1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 static int mmc_spi_err_check(struct mmc_card *card); 182 183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 184 { 185 struct mmc_blk_data *md; 186 187 mutex_lock(&open_lock); 188 md = disk->private_data; 189 if (md && !kref_get_unless_zero(&md->kref)) 190 md = NULL; 191 mutex_unlock(&open_lock); 192 193 return md; 194 } 195 196 static inline int mmc_get_devidx(struct gendisk *disk) 197 { 198 int devidx = disk->first_minor / perdev_minors; 199 return devidx; 200 } 201 202 static void mmc_blk_kref_release(struct kref *ref) 203 { 204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 205 int devidx; 206 207 devidx = mmc_get_devidx(md->disk); 208 ida_simple_remove(&mmc_blk_ida, devidx); 209 210 mutex_lock(&open_lock); 211 md->disk->private_data = NULL; 212 mutex_unlock(&open_lock); 213 214 put_disk(md->disk); 215 kfree(md); 216 } 217 218 static void mmc_blk_put(struct mmc_blk_data *md) 219 { 220 kref_put(&md->kref, mmc_blk_kref_release); 221 } 222 223 static ssize_t power_ro_lock_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 int ret; 227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 228 struct mmc_card *card = md->queue.card; 229 int locked = 0; 230 231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 232 locked = 2; 233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 234 locked = 1; 235 236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 237 238 mmc_blk_put(md); 239 240 return ret; 241 } 242 243 static ssize_t power_ro_lock_store(struct device *dev, 244 struct device_attribute *attr, const char *buf, size_t count) 245 { 246 int ret; 247 struct mmc_blk_data *md, *part_md; 248 struct mmc_queue *mq; 249 struct request *req; 250 unsigned long set; 251 252 if (kstrtoul(buf, 0, &set)) 253 return -EINVAL; 254 255 if (set != 1) 256 return count; 257 258 md = mmc_blk_get(dev_to_disk(dev)); 259 mq = &md->queue; 260 261 /* Dispatch locking to the block layer */ 262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 263 if (IS_ERR(req)) { 264 count = PTR_ERR(req); 265 goto out_put; 266 } 267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 268 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 269 blk_execute_rq(req, false); 270 ret = req_to_mmc_queue_req(req)->drv_op_result; 271 blk_mq_free_request(req); 272 273 if (!ret) { 274 pr_info("%s: Locking boot partition ro until next power on\n", 275 md->disk->disk_name); 276 set_disk_ro(md->disk, 1); 277 278 list_for_each_entry(part_md, &md->part, part) 279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 281 set_disk_ro(part_md->disk, 1); 282 } 283 } 284 out_put: 285 mmc_blk_put(md); 286 return count; 287 } 288 289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 290 power_ro_lock_show, power_ro_lock_store); 291 292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 293 char *buf) 294 { 295 int ret; 296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 297 298 ret = snprintf(buf, PAGE_SIZE, "%d\n", 299 get_disk_ro(dev_to_disk(dev)) ^ 300 md->read_only); 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 int ret; 309 char *end; 310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 311 unsigned long set = simple_strtoul(buf, &end, 0); 312 if (end == buf) { 313 ret = -EINVAL; 314 goto out; 315 } 316 317 set_disk_ro(dev_to_disk(dev), set || md->read_only); 318 ret = count; 319 out: 320 mmc_blk_put(md); 321 return ret; 322 } 323 324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 325 326 static struct attribute *mmc_disk_attrs[] = { 327 &dev_attr_force_ro.attr, 328 &dev_attr_ro_lock_until_next_power_on.attr, 329 NULL, 330 }; 331 332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 333 struct attribute *a, int n) 334 { 335 struct device *dev = kobj_to_dev(kobj); 336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 337 umode_t mode = a->mode; 338 339 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 341 md->queue.card->ext_csd.boot_ro_lockable) { 342 mode = S_IRUGO; 343 if (!