled) { 1385 spin_unlock(&ubi->wl_lock); 1386 return 0; 1387 } 1388 ubi->wl_scheduled = 1; 1389 spin_unlock(&ubi->wl_lock); 1390 1391 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 1392 if (!wrk) { 1393 spin_lock(&ubi->wl_lock); 1394 ubi->wl_scheduled = 0; 1395 spin_unlock(&ubi->wl_lock); 1396 return -ENOMEM; 1397 } 1398 1399 wrk->anchor = 1; 1400 wrk->func = &wear_leveling_worker; 1401 schedule_ubi_work(ubi, wrk); 1402 return 0; 1403 } 1404 #endif 1405 1406 /** 1407 * erase_worker - physical eraseblock erase worker function. 1408 * @ubi: UBI device description object 1409 * @wl_wrk: the work object 1410 * @cancel: non-zero if the worker has to free memory and exit 1411 * 1412 * This function erases a physical eraseblock and perform torture testing if 1413 * needed. It also takes care about marking the physical eraseblock bad if 1414 * needed. Returns zero in case of success and a negative error code in case of 1415 * failure. 1416 */ 1417 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1418 int cancel) 1419 { 1420 struct ubi_wl_entry *e = wl_wrk->e; 1421 int pnum = e->pnum; 1422 int vol_id = wl_wrk->vol_id; 1423 int lnum = wl_wrk->lnum; 1424 int err, available_consumed = 0; 1425 1426 if (cancel) { 1427 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1428 kfree(wl_wrk); 1429 kmem_cache_free(ubi_wl_entry_slab, e); 1430 return 0; 1431 } 1432 1433 dbg_wl("erase PEB %d EC %d LEB %d:%d", 1434 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum); 1435 1436 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1437 1438 err = sync_erase(ubi, e, wl_wrk->torture); 1439 if (!err) { 1440 /* Fine, we've erased it successfully */ 1441 kfree(wl_wrk); 1442 1443 spin_lock(&ubi->wl_lock); 1444 wl_tree_add(e, &ubi->free); 1445 ubi->free_count++; 1446 spin_unlock(&ubi->wl_lock); 1447 1448 /* 1449 * One more erase operation has happened, take care about 1450 * protected physical eraseblocks. 1451 */ 1452 serve_prot_queue(ubi); 1453 1454 /* And take care about wear-leveling */ 1455 err = ensure_wear_leveling(ubi, 1); 1456 return err; 1457 } 1458 1459 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1460 kfree(wl_wrk); 1461 1462 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1463 err == -EBUSY) { 1464 int err1; 1465 1466 /* Re-schedule the LEB for erasure */ 1467 err1 = schedule_erase(ubi, e, vol_id, lnum, 0); 1468 if (err1) { 1469 err = err1; 1470 goto out_ro; 1471 } 1472 return err; 1473 } 1474 1475 kmem_cache_free(ubi_wl_entry_slab, e); 1476 if (err != -EIO) 1477 /* 1478 * If this is not %-EIO, we have no idea what to do. Scheduling 1479 * this physical eraseblock for erasure again would cause 1480 * errors again and again. Well, lets switch to R/O mode. 1481 */ 1482 goto out_ro; 1483 1484 /* It is %-EIO, the PEB went bad */ 1485 1486 if (!ubi->bad_allowed) { 1487 ubi_err("bad physical eraseblock %d detected", pnum); 1488 goto out_ro; 1489 } 1490 1491 spin_lock(&ubi->volumes_lock); 1492 if (ubi->beb_rsvd_pebs == 0) { 1493 if (ubi->avail_pebs == 0) { 1494 spin_unlock(&ubi->volumes_lock); 1495 ubi_err("no reserved/available physical eraseblocks"); 1496 goto out_ro; 1497 } 1498 ubi->avail_pebs -= 1; 1499 available_consumed = 1; 1500 } 1501 spin_unlock(&ubi->volumes_lock); 1502 1503 ubi_msg("mark PEB %d as bad", pnum); 1504 err = ubi_io_mark_bad(ubi, pnum); 1505 if (err) 1506 goto out_ro; 1507 1508 spin_lock(&ubi->volumes_lock); 1509 if (ubi->beb_rsvd_pebs > 0) { 1510 if (available_consumed) { 1511 /* 1512 * The amount of reserved PEBs increased since we last 1513 * checked. 