xref: /linux/drivers/mtd/ubi/wl.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (c) International Business Machines Corp., 2006
4  *
5  * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6  */
7 
8 /*
9  * UBI wear-leveling sub-system.
10  *
11  * This sub-system is responsible for wear-leveling. It works in terms of
12  * physical eraseblocks and erase counters and knows nothing about logical
13  * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14  * eraseblocks are of two types - used and free. Used physical eraseblocks are
15  * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16  * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17  *
18  * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19  * header. The rest of the physical eraseblock contains only %0xFF bytes.
20  *
21  * When physical eraseblocks are returned to the WL sub-system by means of the
22  * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23  * done asynchronously in context of the per-UBI device background thread,
24  * which is also managed by the WL sub-system.
25  *
26  * The wear-leveling is ensured by means of moving the contents of used
27  * physical eraseblocks with low erase counter to free physical eraseblocks
28  * with high erase counter.
29  *
30  * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31  * bad.
32  *
33  * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34  * in a physical eraseblock, it has to be moved. Technically this is the same
35  * as moving it for wear-leveling reasons.
36  *
37  * As it was said, for the UBI sub-system all physical eraseblocks are either
38  * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39  * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40  * RB-trees, as well as (temporarily) in the @wl->pq queue.
41  *
42  * When the WL sub-system returns a physical eraseblock, the physical
43  * eraseblock is protected from being moved for some "time". For this reason,
44  * the physical eraseblock is not directly moved from the @wl->free tree to the
45  * @wl->used tree. There is a protection queue in between where this
46  * physical eraseblock is temporarily stored (@wl->pq).
47  *
48  * All this protection stuff is needed because:
49  *  o we don't want to move physical eraseblocks just after we have given them
50  *    to the user; instead, we first want to let users fill them up with data;
51  *
52  *  o there is a chance that the user will put the physical eraseblock very
53  *    soon, so it makes sense not to move it for some time, but wait.
54  *
55  * Physical eraseblocks stay protected only for limited time. But the "time" is
56  * measured in erase cycles in this case. This is implemented with help of the
57  * protection queue. Eraseblocks are put to the tail of this queue when they
58  * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59  * head of the queue on each erase operation (for any eraseblock). So the
60  * length of the queue defines how may (global) erase cycles PEBs are protected.
61  *
62  * To put it differently, each physical eraseblock has 2 main states: free and
63  * used. The former state corresponds to the @wl->free tree. The latter state
64  * is split up on several sub-states:
65  * o the WL movement is allowed (@wl->used tree);
66  * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67  *   erroneous - e.g., there was a read error;
68  * o the WL movement is temporarily prohibited (@wl->pq queue);
69  * o scrubbing is needed (@wl->scrub tree).
70  *
71  * Depending on the sub-state, wear-leveling entries of the used physical
72  * eraseblocks may be kept in one of those structures.
73  *
74  * Note, in this implementation, we keep a small in-RAM object for each physical
75  * eraseblock. This is surely not a scalable solution. But it appears to be good
76  * enough for moderately large flashes and it is simple. In future, one may
77  * re-work this sub-system and make it more scalable.
78  *
79  * At the moment this sub-system does not utilize the sequence number, which
80  * was introduced relatively recently. But it would be wise to do this because
81  * the sequence number of a logical eraseblock characterizes how old is it. For
82  * example, when we move a PEB with low erase counter, and we need to pick the
83  * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84  * pick target PEB with an average EC if our PEB is not very "old". This is a
85  * room for future re-works of the WL sub-system.
86  */
87 
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94 
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97 
98 /*
99  * Maximum difference between two erase counters. If this threshold is
100  * exceeded, the WL sub-system starts moving data from used physical
101  * eraseblocks with low erase counter to free physical eraseblocks with high
102  * erase counter.
103  */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105 
106 /*
107  * When a physical eraseblock is moved, the WL sub-system has to pick the target
108  * physical eraseblock to move to. The simplest way would be just to pick the
109  * one with the highest erase counter. But in certain workloads this could lead
110  * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111  * situation when the picked physical eraseblock is constantly erased after the
112  * data is written to it. So, we have a constant which limits the highest erase
113  * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114  * does not pick eraseblocks with erase counter greater than the lowest erase
115  * counter plus %WL_FREE_MAX_DIFF.
116  */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118 
119 /*
120  * Maximum number of consecutive background thread failures which is enough to
121  * switch to read-only mode.
122  */
123 #define WL_MAX_FAILURES 32
124 
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 				 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 			    struct ubi_wl_entry *e);
130 
131 /**
132  * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133  * @e: the wear-leveling entry to add
134  * @root: the root of the tree
135  *
136  * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137  * the @ubi->used and @ubi->free RB-trees.
138  */
139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 	struct rb_node **p, *parent = NULL;
142 
143 	p = &root->rb_node;
144 	while (*p) {
145 		struct ubi_wl_entry *e1;
146 
147 		parent = *p;
148 		e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149 
150 		if (e->ec < e1->ec)
151 			p = &(*p)->rb_left;
152 		else if (e->ec > e1->ec)
153 			p = &(*p)->rb_right;
154 		else {
155 			ubi_assert(e->pnum != e1->pnum);
156 			if (e->pnum < e1->pnum)
157 				p = &(*p)->rb_left;
158 			else
159 				p = &(*p)->rb_right;
160 		}
161 	}
162 
163 	rb_link_node(&e->u.rb, parent, p);
164 	rb_insert_color(&e->u.rb, root);
165 }
166 
167 /**
168  * wl_tree_destroy - destroy a wear-leveling entry.
169  * @ubi: UBI device description object
170  * @e: the wear-leveling entry to add
171  *
172  * This function destroys a wear leveling entry and removes
173  * the reference from the lookup table.
174  */
175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 	ubi->lookuptbl[e->pnum] = NULL;
178 	kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180 
181 /**
182  * do_work - do one pending work.
183  * @ubi: UBI device description object
184  *
185  * This function returns zero in case of success and a negative error code in
186  * case of failure.
187  */
188 static int do_work(struct ubi_device *ubi)
189 {
190 	int err;
191 	struct ubi_work *wrk;
192 
193 	cond_resched();
194 
195 	/*
196 	 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 	 * it in read mode, so many of them may be doing works at a time. But
198 	 * the queue flush code has to be sure the whole queue of works is
199 	 * done, and it takes the mutex in write mode.
200 	 */
201 	down_read(&ubi->work_sem);
202 	spin_lock(&ubi->wl_lock);
203 	if (list_empty(&ubi->works)) {
204 		spin_unlock(&ubi->wl_lock);
205 		up_read(&ubi->work_sem);
206 		return 0;
207 	}
208 
209 	wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 	list_del(&wrk->list);
211 	ubi->works_count -= 1;
212 	ubi_assert(ubi->works_count >= 0);
213 	spin_unlock(&ubi->wl_lock);
214 
215 	/*
216 	 * Call the worker function. Do not touch the work structure
217 	 * after this call as it will have been freed or reused by that
218 	 * time by the worker function.
219 	 */
220 	err = wrk->func(ubi, wrk, 0);
221 	if (err)
222 		ubi_err(ubi, "work failed with error code %d", err);
223 	up_read(&ubi->work_sem);
224 
225 	return err;
226 }
227 
228 /**
229  * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230  * @e: the wear-leveling entry to check
231  * @root: the root of the tree
232  *
233  * This function returns non-zero if @e is in the @root RB-tree and zero if it
234  * is not.
235  */
236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 	struct rb_node *p;
239 
240 	p = root->rb_node;
241 	while (p) {
242 		struct ubi_wl_entry *e1;
243 
244 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245 
246 		if (e->pnum == e1->pnum) {
247 			ubi_assert(e == e1);
248 			return 1;
249 		}
250 
251 		if (e->ec < e1->ec)
252 			p = p->rb_left;
253 		else if (e->ec > e1->ec)
254 			p = p->rb_right;
255 		else {
256 			ubi_assert(e->pnum != e1->pnum);
257 			if (e->pnum < e1->pnum)
258 				p = p->rb_left;
259 			else
260 				p = p->rb_right;
261 		}
262 	}
263 
264 	return 0;
265 }
266 
267 /**
268  * in_pq - check if a wear-leveling entry is present in the protection queue.
269  * @ubi: UBI device description object
270  * @e: the wear-leveling entry to check
271  *
272  * This function returns non-zero if @e is in the protection queue and zero
273  * if it is not.
