xref: /linux/drivers/mtd/nand/raw/nand_hynix.c (revision 3269d6fb7580e91313f40dffcff70c01cd3f0717)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2017 Free Electrons
4  * Copyright (C) 2017 NextThing Co
5  *
6  * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
7  */
8 
9 #include <linux/sizes.h>
10 #include <linux/slab.h>
11 
12 #include "internals.h"
13 
14 #define NAND_HYNIX_CMD_SET_PARAMS	0x36
15 #define NAND_HYNIX_CMD_APPLY_PARAMS	0x16
16 
17 #define NAND_HYNIX_1XNM_RR_REPEAT	8
18 
19 /**
20  * struct hynix_read_retry - read-retry data
21  * @nregs: number of register to set when applying a new read-retry mode
22  * @regs: register offsets (NAND chip dependent)
23  * @values: array of values to set in registers. The array size is equal to
24  *	    (nregs * nmodes)
25  */
26 struct hynix_read_retry {
27 	int nregs;
28 	const u8 *regs;
29 	u8 values[];
30 };
31 
32 /**
33  * struct hynix_nand - private Hynix NAND struct
34  * @read_retry: read-retry information
35  */
36 struct hynix_nand {
37 	const struct hynix_read_retry *read_retry;
38 };
39 
40 /**
41  * struct hynix_read_retry_otp - structure describing how the read-retry OTP
42  *				 area
43  * @nregs: number of hynix private registers to set before reading the reading
44  *	   the OTP area
45  * @regs: registers that should be configured
46  * @values: values that should be set in regs
47  * @page: the address to pass to the READ_PAGE command. Depends on the NAND
48  *	  chip
49  * @size: size of the read-retry OTP section
50  */
51 struct hynix_read_retry_otp {
52 	int nregs;
53 	const u8 *regs;
54 	const u8 *values;
55 	int page;
56 	int size;
57 };
58 
59 static bool hynix_nand_has_valid_jedecid(struct nand_chip *chip)
60 {
61 	u8 jedecid[5] = { };
62 	int ret;
63 
64 	ret = nand_readid_op(chip, 0x40, jedecid, sizeof(jedecid));
65 	if (ret)
66 		return false;
67 
68 	return !strncmp("JEDEC", jedecid, sizeof(jedecid));
69 }
70 
71 static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd)
72 {
73 	if (nand_has_exec_op(chip)) {
74 		struct nand_op_instr instrs[] = {
75 			NAND_OP_CMD(cmd, 0),
76 		};
77 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
78 
79 		return nand_exec_op(chip, &op);
80 	}
81 
82 	chip->legacy.cmdfunc(chip, cmd, -1, -1);
83 
84 	return 0;
85 }
86 
87 static int hynix_nand_reg_write_op(struct nand_chip *chip, u8 addr, u8 val)
88 {
89 	u16 column = ((u16)addr << 8) | addr;
90 
91 	if (nand_has_exec_op(chip)) {
92 		struct nand_op_instr instrs[] = {
93 			NAND_OP_ADDR(1, &addr, 0),
94 			NAND_OP_8BIT_DATA_OUT(1, &val, 0),
95 		};
96 		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
97 
98 		return nand_exec_op(chip, &op);
99 	}
100 
101 	chip->legacy.cmdfunc(chip, NAND_CMD_NONE, column, -1);
102 	chip->legacy.write_byte(chip, val);
103 
104 	return 0;
105 }
106 
107 static int hynix_nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
108 {
109 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
110 	const u8 *values;
111 	int i, ret;
112 
113 	values = hynix->read_retry->values +
114 		 (retry_mode * hynix->read_retry->nregs);
115 
116 	/* Enter 'Set Hynix Parameters' mode */
117 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
118 	if (ret)
119 		return ret;
120 
121 	/*
122 	 * Configure the NAND in the requested read-retry mode.
123 	 * This is done by setting pre-defined values in internal NAND
124 	 * registers.
125 	 *
126 	 * The set of registers is NAND specific, and the values are either
127 	 * predefined or extracted from an OTP area on the NAND (values are
128 	 * probably tweaked at production in this case).