1514 */ 1515 ubi->avail_pebs += 1; 1516 available_consumed = 0; 1517 } 1518 ubi->beb_rsvd_pebs -= 1; 1519 } 1520 ubi->bad_peb_count += 1; 1521 ubi->good_peb_count -= 1; 1522 ubi_calculate_reserved(ubi); 1523 if (available_consumed) 1524 ubi_warn("no PEBs in the reserved pool, used an available PEB"); 1525 else if (ubi->beb_rsvd_pebs) 1526 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1527 else 1528 ubi_warn("last PEB from the reserve was used"); 1529 spin_unlock(&ubi->volumes_lock); 1530 1531 return err; 1532 1533 out_ro: 1534 if (available_consumed) { 1535 spin_lock(&ubi->volumes_lock); 1536 ubi->avail_pebs += 1; 1537 spin_unlock(&ubi->volumes_lock); 1538 } 1539 ubi_ro_mode(ubi); 1540 return err; 1541 } 1542 1543 /** 1544 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1545 * @ubi: UBI device description object 1546 * @vol_id: the volume ID that last used this PEB 1547 * @lnum: the last used logical eraseblock number for the PEB 1548 * @pnum: physical eraseblock to return 1549 * @torture: if this physical eraseblock has to be tortured 1550 * 1551 * This function is called to return physical eraseblock @pnum to the pool of 1552 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1553 * occurred to this @pnum and it has to be tested. This function returns zero 1554 * in case of success, and a negative error code in case of failure. 1555 */ 1556 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum, 1557 int pnum, int torture) 1558 { 1559 int err; 1560 struct ubi_wl_entry *e; 1561 1562 dbg_wl("PEB %d", pnum); 1563 ubi_assert(pnum >= 0); 1564 ubi_assert(pnum < ubi->peb_count); 1565 1566 retry: 1567 spin_lock(&ubi->wl_lock); 1568 e = ubi->lookuptbl[pnum]; 1569 if (e == ubi->move_from) { 1570 /* 1571 * User is putting the physical eraseblock which was selected to 1572 * be moved. It will be scheduled for erasure in the 1573 * wear-leveling worker. 1574 */ 1575 dbg_wl("PEB %d is being moved, wait", pnum); 1576 spin_unlock(&ubi->wl_lock); 1577 1578 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1579 mutex_lock(&ubi->move_mutex); 1580 mutex_unlock(&ubi->move_mutex); 1581 goto retry; 1582 } else if (e == ubi->move_to) { 1583 /* 1584 * User is putting the physical eraseblock which was selected 1585 * as the target the data is moved to. It may happen if the EBA 1586 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1587 * but the WL sub-system has not put the PEB to the "used" tree 1588 * yet, but it is about to do this. So we just set a flag which 1589 * will tell the WL worker that the PEB is not needed anymore 1590 * and should be scheduled for erasure. 1591 */ 1592 dbg_wl("PEB %d is the target of data moving", pnum); 1593 ubi_assert(!ubi->move_to_put); 1594 ubi->move_to_put = 1; 1595 spin_unlock(&ubi->wl_lock); 1596 return 0; 1597 } else { 1598 if (in_wl_tree(e, &ubi->used)) { 1599 self_check_in_wl_tree(ubi, e, &ubi->used); 1600 rb_erase(&e->u.rb, &ubi->used); 1601 } else if (in_wl_tree(e, &ubi->scrub)) { 1602 self_check_in_wl_tree(ubi, e, &ubi->scrub); 1603 rb_erase(&e->u.rb, &ubi->scrub); 1604 } else if (in_wl_tree(e, &ubi->erroneous)) { 1605 self_check_in_wl_tree(ubi, e, &ubi->erroneous); 1606 rb_erase(&e->u.rb, &ubi->erroneous); 1607 ubi->erroneous_peb_count -= 1; 1608 ubi_assert(ubi->erroneous_peb_count >= 0); 1609 /* Erroneous PEBs should be tortured */ 1610 torture = 1; 1611 } else { 1612 err = prot_queue_del(ubi, e->pnum); 1613 if (err) { 1614 ubi_err("PEB %d not found", pnum); 1615 ubi_ro_mode(ubi); 1616 spin_unlock(&ubi->wl_lock); 1617 return err; 1618 } 1619 } 1620 } 1621 spin_unlock(&ubi->wl_lock); 1622 1623 err = schedule_erase(ubi, e, vol_id, lnum, torture); 1624 if (err) { 1625 spin_lock(&ubi->wl_lock); 1626 wl_tree_add(e, &ubi->used); 1627 spin_unlock(&ubi->wl_lock); 1628 } 1629 1630 return err; 1631 } 1632 1633 /** 1634 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1635 * @ubi: UBI device description object 1636 * @pnum: the physical eraseblock to schedule 1637 * 1638 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1639 * needs scrubbing. This function schedules a physical eraseblock for 1640 * scrubbing which is done in background. This function returns zero in case of 1641 * success and a negative error code in case of failure. 1642 */ 1643 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1644 { 1645 struct ubi_wl_entry *e; 1646 1647 ubi_msg("schedule PEB %d for scrubbing", pnum); 1648 1649 retry: 1650 spin_lock(&ubi->wl_lock); 1651 e = ubi->lookuptbl[pnum]; 1652 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) || 1653 in_wl_tree(e, &ubi->erroneous)) { 1654 spin_unlock(&ubi->wl_lock); 1655 return 0; 1656 } 1657 1658 if (e == ubi->move_to) { 1659 /* 1660 * This physical eraseblock was used to move data to. The data 1661 * was moved but the PEB was not yet inserted to the proper 1662 * tree. We should just wait a little and let the WL worker 1663 * proceed. 1664 */ 1665 spin_unlock(&ubi->wl_lock); 1666 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1667 yield(); 1668 goto retry; 1669 } 1670 1671 if (in_wl_tree(e, &ubi->used)) { 1672 self_check_in_wl_tree(ubi, e, &ubi->used); 1673 rb_erase(&e->u.rb, &ubi->used); 1674 } else { 1675 int err; 1676 1677 err = prot_queue_del(ubi, e->pnum); 1678 if (err) { 1679 ubi_err("PEB %d not found", pnum); 1680 ubi_ro_mode(ubi); 1681 spin_unlock(&ubi->wl_lock); 1682 return err; 1683 } 1684 } 1685 1686 wl_tree_add(e, &ubi->scrub); 1687 spin_unlock(&ubi->wl_lock); 1688 1689 /* 1690 * Technically scrubbing is the same as wear-leveling, so it is done 1691 * by the WL worker. 1692 */ 1693 return ensure_wear_leveling(ubi, 0); 1694 } 1695 1696 /** 1697 * ubi_wl_flush - flush all pending works. 1698 * @ubi: UBI device description object 1699 * @vol_id: the volume id to flush for 1700 * @lnum: the logical eraseblock number to flush for 1701 * 1702 * This function executes all pending works for a particular volume id / 1703 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it 1704 * acts as a wildcard for all of the corresponding volume numbers or logical 1705 * eraseblock numbers. It returns zero in case of success and a negative error 1706 * code in case of failure. 1707 */ 1708 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum) 1709 { 1710 int err = 0; 1711 int found = 1; 1712 1713 /* 1714 * Erase while the pending works queue is not empty, but not more than 1715 * the number of currently pending works. 