xref: /linux/drivers/mtd/ubi/wl.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * @ubi: UBI device description object
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13  * the GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20  */
21 
22 /*
23  * UBI wear-leveling sub-system.
24  *
25  * This sub-system is responsible for wear-leveling. It works in terms of
26  * physical eraseblocks and erase counters and knows nothing about logical
27  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28  * eraseblocks are of two types - used and free. Used physical eraseblocks are
29  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31  *
32  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33  * header. The rest of the physical eraseblock contains only %0xFF bytes.
34  *
35  * When physical eraseblocks are returned to the WL sub-system by means of the
36  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37  * done asynchronously in context of the per-UBI device background thread,
38  * which is also managed by the WL sub-system.
39  *
40  * The wear-leveling is ensured by means of moving the contents of used
41  * physical eraseblocks with low erase counter to free physical eraseblocks
42  * with high erase counter.
43  *
44  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
45  * bad.
46  *
47  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
48  * in a physical eraseblock, it has to be moved. Technically this is the same
49  * as moving it for wear-leveling reasons.
50  *
51  * As it was said, for the UBI sub-system all physical eraseblocks are either
52  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
53  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
54  * RB-trees, as well as (temporarily) in the @wl->pq queue.
55  *
56  * When the WL sub-system returns a physical eraseblock, the physical
57  * eraseblock is protected from being moved for some "time". For this reason,
58  * the physical eraseblock is not directly moved from the @wl->free tree to the
59  * @wl->used tree. There is a protection queue in between where this
60  * physical eraseblock is temporarily stored (@wl->pq).
61  *
62  * All this protection stuff is needed because:
63  *  o we don't want to move physical eraseblocks just after we have given them
64  *    to the user; instead, we first want to let users fill them up with data;
65  *
66  *  o there is a chance that the user will put the physical eraseblock very
67  *    soon, so it makes sense not to move it for some time, but wait.
68  *
69  * Physical eraseblocks stay protected only for limited time. But the "time" is
70  * measured in erase cycles in this case. This is implemented with help of the
71  * protection queue. Eraseblocks are put to the tail of this queue when they
72  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
73  * head of the queue on each erase operation (for any eraseblock). So the
74  * length of the queue defines how may (global) erase cycles PEBs are protected.
75  *
76  * To put it differently, each physical eraseblock has 2 main states: free and
77  * used. The former state corresponds to the @wl->free tree. The latter state
78  * is split up on several sub-states:
79  * o the WL movement is allowed (@wl->used tree);
80  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
81  *   erroneous - e.g., there was a read error;
82  * o the WL movement is temporarily prohibited (@wl->pq queue);
83  * o scrubbing is needed (@wl->scrub tree).
84  *
85  * Depending on the sub-state, wear-leveling entries of the used physical
86  * eraseblocks may be kept in one of those structures.
87  *
88  * Note, in this implementation, we keep a small in-RAM object for each physical
89  * eraseblock. This is surely not a scalable solution. But it appears to be good
90  * enough for moderately large flashes and it is simple. In future, one may
91  * re-work this sub-system and make it more scalable.
92  *
93  * At the moment this sub-system does not utilize the sequence number, which
94  * was introduced relatively recently. But it would be wise to do this because
95  * the sequence number of a logical eraseblock characterizes how old is it. For
96  * example, when we move a PEB with low erase counter, and we need to pick the
97  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
98  * pick target PEB with an average EC if our PEB is not very "old". This is a
99  * room for future re-works of the WL sub-system.
100  */
101 
102 #include <linux/slab.h>
103 #include <linux/crc32.h>
104 #include <linux/freezer.h>
105 #include <linux/kthread.h>
106 #include "ubi.h"
107 
108 /* Number of physical eraseblocks reserved for wear-leveling purposes */
109 #define WL_RESERVED_PEBS 1
110 
111 /*
112  * Maximum difference between two erase counters. If this threshold is
113  * exceeded, the WL sub-system starts moving data from used physical
114  * eraseblocks with low erase counter to free physical eraseblocks with high
115  * erase counter.
116  */
117 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
118 
119 /*
120  * When a physical eraseblock is moved, the WL sub-system has to pick the target
121  * physical eraseblock to move to. The simplest way would be just to pick the
122  * one with the highest erase counter. But in certain workloads this could lead
123  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
124  * situation when the picked physical eraseblock is constantly erased after the
125  * data is written to it. So, we have a constant which limits the highest erase
126  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
127  * does not pick eraseblocks with erase counter greater than the lowest erase
128  * counter plus %WL_FREE_MAX_DIFF.
129  */
130 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
131 
132 /*
133  * Maximum number of consecutive background thread failures which is enough to
134  * switch to read-only mode.
135  */
136 #define WL_MAX_FAILURES 32
137 
138 /**
139  * struct ubi_work - UBI work description data structure.
140  * @list: a link in the list of pending works
141  * @func: worker function
142  * @e: physical eraseblock to erase
143  * @vol_id: the volume ID on which this erasure is being performed
144  * @lnum: the logical eraseblock number
145  * @torture: if the physical eraseblock has to be tortured
146  *
147  * The @func pointer points to the worker function. If the @cancel argument is
148  * not zero, the worker has to free the resources and exit immediately. The
149  * worker has to return zero in case of success and a negative error code in
150  * case of failure.
151  */
152 struct ubi_work {
153 	struct list_head list;
154 	int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
155 	/* The below fields are only relevant to erasure works */
156 	struct ubi_wl_entry *e;
157 	int vol_id;
158 	int lnum;
159 	int torture;
160 };
161 
162 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
163 static int self_check_in_wl_tree(const struct ubi_device *ubi,
164 				 struct ubi_wl_entry *e, struct rb_root *root);
165 static int self_check_in_pq(const struct ubi_device *ubi,
166 			    struct ubi_wl_entry *e);
167 
168 /**
169  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
170  * @e: the wear-leveling entry to add
171  * @root: the root of the tree
172  *
173  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
174  * the @ubi->used and @ubi->free RB-trees.
175  */
176 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
177 {
178 	struct rb_node **p, *parent = NULL;
179 
180 	p = &root->rb_node;
181 	while (*p) {
182 		struct ubi_wl_entry *e1;
183 
184 		parent = *p;
185 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
186 
187 		if (e->ec < e1->ec)
188 			p = &(*p)->rb_left;
189 		else if (e->ec > e1->ec)
190 			p = &(*p)->rb_right;
191 		else {
192 			ubi_assert(e->pnum != e1->pnum);
193 			if (e->pnum < e1->pnum)
194 				p = &(*p)->rb_left;
195 			else
196 				p = &(*p)->rb_right;
197 		}
198 	}
199 
200 	rb_link_node(&e->u.rb, parent, p);
201 	rb_insert_color(&e->u.rb, root);
202 }
203 
204 /**
205  * do_work - do one pending work.
