1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2024 Nuvoton Technology Corp. 4 */ 5 #include <linux/clk.h> 6 #include <linux/dma-mapping.h> 7 #include <linux/err.h> 8 #include <linux/init.h> 9 #include <linux/interrupt.h> 10 #include <linux/io.h> 11 #include <linux/iopoll.h> 12 #include <linux/module.h> 13 #include <linux/mtd/mtd.h> 14 #include <linux/mtd/partitions.h> 15 #include <linux/mtd/rawnand.h> 16 #include <linux/of.h> 17 #include <linux/platform_device.h> 18 #include <linux/slab.h> 19 20 /* NFI Registers */ 21 #define MA35_NFI_REG_DMACTL 0x400 22 #define DMA_EN BIT(0) 23 #define DMA_RST BIT(1) 24 #define DMA_BUSY BIT(9) 25 26 #define MA35_NFI_REG_DMASA 0x408 27 #define MA35_NFI_REG_GCTL 0x800 28 #define GRST BIT(0) 29 #define NAND_EN BIT(3) 30 31 #define MA35_NFI_REG_NANDCTL 0x8A0 32 #define SWRST BIT(0) 33 #define DMA_R_EN BIT(1) 34 #define DMA_W_EN BIT(2) 35 #define ECC_CHK BIT(7) 36 #define PROT3BEN BIT(8) 37 #define PSIZE_2K BIT(16) 38 #define PSIZE_4K BIT(17) 39 #define PSIZE_8K GENMASK(17, 16) 40 #define PSIZE_MASK GENMASK(17, 16) 41 #define BCH_T24 BIT(18) 42 #define BCH_T8 BIT(20) 43 #define BCH_T12 BIT(21) 44 #define BCH_NONE (0x0) 45 #define BCH_MASK GENMASK(22, 18) 46 #define ECC_EN BIT(23) 47 #define DISABLE_CS0 BIT(25) 48 49 #define MA35_NFI_REG_NANDINTEN 0x8A8 50 #define MA35_NFI_REG_NANDINTSTS 0x8AC 51 #define INT_DMA BIT(0) 52 #define INT_ECC BIT(2) 53 #define INT_RB0 BIT(10) 54 55 #define MA35_NFI_REG_NANDCMD 0x8B0 56 #define MA35_NFI_REG_NANDADDR 0x8B4 57 #define ENDADDR BIT(31) 58 59 #define MA35_NFI_REG_NANDDATA 0x8B8 60 #define MA35_NFI_REG_NANDRACTL 0x8BC 61 #define MA35_NFI_REG_NANDECTL 0x8C0 62 #define ENABLE_WP 0x0 63 #define DISABLE_WP BIT(0) 64 65 #define MA35_NFI_REG_NANDECCES0 0x8D0 66 #define ECC_STATUS_MASK GENMASK(1, 0) 67 #define ECC_ERR_CNT_MASK GENMASK(4, 0) 68 69 #define MA35_NFI_REG_NANDECCEA0 0x900 70 #define MA35_NFI_REG_NANDECCED0 0x960 71 #define MA35_NFI_REG_NANDRA0 0xA00 72 73 /* Define for the BCH hardware ECC engine */ 74 /* define the total padding bytes for 512/1024 data segment */ 75 #define MA35_BCH_PADDING_512 32 76 #define MA35_BCH_PADDING_1024 64 77 /* define the BCH parity code length for 512 bytes data pattern */ 78 #define MA35_PARITY_BCH8 15 79 #define MA35_PARITY_BCH12 23 80 /* define the BCH parity code length for 1024 bytes data pattern */ 81 #define MA35_PARITY_BCH24 45 82 83 #define MA35_MAX_NSELS (2) 84 #define PREFIX_RA_IS_EMPTY(reg) FIELD_GET(GENMASK(31, 16), (reg)) 85 86 struct ma35_nand_chip { 87 struct list_head node; 88 struct nand_chip chip; 89 90 u32 eccstatus; 91 u8 nsels; 92 u8 sels[] __counted_by(nsels); 93 }; 94 95 struct ma35_nand_info { 96 struct nand_controller controller; 97 struct device *dev; 98 void __iomem *regs; 99 int irq; 100 struct clk *clk; 101 struct completion complete; 102 struct list_head chips; 103 104 u8 *buffer; 105 unsigned long assigned_cs; 106 }; 107 108 static inline struct ma35_nand_chip *to_ma35_nand(struct nand_chip *chip) 109 { 110 return container_of(chip, struct ma35_nand_chip, chip); 111 } 112 113 static int ma35_ooblayout_ecc(struct mtd_info *mtd, int section, 114 struct mtd_oob_region *oob_region) 115 { 116 struct nand_chip *chip = mtd_to_nand(mtd); 117 118 if (section) 119 return -ERANGE; 120 121 oob_region->length = chip->ecc.total; 122 oob_region->offset = mtd->oobsize - oob_region->length; 123 124 return 0; 125 } 126 127 static int ma35_ooblayout_free(struct mtd_info *mtd, int section, 128 struct mtd_oob_region *oob_region) 129 { 130 struct nand_chip *chip = mtd_to_nand(mtd); 131 132 if (section) 133 return -ERANGE; 134 135 oob_region->length = mtd->oobsize - chip->ecc.total - 2; 136 oob_region->offset = 2; 137 138 return 0; 139 } 140 141 static const struct mtd_ooblayout_ops ma35_ooblayout_ops = { 142 .free = ma35_ooblayout_free, 143 .ecc = ma35_ooblayout_ecc, 144 }; 145 146 static inline void ma35_clear_spare(struct nand_chip *chip, int size) 147 { 148 struct ma35_nand_info *nand = nand_get_controller_data(chip); 149 int i; 150 151 for (i = 0; i < size / 4; i++) 152 writel(0xff, nand->regs + MA35_NFI_REG_NANDRA0); 153 } 154 155 static inline void read_remaining_bytes(struct ma35_nand_info *nand, u32 *buf, 156 u32 offset, int size, int swap) 157 { 158 u32 value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset); 159 u8 *ptr = (u8 *)buf; 160 int i, shift; 161 162 for (i = 0; i < size; i++) { 163 shift = (swap ? 3 - i : i) * 8; 164 ptr[i] = (value >> shift) & 0xff; 165 } 166 } 167 168 static inline void ma35_read_spare(struct nand_chip *chip, int size, u32 *buf, u32 offset) 169 { 170 struct ma35_nand_info *nand = nand_get_controller_data(chip); 171 u32 off = round_down(offset, 4); 172 int len = offset % 4; 173 int i; 174 175 if (len) { 176 read_remaining_bytes(nand, buf, off, 4 - len, 1); 177 off += 4; 178 size -= (4 - len); 179 } 180 181 for (i = 0; i < size / 4; i++) 182 *buf++ = readl(nand->regs + MA35_NFI_REG_NANDRA0 + off + (i * 4)); 183 184 read_remaining_bytes(nand, buf, off + (size & ~3), size % 4, 0); 185 } 186 187 static inline void ma35_write_spare(struct nand_chip *chip, int size, u32 *buf) 188 { 189 struct ma35_nand_info *nand = nand_get_controller_data(chip); 190 u32 value; 191 int i, j; 192 u8 *ptr; 193 194 for (i = 0, j = 0; i < size / 4; i++, j += 4) 195 writel(*buf++, nand->regs + MA35_NFI_REG_NANDRA0 + j); 196 197 ptr = (u8 *)buf; 198 switch (size % 4) { 199 case 1: 200 writel(*ptr, nand->regs + MA35_NFI_REG_NANDRA0 + j); 201 break; 202 case 2: 203 value = *ptr | (*(ptr + 1) << 8); 204 writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j); 205 break; 206 case 3: 207 value = *ptr | (*(ptr + 1) << 8) | (*(ptr + 2) << 16); 208 writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + j); 209 break; 210 default: 211 break; 212 } 213 } 214 215 static void ma35_nand_target_enable(struct nand_chip *chip, unsigned int cs) 216 { 217 struct ma35_nand_info *nand = nand_get_controller_data(chip); 218 u32 reg; 219 220 switch (cs) { 221 case 0: 222 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 223 writel(reg & ~DISABLE_CS0, nand->regs + MA35_NFI_REG_NANDCTL); 224 225 reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS); 226 reg |= INT_RB0; 227 writel(reg, nand->regs + MA35_NFI_REG_NANDINTSTS); 228 break; 229 default: 230 break; 231 } 232 } 233 234 static int ma35_nand_hwecc_init(struct nand_chip *chip, struct ma35_nand_info *nand) 235 { 236 struct ma35_nand_chip *nvtnand = to_ma35_nand(chip); 237 struct mtd_info *mtd = nand_to_mtd(chip); 238 struct device *dev = mtd->dev.parent; 239 u32 reg; 240 241 nand->buffer = devm_kzalloc(dev, mtd->writesize, GFP_KERNEL); 242 if (!nand->buffer) 243 return -ENOMEM; 244 245 /* Redundant area size */ 246 writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL); 247 248 /* Protect redundant 3 bytes and disable ECC engine */ 249 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 250 reg |= (PROT3BEN | ECC_CHK); 251 reg &= ~ECC_EN; 252 253 if (chip->ecc.strength != 0) { 254 chip->ecc.steps = mtd->writesize / chip->ecc.size; 255 nvtnand->eccstatus = (chip->ecc.steps < 4) ? 