129 	 */
130 	for (i = 0; i < hynix->read_retry->nregs; i++) {
131 		ret = hynix_nand_reg_write_op(chip, hynix->read_retry->regs[i],
132 					      values[i]);
133 		if (ret)
134 			return ret;
135 	}
136 
137 	/* Apply the new settings. */
138 	return hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
139 }
140 
141 /**
142  * hynix_get_majority - get the value that is occurring the most in a given
143  *			set of values
144  * @in: the array of values to test
145  * @repeat: the size of the in array
146  * @out: pointer used to store the output value
147  *
148  * This function implements the 'majority check' logic that is supposed to
149  * overcome the unreliability of MLC NANDs when reading the OTP area storing
150  * the read-retry parameters.
151  *
152  * It's based on a pretty simple assumption: if we repeat the same value
153  * several times and then take the one that is occurring the most, we should
154  * find the correct value.
155  * Let's hope this dummy algorithm prevents us from losing the read-retry
156  * parameters.
157  */
158 static int hynix_get_majority(const u8 *in, int repeat, u8 *out)
159 {
160 	int i, j, half = repeat / 2;
161 
162 	/*
163 	 * We only test the first half of the in array because we must ensure
164 	 * that the value is at least occurring repeat / 2 times.
165 	 *
166 	 * This loop is suboptimal since we may count the occurrences of the
167 	 * same value several time, but we are doing that on small sets, which
168 	 * makes it acceptable.
169 	 */
170 	for (i = 0; i < half; i++) {
171 		int cnt = 0;
172 		u8 val = in[i];
173 
174 		/* Count all values that are matching the one at index i. */
175 		for (j = i + 1; j < repeat; j++) {
176 			if (in[j] == val)
177 				cnt++;
178 		}
179 
180 		/* We found a value occurring more than repeat / 2. */
181 		if (cnt > half) {
182 			*out = val;
183 			return 0;
184 		}
185 	}
186 
187 	return -EIO;
188 }
189 
190 static int hynix_read_rr_otp(struct nand_chip *chip,
191 			     const struct hynix_read_retry_otp *info,
192 			     void *buf)
193 {
194 	int i, ret;
195 
196 	ret = nand_reset_op(chip);
197 	if (ret)
198 		return ret;
199 
200 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
201 	if (ret)
202 		return ret;
203 
204 	for (i = 0; i < info->nregs; i++) {
205 		ret = hynix_nand_reg_write_op(chip, info->regs[i],
206 					      info->values[i]);
207 		if (ret)
208 			return ret;
209 	}
210 
211 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
212 	if (ret)
213 		return ret;
214 
215 	/* Sequence to enter OTP mode? */
216 	ret = hynix_nand_cmd_op(chip, 0x17);
217 	if (ret)
218 		return ret;
219 
220 	ret = hynix_nand_cmd_op(chip, 0x4);
221 	if (ret)
222 		return ret;
223 
224 	ret = hynix_nand_cmd_op(chip, 0x19);
225 	if (ret)
226 		return ret;
227 
228 	/* Now read the page */
229 	ret = nand_read_page_op(chip, info->page, 0, buf, info->size);
230 	if (ret)
231 		return ret;
232 
233 	/* Put everything back to normal */
234 	ret = nand_reset_op(chip);
235 	if (ret)
236 		return ret;
237 
238 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_SET_PARAMS);
239 	if (ret)
240 		return ret;
241 
242 	ret = hynix_nand_reg_write_op(chip, 0x38, 0);
243 	if (ret)
244 		return ret;
245 
246 	ret = hynix_nand_cmd_op(chip, NAND_HYNIX_CMD_APPLY_PARAMS);
247 	if (ret)
248 		return ret;
249 
250 	return nand_read_page_op(chip, 0, 0, NULL, 0);
251 }
252 
253 #define NAND_HYNIX_1XNM_RR_COUNT_OFFS				0
254 #define NAND_HYNIX_1XNM_RR_REG_COUNT_OFFS			8
255 #define NAND_HYNIX_1XNM_RR_SET_OFFS(x, setsize, inv)		\