206  * @ubi: UBI device description object
207  *
208  * This function returns zero in case of success and a negative error code in
209  * case of failure.
210  */
211 static int do_work(struct ubi_device *ubi)
212 {
213 	int err;
214 	struct ubi_work *wrk;
215 
216 	cond_resched();
217 
218 	/*
219 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
220 	 * it in read mode, so many of them may be doing works at a time. But
221 	 * the queue flush code has to be sure the whole queue of works is
222 	 * done, and it takes the mutex in write mode.
223 	 */
224 	down_read(&ubi->work_sem);
225 	spin_lock(&ubi->wl_lock);
226 	if (list_empty(&ubi->works)) {
227 		spin_unlock(&ubi->wl_lock);
228 		up_read(&ubi->work_sem);
229 		return 0;
230 	}
231 
232 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
233 	list_del(&wrk->list);
234 	ubi->works_count -= 1;
235 	ubi_assert(ubi->works_count >= 0);
236 	spin_unlock(&ubi->wl_lock);
237 
238 	/*
239 	 * Call the worker function. Do not touch the work structure
240 	 * after this call as it will have been freed or reused by that
241 	 * time by the worker function.
242 	 */
243 	err = wrk->func(ubi, wrk, 0);
244 	if (err)
245 		ubi_err("work failed with error code %d", err);
246 	up_read(&ubi->work_sem);
247 
248 	return err;
249 }
250 
251 /**
252  * produce_free_peb - produce a free physical eraseblock.
253  * @ubi: UBI device description object
254  *
255  * This function tries to make a free PEB by means of synchronous execution of
256  * pending works. This may be needed if, for example the background thread is
257  * disabled. Returns zero in case of success and a negative error code in case
258  * of failure.
259  */
260 static int produce_free_peb(struct ubi_device *ubi)
261 {
262 	int err;
263 
264 	spin_lock(&ubi->wl_lock);
265 	while (!ubi->free.rb_node) {
266 		spin_unlock(&ubi->wl_lock);
267 
268 		dbg_wl("do one work synchronously");
269 		err = do_work(ubi);
270 		if (err)
271 			return err;
272 
273 		spin_lock(&ubi->wl_lock);
274 	}
275 	spin_unlock(&ubi->wl_lock);
276 
277 	return 0;
278 }
279 
280 /**
281  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
282  * @e: the wear-leveling entry to check
283  * @root: the root of the tree
284  *
285  * This function returns non-zero if @e is in the @root RB-tree and zero if it
286  * is not.
287  */
288 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
289 {
290 	struct rb_node *p;
291 
292 	p = root->rb_node;
293 	while (p) {
294 		struct ubi_wl_entry *e1;
295 
296 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
297 
298 		if (e->pnum == e1->pnum) {
299 			ubi_assert(e == e1);
300 			return 1;
301 		}
302 
303 		if (e->ec < e1->ec)
304 			p = p->rb_left;
305 		else if (e->ec > e1->ec)
306 			p = p->rb_right;
307 		else {
308 			ubi_assert(e->pnum != e1->pnum);
309 			if (e->pnum < e1->pnum)
310 				p = p->rb_left;
311 			else
312 				p = p->rb_right;
313 		}
314 	}
315 
316 	return 0;
317 }
318 
319 /**
320  * prot_queue_add - add physical eraseblock to the protection queue.
321  * @ubi: UBI device description object
322  * @e: the physical eraseblock to add
323  *
324  * This function adds @e to the tail of the protection queue @ubi->pq, where
325  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
326  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
327  * be locked.
328  */
329 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
330 {
331 	int pq_tail = ubi->pq_head - 1;
332 
333 	if (pq_tail < 0)
334 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
335 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
336 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
337 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
338 }
339 
340 /**
341  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
342  * @root: the RB-tree where to look for
343  * @diff: maximum possible difference from the smallest erase counter
344  *
345  * This function looks for a wear leveling entry with erase counter closest to
346  * min + @diff, where min is the smallest erase counter.
347  */
348 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
349 {
350 	struct rb_node *p;
351 	struct ubi_wl_entry *e;
352 	int max;
353 
354 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
355 	max = e->ec + diff;
356 
357 	p = root->rb_node;
358 	while (p) {
359 		struct ubi_wl_entry *e1;
360 
361 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
362 		if (e1->ec >= max)
363 			p = p->rb_left;
364 		else {
365 			p = p->rb_right;
366 			e = e1;
367 		}
368 	}
369 
370 	return e;
371 }
372 
373 /**
374  * ubi_wl_get_peb - get a physical eraseblock.
375  * @ubi: UBI device description object
376  *
377  * This function returns a physical eraseblock in case of success and a
378  * negative error code in case of failure. Might sleep.
379  */
380 int ubi_wl_get_peb(struct ubi_device *ubi)
381 {
382 	int err;
383 	struct ubi_wl_entry *e, *first, *last;
384 
385 retry:
386 	spin_lock(&ubi->wl_lock);
387 	if (!ubi->free.rb_node) {
388 		if (ubi->works_count == 0) {
389 			ubi_assert(list_empty(&ubi->works));
390 			ubi_err("no free eraseblocks");
391 			spin_unlock(&ubi->wl_lock);
392 			return -ENOSPC;
393 		}
394 		spin_unlock(&ubi->wl_lock);
395 
396 		err = produce_free_peb(ubi);
397 		if (err < 0)
398 			return err;
399 		goto retry;
400 	}
401 
402 	first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
403 	last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
404 
405 	if (last->ec - first->ec < WL_FREE_MAX_DIFF)
406 		e = rb_entry(ubi->free.rb_node, struct ubi_wl_entry, u.rb);
407 	else
408 		e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
409 
410 	self_check_in_wl_tree(ubi, e, &ubi->free);
411 
412 	/*
413 	 * Move the physical eraseblock to the protection queue where it will
414 	 * be protected from being moved for some time.
415 	 */
416 	rb_erase(&e->u.rb, &ubi->free);
417 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
418 	prot_queue_add(ubi, e);
419 	spin_unlock(&ubi->wl_lock);
420 
421 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
422 				    ubi->peb_size - ubi->vid_hdr_aloffset);
423 	if (err) {
424 		ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
425 		return err;
426 	}
427 
428 	return e->pnum;
429 }
430 
431 /**
432  * prot_queue_del - remove a physical eraseblock from the protection queue.
433  * @ubi: UBI device description object
434  * @pnum: the physical eraseblock to remove
435  *
436  * This function deletes PEB @pnum from the protection queue and returns zero
437  * in case of success and %-ENODEV if the PEB was not found.