1716 */ 1717 dbg_wl("flush pending work for LEB %d:%d (%d pending works)", 1718 vol_id, lnum, ubi->works_count); 1719 1720 while (found) { 1721 struct ubi_work *wrk; 1722 found = 0; 1723 1724 down_read(&ubi->work_sem); 1725 spin_lock(&ubi->wl_lock); 1726 list_for_each_entry(wrk, &ubi->works, list) { 1727 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) && 1728 (lnum == UBI_ALL || wrk->lnum == lnum)) { 1729 list_del(&wrk->list); 1730 ubi->works_count -= 1; 1731 ubi_assert(ubi->works_count >= 0); 1732 spin_unlock(&ubi->wl_lock); 1733 1734 err = wrk->func(ubi, wrk, 0); 1735 if (err) { 1736 up_read(&ubi->work_sem); 1737 return err; 1738 } 1739 1740 spin_lock(&ubi->wl_lock); 1741 found = 1; 1742 break; 1743 } 1744 } 1745 spin_unlock(&ubi->wl_lock); 1746 up_read(&ubi->work_sem); 1747 } 1748 1749 /* 1750 * Make sure all the works which have been done in parallel are 1751 * finished. 1752 */ 1753 down_write(&ubi->work_sem); 1754 up_write(&ubi->work_sem); 1755 1756 return err; 1757 } 1758 1759 /** 1760 * tree_destroy - destroy an RB-tree. 1761 * @root: the root of the tree to destroy 1762 */ 1763 static void tree_destroy(struct rb_root *root) 1764 { 1765 struct rb_node *rb; 1766 struct ubi_wl_entry *e; 1767 1768 rb = root->rb_node; 1769 while (rb) { 1770 if (rb->rb_left) 1771 rb = rb->rb_left; 1772 else if (rb->rb_right) 1773 rb = rb->rb_right; 1774 else { 1775 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1776 1777 rb = rb_parent(rb); 1778 if (rb) { 1779 if (rb->rb_left == &e->u.rb) 1780 rb->rb_left = NULL; 1781 else 1782 rb->rb_right = NULL; 1783 } 1784 1785 kmem_cache_free(ubi_wl_entry_slab, e); 1786 } 1787 } 1788 } 1789 1790 /** 1791 * ubi_thread - UBI background thread. 1792 * @u: the UBI device description object pointer 1793 */ 1794 int ubi_thread(void *u) 1795 { 1796 int failures = 0; 1797 struct ubi_device *ubi = u; 1798 1799 ubi_msg("background thread \"%s\" started, PID %d", 1800 ubi->bgt_name, task_pid_nr(current)); 1801 1802 set_freezable(); 1803 for (;;) { 1804 int err; 1805 1806 if (kthread_should_stop()) 1807 break; 1808 1809 if (try_to_freeze()) 1810 continue; 1811 1812 spin_lock(&ubi->wl_lock); 1813 if (list_empty(&ubi->works) || ubi->ro_mode || 1814 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) { 1815 set_current_state(TASK_INTERRUPTIBLE); 1816 spin_unlock(&ubi->wl_lock); 1817 schedule(); 1818 continue; 1819 } 1820 spin_unlock(&ubi->wl_lock); 1821 1822 err = do_work(ubi); 1823 if (err) { 1824 ubi_err("%s: work failed with error code %d", 1825 ubi->bgt_name, err); 1826 if (failures++ > WL_MAX_FAILURES) { 1827 /* 1828 * Too many failures, disable the thread and 1829 * switch to read-only mode. 1830 */ 1831 ubi_msg("%s: %d consecutive failures", 1832 ubi->bgt_name, WL_MAX_FAILURES); 1833 ubi_ro_mode(ubi); 1834 ubi->thread_enabled = 0; 1835 continue; 1836 } 1837 } else 1838 failures = 0; 1839 1840 cond_resched(); 1841 } 1842 1843 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1844 return 0; 1845 } 1846 1847 /** 1848 * cancel_pending - cancel all pending works. 1849 * @ubi: UBI device description object 1850 */ 1851 static void cancel_pending(struct ubi_device *ubi) 1852 { 1853 while (!list_empty(&ubi->works)) { 1854 struct ubi_work *wrk; 1855 1856 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1857 list_del(&wrk->list); 1858 wrk->func(ubi, wrk, 1); 1859 ubi->works_count -= 1; 1860 ubi_assert(ubi->works_count >= 0); 1861 } 1862 } 1863 1864 /** 1865 * ubi_wl_init - initialize the WL sub-system using attaching information. 1866 * @ubi: UBI device description object 1867 * @ai: attaching information 1868 * 1869 * This function returns zero in case of success, and a negative error code in 1870 * case of failure. 