274  */
275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 	struct ubi_wl_entry *p;
278 	int i;
279 
280 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 		list_for_each_entry(p, &ubi->pq[i], u.list)
282 			if (p == e)
283 				return 1;
284 
285 	return 0;
286 }
287 
288 /**
289  * prot_queue_add - add physical eraseblock to the protection queue.
290  * @ubi: UBI device description object
291  * @e: the physical eraseblock to add
292  *
293  * This function adds @e to the tail of the protection queue @ubi->pq, where
294  * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295  * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296  * be locked.
297  */
298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 	int pq_tail = ubi->pq_head - 1;
301 
302 	if (pq_tail < 0)
303 		pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 	ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 	list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 	dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308 
309 /**
310  * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311  * @ubi: UBI device description object
312  * @root: the RB-tree where to look for
313  * @diff: maximum possible difference from the smallest erase counter
314  *
315  * This function looks for a wear leveling entry with erase counter closest to
316  * min + @diff, where min is the smallest erase counter.
317  */
318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 					  struct rb_root *root, int diff)
320 {
321 	struct rb_node *p;
322 	struct ubi_wl_entry *e;
323 	int max;
324 
325 	e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 	max = e->ec + diff;
327 
328 	p = root->rb_node;
329 	while (p) {
330 		struct ubi_wl_entry *e1;
331 
332 		e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 		if (e1->ec >= max)
334 			p = p->rb_left;
335 		else {
336 			p = p->rb_right;
337 			e = e1;
338 		}
339 	}
340 
341 	return e;
342 }
343 
344 /**
345  * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346  * @ubi: UBI device description object
347  * @root: the RB-tree where to look for
348  *
349  * This function looks for a wear leveling entry with medium erase counter,
350  * but not greater or equivalent than the lowest erase counter plus
351  * %WL_FREE_MAX_DIFF/2.
352  */
353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 					       struct rb_root *root)
355 {
356 	struct ubi_wl_entry *e, *first, *last;
357 
358 	first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 	last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360 
361 	if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 		e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363 
364 		/* If no fastmap has been written and this WL entry can be used
365 		 * as anchor PEB, hold it back and return the second best
366 		 * WL entry such that fastmap can use the anchor PEB later. */
367 		e = may_reserve_for_fm(ubi, e, root);
368 	} else
369 		e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370 
371 	return e;
372 }
373 
374 /**
375  * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376  * refill_wl_user_pool().
377  * @ubi: UBI device description object
378  *
379  * This function returns a a wear leveling entry in case of success and
380  * NULL in case of failure.
381  */
382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 	struct ubi_wl_entry *e;
385 
386 	e = find_mean_wl_entry(ubi, &ubi->free);
387 	if (!e) {
388 		ubi_err(ubi, "no free eraseblocks");
389 		return NULL;
390 	}
391 
392 	self_check_in_wl_tree(ubi, e, &ubi->free);
393 
394 	/*
395 	 * Move the physical eraseblock to the protection queue where it will
396 	 * be protected from being moved for some time.
397 	 */
398 	rb_erase(&e->u.rb, &ubi->free);
399 	ubi->free_count--;
400 	dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401 
402 	return e;
403 }
404 
405 /**
406  * prot_queue_del - remove a physical eraseblock from the protection queue.
407  * @ubi: UBI device description object
408  * @pnum: the physical eraseblock to remove
409  *
410  * This function deletes PEB @pnum from the protection queue and returns zero
411  * in case of success and %-ENODEV if the PEB was not found.
412  */
413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 	struct ubi_wl_entry *e;
416 
417 	e = ubi->lookuptbl[pnum];
418 	if (!e)
419 		return -ENODEV;
420 
421 	if (self_check_in_pq(ubi, e))
422 		return -ENODEV;
423 
424 	list_del(&e->u.list);
425 	dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 	return 0;
427 }
428 
429 /**
430  * sync_erase - synchronously erase a physical eraseblock.
431  * @ubi: UBI device description object
432  * @e: the the physical eraseblock to erase
433  * @torture: if the physical eraseblock has to be tortured
434  *
435  * This function returns zero in case of success and a negative error code in
436  * case of failure.
437  */
438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 		      int torture)
440 {
441 	int err;
442 	struct ubi_ec_hdr *ec_hdr;
443 	unsigned long long ec = e->ec;
444 
445 	dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446 
447 	err = self_check_ec(ubi, e->pnum, e->ec);
448 	if (err)
449 		return -EINVAL;
450 
451 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 	if (!ec_hdr)
453 		return -ENOMEM;
454 
455 	err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 	if (err < 0)
457 		goto out_free;
458 
459 	ec += err;
460 	if (ec > UBI_MAX_ERASECOUNTER) {
461 		/*
462 		 * Erase counter overflow. Upgrade UBI and use 64-bit
463 		 * erase counters internally.
464 		 */
465 		ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 			e->pnum, ec);
467 		err = -EINVAL;
468 		goto out_free;
469 	}
470 
471 	dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472 
473 	ec_hdr->ec = cpu_to_be64(ec);
474 
475 	err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 	if (err)
477 		goto out_free;
478 
479 	e->ec = ec;
480 	spin_lock(&ubi->wl_lock);
481 	if (e->ec > ubi->max_ec)
482 		ubi->max_ec = e->ec;
483 	spin_unlock(&ubi->wl_lock);
484 
485 out_free:
486 	kfree(ec_hdr);
487 	return err;
488 }
489 
490 /**
491  * serve_prot_queue - check if it is time to stop protecting PEBs.
492  * @ubi: UBI device description object
493  *
494  * This function is called after each erase operation and removes PEBs from the
495  * tail of the protection queue. These PEBs have been protected for long enough
496  * and should be moved to the used tree.
497  */
498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 	struct ubi_wl_entry *e, *tmp;
501 	int count;
502 
503 	/*
504 	 * There may be several protected physical eraseblock to remove,
505 	 * process them all.
506 	 */
507 repeat:
508 	count = 0;
509 	spin_lock(&ubi->wl_lock);
510 	list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 		dbg_wl("PEB %d EC %d protection over, move to used tree",
512 			e->pnum, e->ec);
513 
514 		list_del(&e->u.list);
515 		wl_tree_add(e, &ubi->used);
516 		if (count++ > 32) {
517 			/*
518 			 * Let's be nice and avoid holding the spinlock for
519 			 * too long.
520 			 */
521 			spin_unlock(&ubi->wl_lock);
522 			cond_resched();
523 			goto repeat;
524 		}
525 	}
526 
527 	ubi->pq_head += 1;
528 	if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 		ubi->pq_head = 0;
530 	ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 	spin_unlock(&ubi->wl_lock);
532 }
533 
534 /**
535  * __schedule_ubi_work - schedule a work.
536  * @ubi: UBI device description object
537  * @wrk: the work to schedule
538  *
539  * This function adds a work defined by @wrk to the tail of the pending works
540  * list. Can only be used if ubi->work_sem is already held in read mode!
541  */
542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 	spin_lock(&ubi->wl_lock);
545 	list_add_tail(&wrk->list, &ubi->works);
546 	ubi_assert(ubi->works_count >= 0);
547 	ubi->works_count += 1;
548 	if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 		wake_up_process(ubi->bgt_thread);
550 	spin_unlock(&ubi->wl_lock);
551 }
552 
553 /**
554  * schedule_ubi_work - schedule a work.
555  * @ubi: UBI device description object
556  * @wrk: the work to schedule
557  *
558  * This function adds a work defined by @wrk to the tail of the pending works
559  * list.
560  */
561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 	down_read(&ubi->work_sem);
564 	__schedule_ubi_work(ubi, wrk);
565 	up_read(&ubi->work_sem);
566 }
567 
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 			int shutdown);
570 
571 /**
572  * schedule_erase - schedule an erase work.
573  * @ubi: UBI device description object
574  * @e: the WL entry of the physical eraseblock to erase
575  * @vol_id: the volume ID that last used this PEB
576  * @lnum: the last used logical eraseblock number for the PEB
577  * @torture: if the physical eraseblock has to be tortured
578  *
579  * This function returns zero in case of success and a %-ENOMEM in case of
580  * failure.
581  */
582 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
583 			  int vol_id, int lnum, int torture, bool nested)
584 {
585 	struct ubi_work *wl_wrk;
586 
587 	ubi_assert(e);
588 
589 	dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
590 	       e->pnum, e->ec, torture);
591 
592 	wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
593 	if (!wl_wrk)
594 		return -ENOMEM;
595 
596 	wl_wrk->func = &erase_worker;
597 	wl_wrk->e = e;
598 	wl_wrk->vol_id = vol_id;
599 	wl_wrk->lnum = lnum;
600 	wl_wrk->torture = torture;
601 
602 	if (nested)
603 		__schedule_ubi_work(ubi, wl_wrk);
604 	else
605 		schedule_ubi_work(ubi, wl_wrk);
606 	return 0;
607 }
608 
609 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
610 /**
611  * do_sync_erase - run the erase worker synchronously.
