1 /* 2 * Copyright (c) International Business Machines Corp., 2006 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 * 18 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner 19 */ 20 21 /* 22 * UBI wear-leveling sub-system. 23 * 24 * This sub-system is responsible for wear-leveling. It works in terms of 25 * physical eraseblocks and erase counters and knows nothing about logical 26 * eraseblocks, volumes, etc. From this sub-system's perspective all physical 27 * eraseblocks are of two types - used and free. Used physical eraseblocks are 28 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical 29 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function. 30 * 31 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter 32 * header. The rest of the physical eraseblock contains only %0xFF bytes. 33 * 34 * When physical eraseblocks are returned to the WL sub-system by means of the 35 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is 36 * done asynchronously in context of the per-UBI device background thread, 37 * which is also managed by the WL sub-system. 38 * 39 * The wear-leveling is ensured by means of moving the contents of used 40 * physical eraseblocks with low erase counter to free physical eraseblocks 41 * with high erase counter. 42 * 43 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick 44 * an "optimal" physical eraseblock. For example, when it is known that the 45 * physical eraseblock will be "put" soon because it contains short-term data, 46 * the WL sub-system may pick a free physical eraseblock with low erase 47 * counter, and so forth. 48 * 49 * If the WL sub-system fails to erase a physical eraseblock, it marks it as 50 * bad. 51 * 52 * This sub-system is also responsible for scrubbing. If a bit-flip is detected 53 * in a physical eraseblock, it has to be moved. Technically this is the same 54 * as moving it for wear-leveling reasons. 55 * 56 * As it was said, for the UBI sub-system all physical eraseblocks are either 57 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while 58 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub 59 * RB-trees, as well as (temporarily) in the @wl->pq queue. 60 * 61 * When the WL sub-system returns a physical eraseblock, the physical 62 * eraseblock is protected from being moved for some "time". For this reason, 63 * the physical eraseblock is not directly moved from the @wl->free tree to the 64 * @wl->used tree. There is a protection queue in between where this 65 * physical eraseblock is temporarily stored (@wl->pq). 66 * 67 * All this protection stuff is needed because: 68 * o we don't want to move physical eraseblocks just after we have given them 69 * to the user; instead, we first want to let users fill them up with data; 70 * 71 * o there is a chance that the user will put the physical eraseblock very 72 * soon, so it makes sense not to move it for some time, but wait; this is 73 * especially important in case of "short term" physical eraseblocks. 74 * 75 * Physical eraseblocks stay protected only for limited time. But the "time" is 76 * measured in erase cycles in this case. This is implemented with help of the 77 * protection queue. Eraseblocks are put to the tail of this queue when they 78 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the 79 * head of the queue on each erase operation (for any eraseblock). So the 80 * length of the queue defines how may (global) erase cycles PEBs are protected. 81 * 82 * To put it differently, each physical eraseblock has 2 main states: free and 83 * used. The former state corresponds to the @wl->free tree. The latter state 84 * is split up on several sub-states: 85 * o the WL movement is allowed (@wl->used tree); 86 * o the WL movement is disallowed (@wl->erroneous) because the PEB is 87 * erroneous - e.g., there was a read error; 88 * o the WL movement is temporarily prohibited (@wl->pq queue); 89 * o scrubbing is needed (@wl->scrub tree). 90 * 91 * Depending on the sub-state, wear-leveling entries of the used physical 92 * eraseblocks may be kept in one of those structures. 93 * 94 * Note, in this implementation, we keep a small in-RAM object for each physical 95 * eraseblock. This is surely not a scalable solution. But it appears to be good 96 * enough for moderately large flashes and it is simple. In future, one may 97 * re-work this sub-system and make it more scalable. 98 * 99 * At the moment this sub-system does not utilize the sequence number, which 100 * was introduced relatively recently. But it would be wise to do this because 101 * the sequence number of a logical eraseblock characterizes how old is it. For 102 * example, when we move a PEB with low erase counter, and we need to pick the 103 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we 104 * pick target PEB with an average EC if our PEB is not very "old". This is a 105 * room for future re-works of the WL sub-system. 106 */ 107 108 #include <linux/slab.h> 109 #include <linux/crc32.h> 110 #include <linux/freezer.h> 111 #include <linux/kthread.h> 112 #include "ubi.h" 113 114 /* Number of physical eraseblocks reserved for wear-leveling purposes */ 115 #define WL_RESERVED_PEBS 1 116 117 /* 118 * Maximum difference between two erase counters. If this threshold is 119 * exceeded, the WL sub-system starts moving data from used physical 120 * eraseblocks with low erase counter to free physical eraseblocks with high 121 * erase counter. 122 */ 123 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD 124 125 /* 126 * When a physical eraseblock is moved, the WL sub-system has to pick the target 127 * physical eraseblock to move to. The simplest way would be just to pick the 128 * one with the highest erase counter. But in certain workloads this could lead 129 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a 130 * situation when the picked physical eraseblock is constantly erased after the 131 * data is written to it. So, we have a constant which limits the highest erase 132 * counter of the free physical eraseblock to pick. Namely, the WL sub-system 133 * does not pick eraseblocks with erase counter greater than the lowest erase 134 * counter plus %WL_FREE_MAX_DIFF. 135 */ 136 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD) 137 138 /* 139 * Maximum number of consecutive background thread failures which is enough to 140 * switch to read-only mode. 141 */ 142 #define WL_MAX_FAILURES 32 143 144 /** 145 * struct ubi_work - UBI work description data structure. 