1871 */ 1872 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai) 1873 { 1874 int err, i, reserved_pebs, found_pebs = 0; 1875 struct rb_node *rb1, *rb2; 1876 struct ubi_ainf_volume *av; 1877 struct ubi_ainf_peb *aeb, *tmp; 1878 struct ubi_wl_entry *e; 1879 1880 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1881 spin_lock_init(&ubi->wl_lock); 1882 mutex_init(&ubi->move_mutex); 1883 init_rwsem(&ubi->work_sem); 1884 ubi->max_ec = ai->max_ec; 1885 INIT_LIST_HEAD(&ubi->works); 1886 #ifdef CONFIG_MTD_UBI_FASTMAP 1887 INIT_WORK(&ubi->fm_work, update_fastmap_work_fn); 1888 #endif 1889 1890 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1891 1892 err = -ENOMEM; 1893 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1894 if (!ubi->lookuptbl) 1895 return err; 1896 1897 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1898 INIT_LIST_HEAD(&ubi->pq[i]); 1899 ubi->pq_head = 0; 1900 1901 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) { 1902 cond_resched(); 1903 1904 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1905 if (!e) 1906 goto out_free; 1907 1908 e->pnum = aeb->pnum; 1909 e->ec = aeb->ec; 1910 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1911 ubi->lookuptbl[e->pnum] = e; 1912 if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) { 1913 kmem_cache_free(ubi_wl_entry_slab, e); 1914 goto out_free; 1915 } 1916 1917 found_pebs++; 1918 } 1919 1920 ubi->free_count = 0; 1921 list_for_each_entry(aeb, &ai->free, u.list) { 1922 cond_resched(); 1923 1924 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1925 if (!e) 1926 goto out_free; 1927 1928 e->pnum = aeb->pnum; 1929 e->ec = aeb->ec; 1930 ubi_assert(e->ec >= 0); 1931 ubi_assert(!ubi_is_fm_block(ubi, e->pnum)); 1932 1933 wl_tree_add(e, &ubi->free); 1934 ubi->free_count++; 1935 1936 ubi->lookuptbl[e->pnum] = e; 1937 1938 found_pebs++; 1939 } 1940 1941 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) { 1942 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) { 1943 cond_resched(); 1944 1945 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1946 if (!e) 1947 goto out_free; 1948 1949 e->pnum = aeb->pnum; 1950 e->ec = aeb->ec; 1951 ubi->lookuptbl[e->pnum] = e; 1952 1953 if (!aeb->scrub) { 1954 dbg_wl("add PEB %d EC %d to the used tree", 1955 e->pnum, e->ec); 1956 wl_tree_add(e, &ubi->used); 1957 } else { 1958 dbg_wl("add PEB %d EC %d to the scrub tree", 1959 e->pnum, e->ec); 1960 wl_tree_add(e, &ubi->scrub); 1961 } 1962 1963 found_pebs++; 1964 } 1965 } 1966 1967 dbg_wl("found %i PEBs", found_pebs); 1968 1969 if (ubi->fm) 1970 ubi_assert(ubi->good_peb_count == \ 1971 found_pebs + ubi->fm->used_blocks); 1972 else 1973 ubi_assert(ubi->good_peb_count == found_pebs); 1974 1975 reserved_pebs = WL_RESERVED_PEBS; 1976 #ifdef CONFIG_MTD_UBI_FASTMAP 1977 /* Reserve enough LEBs to store two fastmaps. */ 1978 reserved_pebs += (ubi->fm_size / ubi->leb_size) * 2; 1979 #endif 1980 1981 if (ubi->avail_pebs < reserved_pebs) { 1982 ubi_err("no enough physical eraseblocks (%d, need %d)", 1983 ubi->avail_pebs, reserved_pebs); 1984 if (ubi->corr_peb_count) 1985 ubi_err("%d PEBs are corrupted and not used", 1986 ubi->corr_peb_count); 1987 goto out_free; 1988 } 1989 ubi->avail_pebs -= reserved_pebs; 1990 ubi->rsvd_pebs += reserved_pebs; 1991 1992 /* Schedule wear-leveling if needed */ 1993 err = ensure_wear_leveling(ubi, 0); 1994 if (err) 1995 goto out_free; 1996 1997 return 0; 1998 1999 out_free: 2000 cancel_pending(ubi); 2001 tree_destroy(&ubi->used); 2002 tree_destroy(&ubi->free); 2003 tree_destroy(&ubi->scrub); 2004 kfree(ubi->lookuptbl); 2005 return err; 2006 } 2007 2008 /** 2009 * protection_queue_destroy - destroy the protection queue. 