1 : chip->ecc.steps / 4; 256 /* Set BCH algorithm */ 257 reg &= ~BCH_MASK; 258 switch (chip->ecc.strength) { 259 case 8: 260 chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH8; 261 reg |= BCH_T8; 262 break; 263 case 12: 264 chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH12; 265 reg |= BCH_T12; 266 break; 267 case 24: 268 chip->ecc.total = chip->ecc.steps * MA35_PARITY_BCH24; 269 reg |= BCH_T24; 270 break; 271 default: 272 dev_err(nand->dev, "ECC strength unsupported\n"); 273 return -EINVAL; 274 } 275 276 chip->ecc.bytes = chip->ecc.total / chip->ecc.steps; 277 } 278 writel(reg, nand->regs + MA35_NFI_REG_NANDCTL); 279 return 0; 280 } 281 282 /* Correct data by BCH alrogithm */ 283 static void ma35_nfi_correct(struct nand_chip *chip, u8 index, 284 u8 err_cnt, u8 *addr) 285 { 286 struct ma35_nand_info *nand = nand_get_controller_data(chip); 287 u32 temp_data[24], temp_addr[24]; 288 u32 padding_len, parity_len; 289 u32 value, offset, remain; 290 u32 err_data[6]; 291 u8 i, j; 292 293 /* Configurations */ 294 if (chip->ecc.strength <= 8) { 295 parity_len = MA35_PARITY_BCH8; 296 padding_len = MA35_BCH_PADDING_512; 297 } else if (chip->ecc.strength <= 12) { 298 parity_len = MA35_PARITY_BCH12; 299 padding_len = MA35_BCH_PADDING_512; 300 } else if (chip->ecc.strength <= 24) { 301 parity_len = MA35_PARITY_BCH24; 302 padding_len = MA35_BCH_PADDING_1024; 303 } else { 304 dev_err(nand->dev, "Invalid BCH_TSEL = 0x%lx\n", 305 readl(nand->regs + MA35_NFI_REG_NANDCTL) & BCH_MASK); 306 return; 307 } 308 309 /* 310 * got valid BCH_ECC_DATAx and parse them to temp_data[] 311 * got the valid register number of BCH_ECC_DATAx since 312 * one register include 4 error bytes 313 */ 314 j = (err_cnt + 3) / 4; 315 j = (j > 6) ? 6 : j; 316 for (i = 0; i < j; i++) 317 err_data[i] = readl(nand->regs + MA35_NFI_REG_NANDECCED0 + i * 4); 318 319 for (i = 0; i < j; i++) { 320 temp_data[i * 4 + 0] = err_data[i] & 0xff; 321 temp_data[i * 4 + 1] = (err_data[i] >> 8) & 0xff; 322 temp_data[i * 4 + 2] = (err_data[i] >> 16) & 0xff; 323 temp_data[i * 4 + 3] = (err_data[i] >> 24) & 0xff; 324 } 325 326 /* 327 * got valid REG_BCH_ECC_ADDRx and parse them to temp_addr[] 328 * got the valid register number of REG_BCH_ECC_ADDRx since 329 * one register include 2 error addresses 330 */ 331 j = (err_cnt + 1) / 2; 332 j = (j > 12) ? 12 : j; 333 for (i = 0; i < j; i++) { 334 temp_addr[i * 2 + 0] = readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4) 335 & 0x07ff; 336 temp_addr[i * 2 + 1] = (readl(nand->regs + MA35_NFI_REG_NANDECCEA0 + i * 4) 337 >> 16) & 0x07ff; 338 } 339 340 /* pointer to begin address of field that with data error */ 341 addr += index * chip->ecc.size; 342 343 /* correct each error bytes */ 344 for (i = 0; i < err_cnt; i++) { 345 u32 corrected_index = temp_addr[i]; 346 347 if (corrected_index < chip->ecc.size) { 348 /* for wrong data in field */ 349 *(addr + corrected_index) ^= temp_data[i]; 350 } else if (corrected_index < (chip->ecc.size + 3)) { 351 /* for wrong first-3-bytes in redundancy area */ 352 corrected_index -= chip->ecc.size; 353 temp_addr[i] += (parity_len * index); /* field offset */ 354 355 value = readl(nand->regs + MA35_NFI_REG_NANDRA0); 356 value ^= temp_data[i] << (8 * corrected_index); 357 writel(value, nand->regs + MA35_NFI_REG_NANDRA0); 358 } else { 359 /* 360 * for wrong parity code in redundancy area 361 * ERR_ADDRx = [data in field] + [3 bytes] + [xx] + [parity code] 362 * |<-- padding bytes -->| 363 * The ERR_ADDRx for last parity code always = field size + padding size. 364 * The first parity code = field size + padding size - parity code length. 365 * For example, for BCH T12, the first parity code = 512 + 32 - 23 = 521. 366 * That is, error byte address offset within field is 367 */ 368 corrected_index -= (chip->ecc.size + padding_len - parity_len); 369 370 /* 371 * final address = first parity code of first field + 372 * offset of fields + 373 * offset within field 374 */ 375 offset = (readl(nand->regs + MA35_NFI_REG_NANDRACTL) & 0x1ff) - 376 (parity_len * chip->ecc.steps) + 377 (parity_len * index) + corrected_index; 378 379 remain = offset % 4; 380 value = readl(nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain); 381 value ^= temp_data[i] << (8 * remain); 382 writel(value, nand->regs + MA35_NFI_REG_NANDRA0 + offset - remain); 383 } 384 } 385 } 386 387 static int ma35_nfi_ecc_check(struct