612  * @ubi: UBI device description object
613  * @e: the WL entry of the physical eraseblock to erase
614  * @vol_id: the volume ID that last used this PEB
615  * @lnum: the last used logical eraseblock number for the PEB
616  * @torture: if the physical eraseblock has to be tortured
617  *
618  */
619 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
620 			 int vol_id, int lnum, int torture)
621 {
622 	struct ubi_work wl_wrk;
623 
624 	dbg_wl("sync erase of PEB %i", e->pnum);
625 
626 	wl_wrk.e = e;
627 	wl_wrk.vol_id = vol_id;
628 	wl_wrk.lnum = lnum;
629 	wl_wrk.torture = torture;
630 
631 	return __erase_worker(ubi, &wl_wrk);
632 }
633 
634 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
635 /**
636  * wear_leveling_worker - wear-leveling worker function.
637  * @ubi: UBI device description object
638  * @wrk: the work object
639  * @shutdown: non-zero if the worker has to free memory and exit
640  * because the WL-subsystem is shutting down
641  *
642  * This function copies a more worn out physical eraseblock to a less worn out
643  * one. Returns zero in case of success and a negative error code in case of
644  * failure.
645  */
646 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
647 				int shutdown)
648 {
649 	int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
650 	int erase = 0, keep = 0, vol_id = -1, lnum = -1;
651 	struct ubi_wl_entry *e1, *e2;
652 	struct ubi_vid_io_buf *vidb;
653 	struct ubi_vid_hdr *vid_hdr;
654 	int dst_leb_clean = 0;
655 
656 	kfree(wrk);
657 	if (shutdown)
658 		return 0;
659 
660 	vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
661 	if (!vidb)
662 		return -ENOMEM;
663 
664 	vid_hdr = ubi_get_vid_hdr(vidb);
665 
666 	down_read(&ubi->fm_eba_sem);
667 	mutex_lock(&ubi->move_mutex);
668 	spin_lock(&ubi->wl_lock);
669 	ubi_assert(!ubi->move_from && !ubi->move_to);
670 	ubi_assert(!ubi->move_to_put);
671 
672 	if (!ubi->free.rb_node ||
673 	    (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
674 		/*
675 		 * No free physical eraseblocks? Well, they must be waiting in
676 		 * the queue to be erased. Cancel movement - it will be
677 		 * triggered again when a free physical eraseblock appears.
678 		 *
679 		 * No used physical eraseblocks? They must be temporarily
680 		 * protected from being moved. They will be moved to the
681 		 * @ubi->used tree later and the wear-leveling will be
682 		 * triggered again.
683 		 */
684 		dbg_wl("cancel WL, a list is empty: free %d, used %d",
685 		       !ubi->free.rb_node, !ubi->used.rb_node);
686 		goto out_cancel;
687 	}
688 
689 #ifdef CONFIG_MTD_UBI_FASTMAP
690 	if (ubi->fm_do_produce_anchor) {
691 		e1 = find_anchor_wl_entry(&ubi->used);
692 		if (!e1)
693 			goto out_cancel;
694 		e2 = get_peb_for_wl(ubi);
695 		if (!e2)
696 			goto out_cancel;
697 
698 		/*
699 		 * Anchor move within the anchor area is useless.
700 		 */
701 		if (e2->pnum < UBI_FM_MAX_START)
702 			goto out_cancel;
703 
704 		self_check_in_wl_tree(ubi, e1, &ubi->used);
705 		rb_erase(&e1->u.rb, &ubi->used);
706 		dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
707 		ubi->fm_do_produce_anchor = 0;
708 	} else if (!ubi->scrub.rb_node) {
709 #else
710 	if (!ubi->scrub.rb_node) {
711 #endif
712 		/*
713 		 * Now pick the least worn-out used physical eraseblock and a
714 		 * highly worn-out free physical eraseblock. If the erase
715 		 * counters differ much enough, start wear-leveling.
716 		 */
717 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
718 		e2 = get_peb_for_wl(ubi);
719 		if (!e2)
720 			goto out_cancel;
721 
722 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
723 			dbg_wl("no WL needed: min used EC %d, max free EC %d",
724 			       e1->ec, e2->ec);
725 
726 			/* Give the unused PEB back */
727 			wl_tree_add(e2, &ubi->free);
728 			ubi->free_count++;
729 			goto out_cancel;
730 		}
731 		self_check_in_wl_tree(ubi, e1, &ubi->used);
732 		rb_erase(&e1->u.rb, &ubi->used);
733 		dbg_wl("move PEB %d EC %d to PEB %d EC %d",
734 		       e1->pnum, e1->ec, e2->pnum, e2->ec);
735 	} else {
736 		/* Perform scrubbing */
737 		scrubbing = 1;
738 		e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
739 		e2 = get_peb_for_wl(ubi);
740 		if (!e2)
741 			goto out_cancel;
742 
743 		self_check_in_wl_tree(ubi, e1, &ubi->scrub);
744 		rb_erase(&e1->u.rb, &ubi->scrub);
745 		dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
746 	}
747 
748 	ubi->move_from = e1;
749 	ubi->move_to = e2;
750 	spin_unlock(&ubi->wl_lock);
751 
752 	/*
753 	 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
754 	 * We so far do not know which logical eraseblock our physical
755 	 * eraseblock (@e1) belongs to. We have to read the volume identifier
756 	 * header first.
757 	 *
758 	 * Note, we are protected from this PEB being unmapped and erased. The
759 	 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
760 	 * which is being moved was unmapped.
761 	 */
762 
763 	err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
764 	if (err && err != UBI_IO_BITFLIPS) {
765 		dst_leb_clean = 1;
766 		if (err == UBI_IO_FF) {
767 			/*
768 			 * We are trying to move PEB without a VID header. UBI
769 			 * always write VID headers shortly after the PEB was
770 			 * given, so we have a situation when it has not yet
771 			 * had a chance to write it, because it was preempted.
772 			 * So add this PEB to the protection queue so far,
773 			 * because presumably more data will be written there
774 			 * (including the missing VID header), and then we'll
775 			 * move it.
776 			 */
777 			dbg_wl("PEB %d has no VID header", e1->pnum);
778 			protect = 1;
779 			goto out_not_moved;
780 		} else if (err == UBI_IO_FF_BITFLIPS) {
781 			/*
782 			 * The same situation as %UBI_IO_FF, but bit-flips were
783 			 * detected. It is better to schedule this PEB for
784 			 * scrubbing.
785 			 */
786 			dbg_wl("PEB %d has no VID header but has bit-flips",
787 			       e1->pnum);
788 			scrubbing = 1;
789 			goto out_not_moved;
790 		} else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
791 			/*
792 			 * While a full scan would detect interrupted erasures
793 			 * at attach time we can face them here when attached from
794 			 * Fastmap.
795 			 */
796 			dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
797 			       e1->pnum);
798 			erase = 1;
799 			goto out_not_moved;
800 		}
801 
802 		ubi_err(ubi, "error %d while reading VID header from PEB %d",
803 			err, e1->pnum);
804 		goto out_error;
805 	}
806 
807 	vol_id = be32_to_cpu(vid_hdr->vol_id);
808 	lnum = be32_to_cpu(vid_hdr->lnum);
809 
810 	err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
811 	if (err) {
812 		if (err == MOVE_CANCEL_RACE) {
813 			/*
814 			 * The LEB has not been moved because the volume is
815 			 * being deleted or the PEB has been put meanwhile. We
816 			 * should prevent this PEB from being selected for
817 			 * wear-leveling movement again, so put it to the
818 			 * protection queue.
819 			 */
820 			protect = 1;
821 			dst_leb_clean = 1;
822 			goto out_not_moved;
823 		}
824 		if (err == MOVE_RETRY) {
825 			scrubbing = 1;
826 			dst_leb_clean = 1;
827 			goto out_not_moved;
828 		}
829 		if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
830 		    err == MOVE_TARGET_RD_ERR) {
831 			/*
832 			 * Target PEB had bit-flips or write error - torture it.
833 			 */
834 			torture = 1;
835 			keep = 1;
836 			goto out_not_moved;
837 		}
838 
839 		if (err == MOVE_SOURCE_RD_ERR) {
840 			/*
841 			 * An error happened while reading the source PEB. Do
842 			 * not switch to R/O mode in this case, and give the
843 			 * upper layers a possibility to recover from this,
844 			 * e.g. by unmapping corresponding LEB. Instead, just
845 			 * put this PEB to the @ubi->erroneous list to prevent
846 			 * UBI from trying to move it over and over again.