146 * @list: a link in the list of pending works 147 * @func: worker function 148 * @e: physical eraseblock to erase 149 * @torture: if the physical eraseblock has to be tortured 150 * 151 * The @func pointer points to the worker function. If the @cancel argument is 152 * not zero, the worker has to free the resources and exit immediately. The 153 * worker has to return zero in case of success and a negative error code in 154 * case of failure. 155 */ 156 struct ubi_work { 157 struct list_head list; 158 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel); 159 /* The below fields are only relevant to erasure works */ 160 struct ubi_wl_entry *e; 161 int torture; 162 }; 163 164 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 165 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec); 166 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 167 struct rb_root *root); 168 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e); 169 #else 170 #define paranoid_check_ec(ubi, pnum, ec) 0 171 #define paranoid_check_in_wl_tree(e, root) 172 #define paranoid_check_in_pq(ubi, e) 0 173 #endif 174 175 /** 176 * wl_tree_add - add a wear-leveling entry to a WL RB-tree. 177 * @e: the wear-leveling entry to add 178 * @root: the root of the tree 179 * 180 * Note, we use (erase counter, physical eraseblock number) pairs as keys in 181 * the @ubi->used and @ubi->free RB-trees. 182 */ 183 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root) 184 { 185 struct rb_node **p, *parent = NULL; 186 187 p = &root->rb_node; 188 while (*p) { 189 struct ubi_wl_entry *e1; 190 191 parent = *p; 192 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb); 193 194 if (e->ec < e1->ec) 195 p = &(*p)->rb_left; 196 else if (e->ec > e1->ec) 197 p = &(*p)->rb_right; 198 else { 199 ubi_assert(e->pnum != e1->pnum); 200 if (e->pnum < e1->pnum) 201 p = &(*p)->rb_left; 202 else 203 p = &(*p)->rb_right; 204 } 205 } 206 207 rb_link_node(&e->u.rb, parent, p); 208 rb_insert_color(&e->u.rb, root); 209 } 210 211 /** 212 * do_work - do one pending work. 213 * @ubi: UBI device description object 214 * 215 * This function returns zero in case of success and a negative error code in 216 * case of failure. 217 */ 218 static int do_work(struct ubi_device *ubi) 219 { 220 int err; 221 struct ubi_work *wrk; 222 223 cond_resched(); 224 225 /* 226 * @ubi->work_sem is used to synchronize with the workers. Workers take 227 * it in read mode, so many of them may be doing works at a time. But 228 * the queue flush code has to be sure the whole queue of works is 229 * done, and it takes the mutex in write mode. 230 */ 231 down_read(&ubi->work_sem); 232 spin_lock(&ubi->wl_lock); 233 if (list_empty(&ubi->works)) { 234 spin_unlock(&ubi->wl_lock); 235 up_read(&ubi->work_sem); 236 return 0; 237 } 238 239 wrk = list_entry(ubi->works.next, struct ubi_work, list); 240 list_del(&wrk->list); 241 ubi->works_count -= 1; 242 ubi_assert(ubi->works_count >= 0); 243 spin_unlock(&ubi->wl_lock); 244 245 /* 246 * Call the worker function. Do not touch the work structure 247 * after this call as it will have been freed or reused by that 248 * time by the worker function. 249 */ 250 err = wrk->func(ubi, wrk, 0); 251 if (err) 252 ubi_err("work failed with error code %d", err); 253 up_read(&ubi->work_sem); 254 255 return err; 256 } 257 258 /** 259 * produce_free_peb - produce a free physical eraseblock. 260 * @ubi: UBI device description object 261 * 262 * This function tries to make a free PEB by means of synchronous execution of 263 * pending works. This may be needed if, for example the background thread is 264 * disabled. Returns zero in case of success and a negative error code in case 265 * of failure. 266 */ 267 static int produce_free_peb(struct ubi_device *ubi) 268 { 269 int err; 270 271 spin_lock(&ubi->wl_lock); 272 while (!ubi->free.rb_node) { 273 spin_unlock(&ubi->wl_lock); 274 275 dbg_wl("do one work synchronously"); 276 err = do_work(ubi); 277 if (err) 278 return err; 279 280 spin_lock(&ubi->wl_lock); 281 } 282 spin_unlock(&ubi->wl_lock); 283 284 return 0; 285 } 286 287 /** 288 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree. 289 * @e: the wear-leveling entry to check 290 * @root: the root of the tree 291 * 292 * This function returns non-zero if @e is in the @root RB-tree and zero if it 293 * is not. 294 */ 295 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root) 296 { 297 struct rb_node *p; 298 299 p = root->rb_node; 300 while (p) { 301 struct ubi_wl_entry *e1; 302 303 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 304 305 if (e->pnum == e1->pnum) { 306 ubi_assert(e == e1); 307 return 1; 308 } 309 310 if (e->ec < e1->ec) 311 p = p->rb_left; 312 else if (e->ec > e1->ec) 313 p = p->rb_right; 314 else { 315 ubi_assert(e->pnum != e1->pnum); 316 if (e->pnum < e1->pnum) 317 p = p->rb_left; 318 else 319 p = p->rb_right; 320 } 321 } 322 323 return 0; 324 } 325 326 /** 327 * prot_queue_add - add physical eraseblock to the protection queue. 328 * @ubi: UBI device description object 329 * @e: the physical eraseblock to add 330 * 331 * This function adds @e to the tail of the protection queue @ubi->pq, where 332 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be 333 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to 334 * be locked. 335 */ 336 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e) 337 { 338 int pq_tail = ubi->pq_head - 1; 339 340 if (pq_tail < 0) 341 pq_tail = UBI_PROT_QUEUE_LEN - 1; 342 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN); 343 list_add_tail(&e->u.list, &ubi->pq[pq_tail]); 344 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec); 345 } 346 347 /** 348 * find_wl_entry - find wear-leveling entry closest to certain erase counter. 