438  */
439 static int prot_queue_del(struct ubi_device *ubi, int pnum)
440 {
441 	struct ubi_wl_entry *e;
442 
443 	e = ubi->lookuptbl[pnum];
444 	if (!e)
445 		return -ENODEV;
446 
447 	if (self_check_in_pq(ubi, e))
448 		return -ENODEV;
449 
450 	list_del(&e->u.list);
451 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
452 	return 0;
453 }
454 
455 /**
456  * sync_erase - synchronously erase a physical eraseblock.
457  * @ubi: UBI device description object
458  * @e: the the physical eraseblock to erase
459  * @torture: if the physical eraseblock has to be tortured
460  *
461  * This function returns zero in case of success and a negative error code in
462  * case of failure.
463  */
464 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
465 		      int torture)
466 {
467 	int err;
468 	struct ubi_ec_hdr *ec_hdr;
469 	unsigned long long ec = e->ec;
470 
471 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
472 
473 	err = self_check_ec(ubi, e->pnum, e->ec);
474 	if (err)
475 		return -EINVAL;
476 
477 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
478 	if (!ec_hdr)
479 		return -ENOMEM;
480 
481 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
482 	if (err < 0)
483 		goto out_free;
484 
485 	ec += err;
486 	if (ec > UBI_MAX_ERASECOUNTER) {
487 		/*
488 		 * Erase counter overflow. Upgrade UBI and use 64-bit
489 		 * erase counters internally.
490 		 */
491 		ubi_err("erase counter overflow at PEB %d, EC %llu",
492 			e->pnum, ec);
493 		err = -EINVAL;
494 		goto out_free;
495 	}
496 
497 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
498 
499 	ec_hdr->ec = cpu_to_be64(ec);
500 
501 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
502 	if (err)
503 		goto out_free;
504 
505 	e->ec = ec;
506 	spin_lock(&ubi->wl_lock);
507 	if (e->ec > ubi->max_ec)
508 		ubi->max_ec = e->ec;
509 	spin_unlock(&ubi->wl_lock);
510 
511 out_free:
512 	kfree(ec_hdr);
513 	return err;
514 }
515 
516 /**
517  * serve_prot_queue - check if it is time to stop protecting PEBs.
518  * @ubi: UBI device description object
519  *
520  * This function is called after each erase operation and removes PEBs from the
521  * tail of the protection queue. These PEBs have been protected for long enough
522  * and should be moved to the used tree.
523  */
524 static void serve_prot_queue(struct ubi_device *ubi)
525 {
526 	struct ubi_wl_entry *e, *tmp;
527 	int count;
528 
529 	/*
530 	 * There may be several protected physical eraseblock to remove,
531 	 * process them all.
532 	 */
533 repeat:
534 	count = 0;
535 	spin_lock(&ubi->wl_lock);
536 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
537 		dbg_wl("PEB %d EC %d protection over, move to used tree",
538 			e->pnum, e->ec);
539 
540 		list_del(&e->u.list);
541 		wl_tree_add(e, &ubi->used);
542 		if (count++ > 32) {
543 			/*
544 			 * Let's be nice and avoid holding the spinlock for
545 			 * too long.
546 			 */
547 			spin_unlock(&ubi->wl_lock);
548 			cond_resched();
549 			goto repeat;
550 		}
551 	}
552 
553 	ubi->pq_head += 1;
554 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
555 		ubi->pq_head = 0;
556 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
557 	spin_unlock(&ubi->wl_lock);
558 }
559 
560 /**
561  * schedule_ubi_work - schedule a work.
562  * @ubi: UBI device description object
563  * @wrk: the work to schedule
564  *
565  * This function adds a work defined by @wrk to the tail of the pending works
566  * list.
567  */
568 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
569 {
570 	spin_lock(&ubi->wl_lock);
571 	list_add_tail(&wrk->list, &ubi->works);
572 	ubi_assert(ubi->works_count >= 0);
573 	ubi->works_count += 1;
574 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
575 		wake_up_process(ubi->bgt_thread);
576 	spin_unlock(&ubi->wl_lock);
577 }
578 
579 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
580 			int cancel);
581 
582 /**
583  * schedule_erase - schedule an erase work.
584  * @ubi: UBI device description object
585  * @e: the WL entry of the physical eraseblock to erase
586  * @vol_id: the volume ID that last used this PEB
587  * @lnum: the last used logical eraseblock number for the PEB
588  * @torture: if the physical eraseblock has to be tortured
589  *
590  * This function returns zero in case of success and a %-ENOMEM in case of
591  * failure.
592  */
593 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
594 			  int vol_id, int lnum, int torture)
595 {
596 	struct ubi_work *wl_wrk;
597 
598 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
599 	       e->pnum, e->ec, torture);
600 
601 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
602 	if (!wl_wrk)
603 		return -ENOMEM;
604 
605 	wl_wrk->func = &erase_worker;
606 	wl_wrk->e = e;
607 	wl_wrk->vol_id = vol_id;
608 	wl_wrk->lnum = lnum;
609 	wl_wrk->torture = torture;
610 
611 	schedule_ubi_work(ubi, wl_wrk);
612 	return 0;
613 }
614 
615 /**
616  * wear_leveling_worker - wear-leveling worker function.
617  * @ubi: UBI device description object
618  * @wrk: the work object
619  * @cancel: non-zero if the worker has to free memory and exit
620  *
621  * This function copies a more worn out physical eraseblock to a less worn out
622  * one. Returns zero in case of success and a negative error code in case of
623  * failure.
624  */
625 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
626 				int cancel)
627 {
628 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
629 	int vol_id = -1, uninitialized_var(lnum);
630 	struct ubi_wl_entry *e1, *e2;
631 	struct ubi_vid_hdr *vid_hdr;
632 
633 	kfree(wrk);
634 	if (cancel)
635 		return 0;
636 
637 	vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
638 	if (!vid_hdr)
639 		return -ENOMEM;
640 
641 	mutex_lock(&ubi->move_mutex);
642 	spin_lock(&ubi->wl_lock);
643 	ubi_assert(!ubi->move_from && !ubi->move_to);
644 	ubi_assert(!ubi->move_to_put);
645 
646 	if (!ubi->free.rb_node ||
647 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
648 		/*
649 		 * No free physical eraseblocks? Well, they must be waiting in
650 		 * the queue to be erased. Cancel movement - it will be
651 		 * triggered again when a free physical eraseblock appears.
652 		 *
653 		 * No used physical eraseblocks? They must be temporarily
654 		 * protected from being moved. They will be moved to the
655 		 * @ubi->used tree later and the wear-leveling will be
656 		 * triggered again.