256 	(16 + ((((x) * 2) + ((inv) ? 1 : 0)) * (setsize)))
257 
258 static int hynix_mlc_1xnm_rr_value(const u8 *buf, int nmodes, int nregs,
259 				   int mode, int reg, bool inv, u8 *val)
260 {
261 	u8 tmp[NAND_HYNIX_1XNM_RR_REPEAT];
262 	int val_offs = (mode * nregs) + reg;
263 	int set_size = nmodes * nregs;
264 	int i, ret;
265 
266 	for (i = 0; i < NAND_HYNIX_1XNM_RR_REPEAT; i++) {
267 		int set_offs = NAND_HYNIX_1XNM_RR_SET_OFFS(i, set_size, inv);
268 
269 		tmp[i] = buf[val_offs + set_offs];
270 	}
271 
272 	ret = hynix_get_majority(tmp, NAND_HYNIX_1XNM_RR_REPEAT, val);
273 	if (ret)
274 		return ret;
275 
276 	if (inv)
277 		*val = ~*val;
278 
279 	return 0;
280 }
281 
282 static u8 hynix_1xnm_mlc_read_retry_regs[] = {
283 	0xcc, 0xbf, 0xaa, 0xab, 0xcd, 0xad, 0xae, 0xaf
284 };
285 
286 static int hynix_mlc_1xnm_rr_init(struct nand_chip *chip,
287 				  const struct hynix_read_retry_otp *info)
288 {
289 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
290 	struct hynix_read_retry *rr = NULL;
291 	int ret, i, j;
292 	u8 nregs, nmodes;
293 	u8 *buf;
294 
295 	buf = kmalloc(info->size, GFP_KERNEL);
296 	if (!buf)
297 		return -ENOMEM;
298 
299 	ret = hynix_read_rr_otp(chip, info, buf);
300 	if (ret)
301 		goto out;
302 
303 	ret = hynix_get_majority(buf, NAND_HYNIX_1XNM_RR_REPEAT,
304 				 &nmodes);
305 	if (ret)
306 		goto out;
307 
308 	ret = hynix_get_majority(buf + NAND_HYNIX_1XNM_RR_REPEAT,
309 				 NAND_HYNIX_1XNM_RR_REPEAT,
310 				 &nregs);
311 	if (ret)
312 		goto out;
313 
314 	rr = kzalloc(sizeof(*rr) + (nregs * nmodes), GFP_KERNEL);
315 	if (!rr) {
316 		ret = -ENOMEM;
317 		goto out;
318 	}
319 
320 	for (i = 0; i < nmodes; i++) {
321 		for (j = 0; j < nregs; j++) {
322 			u8 *val = rr->values + (i * nregs);
323 
324 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
325 						      false, val);
326 			if (!ret)
327 				continue;
328 
329 			ret = hynix_mlc_1xnm_rr_value(buf, nmodes, nregs, i, j,
330 						      true, val);
331 			if (ret)
332 				goto out;
333 		}
334 	}
335 
336 	rr->nregs = nregs;
337 	rr->regs = hynix_1xnm_mlc_read_retry_regs;
338 	hynix->read_retry = rr;
339 	chip->ops.setup_read_retry = hynix_nand_setup_read_retry;
340 	chip->read_retries = nmodes;
341 
342 out:
343 	kfree(buf);
344 
345 	if (ret)
346 		kfree(rr);
347 
348 	return ret;
349 }
350 
351 static const u8 hynix_mlc_1xnm_rr_otp_regs[] = { 0x38 };
352 static const u8 hynix_mlc_1xnm_rr_otp_values[] = { 0x52 };
353 
354 static const struct hynix_read_retry_otp hynix_mlc_1xnm_rr_otps[] = {
355 	{
356 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
357 		.regs = hynix_mlc_1xnm_rr_otp_regs,
358 		.values = hynix_mlc_1xnm_rr_otp_values,
359 		.page = 0x21f,
360 		.size = 784
361 	},
362 	{
363 		.nregs = ARRAY_SIZE(hynix_mlc_1xnm_rr_otp_regs),
364 		.regs = hynix_mlc_1xnm_rr_otp_regs,
365 		.values = hynix_mlc_1xnm_rr_otp_values,
366 		.page = 0x200,
367 		.size = 528,
368 	},
369 };
370 
371 static int hynix_nand_rr_init(struct nand_chip *chip)
372 {
373 	int i, ret = 0;
374 	bool valid_jedecid;
375 
376 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
377 
378 	/*
379 	 * We only support read-retry for 1xnm NANDs, and those NANDs all
380 	 * expose a valid JEDEC ID.
381 	 */
382 	if (valid_jedecid) {
383 		u8 nand_tech = chip->id.data[5] >> 4;
384 
385 		/* 1xnm technology */
386 		if (nand_tech == 4) {
387 			for (i = 0; i < ARRAY_SIZE(hynix_mlc_1xnm_rr_otps);
388 			     i++) {
389 				/*
390 				 * FIXME: Hynix recommend to copy the
391 				 * read-retry OTP area into a normal page.