349 * @root: the RB-tree where to look for 350 * @max: highest possible erase counter 351 * 352 * This function looks for a wear leveling entry with erase counter closest to 353 * @max and less than @max. 354 */ 355 static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int max) 356 { 357 struct rb_node *p; 358 struct ubi_wl_entry *e; 359 360 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb); 361 max += e->ec; 362 363 p = root->rb_node; 364 while (p) { 365 struct ubi_wl_entry *e1; 366 367 e1 = rb_entry(p, struct ubi_wl_entry, u.rb); 368 if (e1->ec >= max) 369 p = p->rb_left; 370 else { 371 p = p->rb_right; 372 e = e1; 373 } 374 } 375 376 return e; 377 } 378 379 /** 380 * ubi_wl_get_peb - get a physical eraseblock. 381 * @ubi: UBI device description object 382 * @dtype: type of data which will be stored in this physical eraseblock 383 * 384 * This function returns a physical eraseblock in case of success and a 385 * negative error code in case of failure. Might sleep. 386 */ 387 int ubi_wl_get_peb(struct ubi_device *ubi, int dtype) 388 { 389 int err, medium_ec; 390 struct ubi_wl_entry *e, *first, *last; 391 392 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM || 393 dtype == UBI_UNKNOWN); 394 395 retry: 396 spin_lock(&ubi->wl_lock); 397 if (!ubi->free.rb_node) { 398 if (ubi->works_count == 0) { 399 ubi_assert(list_empty(&ubi->works)); 400 ubi_err("no free eraseblocks"); 401 spin_unlock(&ubi->wl_lock); 402 return -ENOSPC; 403 } 404 spin_unlock(&ubi->wl_lock); 405 406 err = produce_free_peb(ubi); 407 if (err < 0) 408 return err; 409 goto retry; 410 } 411 412 switch (dtype) { 413 case UBI_LONGTERM: 414 /* 415 * For long term data we pick a physical eraseblock with high 416 * erase counter. But the highest erase counter we can pick is 417 * bounded by the the lowest erase counter plus 418 * %WL_FREE_MAX_DIFF. 419 */ 420 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 421 break; 422 case UBI_UNKNOWN: 423 /* 424 * For unknown data we pick a physical eraseblock with medium 425 * erase counter. But we by no means can pick a physical 426 * eraseblock with erase counter greater or equivalent than the 427 * lowest erase counter plus %WL_FREE_MAX_DIFF. 428 */ 429 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, 430 u.rb); 431 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb); 432 433 if (last->ec - first->ec < WL_FREE_MAX_DIFF) 434 e = rb_entry(ubi->free.rb_node, 435 struct ubi_wl_entry, u.rb); 436 else { 437 medium_ec = (first->ec + WL_FREE_MAX_DIFF)/2; 438 e = find_wl_entry(&ubi->free, medium_ec); 439 } 440 break; 441 case UBI_SHORTTERM: 442 /* 443 * For short term data we pick a physical eraseblock with the 444 * lowest erase counter as we expect it will be erased soon. 445 */ 446 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb); 447 break; 448 default: 449 BUG(); 450 } 451 452 paranoid_check_in_wl_tree(e, &ubi->free); 453 454 /* 455 * Move the physical eraseblock to the protection queue where it will 456 * be protected from being moved for some time. 457 */ 458 rb_erase(&e->u.rb, &ubi->free); 459 dbg_wl("PEB %d EC %d", e->pnum, e->ec); 460 prot_queue_add(ubi, e); 461 spin_unlock(&ubi->wl_lock); 462 463 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset, 464 ubi->peb_size - ubi->vid_hdr_aloffset); 465 if (err) { 466 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum); 467 return err; 468 } 469 470 return e->pnum; 471 } 472 473 /** 474 * prot_queue_del - remove a physical eraseblock from the protection queue. 475 * @ubi: UBI device description object 476 * @pnum: the physical eraseblock to remove 477 * 478 * This function deletes PEB @pnum from the protection queue and returns zero 479 * in case of success and %-ENODEV if the PEB was not found. 480 */ 481 static int prot_queue_del(struct ubi_device *ubi, int pnum) 482 { 483 struct ubi_wl_entry *e; 484 485 e = ubi->lookuptbl[pnum]; 486 if (!e) 487 return -ENODEV; 488 489 if (paranoid_check_in_pq(ubi, e)) 490 return -ENODEV; 491 492 list_del(&e->u.list); 493 dbg_wl("deleted PEB %d from the protection queue", e->pnum); 494 return 0; 495 } 496 497 /** 498 * sync_erase - synchronously erase a physical eraseblock. 499 * @ubi: UBI device description object 500 * @e: the the physical eraseblock to erase 501 * @torture: if the physical eraseblock has to be tortured 502 * 503 * This function returns zero in case of success and a negative error code in 504 * case of failure. 505 */ 506 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 507 int torture) 508 { 509 int err; 510 struct ubi_ec_hdr *ec_hdr; 511 unsigned long long ec = e->ec; 512 513 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec); 514 515 err = paranoid_check_ec(ubi, e->pnum, e->ec); 516 if (err) 517 return -EINVAL; 518 519 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 520 if (!ec_hdr) 521 return -ENOMEM; 522 523 err = ubi_io_sync_erase(ubi, e->pnum, torture); 524 if (err < 0) 525 goto out_free; 526 527 ec += err; 528 if (ec > UBI_MAX_ERASECOUNTER) { 529 /* 530 * Erase counter overflow. Upgrade UBI and use 64-bit 531 * erase counters internally. 532 */ 533 ubi_err("erase counter overflow at PEB %d, EC %llu", 534 e->pnum, ec); 535 err = -EINVAL; 536 goto out_free; 537 } 538 539 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec); 540 541 ec_hdr->ec = cpu_to_be64(ec); 542 543 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr); 544 if (err) 545 goto out_free; 546 547 e->ec = ec; 548 spin_lock(&ubi->wl_lock); 549 if (e->ec > ubi->max_ec) 550 ubi->max_ec = e->ec; 551 spin_unlock(&ubi->wl_lock); 552 553 out_free: 554 kfree(ec_hdr); 555 return err; 556 } 557 558 /** 559 * serve_prot_queue - check if it is time to stop protecting PEBs. 560 * @ubi: UBI device description object 561 * 562 * This function is called after each erase operation and removes PEBs from the 563 * tail of the protection queue. These PEBs have been protected for long enough 564 * and should be moved to the used tree. 565 */ 566 static void serve_prot_queue(struct ubi_device *ubi) 567 { 568 struct ubi_wl_entry *e, *tmp; 569 int count; 570 571 /* 572 * There may be several protected physical eraseblock to remove, 