nand_chip *chip, u8 *addr) 388 { 389 struct ma35_nand_info *nand = nand_get_controller_data(chip); 390 struct ma35_nand_chip *nvtnand = to_ma35_nand(chip); 391 struct mtd_info *mtd = nand_to_mtd(chip); 392 int maxbitflips = 0; 393 int cnt = 0; 394 u32 status; 395 int i, j; 396 397 for (j = 0; j < nvtnand->eccstatus; j++) { 398 status = readl(nand->regs + MA35_NFI_REG_NANDECCES0 + j * 4); 399 if (!status) 400 continue; 401 402 for (i = 0; i < 4; i++) { 403 if ((status & ECC_STATUS_MASK) == 0x01) { 404 /* Correctable error */ 405 cnt = (status >> 2) & ECC_ERR_CNT_MASK; 406 ma35_nfi_correct(chip, j * 4 + i, cnt, addr); 407 maxbitflips = max_t(u32, maxbitflips, cnt); 408 mtd->ecc_stats.corrected += cnt; 409 } else { 410 /* Uncorrectable error */ 411 mtd->ecc_stats.failed++; 412 dev_err(nand->dev, "uncorrectable error! 0x%4x\n", status); 413 return -EBADMSG; 414 } 415 status >>= 8; 416 } 417 } 418 return maxbitflips; 419 } 420 421 static void ma35_nand_dmac_init(struct ma35_nand_info *nand) 422 { 423 /* DMAC reset and enable */ 424 writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL); 425 writel(DMA_EN, nand->regs + MA35_NFI_REG_DMACTL); 426 427 /* Clear DMA finished flag and enable */ 428 writel(INT_DMA | INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS); 429 writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTEN); 430 } 431 432 static int ma35_nand_do_write(struct nand_chip *chip, const u8 *addr, u32 len) 433 { 434 struct ma35_nand_info *nand = nand_get_controller_data(chip); 435 struct mtd_info *mtd = nand_to_mtd(chip); 436 dma_addr_t dma_addr; 437 int ret = 0, i; 438 u32 reg; 439 440 if (len != mtd->writesize) { 441 for (i = 0; i < len; i++) 442 writel(addr[i], nand->regs + MA35_NFI_REG_NANDDATA); 443 return 0; 444 } 445 446 ma35_nand_dmac_init(nand); 447 448 /* To mark this page as dirty. */ 449 reg = readl(nand->regs + MA35_NFI_REG_NANDRA0); 450 if (reg & 0xffff0000) 451 writel(reg & 0xffff, nand->regs + MA35_NFI_REG_NANDRA0); 452 453 dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_TO_DEVICE); 454 ret = dma_mapping_error(nand->dev, dma_addr); 455 if (ret) { 456 dev_err(nand->dev, "dma mapping error\n"); 457 return -EINVAL; 458 } 459 dma_sync_single_for_device(nand->dev, dma_addr, len, DMA_TO_DEVICE); 460 461 reinit_completion(&nand->complete); 462 writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA); 463 writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_W_EN, 464 nand->regs + MA35_NFI_REG_NANDCTL); 465 ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000)); 466 if (!ret) { 467 dev_err(nand->dev, "write timeout\n"); 468 ret = -ETIMEDOUT; 469 } 470 471 dma_unmap_single(nand->dev, dma_addr, len, DMA_TO_DEVICE); 472 473 return ret; 474 } 475 476 static int ma35_nand_do_read(struct nand_chip *chip, u8 *addr, u32 len) 477 { 478 struct ma35_nand_info *nand = nand_get_controller_data(chip); 479 struct mtd_info *mtd = nand_to_mtd(chip); 480 int ret = 0, cnt = 0, i; 481 dma_addr_t dma_addr; 482 u32 reg; 483 484 if (len != mtd->writesize) { 485 for (i = 0; i < len; i++) 486 addr[i] = readb(nand->regs + MA35_NFI_REG_NANDDATA); 487 return 0; 488 } 489 490 ma35_nand_dmac_init(nand); 491 492 /* Setup and start DMA using dma_addr */ 493 dma_addr = dma_map_single(nand->dev, (void *)addr, len, DMA_FROM_DEVICE); 494 ret = dma_mapping_error(nand->dev, dma_addr); 495 if (ret) { 496 dev_err(nand->dev, "dma mapping error\n"); 497 return -EINVAL; 498 } 499 500 reinit_completion(&nand->complete); 501 writel(dma_addr, nand->regs + MA35_NFI_REG_DMASA); 502 writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | DMA_R_EN, 503 nand->regs + MA35_NFI_REG_NANDCTL); 504 ret = wait_for_completion_timeout(&nand->complete, msecs_to_jiffies(1000)); 505 if (!ret) { 506 dev_err(nand->dev, "read timeout\n"); 507 ret = -ETIMEDOUT; 508 } 509 510 