(md->queue.card->ext_csd.boot_ro_lock & 344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 345 mode |= S_IWUSR; 346 } 347 348 mmc_blk_put(md); 349 return mode; 350 } 351 352 static const struct attribute_group mmc_disk_attr_group = { 353 .is_visible = mmc_disk_attrs_is_visible, 354 .attrs = mmc_disk_attrs, 355 }; 356 357 static const struct attribute_group *mmc_disk_attr_groups[] = { 358 &mmc_disk_attr_group, 359 NULL, 360 }; 361 362 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 363 { 364 struct mmc_blk_data *md = mmc_blk_get(disk); 365 int ret = -ENXIO; 366 367 mutex_lock(&block_mutex); 368 if (md) { 369 ret = 0; 370 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 371 mmc_blk_put(md); 372 ret = -EROFS; 373 } 374 } 375 mutex_unlock(&block_mutex); 376 377 return ret; 378 } 379 380 static void mmc_blk_release(struct gendisk *disk) 381 { 382 struct mmc_blk_data *md = disk->private_data; 383 384 mutex_lock(&block_mutex); 385 mmc_blk_put(md); 386 mutex_unlock(&block_mutex); 387 } 388 389 static int 390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 391 { 392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 393 geo->heads = 4; 394 geo->sectors = 16; 395 return 0; 396 } 397 398 struct mmc_blk_ioc_data { 399 struct mmc_ioc_cmd ic; 400 unsigned char *buf; 401 u64 buf_bytes; 402 struct mmc_rpmb_data *rpmb; 403 }; 404 405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 406 struct mmc_ioc_cmd __user *user) 407 { 408 struct mmc_blk_ioc_data *idata; 409 int err; 410 411 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 412 if (!idata) { 413 err = -ENOMEM; 414 goto out; 415 } 416 417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 418 err = -EFAULT; 419 goto idata_err; 420 } 421 422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 424 err = -EOVERFLOW; 425 goto idata_err; 426 } 427 428 if (!idata->buf_bytes) { 429 idata->buf = NULL; 430 return idata; 431 } 432 433 idata->buf = memdup_user((void __user *)(unsigned long) 434 idata->ic.data_ptr, idata->buf_bytes); 435 if (IS_ERR(idata->buf)) { 436 err = PTR_ERR(idata->buf); 437 goto idata_err; 438 } 439 440 return idata; 441 442 idata_err: 443 kfree(idata); 444 out: 445 return ERR_PTR(err); 446 } 447 448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 449 struct mmc_blk_ioc_data *idata) 450 { 451 struct mmc_ioc_cmd *ic = &idata->ic; 452 453 if (copy_to_user(&(ic_ptr->response), ic->response, 454 sizeof(ic->response))) 455 return -EFAULT; 456 457 if (!idata->ic.write_flag) { 458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 459 idata->buf, idata->buf_bytes)) 460 return -EFAULT; 461 } 462 463 return 0; 464 } 465 466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 467 struct mmc_blk_ioc_data *idata) 468 { 469 struct mmc_command cmd = {}, sbc = {}; 470 struct mmc_data data = {}; 471 struct mmc_request mrq = {}; 472 struct scatterlist sg; 473 bool r1b_resp, use_r1b_resp = false; 474 unsigned int busy_timeout_ms; 475 int err; 476 unsigned int target_part; 477 478 if (!card || !md || !idata) 479 return -EINVAL; 480 481 /* 482 * The RPMB accesses comes in from the character device, so we 483 * need to target these explicitly. Else we just target the 484 * partition type for the block device the ioctl() was issued 485 * on. 486 */ 487 if (idata->rpmb) { 488 /* Support multiple RPMB partitions */ 489 target_part = idata->rpmb->part_index; 490 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 491 } else { 492 target_part = md->part_type; 493 } 494 495 cmd.opcode = idata->ic.opcode; 496 cmd.arg = idata->ic.arg; 497 cmd.flags = idata->ic.flags; 498 499 if (idata->buf_bytes) { 500 data.sg = &sg; 501 data.sg_len = 1; 502 data.blksz = idata->ic.blksz; 503 data.blocks = idata->ic.blocks; 504 505 