657 		 */
658 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
659 		       !ubi->free.rb_node, !ubi->used.rb_node);
660 		goto out_cancel;
661 	}
662 
663 	if (!ubi->scrub.rb_node) {
664 		/*
665 		 * Now pick the least worn-out used physical eraseblock and a
666 		 * highly worn-out free physical eraseblock. If the erase
667 		 * counters differ much enough, start wear-leveling.
668 		 */
669 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
670 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
671 
672 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
673 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
674 			       e1->ec, e2->ec);
675 			goto out_cancel;
676 		}
677 		self_check_in_wl_tree(ubi, e1, &ubi->used);
678 		rb_erase(&e1->u.rb, &ubi->used);
679 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
680 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
681 	} else {
682 		/* Perform scrubbing */
683 		scrubbing = 1;
684 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
685 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
686 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
687 		rb_erase(&e1->u.rb, &ubi->scrub);
688 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
689 	}
690 
691 	self_check_in_wl_tree(ubi, e2, &ubi->free);
692 	rb_erase(&e2->u.rb, &ubi->free);
693 	ubi->move_from = e1;
694 	ubi->move_to = e2;
695 	spin_unlock(&ubi->wl_lock);
696 
697 	/*
698 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
699 	 * We so far do not know which logical eraseblock our physical
700 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
701 	 * header first.
702 	 *
703 	 * Note, we are protected from this PEB being unmapped and erased. The
704 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
705 	 * which is being moved was unmapped.
706 	 */
707 
708 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
709 	if (err && err != UBI_IO_BITFLIPS) {
710 		if (err == UBI_IO_FF) {
711 			/*
712 			 * We are trying to move PEB without a VID header. UBI
713 			 * always write VID headers shortly after the PEB was
714 			 * given, so we have a situation when it has not yet
715 			 * had a chance to write it, because it was preempted.
716 			 * So add this PEB to the protection queue so far,
717 			 * because presumably more data will be written there
718 			 * (including the missing VID header), and then we'll
719 			 * move it.
720 			 */
721 			dbg_wl("PEB %d has no VID header", e1->pnum);
722 			protect = 1;
723 			goto out_not_moved;
724 		} else if (err == UBI_IO_FF_BITFLIPS) {
725 			/*
726 			 * The same situation as %UBI_IO_FF, but bit-flips were
727 			 * detected. It is better to schedule this PEB for
728 			 * scrubbing.
729 			 */
730 			dbg_wl("PEB %d has no VID header but has bit-flips",
731 			       e1->pnum);
732 			scrubbing = 1;
733 			goto out_not_moved;
734 		}
735 
736 		ubi_err("error %d while reading VID header from PEB %d",
737 			err, e1->pnum);
738 		goto out_error;
739 	}
740 
741 	vol_id = be32_to_cpu(vid_hdr->vol_id);
742 	lnum = be32_to_cpu(vid_hdr->lnum);
743 
744 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
745 	if (err) {
746 		if (err == MOVE_CANCEL_RACE) {
747 			/*
748 			 * The LEB has not been moved because the volume is
749 			 * being deleted or the PEB has been put meanwhile. We
750 			 * should prevent this PEB from being selected for
751 			 * wear-leveling movement again, so put it to the
752 			 * protection queue.
753 			 */
754 			protect = 1;
755 			goto out_not_moved;
756 		}
757 		if (err == MOVE_RETRY) {
758 			scrubbing = 1;
759 			goto out_not_moved;
760 		}
761 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
762 		    err == MOVE_TARGET_RD_ERR) {
763 			/*
764 			 * Target PEB had bit-flips or write error - torture it.
765 			 */
766 			torture = 1;
767 			goto out_not_moved;
768 		}
769 
770 		if (err == MOVE_SOURCE_RD_ERR) {
771 			/*
772 			 * An error happened while reading the source PEB. Do
773 			 * not switch to R/O mode in this case, and give the
774 			 * upper layers a possibility to recover from this,
775 			 * e.g. by unmapping corresponding LEB. Instead, just
776 			 * put this PEB to the @ubi->erroneous list to prevent
777 			 * UBI from trying to move it over and over again.
778 			 */
779 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
780 				ubi_err("too many erroneous eraseblocks (%d)",
781 					ubi->erroneous_peb_count);
782 				goto out_error;
783 			}
784 			erroneous = 1;
785 			goto out_not_moved;
786 		}
787 
788 		if (err < 0)
789 			goto out_error;
790 
791 		ubi_assert(0);
792 	}
793 
794 	/* The PEB has been successfully moved */
795 	if (scrubbing)
796 		ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
797 			e1->pnum, vol_id, lnum, e2->pnum);
798 	ubi_free_vid_hdr(ubi, vid_hdr);
799 
800 	spin_lock(&ubi->wl_lock);
801 	if (!ubi->move_to_put) {
802 		wl_tree_add(e2, &ubi->used);
803 		e2 = NULL;
804 	}
805 	ubi->move_from = ubi->move_to = NULL;
806 	ubi->move_to_put = ubi->wl_scheduled = 0;
807 	spin_unlock(&ubi->wl_lock);
808 
809 	err = schedule_erase(ubi, e1, vol_id, lnum, 0);
810 	if (err) {
811 		kmem_cache_free(ubi_wl_entry_slab, e1);
812 		if (e2)
813 			kmem_cache_free(ubi_wl_entry_slab, e2);
814 		goto out_ro;
815 	}
816 
817 	if (e2) {
818 		/*
819 		 * Well, the target PEB was put meanwhile, schedule it for
820 		 * erasure.
821 		 */
822 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
823 		       e2->pnum, vol_id, lnum);
824 		err = schedule_erase(ubi, e2, vol_id, lnum, 0);
825 		if (err) {
826 			kmem_cache_free(ubi_wl_entry_slab, e2);
827 			goto out_ro;
828 		}
829 	}
830 
831 	dbg_wl("done");
832 	mutex_unlock(&ubi->move_mutex);
833 	return 0;
834 
835 	/*
836 	 * For some reasons the LEB was not moved, might be an error, might be
837 	 * something else. @e1 was not changed, so return it back. @e2 might
838 	 * have been changed, schedule it for erasure.