dma_unmap_single(nand->dev, dma_addr, len, DMA_FROM_DEVICE); 511 512 reg = readl(nand->regs + MA35_NFI_REG_NANDINTSTS); 513 if (reg & INT_ECC) { 514 cnt = ma35_nfi_ecc_check(chip, addr); 515 if (cnt < 0) { 516 writel(DMA_RST | DMA_EN, nand->regs + MA35_NFI_REG_DMACTL); 517 writel(readl(nand->regs + MA35_NFI_REG_NANDCTL) | SWRST, 518 nand->regs + MA35_NFI_REG_NANDCTL); 519 } 520 writel(INT_ECC, nand->regs + MA35_NFI_REG_NANDINTSTS); 521 } 522 523 ret = ret < 0 ? ret : cnt; 524 return ret; 525 } 526 527 static int ma35_nand_format_subpage(struct nand_chip *chip, u32 offset, 528 u32 len, const u8 *buf) 529 { 530 struct ma35_nand_info *nand = nand_get_controller_data(chip); 531 struct mtd_info *mtd = nand_to_mtd(chip); 532 u32 page_off = round_down(offset, chip->ecc.size); 533 u32 end = DIV_ROUND_UP(page_off + len, chip->ecc.size); 534 u32 start = page_off / chip->ecc.size; 535 u32 reg; 536 int i; 537 538 reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL) | 0xffff0000; 539 memset(nand->buffer, 0xff, mtd->writesize); 540 for (i = start; i < end; i++) { 541 memcpy(nand->buffer + i * chip->ecc.size, 542 buf + i * chip->ecc.size, chip->ecc.size); 543 reg &= ~(1 << (i + 16)); 544 } 545 writel(reg, nand->regs + MA35_NFI_REG_NANDRACTL); 546 547 return 0; 548 } 549 550 static int ma35_nand_write_subpage_hwecc(struct nand_chip *chip, u32 offset, 551 u32 data_len, const u8 *buf, 552 int oob_required, int page) 553 { 554 struct ma35_nand_info *nand = nand_get_controller_data(chip); 555 struct mtd_info *mtd = nand_to_mtd(chip); 556 u32 reg, oobpoi, index; 557 int i; 558 559 /* Enable HW ECC engine */ 560 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 561 writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 562 563 ma35_nand_target_enable(chip, chip->cur_cs); 564 565 ma35_clear_spare(chip, mtd->oobsize); 566 ma35_write_spare(chip, mtd->oobsize - chip->ecc.total, 567 (u32 *)chip->oob_poi); 568 569 ma35_nand_format_subpage(chip, offset, data_len, buf); 570 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 571 ma35_nand_do_write(chip, nand->buffer, mtd->writesize); 572 nand_prog_page_end_op(chip); 573 574 oobpoi = mtd->oobsize - chip->ecc.total; 575 reg = readl(nand->regs + MA35_NFI_REG_NANDRACTL); 576 for (i = 0; i < chip->ecc.steps; i++) { 577 index = i * chip->ecc.bytes; 578 if (!(reg & (1 << (i + 16)))) { 579 ma35_read_spare(chip, chip->ecc.bytes, 580 (u32 *)(chip->oob_poi + oobpoi + index), 581 oobpoi + index); 582 } 583 } 584 585 writel(mtd->oobsize, nand->regs + MA35_NFI_REG_NANDRACTL); 586 /* Disable HW ECC engine */ 587 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 588 writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 589 590 return 0; 591 } 592 593 static int ma35_nand_write_page_hwecc(struct nand_chip *chip, const u8 *buf, 594 int oob_required, int page) 595 { 596 struct ma35_nand_info *nand = nand_get_controller_data(chip); 597 struct mtd_info *mtd = nand_to_mtd(chip); 598 u32 reg; 599 600 /* Enable HW ECC engine */ 601 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 602 writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 603 604 ma35_nand_target_enable(chip, chip->cur_cs); 605 606 ma35_clear_spare(chip, mtd->oobsize); 607 ma35_write_spare(chip, mtd->oobsize - chip->ecc.total, 608 (u32 *)chip->oob_poi); 609 610 nand_prog_page_begin_op(chip, page, 0, NULL, 0); 611 ma35_nand_do_write(chip, buf, mtd->writesize); 612 nand_prog_page_end_op(chip); 613 614 ma35_read_spare(chip, chip->ecc.total, 615 (u32 *)(chip->oob_poi + (mtd->oobsize - chip->ecc.total)), 616 mtd->oobsize - chip->ecc.total); 617 618 /* Disable HW ECC engine */ 619 writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 620 621 return 0; 622 } 623 624 static int ma35_nand_read_subpage_hwecc(struct nand_chip *chip, u32 offset, 625 u32 data_len, u8 *buf, int