847 			 */
848 			if (ubi->erroneous_peb_count > ubi->max_erroneous) {
849 				ubi_err(ubi, "too many erroneous eraseblocks (%d)",
850 					ubi->erroneous_peb_count);
851 				goto out_error;
852 			}
853 			dst_leb_clean = 1;
854 			erroneous = 1;
855 			goto out_not_moved;
856 		}
857 
858 		if (err < 0)
859 			goto out_error;
860 
861 		ubi_assert(0);
862 	}
863 
864 	/* The PEB has been successfully moved */
865 	if (scrubbing)
866 		ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
867 			e1->pnum, vol_id, lnum, e2->pnum);
868 	ubi_free_vid_buf(vidb);
869 
870 	spin_lock(&ubi->wl_lock);
871 	if (!ubi->move_to_put) {
872 		wl_tree_add(e2, &ubi->used);
873 		e2 = NULL;
874 	}
875 	ubi->move_from = ubi->move_to = NULL;
876 	ubi->move_to_put = ubi->wl_scheduled = 0;
877 	spin_unlock(&ubi->wl_lock);
878 
879 	err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
880 	if (err) {
881 		if (e2)
882 			wl_entry_destroy(ubi, e2);
883 		goto out_ro;
884 	}
885 
886 	if (e2) {
887 		/*
888 		 * Well, the target PEB was put meanwhile, schedule it for
889 		 * erasure.
890 		 */
891 		dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
892 		       e2->pnum, vol_id, lnum);
893 		err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
894 		if (err)
895 			goto out_ro;
896 	}
897 
898 	dbg_wl("done");
899 	mutex_unlock(&ubi->move_mutex);
900 	up_read(&ubi->fm_eba_sem);
901 	return 0;
902 
903 	/*
904 	 * For some reasons the LEB was not moved, might be an error, might be
905 	 * something else. @e1 was not changed, so return it back. @e2 might
906 	 * have been changed, schedule it for erasure.
907 	 */
908 out_not_moved:
909 	if (vol_id != -1)
910 		dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
911 		       e1->pnum, vol_id, lnum, e2->pnum, err);
912 	else
913 		dbg_wl("cancel moving PEB %d to PEB %d (%d)",
914 		       e1->pnum, e2->pnum, err);
915 	spin_lock(&ubi->wl_lock);
916 	if (protect)
917 		prot_queue_add(ubi, e1);
918 	else if (erroneous) {
919 		wl_tree_add(e1, &ubi->erroneous);
920 		ubi->erroneous_peb_count += 1;
921 	} else if (scrubbing)
922 		wl_tree_add(e1, &ubi->scrub);
923 	else if (keep)
924 		wl_tree_add(e1, &ubi->used);
925 	if (dst_leb_clean) {
926 		wl_tree_add(e2, &ubi->free);
927 		ubi->free_count++;
928 	}
929 
930 	ubi_assert(!ubi->move_to_put);
931 	ubi->move_from = ubi->move_to = NULL;
932 	ubi->wl_scheduled = 0;
933 	spin_unlock(&ubi->wl_lock);
934 
935 	ubi_free_vid_buf(vidb);
936 	if (dst_leb_clean) {
937 		ensure_wear_leveling(ubi, 1);
938 	} else {
939 		err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
940 		if (err)
941 			goto out_ro;
942 	}
943 
944 	if (erase) {
945 		err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
946 		if (err)
947 			goto out_ro;
948 	}
949 
950 	mutex_unlock(&ubi->move_mutex);
951 	up_read(&ubi->fm_eba_sem);
952 	return 0;
953 
954 out_error:
955 	if (vol_id != -1)
956 		ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
957 			err, e1->pnum, e2->pnum);
958 	else
959 		ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
960 			err, e1->pnum, vol_id, lnum, e2->pnum);
961 	spin_lock(&ubi->wl_lock);
962 	ubi->move_from = ubi->move_to = NULL;
963 	ubi->move_to_put = ubi->wl_scheduled = 0;
964 	spin_unlock(&ubi->wl_lock);
965 
966 	ubi_free_vid_buf(vidb);
967 	wl_entry_destroy(ubi, e1);
968 	wl_entry_destroy(ubi, e2);
969 
970 out_ro:
971 	ubi_ro_mode(ubi);
972 	mutex_unlock(&ubi->move_mutex);
973 	up_read(&ubi->fm_eba_sem);
974 	ubi_assert(err != 0);
975 	return err < 0 ? err : -EIO;
976 
977 out_cancel:
978 	ubi->wl_scheduled = 0;
979 	spin_unlock(&ubi->wl_lock);
980 	mutex_unlock(&ubi->move_mutex);
981 	up_read(&ubi->fm_eba_sem);
982 	ubi_free_vid_buf(vidb);
983 	return 0;
984 }
985 
986 /**
987  * ensure_wear_leveling - schedule wear-leveling if it is needed.
988  * @ubi: UBI device description object
989  * @nested: set to non-zero if this function is called from UBI worker
990  *
991  * This function checks if it is time to start wear-leveling and schedules it
992  * if yes. This function returns zero in case of success and a negative error
993  * code in case of failure.
994  */
995 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
996 {
997 	int err = 0;
998 	struct ubi_wl_entry *e1;
999 	struct ubi_wl_entry *e2;
1000 	struct ubi_work *wrk;
1001 
1002 	spin_lock(&ubi->wl_lock);
1003 	if (ubi->wl_scheduled)
1004 		/* Wear-leveling is already in the work queue */
1005 		goto out_unlock;
1006 
1007 	/*
1008 	 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1009 	 * the WL worker has to be scheduled anyway.
1010 	 */
1011 	if (!ubi->scrub.rb_node) {
1012 		if (!ubi->used.rb_node || !ubi->free.rb_node)
1013 			/* No physical eraseblocks - no deal */
1014 			goto out_unlock;
1015 
1016 		/*
1017 		 * We schedule wear-leveling only if the difference between the
1018 		 * lowest erase counter of used physical eraseblocks and a high
1019 		 * erase counter of free physical eraseblocks is greater than
1020 		 * %UBI_WL_THRESHOLD.
1021 		 */
1022 		e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1023 		e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1024 
1025 		if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1026 			goto out_unlock;
1027 		dbg_wl("schedule wear-leveling");
1028 	} else
1029 		dbg_wl("schedule scrubbing");
1030 
1031 	ubi->wl_scheduled = 1;
1032 	spin_unlock(&ubi->wl_lock);
1033 
1034 	wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1035 	if (!wrk) {
1036 		err = -ENOMEM;
1037 		goto out_cancel;
1038 	}
1039 
1040 	wrk->func = &wear_leveling_worker;
1041 	if (nested)
1042 		__schedule_ubi_work(ubi, wrk);
1043 	else
1044 		schedule_ubi_work(ubi, wrk);
1045 	return err;
1046 
1047 out_cancel:
1048 	spin_lock(&ubi->wl_lock);
1049 	ubi->wl_scheduled = 0;
1050 out_unlock:
1051 	spin_unlock(&ubi->wl_lock);
1052 	return err;
1053 }
1054 
1055 /**
1056  * __erase_worker - physical eraseblock erase worker function.
1057  * @ubi: UBI device description object
1058  * @wl_wrk: the work object
1059  * @shutdown: non-zero if the worker has to free memory and exit
1060  * because the WL sub-system is shutting down
1061  *
1062  * This function erases a physical eraseblock and perform torture testing if
1063  * needed. It also takes care about marking the physical eraseblock bad if
1064  * needed. Returns zero in case of success and a negative error code in case of
1065  * failure.
1066  */
1067 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1068 {
1069 	struct ubi_wl_entry *e = wl_wrk->e;
1070 	int pnum = e->pnum;
1071 	int vol_id = wl_wrk->vol_id;
1072 	int lnum = wl_wrk->lnum;
1073 	int err, available_consumed = 0;
1074 
1075 	dbg_wl("erase PEB %d EC %d LEB %d:%d",
1076 	       pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1077 
1078 	err = sync_erase(ubi, e, wl_wrk->torture);
1079 	if (!err) {
1080 		spin_lock(&ubi->wl_lock);
1081 
1082 		if (!ubi->fm_anchor && e->pnum < UBI_FM_MAX_START) {
1083 			ubi->fm_anchor = e;
1084 			ubi->fm_do_produce_anchor = 0;
1085 		} else {
1086 			wl_tree_add(e, &ubi->free);
1087 			ubi->free_count++;
1088 		}
1089 
1090 		spin_unlock(&ubi->wl_lock);
1091 
1092 		/*
1093 		 * One more erase operation has happened, take care about
1094 		 * protected physical eraseblocks.