573 * process them all. 574 */ 575 repeat: 576 count = 0; 577 spin_lock(&ubi->wl_lock); 578 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) { 579 dbg_wl("PEB %d EC %d protection over, move to used tree", 580 e->pnum, e->ec); 581 582 list_del(&e->u.list); 583 wl_tree_add(e, &ubi->used); 584 if (count++ > 32) { 585 /* 586 * Let's be nice and avoid holding the spinlock for 587 * too long. 588 */ 589 spin_unlock(&ubi->wl_lock); 590 cond_resched(); 591 goto repeat; 592 } 593 } 594 595 ubi->pq_head += 1; 596 if (ubi->pq_head == UBI_PROT_QUEUE_LEN) 597 ubi->pq_head = 0; 598 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN); 599 spin_unlock(&ubi->wl_lock); 600 } 601 602 /** 603 * schedule_ubi_work - schedule a work. 604 * @ubi: UBI device description object 605 * @wrk: the work to schedule 606 * 607 * This function adds a work defined by @wrk to the tail of the pending works 608 * list. 609 */ 610 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk) 611 { 612 spin_lock(&ubi->wl_lock); 613 list_add_tail(&wrk->list, &ubi->works); 614 ubi_assert(ubi->works_count >= 0); 615 ubi->works_count += 1; 616 if (ubi->thread_enabled) 617 wake_up_process(ubi->bgt_thread); 618 spin_unlock(&ubi->wl_lock); 619 } 620 621 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 622 int cancel); 623 624 /** 625 * schedule_erase - schedule an erase work. 626 * @ubi: UBI device description object 627 * @e: the WL entry of the physical eraseblock to erase 628 * @torture: if the physical eraseblock has to be tortured 629 * 630 * This function returns zero in case of success and a %-ENOMEM in case of 631 * failure. 632 */ 633 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e, 634 int torture) 635 { 636 struct ubi_work *wl_wrk; 637 638 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d", 639 e->pnum, e->ec, torture); 640 641 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 642 if (!wl_wrk) 643 return -ENOMEM; 644 645 wl_wrk->func = &erase_worker; 646 wl_wrk->e = e; 647 wl_wrk->torture = torture; 648 649 schedule_ubi_work(ubi, wl_wrk); 650 return 0; 651 } 652 653 /** 654 * wear_leveling_worker - wear-leveling worker function. 655 * @ubi: UBI device description object 656 * @wrk: the work object 657 * @cancel: non-zero if the worker has to free memory and exit 658 * 659 * This function copies a more worn out physical eraseblock to a less worn out 660 * one. Returns zero in case of success and a negative error code in case of 661 * failure. 662 */ 663 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk, 664 int cancel) 665 { 666 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0; 667 int vol_id = -1, uninitialized_var(lnum); 668 struct ubi_wl_entry *e1, *e2; 669 struct ubi_vid_hdr *vid_hdr; 670 671 kfree(wrk); 672 if (cancel) 673 return 0; 674 675 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS); 676 if (!vid_hdr) 677 return -ENOMEM; 678 679 mutex_lock(&ubi->move_mutex); 680 spin_lock(&ubi->wl_lock); 681 ubi_assert(!ubi->move_from && !ubi->move_to); 682 ubi_assert(!ubi->move_to_put); 683 684 if (!ubi->free.rb_node || 685 (!ubi->used.rb_node && !ubi->scrub.rb_node)) { 686 /* 687 * No free physical eraseblocks? Well, they must be waiting in 688 * the queue to be erased. Cancel movement - it will be 689 * triggered again when a free physical eraseblock appears. 690 * 691 * No used physical eraseblocks? They must be temporarily 692 * protected from being moved. They will be moved to the 693 * @ubi->used tree later and the wear-leveling will be 694 * triggered again. 695 */ 696 dbg_wl("cancel WL, a list is empty: free %d, used %d", 697 !ubi->free.rb_node, !ubi->used.rb_node); 698 goto out_cancel; 699 } 700 701 if (!ubi->scrub.rb_node) { 702 /* 703 * Now pick the least worn-out used physical eraseblock and a 704 * highly worn-out free physical eraseblock. If the erase 705 * counters differ much enough, start wear-leveling. 706 */ 707 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 708 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 709 710 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) { 711 dbg_wl("no WL needed: min used EC %d, max free EC %d", 712 e1->ec, e2->ec); 713 goto out_cancel; 714 } 715 paranoid_check_in_wl_tree(e1, &ubi->used); 716 rb_erase(&e1->u.rb, &ubi->used); 717 dbg_wl("move PEB %d EC %d to PEB %d EC %d", 718 e1->pnum, e1->ec, e2->pnum, e2->ec); 719 } else { 720 /* Perform scrubbing */ 721 scrubbing = 1; 722 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb); 723 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 724 paranoid_check_in_wl_tree(e1, &ubi->scrub); 725 rb_erase(&e1->u.rb, &ubi->scrub); 726 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum); 727 } 728 729 paranoid_check_in_wl_tree(e2, &ubi->free); 730 rb_erase(&e2->u.rb, &ubi->free); 731 ubi->move_from = e1; 732 ubi->move_to = e2; 733 spin_unlock(&ubi->wl_lock); 734 735 /* 736 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum. 737 * We so far do not know which logical eraseblock our physical 738 * eraseblock (@e1) belongs to. We have to read the volume identifier 739 * header first. 740 * 741 * Note, we are protected from this PEB being unmapped and erased. The 742 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB 743 * which is being moved was unmapped. 744 */ 745 746 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0); 747 if (err && err != UBI_IO_BITFLIPS) { 748 if (err == UBI_IO_PEB_FREE) { 749 /* 750 * We are trying to move PEB without a VID header. UBI 751 * always write VID headers shortly after the PEB was 752 * given, so we have a situation when it has not yet 753 * had a chance to write it, because it was preempted. 754 * So add this PEB to the protection queue so far, 755 * because presumably more data will be written there 756 * (including the missing VID header), and then we'll 757 * move it. 758 */ 759 dbg_wl("PEB %d has no VID header", e1->pnum); 760 protect = 1; 761 goto out_not_moved; 762 } 763 764 ubi_err("error %d while reading VID header from PEB %d", 765 err, e1->pnum); 766 goto out_error; 767 } 768 769 vol_id = be32_to_cpu(vid_hdr->vol_id); 770 lnum = be32_to_cpu(vid_hdr->lnum); 771 772 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr); 773 if (err) { 774 if (err == MOVE_CANCEL_RACE) { 775 /* 776 * The LEB has not been moved because the volume is 777 * being deleted or the PEB has been put meanwhile. We 778 * should prevent this PEB from being selected for 779 * wear-leveling movement again, so put it to the 780 * protection queue. 