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 506 507 if (idata->ic.write_flag) 508 data.flags = MMC_DATA_WRITE; 509 else 510 data.flags = MMC_DATA_READ; 511 512 /* data.flags must already be set before doing this. */ 513 mmc_set_data_timeout(&data, card); 514 515 /* Allow overriding the timeout_ns for empirical tuning. */ 516 if (idata->ic.data_timeout_ns) 517 data.timeout_ns = idata->ic.data_timeout_ns; 518 519 mrq.data = &data; 520 } 521 522 mrq.cmd = &cmd; 523 524 err = mmc_blk_part_switch(card, target_part); 525 if (err) 526 return err; 527 528 if (idata->ic.is_acmd) { 529 err = mmc_app_cmd(card->host, card); 530 if (err) 531 return err; 532 } 533 534 if (idata->rpmb) { 535 sbc.opcode = MMC_SET_BLOCK_COUNT; 536 /* 537 * We don't do any blockcount validation because the max size 538 * may be increased by a future standard. We just copy the 539 * 'Reliable Write' bit here. 540 */ 541 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 542 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 543 mrq.sbc = &sbc; 544 } 545 546 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 547 (cmd.opcode == MMC_SWITCH)) 548 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 549 550 /* If it's an R1B response we need some more preparations. */ 551 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 552 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 553 if (r1b_resp) 554 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, 555 busy_timeout_ms); 556 557 mmc_wait_for_req(card->host, &mrq); 558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 559 560 if (cmd.error) { 561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 562 __func__, cmd.error); 563 return cmd.error; 564 } 565 if (data.error) { 566 dev_err(mmc_dev(card->host), "%s: data error %d\n", 567 __func__, data.error); 568 return data.error; 569 } 570 571 /* 572 * Make sure the cache of the PARTITION_CONFIG register and 573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 574 * changed it successfully. 575 */ 576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 577 (cmd.opcode == MMC_SWITCH)) { 578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 580 581 /* 582 * Update cache so the next mmc_blk_part_switch call operates 583 * on up-to-date data. 584 */ 585 card->ext_csd.part_config = value; 586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 587 } 588 589 /* 590 * Make sure to update CACHE_CTRL in case it was changed. The cache 591 * will get turned back on if the card is re-initialized, e.g. 592 * suspend/resume or hw reset in recovery. 593 */ 594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 595 (cmd.opcode == MMC_SWITCH)) { 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 597 598 card->ext_csd.cache_ctrl = value; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 /* No need to poll when using HW busy detection. */ 609 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 610 return 0; 611 612 if (mmc_host_is_spi(card->host)) { 613 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) 614 return mmc_spi_err_check(card); 615 return err; 616 } 617 /* Ensure RPMB/R1B command has completed by polling with CMD13. */ 618 if (idata->rpmb || r1b_resp) 619 err = mmc_poll_for_busy(card, busy_timeout_ms, false, 620 MMC_BUSY_IO); 621 622 return err; 623 } 624 625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 626 struct mmc_ioc_cmd __user *ic_ptr, 627 struct mmc_rpmb_data *rpmb) 628 { 629 struct mmc_blk_ioc_data *idata; 630 struct mmc_blk_ioc_data *idatas[1]; 631 struct mmc_queue *mq; 632 struct mmc_card *card; 633 int err = 0, ioc_err = 0; 634 struct request *req; 635 636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 637 if (IS_ERR(idata)) 638 return PTR_ERR(idata); 639 /* This will be NULL on non-RPMB ioctl():s */ 640 idata->rpmb = rpmb; 641 642 card = md->queue.card; 643 if (IS_ERR(card)) { 644 err = PTR_ERR(card); 645 goto cmd_done; 646 } 647 648 /* 649 * Dispatch the ioctl() into the block request queue. 