1095 		 */
1096 		serve_prot_queue(ubi);
1097 
1098 		/* And take care about wear-leveling */
1099 		err = ensure_wear_leveling(ubi, 1);
1100 		return err;
1101 	}
1102 
1103 	ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1104 
1105 	if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1106 	    err == -EBUSY) {
1107 		int err1;
1108 
1109 		/* Re-schedule the LEB for erasure */
1110 		err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1111 		if (err1) {
1112 			wl_entry_destroy(ubi, e);
1113 			err = err1;
1114 			goto out_ro;
1115 		}
1116 		return err;
1117 	}
1118 
1119 	wl_entry_destroy(ubi, e);
1120 	if (err != -EIO)
1121 		/*
1122 		 * If this is not %-EIO, we have no idea what to do. Scheduling
1123 		 * this physical eraseblock for erasure again would cause
1124 		 * errors again and again. Well, lets switch to R/O mode.
1125 		 */
1126 		goto out_ro;
1127 
1128 	/* It is %-EIO, the PEB went bad */
1129 
1130 	if (!ubi->bad_allowed) {
1131 		ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1132 		goto out_ro;
1133 	}
1134 
1135 	spin_lock(&ubi->volumes_lock);
1136 	if (ubi->beb_rsvd_pebs == 0) {
1137 		if (ubi->avail_pebs == 0) {
1138 			spin_unlock(&ubi->volumes_lock);
1139 			ubi_err(ubi, "no reserved/available physical eraseblocks");
1140 			goto out_ro;
1141 		}
1142 		ubi->avail_pebs -= 1;
1143 		available_consumed = 1;
1144 	}
1145 	spin_unlock(&ubi->volumes_lock);
1146 
1147 	ubi_msg(ubi, "mark PEB %d as bad", pnum);
1148 	err = ubi_io_mark_bad(ubi, pnum);
1149 	if (err)
1150 		goto out_ro;
1151 
1152 	spin_lock(&ubi->volumes_lock);
1153 	if (ubi->beb_rsvd_pebs > 0) {
1154 		if (available_consumed) {
1155 			/*
1156 			 * The amount of reserved PEBs increased since we last
1157 			 * checked.
1158 			 */
1159 			ubi->avail_pebs += 1;
1160 			available_consumed = 0;
1161 		}
1162 		ubi->beb_rsvd_pebs -= 1;
1163 	}
1164 	ubi->bad_peb_count += 1;
1165 	ubi->good_peb_count -= 1;
1166 	ubi_calculate_reserved(ubi);
1167 	if (available_consumed)
1168 		ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1169 	else if (ubi->beb_rsvd_pebs)
1170 		ubi_msg(ubi, "%d PEBs left in the reserve",
1171 			ubi->beb_rsvd_pebs);
1172 	else
1173 		ubi_warn(ubi, "last PEB from the reserve was used");
1174 	spin_unlock(&ubi->volumes_lock);
1175 
1176 	return err;
1177 
1178 out_ro:
1179 	if (available_consumed) {
1180 		spin_lock(&ubi->volumes_lock);
1181 		ubi->avail_pebs += 1;
1182 		spin_unlock(&ubi->volumes_lock);
1183 	}
1184 	ubi_ro_mode(ubi);
1185 	return err;
1186 }
1187 
1188 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1189 			  int shutdown)
1190 {
1191 	int ret;
1192 
1193 	if (shutdown) {
1194 		struct ubi_wl_entry *e = wl_wrk->e;
1195 
1196 		dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1197 		kfree(wl_wrk);
1198 		wl_entry_destroy(ubi, e);
1199 		return 0;
1200 	}
1201 
1202 	ret = __erase_worker(ubi, wl_wrk);
1203 	kfree(wl_wrk);
1204 	return ret;
1205 }
1206 
1207 /**
1208  * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1209  * @ubi: UBI device description object
1210  * @vol_id: the volume ID that last used this PEB
1211  * @lnum: the last used logical eraseblock number for the PEB
1212  * @pnum: physical eraseblock to return
1213  * @torture: if this physical eraseblock has to be tortured
1214  *
1215  * This function is called to return physical eraseblock @pnum to the pool of
1216  * free physical eraseblocks. The @torture flag has to be set if an I/O error
1217  * occurred to this @pnum and it has to be tested. This function returns zero
1218  * in case of success, and a negative error code in case of failure.
1219  */
1220 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1221 		   int pnum, int torture)
1222 {
1223 	int err;
1224 	struct ubi_wl_entry *e;
1225 
1226 	dbg_wl("PEB %d", pnum);
1227 	ubi_assert(pnum >= 0);
1228 	ubi_assert(pnum < ubi->peb_count);
1229 
1230 	down_read(&ubi->fm_protect);
1231 
1232 retry:
1233 	spin_lock(&ubi->wl_lock);
1234 	e = ubi->lookuptbl[pnum];
1235 	if (e == ubi->move_from) {
1236 		/*
1237 		 * User is putting the physical eraseblock which was selected to
1238 		 * be moved. It will be scheduled for erasure in the
1239 		 * wear-leveling worker.
1240 		 */
1241 		dbg_wl("PEB %d is being moved, wait", pnum);
1242 		spin_unlock(&ubi->wl_lock);
1243 
1244 		/* Wait for the WL worker by taking the @ubi->move_mutex */
1245 		mutex_lock(&ubi->move_mutex);
1246 		mutex_unlock(&ubi->move_mutex);
1247 		goto retry;
1248 	} else if (e == ubi->move_to) {
1249 		/*
1250 		 * User is putting the physical eraseblock which was selected
1251 		 * as the target the data is moved to. It may happen if the EBA
1252 		 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1253 		 * but the WL sub-system has not put the PEB to the "used" tree
1254 		 * yet, but it is about to do this. So we just set a flag which
1255 		 * will tell the WL worker that the PEB is not needed anymore
1256 		 * and should be scheduled for erasure.
1257 		 */
1258 		dbg_wl("PEB %d is the target of data moving", pnum);
1259 		ubi_assert(!ubi->move_to_put);
1260 		ubi->move_to_put = 1;
1261 		spin_unlock(&ubi->wl_lock);
1262 		up_read(&ubi->fm_protect);
1263 		return 0;
1264 	} else {
1265 		if (in_wl_tree(e, &ubi->used)) {
1266 			self_check_in_wl_tree(ubi, e, &ubi->used);
1267 			rb_erase(&e->u.rb, &ubi->used);
1268 		} else if (in_wl_tree(e, &ubi->scrub)) {
1269 			self_check_in_wl_tree(ubi, e, &ubi->scrub);
1270 			rb_erase(&e->u.rb, &ubi->scrub);
1271 		} else if (in_wl_tree(e, &ubi->erroneous)) {
1272 			self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1273 			rb_erase(&e->u.rb, &ubi->erroneous);
1274 			ubi->erroneous_peb_count -= 1;
1275 			ubi_assert(ubi->erroneous_peb_count >= 0);
1276 			/* Erroneous PEBs should be tortured */
1277 			torture = 1;
1278 		} else {
1279 			err = prot_queue_del(ubi, e->pnum);
1280 			if (err) {
1281 				ubi_err(ubi, "PEB %d not found", pnum);
1282 				ubi_ro_mode(ubi);
1283 				spin_unlock(&ubi->wl_lock);
1284 				up_read(&ubi->fm_protect);
1285 				return err;
1286 			}
1287 		}
1288 	}
1289 	spin_unlock(&ubi->wl_lock);
1290 
1291 	err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1292 	if (err) {
1293 		spin_lock(&ubi->wl_lock);
1294 		wl_tree_add(e, &ubi->used);
1295 		spin_unlock(&ubi->wl_lock);
1296 	}
1297 
1298 	up_read(&ubi->fm_protect);
1299 	return err;
1300 }
1301 
1302 /**
1303  * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1304  * @ubi: UBI device description object
1305  * @pnum: the physical eraseblock to schedule
1306  *
1307  * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1308  * needs scrubbing. This function schedules a physical eraseblock for
1309  * scrubbing which is done in background. This function returns zero in case of
1310  * success and a negative error code in case of failure.