2010 * @ubi: UBI device description object 2011 */ 2012 static void protection_queue_destroy(struct ubi_device *ubi) 2013 { 2014 int i; 2015 struct ubi_wl_entry *e, *tmp; 2016 2017 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 2018 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 2019 list_del(&e->u.list); 2020 kmem_cache_free(ubi_wl_entry_slab, e); 2021 } 2022 } 2023 } 2024 2025 /** 2026 * ubi_wl_close - close the wear-leveling sub-system. 2027 * @ubi: UBI device description object 2028 */ 2029 void ubi_wl_close(struct ubi_device *ubi) 2030 { 2031 dbg_wl("close the WL sub-system"); 2032 cancel_pending(ubi); 2033 protection_queue_destroy(ubi); 2034 tree_destroy(&ubi->used); 2035 tree_destroy(&ubi->erroneous); 2036 tree_destroy(&ubi->free); 2037 tree_destroy(&ubi->scrub); 2038 kfree(ubi->lookuptbl); 2039 } 2040 2041 /** 2042 * self_check_ec - make sure that the erase counter of a PEB is correct. 2043 * @ubi: UBI device description object 2044 * @pnum: the physical eraseblock number to check 2045 * @ec: the erase counter to check 2046 * 2047 * This function returns zero if the erase counter of physical eraseblock @pnum 2048 * is equivalent to @ec, and a negative error code if not or if an error 2049 * occurred. 2050 */ 2051 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec) 2052 { 2053 int err; 2054 long long read_ec; 2055 struct ubi_ec_hdr *ec_hdr; 2056 2057 if (!ubi_dbg_chk_gen(ubi)) 2058 return 0; 2059 2060 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 2061 if (!ec_hdr) 2062 return -ENOMEM; 2063 2064 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 2065 if (err && err != UBI_IO_BITFLIPS) { 2066 /* The header does not have to exist */ 2067 err = 0; 2068 goto out_free; 2069 } 2070 2071 read_ec = be64_to_cpu(ec_hdr->ec); 2072 if (ec != read_ec && read_ec - ec > 1) { 2073 ubi_err("self-check failed for PEB %d", pnum); 2074 ubi_err("read EC is %lld, should be %d", read_ec, ec); 2075 dump_stack(); 2076 err = 1; 2077 } else 2078 err = 0; 2079 2080 out_free: 2081 kfree(ec_hdr); 2082 return err; 2083 } 2084 2085 /** 2086 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 2087 * @ubi: UBI device description object 2088 * @e: the wear-leveling entry to check 2089 * @root: the root of the tree 2090 * 2091 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 2092 * is not. 2093 */ 2094 static int self_check_in_wl_tree(const struct ubi_device *ubi, 2095 struct ubi_wl_entry *e, struct rb_root *root) 2096 { 2097 if (!ubi_dbg_chk_gen(ubi)) 2098 return 0; 2099 2100 if (in_wl_tree(e, root)) 2101 return 0; 2102 2103 ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ", 2104 e->pnum, e->ec, root); 2105 dump_stack(); 2106 return -EINVAL; 2107 } 2108 2109 /** 2110 * self_check_in_pq - check if wear-leveling entry is in the protection 2111 * queue. 2112 * @ubi: UBI device description object 2113 * @e: the wear-leveling entry to check 2114 * 2115 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 2116 */ 2117 static int self_check_in_pq(const struct ubi_device *ubi, 2118 struct ubi_wl_entry *e) 2119 { 2120 struct ubi_wl_entry *p; 2121 int i; 2122 2123 if (!ubi_dbg_chk_gen(ubi)) 2124 return 0; 2125 2126 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 2127 list_for_each_entry(p, &ubi->pq[i], u.list) 2128 if (p == e) 2129 return 0; 2130 2131 ubi_err("self-check failed for PEB %d, EC %d, Protect queue", 2132 e->pnum, e->ec); 2133 dump_stack(); 2134 return -EINVAL; 2135 } 2136