650 */ 651 mq = &md->queue; 652 req = blk_mq_alloc_request(mq->queue, 653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 654 if (IS_ERR(req)) { 655 err = PTR_ERR(req); 656 goto cmd_done; 657 } 658 idatas[0] = idata; 659 req_to_mmc_queue_req(req)->drv_op = 660 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 661 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 662 req_to_mmc_queue_req(req)->drv_op_data = idatas; 663 req_to_mmc_queue_req(req)->ioc_count = 1; 664 blk_execute_rq(req, false); 665 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 666 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 667 blk_mq_free_request(req); 668 669 cmd_done: 670 kfree(idata->buf); 671 kfree(idata); 672 return ioc_err ? ioc_err : err; 673 } 674 675 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 676 struct mmc_ioc_multi_cmd __user *user, 677 struct mmc_rpmb_data *rpmb) 678 { 679 struct mmc_blk_ioc_data **idata = NULL; 680 struct mmc_ioc_cmd __user *cmds = user->cmds; 681 struct mmc_card *card; 682 struct mmc_queue *mq; 683 int err = 0, ioc_err = 0; 684 __u64 num_of_cmds; 685 unsigned int i, n; 686 struct request *req; 687 688 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 689 sizeof(num_of_cmds))) 690 return -EFAULT; 691 692 if (!num_of_cmds) 693 return 0; 694 695 if (num_of_cmds > MMC_IOC_MAX_CMDS) 696 return -EINVAL; 697 698 n = num_of_cmds; 699 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 700 if (!idata) 701 return -ENOMEM; 702 703 for (i = 0; i < n; i++) { 704 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 705 if (IS_ERR(idata[i])) { 706 err = PTR_ERR(idata[i]); 707 n = i; 708 goto cmd_err; 709 } 710 /* This will be NULL on non-RPMB ioctl():s */ 711 idata[i]->rpmb = rpmb; 712 } 713 714 card = md->queue.card; 715 if (IS_ERR(card)) { 716 err = PTR_ERR(card); 717 goto cmd_err; 718 } 719 720 721 /* 722 * Dispatch the ioctl()s into the block request queue. 723 */ 724 mq = &md->queue; 725 req = blk_mq_alloc_request(mq->queue, 726 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 727 if (IS_ERR(req)) { 728 err = PTR_ERR(req); 729 goto cmd_err; 730 } 731 req_to_mmc_queue_req(req)->drv_op = 732 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 733 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 734 req_to_mmc_queue_req(req)->drv_op_data = idata; 735 req_to_mmc_queue_req(req)->ioc_count = n; 736 blk_execute_rq(req, false); 737 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 738 739 /* copy to user if data and response */ 740 for (i = 0; i < n && !err; i++) 741 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 742 743 blk_mq_free_request(req); 744 745 cmd_err: 746 for (i = 0; i < n; i++) { 747 kfree(idata[i]->buf); 748 kfree(idata[i]); 749 } 750 kfree(idata); 751 return ioc_err ? ioc_err : err; 752 } 753 754 static int mmc_blk_check_blkdev(struct block_device *bdev) 755 { 756 /* 757 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 758 * whole block device, not on a partition. This prevents overspray 759 * between sibling partitions. 760 */ 761 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 762 return -EPERM; 763 return 0; 764 } 765 766 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 767 unsigned int cmd, unsigned long arg) 768 { 769 struct mmc_blk_data *md; 770 int ret; 771 772 switch (cmd) { 773 case MMC_IOC_CMD: 774 ret = mmc_blk_check_blkdev(bdev); 775 if (ret) 776 return ret; 777 md = mmc_blk_get(bdev->bd_disk); 778 if (!md) 779 return -EINVAL; 780 ret = mmc_blk_ioctl_cmd(md, 781 (struct mmc_ioc_cmd __user *)arg, 782 NULL); 783 mmc_blk_put(md); 784 return ret; 785 case MMC_IOC_MULTI_CMD: 786 ret = mmc_blk_check_blkdev(bdev); 787 if (ret) 788 return ret; 789 md = mmc_blk_get(bdev->bd_disk); 790 if (!md) 791 return -EINVAL; 792 ret = mmc_blk_ioctl_multi_cmd(md, 793 (struct mmc_ioc_multi_cmd __user *)arg, 794 NULL); 795 mmc_blk_put(md); 796 return ret; 797 default: 798 return -EINVAL; 799 } 800 } 801 802 #ifdef CONFIG_COMPAT 803 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 804 unsigned int cmd, unsigned long arg) 805 { 806 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 807 } 808 #endif 809 810 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 811 sector_t *sector) 812 { 813 struct mmc_blk_data *md; 814 int ret; 815 816 md = mmc_blk_get(disk); 817 if (!md) 818 return -EINVAL; 819 820 if (md->queue.card) 821 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 822 else 823 ret = -ENODEV; 824 825 mmc_blk_put(md); 826 827 return ret; 828 } 829 830 static const struct block_device_operations mmc_bdops = { 831 .open = mmc_blk_open, 832 .release = mmc_blk_release, 833 .getgeo = mmc_blk_getgeo, 834 .owner = THIS_MODULE, 835 .ioctl = mmc_blk_ioctl, 836 #ifdef CONFIG_COMPAT 837 .compat_ioctl = mmc_blk_compat_ioctl, 838 #endif 839 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 840 }; 841 842 static int mmc_blk_part_switch_pre(struct mmc_card *card, 843 unsigned int part_type) 844 { 845 int ret = 0; 846 847 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 848 if (card->ext_csd.cmdq_en) { 849 ret = mmc_cmdq_disable(card); 850 if (ret) 851 return ret; 852 } 853 mmc_retune_pause(card->host); 854 } 855 856 return ret; 857 } 858 859 static int mmc_blk_part_switch_post(struct mmc_card *card, 860 unsigned int part_type) 861 { 862 int ret = 0; 863 864 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 865 mmc_retune_unpause(card->host); 866 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 867 ret = mmc_cmdq_enable(card); 868 } 869 870 return ret; 871 } 872 873 static inline int mmc_blk_part_switch(struct mmc_card *card, 874 unsigned int part_type) 875 { 876 int ret = 0; 877 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 878 879 if (main_md->part_curr == part_type) 880 return 0; 881 882 if (mmc_card_mmc(card)) { 883 u8 part_config = card->ext_csd.part_config; 884 885 ret = mmc_blk_part_switch_pre(card, part_type); 886 if (ret) 887 return ret; 888 889 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 890 part_config |= part_type; 891 892 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 893 EXT_CSD_PART_CONFIG, part_config, 894 card->ext_csd.part_time); 895 if (ret) { 896 mmc_blk_part_switch_post(card, part_type); 897 return ret; 898 } 899 900 card->ext_csd.part_config = part_config; 901 902 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 903 } 904 905 main_md->part_curr = part_type; 906 return ret; 907 } 908 909 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 910 { 911 int err; 912 u32 result; 913 __be32 *blocks; 914 915 struct mmc_request mrq = {}; 916 struct mmc_command cmd = {}; 917 struct mmc_data data = {}; 918 919 struct scatterlist sg; 920 921 cmd.opcode = MMC_APP_CMD; 922 cmd.arg = card->rca << 16; 923 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 924 925 err = mmc_wait_for_cmd(card->host, &cmd, 0); 926 if (err) 927 return err; 928 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 929 return -EIO; 930 931 memset(&cmd, 0, sizeof(struct mmc_command)); 932 933 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 934 cmd.arg = 0; 935 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 936 937 data.blksz = 4; 938 data.blocks = 1; 939 data.flags = MMC_DATA_READ; 940 data.sg = &sg; 941 data.sg_len = 1; 942 mmc_set_data_timeout(&data, card); 943 944 mrq.cmd = &cmd; 945 mrq.data = &data; 946 947 blocks = kmalloc(4, GFP_KERNEL); 948 if (!blocks) 949 return -ENOMEM; 950 951 sg_init_one(&sg, blocks, 4); 952 953 mmc_wait_for_req(card->host, &mrq); 954 955 result = ntohl(*blocks); 956 kfree(blocks); 957 958 if (cmd.error || data.error) 959 return -EIO; 960 961 *written_blocks = result; 962 963 return 0; 964 } 965 966 