1311  */
1312 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1313 {
1314 	struct ubi_wl_entry *e;
1315 
1316 	ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1317 
1318 retry:
1319 	spin_lock(&ubi->wl_lock);
1320 	e = ubi->lookuptbl[pnum];
1321 	if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1322 				   in_wl_tree(e, &ubi->erroneous)) {
1323 		spin_unlock(&ubi->wl_lock);
1324 		return 0;
1325 	}
1326 
1327 	if (e == ubi->move_to) {
1328 		/*
1329 		 * This physical eraseblock was used to move data to. The data
1330 		 * was moved but the PEB was not yet inserted to the proper
1331 		 * tree. We should just wait a little and let the WL worker
1332 		 * proceed.
1333 		 */
1334 		spin_unlock(&ubi->wl_lock);
1335 		dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1336 		yield();
1337 		goto retry;
1338 	}
1339 
1340 	if (in_wl_tree(e, &ubi->used)) {
1341 		self_check_in_wl_tree(ubi, e, &ubi->used);
1342 		rb_erase(&e->u.rb, &ubi->used);
1343 	} else {
1344 		int err;
1345 
1346 		err = prot_queue_del(ubi, e->pnum);
1347 		if (err) {
1348 			ubi_err(ubi, "PEB %d not found", pnum);
1349 			ubi_ro_mode(ubi);
1350 			spin_unlock(&ubi->wl_lock);
1351 			return err;
1352 		}
1353 	}
1354 
1355 	wl_tree_add(e, &ubi->scrub);
1356 	spin_unlock(&ubi->wl_lock);
1357 
1358 	/*
1359 	 * Technically scrubbing is the same as wear-leveling, so it is done
1360 	 * by the WL worker.
1361 	 */
1362 	return ensure_wear_leveling(ubi, 0);
1363 }
1364 
1365 /**
1366  * ubi_wl_flush - flush all pending works.
1367  * @ubi: UBI device description object
1368  * @vol_id: the volume id to flush for
1369  * @lnum: the logical eraseblock number to flush for
1370  *
1371  * This function executes all pending works for a particular volume id /
1372  * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1373  * acts as a wildcard for all of the corresponding volume numbers or logical
1374  * eraseblock numbers. It returns zero in case of success and a negative error
1375  * code in case of failure.
1376  */
1377 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1378 {
1379 	int err = 0;
1380 	int found = 1;
1381 
1382 	/*
1383 	 * Erase while the pending works queue is not empty, but not more than
1384 	 * the number of currently pending works.
1385 	 */
1386 	dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1387 	       vol_id, lnum, ubi->works_count);
1388 
1389 	while (found) {
1390 		struct ubi_work *wrk, *tmp;
1391 		found = 0;
1392 
1393 		down_read(&ubi->work_sem);
1394 		spin_lock(&ubi->wl_lock);
1395 		list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1396 			if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1397 			    (lnum == UBI_ALL || wrk->lnum == lnum)) {
1398 				list_del(&wrk->list);
1399 				ubi->works_count -= 1;
1400 				ubi_assert(ubi->works_count >= 0);
1401 				spin_unlock(&ubi->wl_lock);
1402 
1403 				err = wrk->func(ubi, wrk, 0);
1404 				if (err) {
1405 					up_read(&ubi->work_sem);
1406 					return err;
1407 				}
1408 
1409 				spin_lock(&ubi->wl_lock);
1410 				found = 1;
1411 				break;
1412 			}
1413 		}
1414 		spin_unlock(&ubi->wl_lock);
1415 		up_read(&ubi->work_sem);
1416 	}
1417 
1418 	/*
1419 	 * Make sure all the works which have been done in parallel are
1420 	 * finished.
1421 	 */
1422 	down_write(&ubi->work_sem);
1423 	up_write(&ubi->work_sem);
1424 
1425 	return err;
1426 }
1427 
1428 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1429 {
1430 	if (in_wl_tree(e, &ubi->scrub))
1431 		return false;
1432 	else if (in_wl_tree(e, &ubi->erroneous))
1433 		return false;
1434 	else if (ubi->move_from == e)
1435 		return false;
1436 	else if (ubi->move_to == e)
1437 		return false;
1438 
1439 	return true;
1440 }
1441 
1442 /**
1443  * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1444  * @ubi: UBI device description object
1445  * @pnum: the physical eraseblock to schedule
1446  * @force: dont't read the block, assume bitflips happened and take action.
1447  *
1448  * This function reads the given eraseblock and checks if bitflips occured.
1449  * In case of bitflips, the eraseblock is scheduled for scrubbing.
1450  * If scrubbing is forced with @force, the eraseblock is not read,
1451  * but scheduled for scrubbing right away.
1452  *
1453  * Returns:
1454  * %EINVAL, PEB is out of range
1455  * %ENOENT, PEB is no longer used by UBI
1456  * %EBUSY, PEB cannot be checked now or a check is currently running on it
1457  * %EAGAIN, bit flips happened but scrubbing is currently not possible
1458  * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1459  * %0, no bit flips detected
1460  */
1461 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1462 {
1463 	int err = 0;
1464 	struct ubi_wl_entry *e;
1465 
1466 	if (pnum < 0 || pnum >= ubi->peb_count) {
1467 		err = -EINVAL;
1468 		goto out;
1469 	}
1470 
1471 	/*
1472 	 * Pause all parallel work, otherwise it can happen that the
1473 	 * erase worker frees a wl entry under us.
1474 	 */
1475 	down_write(&ubi->work_sem);
1476 
1477 	/*
1478 	 * Make sure that the wl entry does not change state while
1479 	 * inspecting it.
1480 	 */
1481 	spin_lock(&ubi->wl_lock);
1482 	e = ubi->lookuptbl[pnum];
1483 	if (!e) {
1484 		spin_unlock(&ubi->wl_lock);
1485 		err = -ENOENT;
1486 		goto out_resume;
1487 	}
1488 
1489 	/*
1490 	 * Does it make sense to check this PEB?
1491 	 */
1492 	if (!scrub_possible(ubi, e)) {
1493 		spin_unlock(&ubi->wl_lock);
1494 		err = -EBUSY;
1495 		goto out_resume;
1496 	}
1497 	spin_unlock(&ubi->wl_lock);
1498 
1499 	if (!force) {
1500 		mutex_lock(&ubi->buf_mutex);
1501 		err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1502 		mutex_unlock(&ubi->buf_mutex);
1503 	}
1504 
1505 	if (force || err == UBI_IO_BITFLIPS) {
1506 		/*
1507 		 * Okay, bit flip happened, let's figure out what we can do.
1508 		 */
1509 		spin_lock(&ubi->wl_lock);
1510 
1511 		/*
1512 		 * Recheck. We released wl_lock, UBI might have killed the
1513 		 * wl entry under us.
1514 		 */
1515 		e = ubi->lookuptbl[pnum];
1516 		if (!e) {
1517 			spin_unlock(&ubi->wl_lock);
1518 			err = -ENOENT;
1519 			goto out_resume;
1520 		}
1521 
1522 		/*
1523 		 * Need to re-check state
1524 		 */
1525 		if (!scrub_possible(ubi, e)) {
1526 			spin_unlock(&ubi->wl_lock);
1527 			err = -EBUSY;
1528 			goto out_resume;
1529 		}
1530 
1531 		if (in_pq(ubi, e)) {
1532 			prot_queue_del(ubi, e->pnum);
1533 			wl_tree_add(e, &ubi->scrub);
1534 			spin_unlock(&ubi->wl_lock);
1535 
1536 			err = ensure_wear_leveling(ubi, 1);
1537 		} else if (in_wl_tree(e, &ubi->used)) {
1538 			rb_erase(&e->u.rb, &ubi->used);
1539 			wl_tree_add(e, &ubi->scrub);
1540 			spin_unlock(&ubi->wl_lock);
1541 
1542 			err = ensure_wear_leveling(ubi, 1);
1543 		} else if (in_wl_tree(e, &ubi->free)) {
1544 			rb_erase(&e->u.rb, &ubi->free);
1545 			ubi->free_count--;
1546 			spin_unlock(&ubi->wl_lock);
1547 
1548 			/*
1549 			 * This PEB is empty we can schedule it for
1550 			 * erasure right away. No wear leveling needed.
1551 			 */
1552 			err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1553 					     force ? 0 : 1, true);
1554 		} else {
1555 			spin_unlock(&ubi->wl_lock);
1556 			err = -EAGAIN;
1557 		}
1558 
1559 		if (!err && !force)
1560 			err = -EUCLEAN;
1561 	} else {
1562 		err = 0;
1563 	}
1564 
1565 out_resume:
1566 	up_write(&ubi->work_sem);
1567 out:
1568 
1569 	return err;
1570 }
1571 
1572 /**
1573  * tree_destroy - destroy an RB-tree.