839 	 */
840 out_not_moved:
841 	if (vol_id != -1)
842 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
843 		       e1->pnum, vol_id, lnum, e2->pnum, err);
844 	else
845 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
846 		       e1->pnum, e2->pnum, err);
847 	spin_lock(&ubi->wl_lock);
848 	if (protect)
849 		prot_queue_add(ubi, e1);
850 	else if (erroneous) {
851 		wl_tree_add(e1, &ubi->erroneous);
852 		ubi->erroneous_peb_count += 1;
853 	} else if (scrubbing)
854 		wl_tree_add(e1, &ubi->scrub);
855 	else
856 		wl_tree_add(e1, &ubi->used);
857 	ubi_assert(!ubi->move_to_put);
858 	ubi->move_from = ubi->move_to = NULL;
859 	ubi->wl_scheduled = 0;
860 	spin_unlock(&ubi->wl_lock);
861 
862 	ubi_free_vid_hdr(ubi, vid_hdr);
863 	err = schedule_erase(ubi, e2, vol_id, lnum, torture);
864 	if (err) {
865 		kmem_cache_free(ubi_wl_entry_slab, e2);
866 		goto out_ro;
867 	}
868 	mutex_unlock(&ubi->move_mutex);
869 	return 0;
870 
871 out_error:
872 	if (vol_id != -1)
873 		ubi_err("error %d while moving PEB %d to PEB %d",
874 			err, e1->pnum, e2->pnum);
875 	else
876 		ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
877 			err, e1->pnum, vol_id, lnum, e2->pnum);
878 	spin_lock(&ubi->wl_lock);
879 	ubi->move_from = ubi->move_to = NULL;
880 	ubi->move_to_put = ubi->wl_scheduled = 0;
881 	spin_unlock(&ubi->wl_lock);
882 
883 	ubi_free_vid_hdr(ubi, vid_hdr);
884 	kmem_cache_free(ubi_wl_entry_slab, e1);
885 	kmem_cache_free(ubi_wl_entry_slab, e2);
886 
887 out_ro:
888 	ubi_ro_mode(ubi);
889 	mutex_unlock(&ubi->move_mutex);
890 	ubi_assert(err != 0);
891 	return err < 0 ? err : -EIO;
892 
893 out_cancel:
894 	ubi->wl_scheduled = 0;
895 	spin_unlock(&ubi->wl_lock);
896 	mutex_unlock(&ubi->move_mutex);
897 	ubi_free_vid_hdr(ubi, vid_hdr);
898 	return 0;
899 }
900 
901 /**
902  * ensure_wear_leveling - schedule wear-leveling if it is needed.
903  * @ubi: UBI device description object
904  *
905  * This function checks if it is time to start wear-leveling and schedules it
906  * if yes. This function returns zero in case of success and a negative error
907  * code in case of failure.
908  */
909 static int ensure_wear_leveling(struct ubi_device *ubi)
910 {
911 	int err = 0;
912 	struct ubi_wl_entry *e1;
913 	struct ubi_wl_entry *e2;
914 	struct ubi_work *wrk;
915 
916 	spin_lock(&ubi->wl_lock);
917 	if (ubi->wl_scheduled)
918 		/* Wear-leveling is already in the work queue */
919 		goto out_unlock;
920 
921 	/*
922 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
923 	 * the WL worker has to be scheduled anyway.
924 	 */
925 	if (!ubi->scrub.rb_node) {
926 		if (!ubi->used.rb_node || !ubi->free.rb_node)
927 			/* No physical eraseblocks - no deal */
928 			goto out_unlock;
929 
930 		/*
931 		 * We schedule wear-leveling only if the difference between the
932 		 * lowest erase counter of used physical eraseblocks and a high
933 		 * erase counter of free physical eraseblocks is greater than
934 		 * %UBI_WL_THRESHOLD.
935 		 */
936 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
937 		e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
938 
939 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
940 			goto out_unlock;
941 		dbg_wl("schedule wear-leveling");
942 	} else
943 		dbg_wl("schedule scrubbing");
944 
945 	ubi->wl_scheduled = 1;
946 	spin_unlock(&ubi->wl_lock);
947 
948 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
949 	if (!wrk) {
950 		err = -ENOMEM;
951 		goto out_cancel;
952 	}
953 
954 	wrk->func = &wear_leveling_worker;
955 	schedule_ubi_work(ubi, wrk);
956 	return err;
957 
958 out_cancel:
959 	spin_lock(&ubi->wl_lock);
960 	ubi->wl_scheduled = 0;
961 out_unlock:
962 	spin_unlock(&ubi->wl_lock);
963 	return err;
964 }
965 
966 /**
967  * erase_worker - physical eraseblock erase worker function.
968  * @ubi: UBI device description object
969  * @wl_wrk: the work object
970  * @cancel: non-zero if the worker has to free memory and exit
971  *
972  * This function erases a physical eraseblock and perform torture testing if
973  * needed. It also takes care about marking the physical eraseblock bad if
974  * needed. Returns zero in case of success and a negative error code in case of
975  * failure.
976  */
977 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
978 			int cancel)
979 {
980 	struct ubi_wl_entry *e = wl_wrk->e;
981 	int pnum = e->pnum, err, need;
982 	int vol_id = wl_wrk->vol_id;
983 	int lnum = wl_wrk->lnum;
984 
985 	if (cancel) {
986 		dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
987 		kfree(wl_wrk);
988 		kmem_cache_free(ubi_wl_entry_slab, e);
989 		return 0;
990 	}
991 
992 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
993 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
994 
995 	err = sync_erase(ubi, e, wl_wrk->torture);
996 	if (!err) {
997 		/* Fine, we've erased it successfully */
998 		kfree(wl_wrk);
999 
1000 		spin_lock(&ubi->wl_lock);
1001 		wl_tree_add(e, &ubi->free);
1002 		spin_unlock(&ubi->wl_lock);
1003 
1004 		/*
1005 		 * One more erase operation has happened, take care about
1006 		 * protected physical eraseblocks.
1007 		 */
1008 		serve_prot_queue(ubi);
1009 
1010 		/* And take care about wear-leveling */
1011 		err = ensure_wear_leveling(ubi);
1012 		return err;
1013 	}
1014 
1015 	ubi_err("failed to erase PEB %d, error %d", pnum, err);
1016 	kfree(wl_wrk);
1017 
1018 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1019 	    err == -EBUSY) {
1020 		int err1;
1021 
1022 		/* Re-schedule the LEB for erasure */
1023 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0);
1024 		if (err1) {
1025 			err = err1;
1026 			goto out_ro;
1027 		}
1028 		return err;
1029 	}
1030 
1031 	kmem_cache_free(ubi_wl_entry_slab, e);
1032 	if (err != -EIO)
1033 		/*
1034 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1035 		 * this physical eraseblock for erasure again would cause
1036 		 * errors again and again. Well, lets switch to R/O mode.