392 				 */
393 				ret = hynix_mlc_1xnm_rr_init(chip,
394 						hynix_mlc_1xnm_rr_otps);
395 				if (!ret)
396 					break;
397 			}
398 		}
399 	}
400 
401 	if (ret)
402 		pr_warn("failed to initialize read-retry infrastructure");
403 
404 	return ret;
405 }
406 
407 static void hynix_nand_extract_oobsize(struct nand_chip *chip,
408 				       bool valid_jedecid)
409 {
410 	struct mtd_info *mtd = nand_to_mtd(chip);
411 	struct nand_memory_organization *memorg;
412 	u8 oobsize;
413 
414 	memorg = nanddev_get_memorg(&chip->base);
415 
416 	oobsize = ((chip->id.data[3] >> 2) & 0x3) |
417 		  ((chip->id.data[3] >> 4) & 0x4);
418 
419 	if (valid_jedecid) {
420 		switch (oobsize) {
421 		case 0:
422 			memorg->oobsize = 2048;
423 			break;
424 		case 1:
425 			memorg->oobsize = 1664;
426 			break;
427 		case 2:
428 			memorg->oobsize = 1024;
429 			break;
430 		case 3:
431 			memorg->oobsize = 640;
432 			break;
433 		default:
434 			/*
435 			 * We should never reach this case, but if that
436 			 * happens, this probably means Hynix decided to use
437 			 * a different extended ID format, and we should find
438 			 * a way to support it.
439 			 */
440 			WARN(1, "Invalid OOB size");
441 			break;
442 		}
443 	} else {
444 		switch (oobsize) {
445 		case 0:
446 			memorg->oobsize = 128;
447 			break;
448 		case 1:
449 			memorg->oobsize = 224;
450 			break;
451 		case 2:
452 			memorg->oobsize = 448;
453 			break;
454 		case 3:
455 			memorg->oobsize = 64;
456 			break;
457 		case 4:
458 			memorg->oobsize = 32;
459 			break;
460 		case 5:
461 			memorg->oobsize = 16;
462 			break;
463 		case 6:
464 			memorg->oobsize = 640;
465 			break;
466 		default:
467 			/*
468 			 * We should never reach this case, but if that
469 			 * happens, this probably means Hynix decided to use
470 			 * a different extended ID format, and we should find
471 			 * a way to support it.
472 			 */
473 			WARN(1, "Invalid OOB size");
474 			break;
475 		}
476 
477 		/*
478 		 * The datasheet of H27UCG8T2BTR mentions that the "Redundant
479 		 * Area Size" is encoded "per 8KB" (page size). This chip uses
480 		 * a page size of 16KiB. The datasheet mentions an OOB size of
481 		 * 1.280 bytes, but the OOB size encoded in the ID bytes (using
482 		 * the existing logic above) is 640 bytes.
483 		 * Update the OOB size for this chip by taking the value
484 		 * determined above and scaling it to the actual page size (so
485 		 * the actual OOB size for this chip is: 640 * 16k / 8k).
486 		 */
487 		if (chip->id.data[1] == 0xde)
488 			memorg->oobsize *= memorg->pagesize / SZ_8K;
489 	}
490 
491 	mtd->oobsize = memorg->oobsize;
492 }
493 
494 static void hynix_nand_extract_ecc_requirements(struct nand_chip *chip,
495 						bool valid_jedecid)
496 {
497 	struct nand_device *base = &chip->base;
498 	struct nand_ecc_props requirements = {};
499 	u8 ecc_level = (chip->id.data[4] >> 4) & 0x7;
500 
501 	if (valid_jedecid) {
502 		/* Reference: H27UCG8T2E datasheet */
503 		requirements.step_size = 1024;
504 
505 		switch (ecc_level) {
506 		case 0:
507 			requirements.step_size = 0;
508 			requirements.strength = 0;
509 			break;
510 		case 1:
511 			requirements.strength = 4;
512 			break;
513 		case 2:
514 			requirements.strength = 24;
515 			break;
516 		case 3:
517 			requirements.strength = 32;
518 			break;
519 		case 4:
520 			requirements.strength = 40;
521 			break;
522 		case 5:
523 			requirements.strength = 50;
524 			break;
525 		case 6:
526 			requirements.strength = 60;
527 			break;
528 		default:
529 			/*
530 			 * We should never reach this case, but if that
531 			 * happens, this probably means Hynix decided to use
532 			 * a different extended ID format, and we should find
533 			 * a way to support it.