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 967 { 968 if (host->actual_clock) 969 return host->actual_clock / 1000; 970 971 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 972 if (host->ios.clock) 973 return host->ios.clock / 2000; 974 975 /* How can there be no clock */ 976 WARN_ON_ONCE(1); 977 return 100; /* 100 kHz is minimum possible value */ 978 } 979 980 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 981 struct mmc_data *data) 982 { 983 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 984 unsigned int khz; 985 986 if (data->timeout_clks) { 987 khz = mmc_blk_clock_khz(host); 988 ms += DIV_ROUND_UP(data->timeout_clks, khz); 989 } 990 991 return ms; 992 } 993 994 /* 995 * Attempts to reset the card and get back to the requested partition. 996 * Therefore any error here must result in cancelling the block layer 997 * request, it must not be reattempted without going through the mmc_blk 998 * partition sanity checks. 999 */ 1000 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1001 int type) 1002 { 1003 int err; 1004 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 1005 1006 if (md->reset_done & type) 1007 return -EEXIST; 1008 1009 md->reset_done |= type; 1010 err = mmc_hw_reset(host->card); 1011 /* 1012 * A successful reset will leave the card in the main partition, but 1013 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1014 * in that case. 1015 */ 1016 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1017 if (err) 1018 return err; 1019 /* Ensure we switch back to the correct partition */ 1020 if (mmc_blk_part_switch(host->card, md->part_type)) 1021 /* 1022 * We have failed to get back into the correct 1023 * partition, so we need to abort the whole request. 1024 */ 1025 return -ENODEV; 1026 return 0; 1027 } 1028 1029 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1030 { 1031 md->reset_done &= ~type; 1032 } 1033 1034 /* 1035 * The non-block commands come back from the block layer after it queued it and 1036 * processed it with all other requests and then they get issued in this 1037 * function. 1038 */ 1039 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1040 { 1041 struct mmc_queue_req *mq_rq; 1042 struct mmc_card *card = mq->card; 1043 struct mmc_blk_data *md = mq->blkdata; 1044 struct mmc_blk_ioc_data **idata; 1045 bool rpmb_ioctl; 1046 u8 **ext_csd; 1047 u32 status; 1048 int ret; 1049 int i; 1050 1051 mq_rq = req_to_mmc_queue_req(req); 1052 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1053 1054 switch (mq_rq->drv_op) { 1055 case MMC_DRV_OP_IOCTL: 1056 if (card->ext_csd.cmdq_en) { 1057 ret = mmc_cmdq_disable(card); 1058 if (ret) 1059 break; 1060 } 1061 fallthrough; 1062 case MMC_DRV_OP_IOCTL_RPMB: 1063 idata = mq_rq->drv_op_data; 1064 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1065 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1066 if (ret) 1067 break; 1068 } 1069 /* Always switch back to main area after RPMB access */ 1070 if (rpmb_ioctl) 1071 mmc_blk_part_switch(card, 0); 1072 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1073 mmc_cmdq_enable(card); 1074 break; 1075 case MMC_DRV_OP_BOOT_WP: 1076 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1077 card->ext_csd.boot_ro_lock | 1078 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1079 card->ext_csd.part_time); 1080 if (ret) 1081 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1082 md->disk->disk_name, ret); 1083 else 1084 card->ext_csd.boot_ro_lock |= 1085 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1086 break; 1087 case MMC_DRV_OP_GET_CARD_STATUS: 1088 ret = mmc_send_status(card, &status); 1089 if (!ret) 1090 ret = status; 1091 break; 1092 case MMC_DRV_OP_GET_EXT_CSD: 1093 ext_csd = mq_rq->drv_op_data; 1094 ret = mmc_get_ext_csd(card, ext_csd); 1095 break; 1096 default: 1097 pr_err("%s: unknown driver specific operation\n", 1098 md->disk->disk_name); 1099 ret = -EINVAL; 1100 break; 1101 } 1102 mq_rq->drv_op_result = ret; 1103 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1104 } 1105 1106 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1107 int type, unsigned int erase_arg) 1108 { 1109 struct mmc_blk_data *md = mq->blkdata; 1110 struct mmc_card *card = md->queue.card; 1111 unsigned int from, nr; 1112 int err = 0; 1113 blk_status_t status = BLK_STS_OK; 1114 1115 if (!mmc_can_erase(card)) { 1116 status = BLK_STS_NOTSUPP; 1117 goto fail; 1118 } 1119 1120 from = blk_rq_pos(req); 1121 nr = blk_rq_sectors(req); 1122 1123 do { 1124 err = 0; 1125 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1126 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1127 INAND_CMD38_ARG_EXT_CSD, 1128 erase_arg == MMC_TRIM_ARG ? 1129 INAND_CMD38_ARG_TRIM : 1130 INAND_CMD38_ARG_ERASE, 1131 card->ext_csd.generic_cmd6_time); 1132 } 1133 if (!err) 1134 err = mmc_erase(card, from, nr, erase_arg); 1135 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1136 if (err) 1137 status = BLK_STS_IOERR; 1138 else 1139 mmc_blk_reset_success(md, type); 1140 fail: 1141 blk_mq_end_request(req, status); 1142 } 1143 1144 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1145 { 1146 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1147 } 1148 1149 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1150 { 1151 struct mmc_blk_data *md = mq->blkdata; 1152 struct mmc_card *card = md->queue.card; 1153 unsigned int arg = card->erase_arg; 1154 1155 if (mmc_card_broken_sd_discard(card)) 1156 arg = SD_ERASE_ARG; 1157 1158 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1159 } 1160 1161 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1162 struct request *req) 1163 { 1164 struct mmc_blk_data *md = mq->blkdata; 1165 struct mmc_card *card = md->queue.card; 1166 unsigned int from, nr, arg; 1167 int err = 0, type = MMC_BLK_SECDISCARD; 1168 blk_status_t status = BLK_STS_OK; 1169 1170 if (!(mmc_can_secure_erase_trim(card))) { 1171 status = BLK_STS_NOTSUPP; 1172 goto out; 1173 } 1174 1175 from = blk_rq_pos(req); 1176 nr = blk_rq_sectors(req); 1177 1178 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1179 arg = MMC_SECURE_TRIM1_ARG; 1180 else 1181 arg = MMC_SECURE_ERASE_ARG; 1182 1183 retry: 1184 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1186 INAND_CMD38_ARG_EXT_CSD, 1187 arg == MMC_SECURE_TRIM1_ARG ? 1188 INAND_CMD38_ARG_SECTRIM1 : 1189 INAND_CMD38_ARG_SECERASE, 1190 card->ext_csd.generic_cmd6_time); 1191 if (err) 1192 goto out_retry; 1193 } 1194 1195 err = mmc_erase(card, from, nr, arg); 1196 if (err == -EIO) 1197 goto out_retry; 1198 if (err) { 1199 status = BLK_STS_IOERR; 1200 goto out; 1201 } 1202 1203 if (arg == MMC_SECURE_TRIM1_ARG) { 1204 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1205 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1206 INAND_CMD38_ARG_EXT_CSD, 1207 INAND_CMD38_ARG_SECTRIM2, 1208 card->ext_csd.generic_cmd6_time); 1209 if (err) 1210 goto out_retry; 1211 } 1212 1213 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1214 if (err == -EIO) 1215 goto out_retry; 1216 if (err) { 1217 status = BLK_STS_IOERR; 1218 goto out; 1219 } 1220 } 1221 1222 out_retry: 1223 if (err && !mmc_blk_reset(md, card->host, type)) 1224 goto retry; 1225 if (!err) 1226 mmc_blk_reset_success(md, type); 1227 out: 1228 blk_mq_end_request(req, status); 1229 } 1230 1231 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1232 { 1233 struct mmc_blk_data *md = mq->blkdata; 1234 struct mmc_card *card = md->queue.card; 1235 int ret = 0; 1236 1237 ret = mmc_flush_cache(card->host); 1238 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1239 } 1240 1241 /* 1242 * Reformat current write as a reliable write, supporting 1243 * both legacy and the enhanced reliable write MMC cards. 1244 * In each transfer we'll handle only as much as a single 1245 * reliable write can handle, thus finish the request in 1246 * partial completions. 