1037 		 */
1038 		goto out_ro;
1039 
1040 	/* It is %-EIO, the PEB went bad */
1041 
1042 	if (!ubi->bad_allowed) {
1043 		ubi_err("bad physical eraseblock %d detected", pnum);
1044 		goto out_ro;
1045 	}
1046 
1047 	spin_lock(&ubi->volumes_lock);
1048 	need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1049 	if (need > 0) {
1050 		need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1051 		ubi->avail_pebs -= need;
1052 		ubi->rsvd_pebs += need;
1053 		ubi->beb_rsvd_pebs += need;
1054 		if (need > 0)
1055 			ubi_msg("reserve more %d PEBs", need);
1056 	}
1057 
1058 	if (ubi->beb_rsvd_pebs == 0) {
1059 		spin_unlock(&ubi->volumes_lock);
1060 		ubi_err("no reserved physical eraseblocks");
1061 		goto out_ro;
1062 	}
1063 	spin_unlock(&ubi->volumes_lock);
1064 
1065 	ubi_msg("mark PEB %d as bad", pnum);
1066 	err = ubi_io_mark_bad(ubi, pnum);
1067 	if (err)
1068 		goto out_ro;
1069 
1070 	spin_lock(&ubi->volumes_lock);
1071 	ubi->beb_rsvd_pebs -= 1;
1072 	ubi->bad_peb_count += 1;
1073 	ubi->good_peb_count -= 1;
1074 	ubi_calculate_reserved(ubi);
1075 	if (ubi->beb_rsvd_pebs)
1076 		ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1077 	else
1078 		ubi_warn("last PEB from the reserved pool was used");
1079 	spin_unlock(&ubi->volumes_lock);
1080 
1081 	return err;
1082 
1083 out_ro:
1084 	ubi_ro_mode(ubi);
1085 	return err;
1086 }
1087 
1088 /**
1089  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1090  * @ubi: UBI device description object
1091  * @vol_id: the volume ID that last used this PEB
1092  * @lnum: the last used logical eraseblock number for the PEB
1093  * @pnum: physical eraseblock to return
1094  * @torture: if this physical eraseblock has to be tortured
1095  *
1096  * This function is called to return physical eraseblock @pnum to the pool of
1097  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1098  * occurred to this @pnum and it has to be tested. This function returns zero
1099  * in case of success, and a negative error code in case of failure.
1100  */
1101 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1102 		   int pnum, int torture)
1103 {
1104 	int err;
1105 	struct ubi_wl_entry *e;
1106 
1107 	dbg_wl("PEB %d", pnum);
1108 	ubi_assert(pnum >= 0);
1109 	ubi_assert(pnum < ubi->peb_count);
1110 
1111 retry:
1112 	spin_lock(&ubi->wl_lock);
1113 	e = ubi->lookuptbl[pnum];
1114 	if (e == ubi->move_from) {
1115 		/*
1116 		 * User is putting the physical eraseblock which was selected to
1117 		 * be moved. It will be scheduled for erasure in the
1118 		 * wear-leveling worker.
1119 		 */
1120 		dbg_wl("PEB %d is being moved, wait", pnum);
1121 		spin_unlock(&ubi->wl_lock);
1122 
1123 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1124 		mutex_lock(&ubi->move_mutex);
1125 		mutex_unlock(&ubi->move_mutex);
1126 		goto retry;
1127 	} else if (e == ubi->move_to) {
1128 		/*
1129 		 * User is putting the physical eraseblock which was selected
1130 		 * as the target the data is moved to. It may happen if the EBA
1131 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1132 		 * but the WL sub-system has not put the PEB to the "used" tree
1133 		 * yet, but it is about to do this. So we just set a flag which
1134 		 * will tell the WL worker that the PEB is not needed anymore
1135 		 * and should be scheduled for erasure.
1136 		 */
1137 		dbg_wl("PEB %d is the target of data moving", pnum);
1138 		ubi_assert(!ubi->move_to_put);
1139 		ubi->move_to_put = 1;
1140 		spin_unlock(&ubi->wl_lock);
1141 		return 0;
1142 	} else {
1143 		if (in_wl_tree(e, &ubi->used)) {
1144 			self_check_in_wl_tree(ubi, e, &ubi->used);
1145 			rb_erase(&e->u.rb, &ubi->used);
1146 		} else if (in_wl_tree(e, &ubi->scrub)) {
1147 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1148 			rb_erase(&e->u.rb, &ubi->scrub);
1149 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1150 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1151 			rb_erase(&e->u.rb, &ubi->erroneous);
1152 			ubi->erroneous_peb_count -= 1;
1153 			ubi_assert(ubi->erroneous_peb_count >= 0);
1154 			/* Erroneous PEBs should be tortured */
1155 			torture = 1;
1156 		} else {
1157 			err = prot_queue_del(ubi, e->pnum);
1158 			if (err) {
1159 				ubi_err("PEB %d not found", pnum);
1160 				ubi_ro_mode(ubi);
1161 				spin_unlock(&ubi->wl_lock);
1162 				return err;
1163 			}
1164 		}
1165 	}
1166 	spin_unlock(&ubi->wl_lock);
1167 
1168 	err = schedule_erase(ubi, e, vol_id, lnum, torture);
1169 	if (err) {
1170 		spin_lock(&ubi->wl_lock);
1171 		wl_tree_add(e, &ubi->used);
1172 		spin_unlock(&ubi->wl_lock);
1173 	}
1174 
1175 	return err;
1176 }
1177 
1178 /**
1179  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1180  * @ubi: UBI device description object
1181  * @pnum: the physical eraseblock to schedule
1182  *
1183  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1184  * needs scrubbing. This function schedules a physical eraseblock for
1185  * scrubbing which is done in background. This function returns zero in case of
1186  * success and a negative error code in case of failure.
1187  */
1188 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1189 {
1190 	struct ubi_wl_entry *e;
1191 
1192 	dbg_msg("schedule PEB %d for scrubbing", pnum);
1193 
1194 retry:
1195 	spin_lock(&ubi->wl_lock);
1196 	e = ubi->lookuptbl[pnum];
1197 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1198 				   in_wl_tree(e, &ubi->erroneous)) {
1199 		spin_unlock(&ubi->wl_lock);
1200 		return 0;
1201 	}
1202 
1203 	if (e == ubi->move_to) {
1204 		/*
1205 		 * This physical eraseblock was used to move data to. The data
1206 		 * was moved but the PEB was not yet inserted to the proper
1207 		 * tree. We should just wait a little and let the WL worker
1208 		 * proceed.
1209 		 */
1210 		spin_unlock(&ubi->wl_lock);
1211 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1212 		yield();
1213 		goto retry;
1214 	}
1215 
1216 	if (in_wl_tree(e, &ubi->used)) {
1217 		self_check_in_wl_tree(ubi, e, &ubi->used);
1218 		rb_erase(&e->u.rb, &ubi->used);
1219 	} else {
1220 		int err;
1221 
1222 		err = prot_queue_del(ubi, e->pnum);
1223 		if (err) {
1224 			ubi_err("PEB %d not found", pnum);
1225 			ubi_ro_mode(ubi);
1226 			spin_unlock(&ubi->wl_lock);
1227 			return err;
1228 		}
1229 	}
1230 
1231 	wl_tree_add(e, &ubi->scrub);
1232 	spin_unlock(&ubi->wl_lock);
1233 
1234 	/*
1235 	 * Technically scrubbing is the same as wear-leveling, so it is done
1236 	 * by the WL worker.