534 			 */
535 			WARN(1, "Invalid ECC requirements");
536 		}
537 	} else {
538 		/*
539 		 * The ECC requirements field meaning depends on the
540 		 * NAND technology.
541 		 */
542 		u8 nand_tech = chip->id.data[5] & 0x7;
543 
544 		if (nand_tech < 3) {
545 			/* > 26nm, reference: H27UBG8T2A datasheet */
546 			if (ecc_level < 5) {
547 				requirements.step_size = 512;
548 				requirements.strength = 1 << ecc_level;
549 			} else if (ecc_level < 7) {
550 				if (ecc_level == 5)
551 					requirements.step_size = 2048;
552 				else
553 					requirements.step_size = 1024;
554 				requirements.strength = 24;
555 			} else {
556 				/*
557 				 * We should never reach this case, but if that
558 				 * happens, this probably means Hynix decided
559 				 * to use a different extended ID format, and
560 				 * we should find a way to support it.
561 				 */
562 				WARN(1, "Invalid ECC requirements");
563 			}
564 		} else {
565 			/* <= 26nm, reference: H27UBG8T2B datasheet */
566 			if (!ecc_level) {
567 				requirements.step_size = 0;
568 				requirements.strength = 0;
569 			} else if (ecc_level < 5) {
570 				requirements.step_size = 512;
571 				requirements.strength = 1 << (ecc_level - 1);
572 			} else {
573 				requirements.step_size = 1024;
574 				requirements.strength = 24 +
575 							(8 * (ecc_level - 5));
576 			}
577 		}
578 	}
579 
580 	nanddev_set_ecc_requirements(base, &requirements);
581 }
582 
583 static void hynix_nand_extract_scrambling_requirements(struct nand_chip *chip,
584 						       bool valid_jedecid)
585 {
586 	u8 nand_tech;
587 
588 	/* We need scrambling on all TLC NANDs*/
589 	if (nanddev_bits_per_cell(&chip->base) > 2)
590 		chip->options |= NAND_NEED_SCRAMBLING;
591 
592 	/* And on MLC NANDs with sub-3xnm process */
593 	if (valid_jedecid) {
594 		nand_tech = chip->id.data[5] >> 4;
595 
596 		/* < 3xnm */
597 		if (nand_tech > 0)
598 			chip->options |= NAND_NEED_SCRAMBLING;
599 	} else {
600 		nand_tech = chip->id.data[5] & 0x7;
601 
602 		/* < 32nm */
603 		if (nand_tech > 2)
604 			chip->options |= NAND_NEED_SCRAMBLING;
605 	}
606 }
607 
608 static void hynix_nand_decode_id(struct nand_chip *chip)
609 {
610 	struct mtd_info *mtd = nand_to_mtd(chip);
611 	struct nand_memory_organization *memorg;
612 	bool valid_jedecid;
613 	u8 tmp;
614 
615 	memorg = nanddev_get_memorg(&chip->base);
616 
617 	/*
618 	 * Exclude all SLC NANDs from this advanced detection scheme.
619 	 * According to the ranges defined in several datasheets, it might
620 	 * appear that even SLC NANDs could fall in this extended ID scheme.
621 	 * If that the case rework the test to let SLC NANDs go through the
622 	 * detection process.
623 	 */
624 	if (chip->id.len < 6 || nand_is_slc(chip)) {
625 		nand_decode_ext_id(chip);
626 		return;
627 	}
628 
629 	/* Extract pagesize */
630 	memorg->pagesize = 2048 << (chip->id.data[3] & 0x03);
631 	mtd->writesize = memorg->pagesize;
632 
633 	tmp = (chip->id.data[3] >> 4) & 0x3;
634 	/*
635 	 * When bit7 is set that means we start counting at 1MiB, otherwise
636 	 * we start counting at 128KiB and shift this value the content of
637 	 * ID[3][4:5].
638 	 * The only exception is when ID[3][4:5] == 3 and ID[3][7] == 0, in
639 	 * this case the erasesize is set to 768KiB.