1574  * @ubi: UBI device description object
1575  * @root: the root of the tree to destroy
1576  */
1577 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1578 {
1579 	struct rb_node *rb;
1580 	struct ubi_wl_entry *e;
1581 
1582 	rb = root->rb_node;
1583 	while (rb) {
1584 		if (rb->rb_left)
1585 			rb = rb->rb_left;
1586 		else if (rb->rb_right)
1587 			rb = rb->rb_right;
1588 		else {
1589 			e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1590 
1591 			rb = rb_parent(rb);
1592 			if (rb) {
1593 				if (rb->rb_left == &e->u.rb)
1594 					rb->rb_left = NULL;
1595 				else
1596 					rb->rb_right = NULL;
1597 			}
1598 
1599 			wl_entry_destroy(ubi, e);
1600 		}
1601 	}
1602 }
1603 
1604 /**
1605  * ubi_thread - UBI background thread.
1606  * @u: the UBI device description object pointer
1607  */
1608 int ubi_thread(void *u)
1609 {
1610 	int failures = 0;
1611 	struct ubi_device *ubi = u;
1612 
1613 	ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1614 		ubi->bgt_name, task_pid_nr(current));
1615 
1616 	set_freezable();
1617 	for (;;) {
1618 		int err;
1619 
1620 		if (kthread_should_stop())
1621 			break;
1622 
1623 		if (try_to_freeze())
1624 			continue;
1625 
1626 		spin_lock(&ubi->wl_lock);
1627 		if (list_empty(&ubi->works) || ubi->ro_mode ||
1628 		    !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1629 			set_current_state(TASK_INTERRUPTIBLE);
1630 			spin_unlock(&ubi->wl_lock);
1631 			schedule();
1632 			continue;
1633 		}
1634 		spin_unlock(&ubi->wl_lock);
1635 
1636 		err = do_work(ubi);
1637 		if (err) {
1638 			ubi_err(ubi, "%s: work failed with error code %d",
1639 				ubi->bgt_name, err);
1640 			if (failures++ > WL_MAX_FAILURES) {
1641 				/*
1642 				 * Too many failures, disable the thread and
1643 				 * switch to read-only mode.
1644 				 */
1645 				ubi_msg(ubi, "%s: %d consecutive failures",
1646 					ubi->bgt_name, WL_MAX_FAILURES);
1647 				ubi_ro_mode(ubi);
1648 				ubi->thread_enabled = 0;
1649 				continue;
1650 			}
1651 		} else
1652 			failures = 0;
1653 
1654 		cond_resched();
1655 	}
1656 
1657 	dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1658 	ubi->thread_enabled = 0;
1659 	return 0;
1660 }
1661 
1662 /**
1663  * shutdown_work - shutdown all pending works.
1664  * @ubi: UBI device description object
1665  */
1666 static void shutdown_work(struct ubi_device *ubi)
1667 {
1668 	while (!list_empty(&ubi->works)) {
1669 		struct ubi_work *wrk;
1670 
1671 		wrk = list_entry(ubi->works.next, struct ubi_work, list);
1672 		list_del(&wrk->list);
1673 		wrk->func(ubi, wrk, 1);
1674 		ubi->works_count -= 1;
1675 		ubi_assert(ubi->works_count >= 0);
1676 	}
1677 }
1678 
1679 /**
1680  * erase_aeb - erase a PEB given in UBI attach info PEB
1681  * @ubi: UBI device description object
1682  * @aeb: UBI attach info PEB
1683  * @sync: If true, erase synchronously. Otherwise schedule for erasure
1684  */
1685 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1686 {
1687 	struct ubi_wl_entry *e;
1688 	int err;
1689 
1690 	e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1691 	if (!e)
1692 		return -ENOMEM;
1693 
1694 	e->pnum = aeb->pnum;
1695 	e->ec = aeb->ec;
1696 	ubi->lookuptbl[e->pnum] = e;
1697 
1698 	if (sync) {
1699 		err = sync_erase(ubi, e, false);
1700 		if (err)
1701 			goto out_free;
1702 
1703 		wl_tree_add(e, &ubi->free);
1704 		ubi->free_count++;
1705 	} else {
1706 		err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1707 		if (err)
1708 			goto out_free;
1709 	}
1710 
1711 	return 0;
1712 
1713 out_free:
1714 	wl_entry_destroy(ubi, e);
1715 
1716 	return err;
1717 }
1718 
1719 /**
1720  * ubi_wl_init - initialize the WL sub-system using attaching information.
1721  * @ubi: UBI device description object
1722  * @ai: attaching information
1723  *
1724  * This function returns zero in case of success, and a negative error code in
1725  * case of failure.
1726  */
1727 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1728 {
1729 	int err, i, reserved_pebs, found_pebs = 0;
1730 	struct rb_node *rb1, *rb2;
1731 	struct ubi_ainf_volume *av;
1732 	struct ubi_ainf_peb *aeb, *tmp;
1733 	struct ubi_wl_entry *e;
1734 
1735 	ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1736 	spin_lock_init(&ubi->wl_lock);
1737 	mutex_init(&ubi->move_mutex);
1738 	init_rwsem(&ubi->work_sem);
1739 	ubi->max_ec = ai->max_ec;
1740 	INIT_LIST_HEAD(&ubi->works);
1741 
1742 	sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1743 
1744 	err = -ENOMEM;
1745 	ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1746 	if (!ubi->lookuptbl)
1747 		return err;
1748 
1749 	for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1750 		INIT_LIST_HEAD(&ubi->pq[i]);
1751 	ubi->pq_head = 0;
1752 
1753 	ubi->free_count = 0;
1754 	list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1755 		cond_resched();
1756 
1757 		err = erase_aeb(ubi, aeb, false);
1758 		if (err)
1759 			goto out_free;
1760 
1761 		found_pebs++;
1762 	}
1763 
1764 	list_for_each_entry(aeb, &ai->free, u.list) {
1765 		cond_resched();
1766 
1767 		e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1768 		if (!e) {
1769 			err = -ENOMEM;
1770 			goto out_free;
1771 		}
1772 
1773 		e->pnum = aeb->pnum;
1774 		e->ec = aeb->ec;
1775 		ubi_assert(e->ec >= 0);
1776 
1777 		wl_tree_add(e, &ubi->free);
1778 		ubi->free_count++;
1779 
1780 		ubi->lookuptbl[e->pnum] = e;
1781 
1782 		found_pebs++;
1783 	}
1784 
1785 	ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1786 		ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1787 			cond_resched();
1788 
1789 			e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1790 			if (!e) {
1791 				err = -ENOMEM;
1792 				goto out_free;
1793 			}
1794 
1795 			e->pnum = aeb->pnum;
1796 			e->ec = aeb->ec;
1797 			ubi->lookuptbl[e->pnum] = e;
1798 
1799 			if (!aeb->scrub) {
1800 				dbg_wl("add PEB %d EC %d to the used tree",
1801 				       e->pnum, e->ec);
1802 				wl_tree_add(e, &ubi->used);
1803 			} else {
1804 				dbg_wl("add PEB %d EC %d to the scrub tree",
1805 				       e->pnum, e->ec);
1806 				wl_tree_add(e, &ubi->scrub);
1807 			}
1808 
1809 			found_pebs++;
1810 		}
1811 	}
1812 
1813 	list_for_each_entry(aeb, &ai->fastmap, u.list) {
1814 		cond_resched();
1815 
1816 		e = ubi_find_fm_block(ubi, aeb->pnum);
1817 
1818 		if (e) {
1819 			ubi_assert(!ubi->lookuptbl[e->pnum]);
1820 			ubi->lookuptbl[e->pnum] = e;
1821 		} else {
1822 			bool sync = false;
1823 
1824 			/*
1825 			 * Usually old Fastmap PEBs are scheduled for erasure
1826 			 * and we don't have to care about them but if we face
1827 			 * an power cut before scheduling them we need to
1828 			 * take care of them here.
1829 			 */
1830 			if (ubi->lookuptbl[aeb->pnum])
1831 				continue;
1832 
1833 			/*
1834 			 * The fastmap update code might not find a free PEB for
1835 			 * writing the fastmap anchor to and then reuses the
1836 			 * current fastmap anchor PEB. When this PEB gets erased
1837 			 * and a power cut happens before it is written again we
1838 			 * must make sure that the fastmap attach code doesn't
1839 			 * find any outdated fastmap anchors, hence we erase the
1840 			 * outdated fastmap anchor PEBs synchronously here.