1237 	 */
1238 	return ensure_wear_leveling(ubi);
1239 }
1240 
1241 /**
1242  * ubi_wl_flush - flush all pending works.
1243  * @ubi: UBI device description object
1244  * @vol_id: the volume id to flush for
1245  * @lnum: the logical eraseblock number to flush for
1246  *
1247  * This function executes all pending works for a particular volume id /
1248  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1249  * acts as a wildcard for all of the corresponding volume numbers or logical
1250  * eraseblock numbers. It returns zero in case of success and a negative error
1251  * code in case of failure.
1252  */
1253 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1254 {
1255 	int err = 0;
1256 	int found = 1;
1257 
1258 	/*
1259 	 * Erase while the pending works queue is not empty, but not more than
1260 	 * the number of currently pending works.
1261 	 */
1262 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1263 	       vol_id, lnum, ubi->works_count);
1264 
1265 	while (found) {
1266 		struct ubi_work *wrk;
1267 		found = 0;
1268 
1269 		down_read(&ubi->work_sem);
1270 		spin_lock(&ubi->wl_lock);
1271 		list_for_each_entry(wrk, &ubi->works, list) {
1272 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1273 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1274 				list_del(&wrk->list);
1275 				ubi->works_count -= 1;
1276 				ubi_assert(ubi->works_count >= 0);
1277 				spin_unlock(&ubi->wl_lock);
1278 
1279 				err = wrk->func(ubi, wrk, 0);
1280 				if (err) {
1281 					up_read(&ubi->work_sem);
1282 					return err;
1283 				}
1284 
1285 				spin_lock(&ubi->wl_lock);
1286 				found = 1;
1287 				break;
1288 			}
1289 		}
1290 		spin_unlock(&ubi->wl_lock);
1291 		up_read(&ubi->work_sem);
1292 	}
1293 
1294 	/*
1295 	 * Make sure all the works which have been done in parallel are
1296 	 * finished.
1297 	 */
1298 	down_write(&ubi->work_sem);
1299 	up_write(&ubi->work_sem);
1300 
1301 	return err;
1302 }
1303 
1304 /**
1305  * tree_destroy - destroy an RB-tree.
1306  * @root: the root of the tree to destroy
1307  */
1308 static void tree_destroy(struct rb_root *root)
1309 {
1310 	struct rb_node *rb;
1311 	struct ubi_wl_entry *e;
1312 
1313 	rb = root->rb_node;
1314 	while (rb) {
1315 		if (rb->rb_left)
1316 			rb = rb->rb_left;
1317 		else if (rb->rb_right)
1318 			rb = rb->rb_right;
1319 		else {
1320 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1321 
1322 			rb = rb_parent(rb);
1323 			if (rb) {
1324 				if (rb->rb_left == &e->u.rb)
1325 					rb->rb_left = NULL;
1326 				else
1327 					rb->rb_right = NULL;
1328 			}
1329 
1330 			kmem_cache_free(ubi_wl_entry_slab, e);
1331 		}
1332 	}
1333 }
1334 
1335 /**
1336  * ubi_thread - UBI background thread.
1337  * @u: the UBI device description object pointer
1338  */
1339 int ubi_thread(void *u)
1340 {
1341 	int failures = 0;
1342 	struct ubi_device *ubi = u;
1343 
1344 	ubi_msg("background thread \"%s\" started, PID %d",
1345 		ubi->bgt_name, task_pid_nr(current));
1346 
1347 	set_freezable();
1348 	for (;;) {
1349 		int err;
1350 
1351 		if (kthread_should_stop())
1352 			break;
1353 
1354 		if (try_to_freeze())
1355 			continue;
1356 
1357 		spin_lock(&ubi->wl_lock);
1358 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1359 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1360 			set_current_state(TASK_INTERRUPTIBLE);
1361 			spin_unlock(&ubi->wl_lock);
1362 			schedule();
1363 			continue;
1364 		}
1365 		spin_unlock(&ubi->wl_lock);
1366 
1367 		err = do_work(ubi);
1368 		if (err) {
1369 			ubi_err("%s: work failed with error code %d",
1370 				ubi->bgt_name, err);
1371 			if (failures++ > WL_MAX_FAILURES) {
1372 				/*
1373 				 * Too many failures, disable the thread and
1374 				 * switch to read-only mode.
1375 				 */
1376 				ubi_msg("%s: %d consecutive failures",
1377 					ubi->bgt_name, WL_MAX_FAILURES);
1378 				ubi_ro_mode(ubi);
1379 				ubi->thread_enabled = 0;
1380 				continue;
1381 			}
1382 		} else
1383 			failures = 0;
1384 
1385 		cond_resched();
1386 	}
1387 
1388 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1389 	return 0;
1390 }
1391 
1392 /**
1393  * cancel_pending - cancel all pending works.
1394  * @ubi: UBI device description object
1395  */
1396 static void cancel_pending(struct ubi_device *ubi)
1397 {
1398 	while (!list_empty(&ubi->works)) {
1399 		struct ubi_work *wrk;
1400 
1401 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1402 		list_del(&wrk->list);
1403 		wrk->func(ubi, wrk, 1);
1404 		ubi->works_count -= 1;
1405 		ubi_assert(ubi->works_count >= 0);
1406 	}
1407 }
1408 
1409 /**
1410  * ubi_wl_init - initialize the WL sub-system using attaching information.
1411  * @ubi: UBI device description object
1412  * @ai: attaching information
1413  *
1414  * This function returns zero in case of success, and a negative error code in
1415  * case of failure.