page) 626 { 627 struct ma35_nand_info *nand = nand_get_controller_data(chip); 628 struct mtd_info *mtd = nand_to_mtd(chip); 629 int bitflips = 0; 630 u32 reg; 631 632 /* Enable HW ECC engine */ 633 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 634 writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 635 636 ma35_nand_target_enable(chip, chip->cur_cs); 637 nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 638 ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi); 639 640 reg = readl(nand->regs + MA35_NFI_REG_NANDRA0); 641 if (PREFIX_RA_IS_EMPTY(reg)) { 642 memset((void *)buf, 0xff, mtd->writesize); 643 } else { 644 nand_read_page_op(chip, page, offset, NULL, 0); 645 bitflips = ma35_nand_do_read(chip, buf + offset, data_len); 646 ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0); 647 } 648 649 /* Disable HW ECC engine */ 650 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 651 writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 652 653 return bitflips; 654 } 655 656 static int ma35_nand_read_page_hwecc(struct nand_chip *chip, u8 *buf, 657 int oob_required, int page) 658 { 659 struct ma35_nand_info *nand = nand_get_controller_data(chip); 660 struct mtd_info *mtd = nand_to_mtd(chip); 661 int bitflips = 0; 662 u32 reg; 663 664 /* Enable HW ECC engine */ 665 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 666 writel(reg | ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 667 668 ma35_nand_target_enable(chip, chip->cur_cs); 669 nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 670 ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi); 671 672 reg = readl(nand->regs + MA35_NFI_REG_NANDRA0); 673 if (PREFIX_RA_IS_EMPTY(reg)) { 674 memset((void *)buf, 0xff, mtd->writesize); 675 } else { 676 nand_read_page_op(chip, page, 0, NULL, 0); 677 bitflips = ma35_nand_do_read(chip, buf, mtd->writesize); 678 ma35_read_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi, 0); 679 } 680 681 /* Disable HW ECC engine */ 682 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 683 writel(reg & ~ECC_EN, nand->regs + MA35_NFI_REG_NANDCTL); 684 685 return bitflips; 686 } 687 688 static int ma35_nand_read_oob_hwecc(struct nand_chip *chip, int page) 689 { 690 struct ma35_nand_info *nand = nand_get_controller_data(chip); 691 struct mtd_info *mtd = nand_to_mtd(chip); 692 u32 reg; 693 694 ma35_nand_target_enable(chip, chip->cur_cs); 695 nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize); 696 697 /* copy OOB data to controller redundant area for page read */ 698 ma35_write_spare(chip, mtd->oobsize, (u32 *)chip->oob_poi); 699 700 reg = readl(nand->regs + MA35_NFI_REG_NANDRA0); 701 if (PREFIX_RA_IS_EMPTY(reg)) 702 memset((void *)chip->oob_poi, 0xff, mtd->oobsize); 703 704 return 0; 705 } 706 707 static inline void ma35_hw_init(struct ma35_nand_info *nand) 708 { 709 u32 reg; 710 711 /* Disable flash wp. */ 712 writel(DISABLE_WP, nand->regs + MA35_NFI_REG_NANDECTL); 713 714 /* resets the internal state machine and counters */ 715 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL); 716 reg |= SWRST; 717 writel(reg, nand->regs + MA35_NFI_REG_NANDCTL); 718 } 719 720 static irqreturn_t ma35_nand_irq(int irq, void *id) 721 { 722 struct ma35_nand_info *nand = (struct ma35_nand_info *)id; 723 u32 isr; 724 725 isr = readl(nand->regs + MA35_NFI_REG_NANDINTSTS); 726 if (isr & INT_DMA) { 727 writel(INT_DMA, nand->regs + MA35_NFI_REG_NANDINTSTS); 728 complete(&nand->complete); 729 return IRQ_HANDLED; 730 } 731 732 return IRQ_NONE; 733 } 734 735 static int ma35_nand_attach_chip(struct nand_chip *chip) 736 { 737 struct ma35_nand_info *nand = nand_get_controller_data(chip); 738 struct mtd_info *mtd = nand_to_mtd(chip); 739 struct device *dev = mtd->dev.parent; 740 u32 reg; 741 742 if (chip->options & NAND_BUSWIDTH_16) { 743 dev_err(dev, "16 