1841 			 */
1842 			if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1843 				sync = true;
1844 
1845 			err = erase_aeb(ubi, aeb, sync);
1846 			if (err)
1847 				goto out_free;
1848 		}
1849 
1850 		found_pebs++;
1851 	}
1852 
1853 	dbg_wl("found %i PEBs", found_pebs);
1854 
1855 	ubi_assert(ubi->good_peb_count == found_pebs);
1856 
1857 	reserved_pebs = WL_RESERVED_PEBS;
1858 	ubi_fastmap_init(ubi, &reserved_pebs);
1859 
1860 	if (ubi->avail_pebs < reserved_pebs) {
1861 		ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1862 			ubi->avail_pebs, reserved_pebs);
1863 		if (ubi->corr_peb_count)
1864 			ubi_err(ubi, "%d PEBs are corrupted and not used",
1865 				ubi->corr_peb_count);
1866 		err = -ENOSPC;
1867 		goto out_free;
1868 	}
1869 	ubi->avail_pebs -= reserved_pebs;
1870 	ubi->rsvd_pebs += reserved_pebs;
1871 
1872 	/* Schedule wear-leveling if needed */
1873 	err = ensure_wear_leveling(ubi, 0);
1874 	if (err)
1875 		goto out_free;
1876 
1877 #ifdef CONFIG_MTD_UBI_FASTMAP
1878 	ubi_ensure_anchor_pebs(ubi);
1879 #endif
1880 	return 0;
1881 
1882 out_free:
1883 	shutdown_work(ubi);
1884 	tree_destroy(ubi, &ubi->used);
1885 	tree_destroy(ubi, &ubi->free);
1886 	tree_destroy(ubi, &ubi->scrub);
1887 	kfree(ubi->lookuptbl);
1888 	return err;
1889 }
1890 
1891 /**
1892  * protection_queue_destroy - destroy the protection queue.
1893  * @ubi: UBI device description object
1894  */
1895 static void protection_queue_destroy(struct ubi_device *ubi)
1896 {
1897 	int i;
1898 	struct ubi_wl_entry *e, *tmp;
1899 
1900 	for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1901 		list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1902 			list_del(&e->u.list);
1903 			wl_entry_destroy(ubi, e);
1904 		}
1905 	}
1906 }
1907 
1908 /**
1909  * ubi_wl_close - close the wear-leveling sub-system.
1910  * @ubi: UBI device description object
1911  */
1912 void ubi_wl_close(struct ubi_device *ubi)
1913 {
1914 	dbg_wl("close the WL sub-system");
1915 	ubi_fastmap_close(ubi);
1916 	shutdown_work(ubi);
1917 	protection_queue_destroy(ubi);
1918 	tree_destroy(ubi, &ubi->used);
1919 	tree_destroy(ubi, &ubi->erroneous);
1920 	tree_destroy(ubi, &ubi->free);
1921 	tree_destroy(ubi, &ubi->scrub);
1922 	kfree(ubi->lookuptbl);
1923 }
1924 
1925 /**
1926  * self_check_ec - make sure that the erase counter of a PEB is correct.
1927  * @ubi: UBI device description object
1928  * @pnum: the physical eraseblock number to check
1929  * @ec: the erase counter to check
1930  *
1931  * This function returns zero if the erase counter of physical eraseblock @pnum
1932  * is equivalent to @ec, and a negative error code if not or if an error
1933  * occurred.
1934  */
1935 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1936 {
1937 	int err;
1938 	long long read_ec;
1939 	struct ubi_ec_hdr *ec_hdr;
1940 
1941 	if (!ubi_dbg_chk_gen(ubi))
1942 		return 0;
1943 
1944 	ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1945 	if (!ec_hdr)
1946 		return -ENOMEM;
1947 
1948 	err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1949 	if (err && err != UBI_IO_BITFLIPS) {
1950 		/* The header does not have to exist */
1951 		err = 0;
1952 		goto out_free;
1953 	}
1954 
1955 	read_ec = be64_to_cpu(ec_hdr->ec);
1956 	if (ec != read_ec && read_ec - ec > 1) {
1957 		ubi_err(ubi, "self-check failed for PEB %d", pnum);
1958 		ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1959 		dump_stack();
1960 		err = 1;
1961 	} else
1962 		err = 0;
1963 
1964 out_free:
1965 	kfree(ec_hdr);
1966 	return err;
1967 }
1968 
1969 /**
1970  * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1971  * @ubi: UBI device description object
1972  * @e: the wear-leveling entry to check
1973  * @root: the root of the tree
1974  *
1975  * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1976  * is not.
1977  */
1978 static int self_check_in_wl_tree(const struct ubi_device *ubi,
1979 				 struct ubi_wl_entry *e, struct rb_root *root)
1980 {
1981 	if (!ubi_dbg_chk_gen(ubi))
1982 		return 0;
1983 
1984 	if (in_wl_tree(e, root))
1985 		return 0;
1986 
1987 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
1988 		e->pnum, e->ec, root);
1989 	dump_stack();
1990 	return -EINVAL;
1991 }
1992 
1993 /**
1994  * self_check_in_pq - check if wear-leveling entry is in the protection
1995  *                        queue.
1996  * @ubi: UBI device description object
1997  * @e: the wear-leveling entry to check
1998  *
1999  * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2000  */
2001 static int self_check_in_pq(const struct ubi_device *ubi,
2002 			    struct ubi_wl_entry *e)
2003 {
2004 	if (!ubi_dbg_chk_gen(ubi))
2005 		return 0;
2006 
2007 	if (in_pq(ubi, e))
2008 		return 0;
2009 
2010 	ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2011 		e->pnum, e->ec);
2012 	dump_stack();
2013 	return -EINVAL;
2014 }
2015 #ifndef CONFIG_MTD_UBI_FASTMAP
2016 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2017 {
2018 	struct ubi_wl_entry *e;
2019 
2020 	e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2021 	self_check_in_wl_tree(ubi, e, &ubi->free);
2022 	ubi->free_count--;
2023 	ubi_assert(ubi->free_count >= 0);
2024 	rb_erase(&e->u.rb, &ubi->free);
2025 
2026 	return e;
2027 }
2028 
2029 /**
2030  * produce_free_peb - produce a free physical eraseblock.
2031  * @ubi: UBI device description object
2032  *
2033  * This function tries to make a free PEB by means of synchronous execution of
2034  * pending works. This may be needed if, for example the background thread is
2035  * disabled. Returns zero in case of success and a negative error code in case
2036  * of failure.
2037  */
2038 static int produce_free_peb(struct ubi_device *ubi)
2039 {
2040 	int err;
2041 
2042 	while (!ubi->free.rb_node && ubi->works_count) {
2043 		spin_unlock(&ubi->wl_lock);
2044 
2045 		dbg_wl("do one work synchronously");
2046 		err = do_work(ubi);
2047 
2048 		spin_lock(&ubi->wl_lock);
2049 		if (err)
2050 			return err;
2051 	}
2052 
2053 	return 0;
2054 }
2055 
2056 /**
2057  * ubi_wl_get_peb - get a physical eraseblock.
2058  * @ubi: UBI device description object
2059  *
2060  * This function returns a physical eraseblock in case of success and a
2061  * negative error code in case of failure.
2062  * Returns with ubi->fm_eba_sem held in read mode!
2063  */
2064 int ubi_wl_get_peb(struct ubi_device *ubi)
2065 {
2066 	int err;
2067 	struct ubi_wl_entry *e;
2068 
2069 retry:
2070 	down_read(&ubi->fm_eba_sem);
2071 	spin_lock(&ubi->wl_lock);
2072 	if (!ubi->free.rb_node) {
2073 		if (ubi->works_count == 0) {
2074 			ubi_err(ubi, "no free eraseblocks");
2075 			ubi_assert(list_empty(&ubi->works));
2076 			spin_unlock(&ubi->wl_lock);
2077 			return -ENOSPC;
2078 		}
2079 
2080 		err = produce_free_peb(ubi);
2081 		if (err < 0) {
2082 			spin_unlock(&ubi->wl_lock);
2083 			return err;
2084 		}
2085 		spin_unlock(&ubi->wl_lock);
2086 		up_read(&ubi->fm_eba_sem);
2087 		goto retry;
2088 
2089 	}
2090 	e = wl_get_wle(ubi);
2091 	prot_queue_add(ubi, e);
2092 	spin_unlock(&ubi->wl_lock);
2093 
2094 	err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2095 				    ubi->peb_size - ubi->vid_hdr_aloffset);
2096 	if (err) {
2097 		ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2098 		return err;
2099 	}
2100 
2101 	return e->pnum;
2102 }
2103 #else
2104 #include "fastmap-wl.c"
2105 #endif
2106