781 */ 782 protect = 1; 783 goto out_not_moved; 784 } 785 786 if (err == MOVE_CANCEL_BITFLIPS || err == MOVE_TARGET_WR_ERR || 787 err == MOVE_TARGET_RD_ERR) { 788 /* 789 * Target PEB had bit-flips or write error - torture it. 790 */ 791 torture = 1; 792 goto out_not_moved; 793 } 794 795 if (err == MOVE_SOURCE_RD_ERR) { 796 /* 797 * An error happened while reading the source PEB. Do 798 * not switch to R/O mode in this case, and give the 799 * upper layers a possibility to recover from this, 800 * e.g. by unmapping corresponding LEB. Instead, just 801 * put this PEB to the @ubi->erroneous list to prevent 802 * UBI from trying to move it over and over again. 803 */ 804 if (ubi->erroneous_peb_count > ubi->max_erroneous) { 805 ubi_err("too many erroneous eraseblocks (%d)", 806 ubi->erroneous_peb_count); 807 goto out_error; 808 } 809 erroneous = 1; 810 goto out_not_moved; 811 } 812 813 if (err < 0) 814 goto out_error; 815 816 ubi_assert(0); 817 } 818 819 /* The PEB has been successfully moved */ 820 if (scrubbing) 821 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d", 822 e1->pnum, vol_id, lnum, e2->pnum); 823 ubi_free_vid_hdr(ubi, vid_hdr); 824 825 spin_lock(&ubi->wl_lock); 826 if (!ubi->move_to_put) { 827 wl_tree_add(e2, &ubi->used); 828 e2 = NULL; 829 } 830 ubi->move_from = ubi->move_to = NULL; 831 ubi->move_to_put = ubi->wl_scheduled = 0; 832 spin_unlock(&ubi->wl_lock); 833 834 err = schedule_erase(ubi, e1, 0); 835 if (err) { 836 kmem_cache_free(ubi_wl_entry_slab, e1); 837 if (e2) 838 kmem_cache_free(ubi_wl_entry_slab, e2); 839 goto out_ro; 840 } 841 842 if (e2) { 843 /* 844 * Well, the target PEB was put meanwhile, schedule it for 845 * erasure. 846 */ 847 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase", 848 e2->pnum, vol_id, lnum); 849 err = schedule_erase(ubi, e2, 0); 850 if (err) { 851 kmem_cache_free(ubi_wl_entry_slab, e2); 852 goto out_ro; 853 } 854 } 855 856 dbg_wl("done"); 857 mutex_unlock(&ubi->move_mutex); 858 return 0; 859 860 /* 861 * For some reasons the LEB was not moved, might be an error, might be 862 * something else. @e1 was not changed, so return it back. @e2 might 863 * have been changed, schedule it for erasure. 864 */ 865 out_not_moved: 866 if (vol_id != -1) 867 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)", 868 e1->pnum, vol_id, lnum, e2->pnum, err); 869 else 870 dbg_wl("cancel moving PEB %d to PEB %d (%d)", 871 e1->pnum, e2->pnum, err); 872 spin_lock(&ubi->wl_lock); 873 if (protect) 874 prot_queue_add(ubi, e1); 875 else if (erroneous) { 876 wl_tree_add(e1, &ubi->erroneous); 877 ubi->erroneous_peb_count += 1; 878 } else if (scrubbing) 879 wl_tree_add(e1, &ubi->scrub); 880 else 881 wl_tree_add(e1, &ubi->used); 882 ubi_assert(!ubi->move_to_put); 883 ubi->move_from = ubi->move_to = NULL; 884 ubi->wl_scheduled = 0; 885 spin_unlock(&ubi->wl_lock); 886 887 ubi_free_vid_hdr(ubi, vid_hdr); 888 err = schedule_erase(ubi, e2, torture); 889 if (err) { 890 kmem_cache_free(ubi_wl_entry_slab, e2); 891 goto out_ro; 892 } 893 mutex_unlock(&ubi->move_mutex); 894 return 0; 895 896 out_error: 897 if (vol_id != -1) 898 ubi_err("error %d while moving PEB %d to PEB %d", 899 err, e1->pnum, e2->pnum); 900 else 901 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d", 902 err, e1->pnum, vol_id, lnum, e2->pnum); 903 spin_lock(&ubi->wl_lock); 904 ubi->move_from = ubi->move_to = NULL; 905 ubi->move_to_put = ubi->wl_scheduled = 0; 906 spin_unlock(&ubi->wl_lock); 907 908 ubi_free_vid_hdr(ubi, vid_hdr); 909 kmem_cache_free(ubi_wl_entry_slab, e1); 910 kmem_cache_free(ubi_wl_entry_slab, e2); 911 912 out_ro: 913 ubi_ro_mode(ubi); 914 mutex_unlock(&ubi->move_mutex); 915 ubi_assert(err != 0); 916 return err < 0 ? err : -EIO; 917 918 out_cancel: 919 ubi->wl_scheduled = 0; 920 spin_unlock(&ubi->wl_lock); 921 mutex_unlock(&ubi->move_mutex); 922 ubi_free_vid_hdr(ubi, vid_hdr); 923 return 0; 924 } 925 926 /** 927 * ensure_wear_leveling - schedule wear-leveling if it is needed. 928 * @ubi: UBI device description object 929 * 930 * This function checks if it is time to start wear-leveling and schedules it 931 * if yes. This function returns zero in case of success and a negative error 932 * code in case of failure. 933 */ 934 static int ensure_wear_leveling(struct ubi_device *ubi) 935 { 936 int err = 0; 937 struct ubi_wl_entry *e1; 938 struct ubi_wl_entry *e2; 939 struct ubi_work *wrk; 940 941 spin_lock(&ubi->wl_lock); 942 if (ubi->wl_scheduled) 943 /* Wear-leveling is already in the work queue */ 944 goto out_unlock; 945 946 /* 947 * If the ubi->scrub tree is not empty, scrubbing is needed, and the 948 * the WL worker has to be scheduled anyway. 949 */ 950 if (!ubi->scrub.rb_node) { 951 if (!ubi->used.rb_node || !ubi->free.rb_node) 952 /* No physical eraseblocks - no deal */ 953 goto out_unlock; 954 955 /* 956 * We schedule wear-leveling only if the difference between the 957 * lowest erase counter of used physical eraseblocks and a high 958 * erase counter of free physical eraseblocks is greater than 959 * %UBI_WL_THRESHOLD. 960 */ 961 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb); 962 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF); 963 964 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) 965 goto out_unlock; 966 dbg_wl("schedule wear-leveling"); 967 } else 968 dbg_wl("schedule scrubbing"); 969 970 ubi->wl_scheduled = 1; 971 spin_unlock(&ubi->wl_lock); 972 973 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS); 974 if (!wrk) { 975 err = -ENOMEM; 976 goto out_cancel; 977 } 978 979 wrk->func = &wear_leveling_worker; 980 schedule_ubi_work(ubi, wrk); 981 return err; 982 983 out_cancel: 984 spin_lock(&ubi->wl_lock); 985 ubi->wl_scheduled = 0; 986 out_unlock: 987 spin_unlock(&ubi->wl_lock); 988 return err; 989 } 990 991 /** 992 * erase_worker - physical eraseblock erase worker function. 