bits bus width not supported"); 744 return -EINVAL; 745 } 746 747 reg = readl(nand->regs + MA35_NFI_REG_NANDCTL) & (~PSIZE_MASK); 748 switch (mtd->writesize) { 749 case SZ_2K: 750 writel(reg | PSIZE_2K, nand->regs + MA35_NFI_REG_NANDCTL); 751 break; 752 case SZ_4K: 753 writel(reg | PSIZE_4K, nand->regs + MA35_NFI_REG_NANDCTL); 754 break; 755 case SZ_8K: 756 writel(reg | PSIZE_8K, nand->regs + MA35_NFI_REG_NANDCTL); 757 break; 758 default: 759 dev_err(dev, "Unsupported page size"); 760 return -EINVAL; 761 } 762 763 switch (chip->ecc.engine_type) { 764 case NAND_ECC_ENGINE_TYPE_ON_HOST: 765 /* Do not store BBT bits in the OOB section as it is not protected */ 766 if (chip->bbt_options & NAND_BBT_USE_FLASH) 767 chip->bbt_options |= NAND_BBT_NO_OOB; 768 chip->options |= NAND_USES_DMA | NAND_SUBPAGE_READ; 769 chip->ecc.write_subpage = ma35_nand_write_subpage_hwecc; 770 chip->ecc.write_page = ma35_nand_write_page_hwecc; 771 chip->ecc.read_subpage = ma35_nand_read_subpage_hwecc; 772 chip->ecc.read_page = ma35_nand_read_page_hwecc; 773 chip->ecc.read_oob = ma35_nand_read_oob_hwecc; 774 return ma35_nand_hwecc_init(chip, nand); 775 case NAND_ECC_ENGINE_TYPE_NONE: 776 case NAND_ECC_ENGINE_TYPE_SOFT: 777 case NAND_ECC_ENGINE_TYPE_ON_DIE: 778 break; 779 default: 780 return -EINVAL; 781 } 782 783 return 0; 784 } 785 786 static int ma35_nfc_exec_instr(struct nand_chip *chip, 787 const struct nand_op_instr *instr) 788 { 789 struct ma35_nand_info *nand = nand_get_controller_data(chip); 790 unsigned int i; 791 int ret = 0; 792 u32 status; 793 794 switch (instr->type) { 795 case NAND_OP_CMD_INSTR: 796 writel(instr->ctx.cmd.opcode, nand->regs + MA35_NFI_REG_NANDCMD); 797 break; 798 case NAND_OP_ADDR_INSTR: 799 for (i = 0; i < instr->ctx.addr.naddrs; i++) { 800 if (i == (instr->ctx.addr.naddrs - 1)) 801 writel(instr->ctx.addr.addrs[i] | ENDADDR, 802 nand->regs + MA35_NFI_REG_NANDADDR); 803 else 804 writel(instr->ctx.addr.addrs[i], 805 nand->regs + MA35_NFI_REG_NANDADDR); 806 } 807 break; 808 case NAND_OP_DATA_IN_INSTR: 809 ret = ma35_nand_do_read(chip, instr->ctx.data.buf.in, instr->ctx.data.len); 810 break; 811 case NAND_OP_DATA_OUT_INSTR: 812 ret = ma35_nand_do_write(chip, instr->ctx.data.buf.out, instr->ctx.data.len); 813 break; 814 case NAND_OP_WAITRDY_INSTR: 815 return readl_poll_timeout(nand->regs + MA35_NFI_REG_NANDINTSTS, status, 816 status & INT_RB0, 20, 817 instr->ctx.waitrdy.timeout_ms * MSEC_PER_SEC); 818 default: 819 ret = -EINVAL; 820 break; 821 } 822 823 return ret; 824 } 825 826 static int ma35_nfc_exec_op(struct nand_chip *chip, 827 const struct nand_operation *op, 828 bool check_only) 829 { 830 int ret = 0; 831 u32 i; 832 833 if (check_only) 834 return 0; 835 836 ma35_nand_target_enable(chip, op->cs); 837 838 for (i = 0; i < op->ninstrs; i++) { 839 ret = ma35_nfc_exec_instr(chip, &op->instrs[i]); 840 if (ret) 841 break; 842 } 843 844 return ret; 845 } 846 847 static const struct nand_controller_ops ma35_nfc_ops = { 848 .attach_chip = ma35_nand_attach_chip, 849 .exec_op = ma35_nfc_exec_op, 850 }; 851 852 static int ma35_nand_chip_init(struct device *dev, struct ma35_nand_info *nand, 853 struct device_node *np) 854 { 855 struct ma35_nand_chip *nvtnand; 856 struct nand_chip *chip; 857 struct mtd_info *mtd; 858 int nsels; 859 int ret; 860 u32 cs; 861 int i; 862 863 nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32)); 864 if (!nsels || nsels > MA35_MAX_NSELS) { 865 dev_err(dev, "invalid reg property size %d\n", nsels); 866 return -EINVAL; 867 } 868 869 nvtnand = devm_kzalloc(dev, struct_size(nvtnand, sels, nsels), 870 GFP_KERNEL); 871 if (!nvtnand) 872 return -ENOMEM; 873 874 nvtnand->nsels = nsels; 875 for (i = 0; i < nsels; i++) { 876 ret = of_property_read_u32_index(np, "reg", i, &cs); 877 if (ret) { 878 dev_err(dev, "reg property failure : %d\n", ret); 879 