640 	 */
641 	if (chip->id.data[3] & 0x80) {
642 		memorg->pages_per_eraseblock = (SZ_1M << tmp) /
643 					       memorg->pagesize;
644 		mtd->erasesize = SZ_1M << tmp;
645 	} else if (tmp == 3) {
646 		memorg->pages_per_eraseblock = (SZ_512K + SZ_256K) /
647 					       memorg->pagesize;
648 		mtd->erasesize = SZ_512K + SZ_256K;
649 	} else {
650 		memorg->pages_per_eraseblock = (SZ_128K << tmp) /
651 					       memorg->pagesize;
652 		mtd->erasesize = SZ_128K << tmp;
653 	}
654 
655 	/*
656 	 * Modern Toggle DDR NANDs have a valid JEDECID even though they are
657 	 * not exposing a valid JEDEC parameter table.
658 	 * These NANDs use a different NAND ID scheme.
659 	 */
660 	valid_jedecid = hynix_nand_has_valid_jedecid(chip);
661 
662 	hynix_nand_extract_oobsize(chip, valid_jedecid);
663 	hynix_nand_extract_ecc_requirements(chip, valid_jedecid);
664 	hynix_nand_extract_scrambling_requirements(chip, valid_jedecid);
665 }
666 
667 static void hynix_nand_cleanup(struct nand_chip *chip)
668 {
669 	struct hynix_nand *hynix = nand_get_manufacturer_data(chip);
670 
671 	if (!hynix)
672 		return;
673 
674 	kfree(hynix->read_retry);
675 	kfree(hynix);
676 	nand_set_manufacturer_data(chip, NULL);
677 }
678 
679 static int
680 h27ucg8t2atrbc_choose_interface_config(struct nand_chip *chip,
681 				       struct nand_interface_config *iface)
682 {
683 	onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, 4);
684 
685 	return nand_choose_best_sdr_timings(chip, iface, NULL);
686 }
687 
688 static int h27ucg8t2etrbc_init(struct nand_chip *chip)
689 {
690 	struct mtd_info *mtd = nand_to_mtd(chip);
691 
692 	chip->options |= NAND_NEED_SCRAMBLING;
693 	mtd_set_pairing_scheme(mtd, &dist3_pairing_scheme);
694 
695 	return 0;
696 }
697 
698 static int hynix_nand_init(struct nand_chip *chip)
699 {
700 	struct hynix_nand *hynix;
701 	int ret;
702 
703 	if (!nand_is_slc(chip))
704 		chip->options |= NAND_BBM_LASTPAGE;
705 	else
706 		chip->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE;
707 
708 	hynix = kzalloc(sizeof(*hynix), GFP_KERNEL);
709 	if (!hynix)
710 		return -ENOMEM;
711 
712 	nand_set_manufacturer_data(chip, hynix);
713 
714 	if (!strncmp("H27UCG8T2ATR-BC", chip->parameters.model,
715 		     sizeof("H27UCG8T2ATR-BC") - 1))
716 		chip->ops.choose_interface_config =
717 			h27ucg8t2atrbc_choose_interface_config;
718 
719 	if (!strncmp("H27UCG8T2ETR-BC", chip->parameters.model,
720 		     sizeof("H27UCG8T2ETR-BC") - 1))
721 		h27ucg8t2etrbc_init(chip);
722 
723 	ret = hynix_nand_rr_init(chip);
724 	if (ret)
725 		hynix_nand_cleanup(chip);
726 
727 	return ret;
728 }
729 
730 static void hynix_fixup_onfi_param_page(struct nand_chip *chip,
731 					struct nand_onfi_params *p)
732 {
733 	/*
734 	 * Certain chips might report a 0 on sdr_timing_mode field
735 	 * (bytes 129-130). This has been seen on H27U4G8F2GDA-BI.
736 	 * According to ONFI specification, bit 0 of this field "shall be 1".
737 	 * Forcibly set this bit.
738 	 */
739 	p->sdr_timing_modes |= cpu_to_le16(BIT(0));
740 }
741 
742 const struct nand_manufacturer_ops hynix_nand_manuf_ops = {
743 	.detect = hynix_nand_decode_id,
744 	.init = hynix_nand_init,
745 	.cleanup = hynix_nand_cleanup,
746 	.fixup_onfi_param_page = hynix_fixup_onfi_param_page,
747 };
748