993 * @ubi: UBI device description object 994 * @wl_wrk: the work object 995 * @cancel: non-zero if the worker has to free memory and exit 996 * 997 * This function erases a physical eraseblock and perform torture testing if 998 * needed. It also takes care about marking the physical eraseblock bad if 999 * needed. Returns zero in case of success and a negative error code in case of 1000 * failure. 1001 */ 1002 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk, 1003 int cancel) 1004 { 1005 struct ubi_wl_entry *e = wl_wrk->e; 1006 int pnum = e->pnum, err, need; 1007 1008 if (cancel) { 1009 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec); 1010 kfree(wl_wrk); 1011 kmem_cache_free(ubi_wl_entry_slab, e); 1012 return 0; 1013 } 1014 1015 dbg_wl("erase PEB %d EC %d", pnum, e->ec); 1016 1017 err = sync_erase(ubi, e, wl_wrk->torture); 1018 if (!err) { 1019 /* Fine, we've erased it successfully */ 1020 kfree(wl_wrk); 1021 1022 spin_lock(&ubi->wl_lock); 1023 wl_tree_add(e, &ubi->free); 1024 spin_unlock(&ubi->wl_lock); 1025 1026 /* 1027 * One more erase operation has happened, take care about 1028 * protected physical eraseblocks. 1029 */ 1030 serve_prot_queue(ubi); 1031 1032 /* And take care about wear-leveling */ 1033 err = ensure_wear_leveling(ubi); 1034 return err; 1035 } 1036 1037 ubi_err("failed to erase PEB %d, error %d", pnum, err); 1038 kfree(wl_wrk); 1039 kmem_cache_free(ubi_wl_entry_slab, e); 1040 1041 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN || 1042 err == -EBUSY) { 1043 int err1; 1044 1045 /* Re-schedule the LEB for erasure */ 1046 err1 = schedule_erase(ubi, e, 0); 1047 if (err1) { 1048 err = err1; 1049 goto out_ro; 1050 } 1051 return err; 1052 } else if (err != -EIO) { 1053 /* 1054 * If this is not %-EIO, we have no idea what to do. Scheduling 1055 * this physical eraseblock for erasure again would cause 1056 * errors again and again. Well, lets switch to R/O mode. 1057 */ 1058 goto out_ro; 1059 } 1060 1061 /* It is %-EIO, the PEB went bad */ 1062 1063 if (!ubi->bad_allowed) { 1064 ubi_err("bad physical eraseblock %d detected", pnum); 1065 goto out_ro; 1066 } 1067 1068 spin_lock(&ubi->volumes_lock); 1069 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1; 1070 if (need > 0) { 1071 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs; 1072 ubi->avail_pebs -= need; 1073 ubi->rsvd_pebs += need; 1074 ubi->beb_rsvd_pebs += need; 1075 if (need > 0) 1076 ubi_msg("reserve more %d PEBs", need); 1077 } 1078 1079 if (ubi->beb_rsvd_pebs == 0) { 1080 spin_unlock(&ubi->volumes_lock); 1081 ubi_err("no reserved physical eraseblocks"); 1082 goto out_ro; 1083 } 1084 spin_unlock(&ubi->volumes_lock); 1085 1086 ubi_msg("mark PEB %d as bad", pnum); 1087 err = ubi_io_mark_bad(ubi, pnum); 1088 if (err) 1089 goto out_ro; 1090 1091 spin_lock(&ubi->volumes_lock); 1092 ubi->beb_rsvd_pebs -= 1; 1093 ubi->bad_peb_count += 1; 1094 ubi->good_peb_count -= 1; 1095 ubi_calculate_reserved(ubi); 1096 if (ubi->beb_rsvd_pebs) 1097 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs); 1098 else 1099 ubi_warn("last PEB from the reserved pool was used"); 1100 spin_unlock(&ubi->volumes_lock); 1101 1102 return err; 1103 1104 out_ro: 1105 ubi_ro_mode(ubi); 1106 return err; 1107 } 1108 1109 /** 1110 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system. 1111 * @ubi: UBI device description object 1112 * @pnum: physical eraseblock to return 1113 * @torture: if this physical eraseblock has to be tortured 1114 * 1115 * This function is called to return physical eraseblock @pnum to the pool of 1116 * free physical eraseblocks. The @torture flag has to be set if an I/O error 1117 * occurred to this @pnum and it has to be tested. This function returns zero 1118 * in case of success, and a negative error code in case of failure. 1119 */ 1120 int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture) 1121 { 1122 int err; 1123 struct ubi_wl_entry *e; 1124 1125 dbg_wl("PEB %d", pnum); 1126 ubi_assert(pnum >= 0); 1127 ubi_assert(pnum < ubi->peb_count); 1128 1129 retry: 1130 spin_lock(&ubi->wl_lock); 1131 e = ubi->lookuptbl[pnum]; 1132 if (e == ubi->move_from) { 1133 /* 1134 * User is putting the physical eraseblock which was selected to 1135 * be moved. It will be scheduled for erasure in the 1136 * wear-leveling worker. 1137 */ 1138 dbg_wl("PEB %d is being moved, wait", pnum); 1139 spin_unlock(&ubi->wl_lock); 1140 1141 /* Wait for the WL worker by taking the @ubi->move_mutex */ 1142 mutex_lock(&ubi->move_mutex); 1143 mutex_unlock(&ubi->move_mutex); 1144 goto retry; 1145 } else if (e == ubi->move_to) { 1146 /* 1147 * User is putting the physical eraseblock which was selected 1148 * as the target the data is moved to. It may happen if the EBA 1149 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()' 1150 * but the WL sub-system has not put the PEB to the "used" tree 1151 * yet, but it is about to do this. So we just set a flag which 1152 * will tell the WL worker that the PEB is not needed anymore 1153 * and should be scheduled for erasure. 1154 */ 1155 dbg_wl("PEB %d is the target of data moving", pnum); 1156 ubi_assert(!ubi->move_to_put); 1157 ubi->move_to_put = 1; 1158 spin_unlock(&ubi->wl_lock); 1159 return 0; 1160 } else { 1161 if (in_wl_tree(e, &ubi->used)) { 1162 paranoid_check_in_wl_tree(e, &ubi->used); 1163 rb_erase(&e->u.rb, &ubi->used); 1164 } else if (in_wl_tree(e, &ubi->scrub)) { 1165 paranoid_check_in_wl_tree(e, &ubi->scrub); 1166 rb_erase(&e->u.rb, &ubi->scrub); 1167 } else if (in_wl_tree(e, &ubi->erroneous)) { 1168 paranoid_check_in_wl_tree(e, &ubi->erroneous); 1169 rb_erase(&e->u.rb, &ubi->erroneous); 1170 ubi->erroneous_peb_count -= 1; 1171 ubi_assert(ubi->erroneous_peb_count >= 0); 1172 /* Erroneous PEBs should be tortured */ 1173 torture = 1; 1174 } else { 1175 err = prot_queue_del(ubi, e->pnum); 1176 if (err) { 1177 ubi_err("PEB %d not found", pnum); 1178 ubi_ro_mode(ubi); 1179 spin_unlock(&ubi->wl_lock); 1180 return err; 1181 } 1182 } 1183 } 1184 spin_unlock(&ubi->wl_lock); 1185 1186 err = schedule_erase(ubi, e, torture); 1187 if (err) { 1188 spin_lock(&ubi->wl_lock); 1189 wl_tree_add(e, &ubi->used); 1190 spin_unlock(&ubi->wl_lock); 1191 } 1192 1193 return err; 1194 } 1195 1196 /** 1197 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing. 1198 * @ubi: UBI device description object 1199 * @pnum: the physical eraseblock to schedule 1200 * 1201 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock 1202 * needs scrubbing. This function schedules a physical eraseblock for 1203 * scrubbing which is done in background. This function returns zero in case of 1204 * success and a negative error code in case of failure. 