return ret; 880 } 881 882 if (cs >= MA35_MAX_NSELS) { 883 dev_err(dev, "invalid CS: %u\n", cs); 884 return -EINVAL; 885 } 886 887 if (test_and_set_bit(cs, &nand->assigned_cs)) { 888 dev_err(dev, "CS %u already assigned\n", cs); 889 return -EINVAL; 890 } 891 892 nvtnand->sels[i] = cs; 893 } 894 895 chip = &nvtnand->chip; 896 chip->controller = &nand->controller; 897 898 nand_set_flash_node(chip, np); 899 nand_set_controller_data(chip, nand); 900 901 mtd = nand_to_mtd(chip); 902 mtd->owner = THIS_MODULE; 903 mtd->dev.parent = dev; 904 905 mtd_set_ooblayout(mtd, &ma35_ooblayout_ops); 906 ret = nand_scan(chip, nsels); 907 if (ret) 908 return ret; 909 910 ret = mtd_device_register(mtd, NULL, 0); 911 if (ret) { 912 nand_cleanup(chip); 913 return ret; 914 } 915 916 list_add_tail(&nvtnand->node, &nand->chips); 917 918 return 0; 919 } 920 921 static void ma35_chips_cleanup(struct ma35_nand_info *nand) 922 { 923 struct ma35_nand_chip *nvtnand, *tmp; 924 struct nand_chip *chip; 925 int ret; 926 927 list_for_each_entry_safe(nvtnand, tmp, &nand->chips, node) { 928 chip = &nvtnand->chip; 929 ret = mtd_device_unregister(nand_to_mtd(chip)); 930 WARN_ON(ret); 931 nand_cleanup(chip); 932 list_del(&nvtnand->node); 933 } 934 } 935 936 static int ma35_nand_chips_init(struct device *dev, struct ma35_nand_info *nand) 937 { 938 struct device_node *np = dev->of_node, *nand_np; 939 int ret; 940 941 for_each_child_of_node(np, nand_np) { 942 ret = ma35_nand_chip_init(dev, nand, nand_np); 943 if (ret) { 944 ma35_chips_cleanup(nand); 945 return ret; 946 } 947 } 948 return 0; 949 } 950 951 static int ma35_nand_probe(struct platform_device *pdev) 952 { 953 struct ma35_nand_info *nand; 954 int ret = 0; 955 956 nand = devm_kzalloc(&pdev->dev, sizeof(*nand), GFP_KERNEL); 957 if (!nand) 958 return -ENOMEM; 959 960 nand_controller_init(&nand->controller); 961 INIT_LIST_HEAD(&nand->chips); 962 nand->controller.ops = &ma35_nfc_ops; 963 964 init_completion(&nand->complete); 965 966 nand->regs = devm_platform_ioremap_resource(pdev, 0); 967 if (IS_ERR(nand->regs)) 968 return PTR_ERR(nand->regs); 969 970 nand->dev = &pdev->dev; 971 972 nand->clk = devm_clk_get_enabled(&pdev->dev, "nand_gate"); 973 if (IS_ERR(nand->clk)) 974 return dev_err_probe(&pdev->dev, PTR_ERR(nand->clk), 975 "failed to find NAND clock\n"); 976 977 nand->irq = platform_get_irq(pdev, 0); 978 if (nand->irq < 0) 979 return dev_err_probe(&pdev->dev, nand->irq, 980 "failed to get platform irq\n"); 981 982 ret = devm_request_irq(&pdev->dev, nand->irq, ma35_nand_irq, 983 IRQF_TRIGGER_HIGH, "ma35d1-nand-controller", nand); 984 if (ret) { 985 dev_err(&pdev->dev, "failed to request NAND irq\n"); 986 return -ENXIO; 987 } 988 989 platform_set_drvdata(pdev, nand); 990 991 writel(GRST | NAND_EN, nand->regs + MA35_NFI_REG_GCTL); 992 ma35_hw_init(nand); 993 ret = ma35_nand_chips_init(&pdev->dev, nand); 994 if (ret) { 995 dev_err(&pdev->dev, "failed to init NAND chips\n"); 996 clk_disable(nand->clk); 997 return ret; 998 } 999 1000 return ret; 1001 } 1002 1003 static void ma35_nand_remove(struct platform_device *pdev) 1004 { 1005 struct ma35_nand_info *nand = platform_get_drvdata(pdev); 1006 1007 ma35_chips_cleanup(nand); 1008 } 1009 1010 static const struct of_device_id ma35_nand_of_match[] = { 1011 { .compatible = "nuvoton,ma35d1-nand-controller" }, 1012 {}, 1013 }; 1014 MODULE_DEVICE_TABLE(of, ma35_nand_of_match); 1015 1016 static struct platform_driver ma35_nand_driver = { 1017 .driver = { 1018 .name = "ma35d1-nand-controller", 1019 .of_match_table = ma35_nand_of_match, 1020 }, 1021 .probe = ma35_nand_probe, 1022 .remove = ma35_nand_remove, 1023 }; 1024 1025 module_platform_driver(ma35_nand_driver); 1026 1027 MODULE_DESCRIPTION("Nuvoton ma35 NAND driver"); 1028 MODULE_AUTHOR("Hui-Ping Chen <hpchen0nvt@gmail.com>"); 1029 MODULE_LICENSE("GPL"); 1030