1416  */
1417 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1418 {
1419 	int err, i;
1420 	struct rb_node *rb1, *rb2;
1421 	struct ubi_ainf_volume *av;
1422 	struct ubi_ainf_peb *aeb, *tmp;
1423 	struct ubi_wl_entry *e;
1424 
1425 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1426 	spin_lock_init(&ubi->wl_lock);
1427 	mutex_init(&ubi->move_mutex);
1428 	init_rwsem(&ubi->work_sem);
1429 	ubi->max_ec = ai->max_ec;
1430 	INIT_LIST_HEAD(&ubi->works);
1431 
1432 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1433 
1434 	err = -ENOMEM;
1435 	ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1436 	if (!ubi->lookuptbl)
1437 		return err;
1438 
1439 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1440 		INIT_LIST_HEAD(&ubi->pq[i]);
1441 	ubi->pq_head = 0;
1442 
1443 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1444 		cond_resched();
1445 
1446 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1447 		if (!e)
1448 			goto out_free;
1449 
1450 		e->pnum = aeb->pnum;
1451 		e->ec = aeb->ec;
1452 		ubi->lookuptbl[e->pnum] = e;
1453 		if (schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0)) {
1454 			kmem_cache_free(ubi_wl_entry_slab, e);
1455 			goto out_free;
1456 		}
1457 	}
1458 
1459 	list_for_each_entry(aeb, &ai->free, u.list) {
1460 		cond_resched();
1461 
1462 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1463 		if (!e)
1464 			goto out_free;
1465 
1466 		e->pnum = aeb->pnum;
1467 		e->ec = aeb->ec;
1468 		ubi_assert(e->ec >= 0);
1469 		wl_tree_add(e, &ubi->free);
1470 		ubi->lookuptbl[e->pnum] = e;
1471 	}
1472 
1473 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1474 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1475 			cond_resched();
1476 
1477 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1478 			if (!e)
1479 				goto out_free;
1480 
1481 			e->pnum = aeb->pnum;
1482 			e->ec = aeb->ec;
1483 			ubi->lookuptbl[e->pnum] = e;
1484 			if (!aeb->scrub) {
1485 				dbg_wl("add PEB %d EC %d to the used tree",
1486 				       e->pnum, e->ec);
1487 				wl_tree_add(e, &ubi->used);
1488 			} else {
1489 				dbg_wl("add PEB %d EC %d to the scrub tree",
1490 				       e->pnum, e->ec);
1491 				wl_tree_add(e, &ubi->scrub);
1492 			}
1493 		}
1494 	}
1495 
1496 	if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1497 		ubi_err("no enough physical eraseblocks (%d, need %d)",
1498 			ubi->avail_pebs, WL_RESERVED_PEBS);
1499 		if (ubi->corr_peb_count)
1500 			ubi_err("%d PEBs are corrupted and not used",
1501 				ubi->corr_peb_count);
1502 		goto out_free;
1503 	}
1504 	ubi->avail_pebs -= WL_RESERVED_PEBS;
1505 	ubi->rsvd_pebs += WL_RESERVED_PEBS;
1506 
1507 	/* Schedule wear-leveling if needed */
1508 	err = ensure_wear_leveling(ubi);
1509 	if (err)
1510 		goto out_free;
1511 
1512 	return 0;
1513 
1514 out_free:
1515 	cancel_pending(ubi);
1516 	tree_destroy(&ubi->used);
1517 	tree_destroy(&ubi->free);
1518 	tree_destroy(&ubi->scrub);
1519 	kfree(ubi->lookuptbl);
1520 	return err;
1521 }
1522 
1523 /**
1524  * protection_queue_destroy - destroy the protection queue.
1525  * @ubi: UBI device description object
1526  */
1527 static void protection_queue_destroy(struct ubi_device *ubi)
1528 {
1529 	int i;
1530 	struct ubi_wl_entry *e, *tmp;
1531 
1532 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1533 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1534 			list_del(&e->u.list);
1535 			kmem_cache_free(ubi_wl_entry_slab, e);
1536 		}
1537 	}
1538 }
1539 
1540 /**
1541  * ubi_wl_close - close the wear-leveling sub-system.
1542  * @ubi: UBI device description object
1543  */
1544 void ubi_wl_close(struct ubi_device *ubi)
1545 {
1546 	dbg_wl("close the WL sub-system");
1547 	cancel_pending(ubi);
1548 	protection_queue_destroy(ubi);
1549 	tree_destroy(&ubi->used);
1550 	tree_destroy(&ubi->erroneous);
1551 	tree_destroy(&ubi->free);
1552 	tree_destroy(&ubi->scrub);
1553 	kfree(ubi->lookuptbl);
1554 }
1555 
1556 /**
1557  * self_check_ec - make sure that the erase counter of a PEB is correct.
1558  * @ubi: UBI device description object
1559  * @pnum: the physical eraseblock number to check
1560  * @ec: the erase counter to check
1561  *
1562  * This function returns zero if the erase counter of physical eraseblock @pnum
1563  * is equivalent to @ec, and a negative error code if not or if an error
1564  * occurred.
1565  */
1566 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1567 {
1568 	int err;
1569 	long long read_ec;
1570 	struct ubi_ec_hdr *ec_hdr;
1571 
1572 	if (!ubi->dbg->chk_gen)
1573 		return 0;
1574 
1575 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1576 	if (!ec_hdr)
1577 		return -ENOMEM;
1578 
1579 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1580 	if (err && err != UBI_IO_BITFLIPS) {
1581 		/* The header does not have to exist */
1582 		err = 0;
1583 		goto out_free;
1584 	}
1585 
1586 	read_ec = be64_to_cpu(ec_hdr->ec);
1587 	if (ec != read_ec) {
1588 		ubi_err("self-check failed for PEB %d", pnum);
1589 		ubi_err("read EC is %lld, should be %d", read_ec, ec);
1590 		dump_stack();
1591 		err = 1;
1592 	} else
1593 		err = 0;
1594 
1595 out_free:
1596 	kfree(ec_hdr);
1597 	return err;
1598 }
1599 
1600 /**
1601  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1602  * @ubi: UBI device description object
1603  * @e: the wear-leveling entry to check
1604  * @root: the root of the tree
1605  *
1606  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1607  * is not.
1608  */
1609 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1610 				 struct ubi_wl_entry *e, struct rb_root *root)
1611 {
1612 	if (!ubi->dbg->chk_gen)
1613 		return 0;
1614 
1615 	if (in_wl_tree(e, root))
1616 		return 0;
1617 
1618 	ubi_err("self-check failed for PEB %d, EC %d, RB-tree %p ",
1619 		e->pnum, e->ec, root);
1620 	dump_stack();
1621 	return -EINVAL;
1622 }
1623 
1624 /**
1625  * self_check_in_pq - check if wear-leveling entry is in the protection
1626  *                        queue.
1627  * @ubi: UBI device description object
1628  * @e: the wear-leveling entry to check
1629  *
1630  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1631  */
1632 static int self_check_in_pq(const struct ubi_device *ubi,
1633 			    struct ubi_wl_entry *e)
1634 {
1635 	struct ubi_wl_entry *p;
1636 	int i;
1637 
1638 	if (!ubi->dbg->chk_gen)
1639 		return 0;
1640 
1641 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1642 		list_for_each_entry(p, &ubi->pq[i], u.list)
1643 			if (p == e)
1644 				return 0;
1645 
1646 	ubi_err("self-check failed for PEB %d, EC %d, Protect queue",
1647 		e->pnum, e->ec);
1648 	dump_stack();
1649 	return -EINVAL;
1650 }
1651