1205 */ 1206 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum) 1207 { 1208 struct ubi_wl_entry *e; 1209 1210 dbg_msg("schedule PEB %d for scrubbing", pnum); 1211 1212 retry: 1213 spin_lock(&ubi->wl_lock); 1214 e = ubi->lookuptbl[pnum]; 1215 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub)) { 1216 spin_unlock(&ubi->wl_lock); 1217 return 0; 1218 } 1219 1220 if (e == ubi->move_to) { 1221 /* 1222 * This physical eraseblock was used to move data to. The data 1223 * was moved but the PEB was not yet inserted to the proper 1224 * tree. We should just wait a little and let the WL worker 1225 * proceed. 1226 */ 1227 spin_unlock(&ubi->wl_lock); 1228 dbg_wl("the PEB %d is not in proper tree, retry", pnum); 1229 yield(); 1230 goto retry; 1231 } 1232 1233 if (in_wl_tree(e, &ubi->used)) { 1234 paranoid_check_in_wl_tree(e, &ubi->used); 1235 rb_erase(&e->u.rb, &ubi->used); 1236 } else { 1237 int err; 1238 1239 err = prot_queue_del(ubi, e->pnum); 1240 if (err) { 1241 ubi_err("PEB %d not found", pnum); 1242 ubi_ro_mode(ubi); 1243 spin_unlock(&ubi->wl_lock); 1244 return err; 1245 } 1246 } 1247 1248 wl_tree_add(e, &ubi->scrub); 1249 spin_unlock(&ubi->wl_lock); 1250 1251 /* 1252 * Technically scrubbing is the same as wear-leveling, so it is done 1253 * by the WL worker. 1254 */ 1255 return ensure_wear_leveling(ubi); 1256 } 1257 1258 /** 1259 * ubi_wl_flush - flush all pending works. 1260 * @ubi: UBI device description object 1261 * 1262 * This function returns zero in case of success and a negative error code in 1263 * case of failure. 1264 */ 1265 int ubi_wl_flush(struct ubi_device *ubi) 1266 { 1267 int err; 1268 1269 /* 1270 * Erase while the pending works queue is not empty, but not more than 1271 * the number of currently pending works. 1272 */ 1273 dbg_wl("flush (%d pending works)", ubi->works_count); 1274 while (ubi->works_count) { 1275 err = do_work(ubi); 1276 if (err) 1277 return err; 1278 } 1279 1280 /* 1281 * Make sure all the works which have been done in parallel are 1282 * finished. 1283 */ 1284 down_write(&ubi->work_sem); 1285 up_write(&ubi->work_sem); 1286 1287 /* 1288 * And in case last was the WL worker and it canceled the LEB 1289 * movement, flush again. 1290 */ 1291 while (ubi->works_count) { 1292 dbg_wl("flush more (%d pending works)", ubi->works_count); 1293 err = do_work(ubi); 1294 if (err) 1295 return err; 1296 } 1297 1298 return 0; 1299 } 1300 1301 /** 1302 * tree_destroy - destroy an RB-tree. 1303 * @root: the root of the tree to destroy 1304 */ 1305 static void tree_destroy(struct rb_root *root) 1306 { 1307 struct rb_node *rb; 1308 struct ubi_wl_entry *e; 1309 1310 rb = root->rb_node; 1311 while (rb) { 1312 if (rb->rb_left) 1313 rb = rb->rb_left; 1314 else if (rb->rb_right) 1315 rb = rb->rb_right; 1316 else { 1317 e = rb_entry(rb, struct ubi_wl_entry, u.rb); 1318 1319 rb = rb_parent(rb); 1320 if (rb) { 1321 if (rb->rb_left == &e->u.rb) 1322 rb->rb_left = NULL; 1323 else 1324 rb->rb_right = NULL; 1325 } 1326 1327 kmem_cache_free(ubi_wl_entry_slab, e); 1328 } 1329 } 1330 } 1331 1332 /** 1333 * ubi_thread - UBI background thread. 1334 * @u: the UBI device description object pointer 1335 */ 1336 int ubi_thread(void *u) 1337 { 1338 int failures = 0; 1339 struct ubi_device *ubi = u; 1340 1341 ubi_msg("background thread \"%s\" started, PID %d", 1342 ubi->bgt_name, task_pid_nr(current)); 1343 1344 set_freezable(); 1345 for (;;) { 1346 int err; 1347 1348 if (kthread_should_stop()) 1349 break; 1350 1351 if (try_to_freeze()) 1352 continue; 1353 1354 spin_lock(&ubi->wl_lock); 1355 if (list_empty(&ubi->works) || ubi->ro_mode || 1356 !ubi->thread_enabled) { 1357 set_current_state(TASK_INTERRUPTIBLE); 1358 spin_unlock(&ubi->wl_lock); 1359 schedule(); 1360 continue; 1361 } 1362 spin_unlock(&ubi->wl_lock); 1363 1364 err = do_work(ubi); 1365 if (err) { 1366 ubi_err("%s: work failed with error code %d", 1367 ubi->bgt_name, err); 1368 if (failures++ > WL_MAX_FAILURES) { 1369 /* 1370 * Too many failures, disable the thread and 1371 * switch to read-only mode. 1372 */ 1373 ubi_msg("%s: %d consecutive failures", 1374 ubi->bgt_name, WL_MAX_FAILURES); 1375 ubi_ro_mode(ubi); 1376 ubi->thread_enabled = 0; 1377 continue; 1378 } 1379 } else 1380 failures = 0; 1381 1382 cond_resched(); 1383 } 1384 1385 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name); 1386 return 0; 1387 } 1388 1389 /** 1390 * cancel_pending - cancel all pending works. 1391 * @ubi: UBI device description object 1392 */ 1393 static void cancel_pending(struct ubi_device *ubi) 1394 { 1395 while (!list_empty(&ubi->works)) { 1396 struct ubi_work *wrk; 1397 1398 wrk = list_entry(ubi->works.next, struct ubi_work, list); 1399 list_del(&wrk->list); 1400 wrk->func(ubi, wrk, 1); 1401 ubi->works_count -= 1; 1402 ubi_assert(ubi->works_count >= 0); 1403 } 1404 } 1405 1406 /** 1407 * ubi_wl_init_scan - initialize the WL sub-system using scanning information. 1408 * @ubi: UBI device description object 1409 * @si: scanning information 1410 * 1411 * This function returns zero in case of success, and a negative error code in 1412 * case of failure. 1413 */ 1414 int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si) 1415 { 1416 int err, i; 1417 struct rb_node *rb1, *rb2; 1418 struct ubi_scan_volume *sv; 1419 struct ubi_scan_leb *seb, *tmp; 1420 struct ubi_wl_entry *e; 1421 1422 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT; 1423 spin_lock_init(&ubi->wl_lock); 1424 mutex_init(&ubi->move_mutex); 1425 init_rwsem(&ubi->work_sem); 1426 ubi->max_ec = si->max_ec; 1427 INIT_LIST_HEAD(&ubi->works); 1428 1429 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num); 1430 1431 err = -ENOMEM; 1432 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL); 1433 if (!ubi->lookuptbl) 1434 return err; 1435 1436 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++) 1437 INIT_LIST_HEAD(&ubi->pq[i]); 1438 ubi->pq_head = 0; 1439 1440 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) { 1441 cond_resched(); 1442 1443 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1444 if (!e) 1445 goto out_free; 1446 1447 e->pnum = seb->pnum; 1448 e->ec = seb->ec; 1449 ubi->lookuptbl[e->pnum] = e; 1450 if (schedule_erase(ubi, e, 0)) { 1451 kmem_cache_free(ubi_wl_entry_slab, e); 1452 goto out_free; 1453 } 1454 } 1455 1456 list_for_each_entry(seb, &si->free, u.list) { 1457 cond_resched(); 1458 1459 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1460 if (!e) 1461 goto out_free; 1462 1463 e->pnum = seb->pnum; 1464 e->ec = seb->ec; 1465 ubi_assert(e->ec >= 0); 1466 wl_tree_add(e, &ubi->free); 1467 ubi->lookuptbl[e->pnum] = e; 1468 } 1469 1470 list_for_each_entry(seb, &si->corr, u.list) { 1471 cond_resched(); 1472 1473 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1474 if (!e) 1475 goto out_free; 1476 1477 e->pnum = seb->pnum; 1478 e->ec = seb->ec; 1479 ubi->lookuptbl[e->pnum] = e; 1480 if (schedule_erase(ubi, e, 0)) { 1481 kmem_cache_free(ubi_wl_entry_slab, e); 1482 goto out_free; 1483 } 1484 } 1485 1486 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) { 1487 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) { 1488 cond_resched(); 1489 1490 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL); 1491 if (!e) 1492 goto out_free; 1493 1494 e->pnum = seb->pnum; 1495 e->ec = seb->ec; 1496 ubi->lookuptbl[e->pnum] = e; 1497 if (!seb->scrub) { 1498 dbg_wl("add PEB %d EC %d to the used tree", 1499 e->pnum, e->ec); 1500 wl_tree_add(e, &ubi->used); 1501 } else { 1502 dbg_wl("add PEB %d EC %d to the scrub tree", 1503 e->pnum, e->ec); 1504 wl_tree_add(e, &ubi->scrub); 1505 } 1506 } 1507 } 1508 1509 if (ubi->avail_pebs < WL_RESERVED_PEBS) { 1510 ubi_err("no enough physical eraseblocks (%d, need %d)", 1511 ubi->avail_pebs, WL_RESERVED_PEBS); 1512 goto out_free; 1513 } 1514 ubi->avail_pebs -= WL_RESERVED_PEBS; 1515 ubi->rsvd_pebs += WL_RESERVED_PEBS; 1516 1517 /* Schedule wear-leveling if needed */ 1518 err = ensure_wear_leveling(ubi); 1519 if (err) 1520 goto out_free; 1521 1522 return 0; 1523 1524 out_free: 1525 cancel_pending(ubi); 1526 tree_destroy(&ubi->used); 1527 tree_destroy(&ubi->free); 1528 tree_destroy(&ubi->scrub); 1529 kfree(ubi->lookuptbl); 1530 return err; 1531 } 1532 1533 /** 1534 * protection_queue_destroy - destroy the protection queue. 1535 * @ubi: UBI device description object 1536 */ 1537 static void protection_queue_destroy(struct ubi_device *ubi) 1538 { 1539 int i; 1540 struct ubi_wl_entry *e, *tmp; 1541 1542 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) { 1543 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) { 1544 list_del(&e->u.list); 1545 kmem_cache_free(ubi_wl_entry_slab, e); 1546 } 1547 } 1548 } 1549 1550 /** 1551 * ubi_wl_close - close the wear-leveling sub-system. 1552 * @ubi: UBI device description object 1553 */ 1554 void ubi_wl_close(struct ubi_device *ubi) 1555 { 1556 dbg_wl("close the WL sub-system"); 1557 cancel_pending(ubi); 1558 protection_queue_destroy(ubi); 1559 tree_destroy(&ubi->used); 1560 tree_destroy(&ubi->erroneous); 1561 tree_destroy(&ubi->free); 1562 tree_destroy(&ubi->scrub); 1563 kfree(ubi->lookuptbl); 1564 } 1565 1566 #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID 1567 1568 /** 1569 * paranoid_check_ec - make sure that the erase counter of a PEB is correct. 1570 * @ubi: UBI device description object 1571 * @pnum: the physical eraseblock number to check 1572 * @ec: the erase counter to check 1573 * 1574 * This function returns zero if the erase counter of physical eraseblock @pnum 1575 * is equivalent to @ec, and a negative error code if not or if an error occurred. 1576 */ 1577 static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec) 1578 { 1579 int err; 1580 long long read_ec; 1581 struct ubi_ec_hdr *ec_hdr; 1582 1583 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS); 1584 if (!ec_hdr) 1585 return -ENOMEM; 1586 1587 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0); 1588 if (err && err != UBI_IO_BITFLIPS) { 1589 /* The header does not have to exist */ 1590 err = 0; 1591 goto out_free; 1592 } 1593 1594 read_ec = be64_to_cpu(ec_hdr->ec); 1595 if (ec != read_ec) { 1596 ubi_err("paranoid check failed for PEB %d", pnum); 1597 ubi_err("read EC is %lld, should be %d", read_ec, ec); 1598 ubi_dbg_dump_stack(); 1599 err = 1; 1600 } else 1601 err = 0; 1602 1603 out_free: 1604 kfree(ec_hdr); 1605 return err; 1606 } 1607 1608 /** 1609 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree. 1610 * @e: the wear-leveling entry to check 1611 * @root: the root of the tree 1612 * 1613 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it 1614 * is not. 1615 */ 1616 static int paranoid_check_in_wl_tree(struct ubi_wl_entry *e, 1617 struct rb_root *root) 1618 { 1619 if (in_wl_tree(e, root)) 1620 return 0; 1621 1622 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ", 1623 e->pnum, e->ec, root); 1624 ubi_dbg_dump_stack(); 1625 return -EINVAL; 1626 } 1627 1628 /** 1629 * paranoid_check_in_pq - check if wear-leveling entry is in the protection 1630 * queue. 1631 * @ubi: UBI device description object 1632 * @e: the wear-leveling entry to check 1633 * 1634 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not. 1635 */ 1636 static int paranoid_check_in_pq(struct ubi_device *ubi, struct ubi_wl_entry *e) 1637 { 1638 struct ubi_wl_entry *p; 1639 int i; 1640 1641 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) 1642 list_for_each_entry(p, &ubi->pq[i], u.list) 1643 if (p == e) 1644 return 0; 1645 1646 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue", 1647 e->pnum, e->ec); 1648 ubi_dbg_dump_stack(); 1649 return -EINVAL; 1650 } 1651 #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */ 1652