1247 */ 1248 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1249 struct mmc_card *card, 1250 struct request *req) 1251 { 1252 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1253 /* Legacy mode imposes restrictions on transfers. */ 1254 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1255 brq->data.blocks = 1; 1256 1257 if (brq->data.blocks > card->ext_csd.rel_sectors) 1258 brq->data.blocks = card->ext_csd.rel_sectors; 1259 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1260 brq->data.blocks = 1; 1261 } 1262 } 1263 1264 #define CMD_ERRORS_EXCL_OOR \ 1265 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1266 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1267 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1268 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1269 R1_CC_ERROR | /* Card controller error */ \ 1270 R1_ERROR) /* General/unknown error */ 1271 1272 #define CMD_ERRORS \ 1273 (CMD_ERRORS_EXCL_OOR | \ 1274 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1275 1276 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1277 { 1278 u32 val; 1279 1280 /* 1281 * Per the SD specification(physical layer version 4.10)[1], 1282 * section 4.3.3, it explicitly states that "When the last 1283 * block of user area is read using CMD18, the host should 1284 * ignore OUT_OF_RANGE error that may occur even the sequence 1285 * is correct". And JESD84-B51 for eMMC also has a similar 1286 * statement on section 6.8.3. 1287 * 1288 * Multiple block read/write could be done by either predefined 1289 * method, namely CMD23, or open-ending mode. For open-ending mode, 1290 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1291 * 1292 * However the spec[1] doesn't tell us whether we should also 1293 * ignore that for predefined method. But per the spec[1], section 1294 * 4.15 Set Block Count Command, it says"If illegal block count 1295 * is set, out of range error will be indicated during read/write 1296 * operation (For example, data transfer is stopped at user area 1297 * boundary)." In another word, we could expect a out of range error 1298 * in the response for the following CMD18/25. And if argument of 1299 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1300 * we could also expect to get a -ETIMEDOUT or any error number from 1301 * the host drivers due to missing data response(for write)/data(for 1302 * read), as the cards will stop the data transfer by itself per the 1303 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1304 */ 1305 1306 if (!brq->stop.error) { 1307 bool oor_with_open_end; 1308 /* If there is no error yet, check R1 response */ 1309 1310 val = brq->stop.resp[0] & CMD_ERRORS; 1311 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1312 1313 if (val && !oor_with_open_end) 1314 brq->stop.error = -EIO; 1315 } 1316 } 1317 1318 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1319 int recovery_mode, bool *do_rel_wr_p, 1320 bool *do_data_tag_p) 1321 { 1322 struct mmc_blk_data *md = mq->blkdata; 1323 struct mmc_card *card = md->queue.card; 1324 struct mmc_blk_request *brq = &mqrq->brq; 1325 struct request *req = mmc_queue_req_to_req(mqrq); 1326 bool do_rel_wr, do_data_tag; 1327 1328 /* 1329 * Reliable writes are used to implement Forced Unit Access and 1330 * are supported only on MMCs. 1331 */ 1332 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1333 rq_data_dir(req) == WRITE && 1334 (md->flags & MMC_BLK_REL_WR); 1335 1336 memset(brq, 0, sizeof(struct mmc_blk_request)); 1337 1338 mmc_crypto_prepare_req(mqrq); 1339 1340 brq->mrq.data = &brq->data; 1341 brq->mrq.tag = req->tag; 1342 1343 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1344 brq->stop.arg = 0; 1345 1346 if (rq_data_dir(req) == READ) { 1347 brq->data.flags = MMC_DATA_READ; 1348 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1349 } else { 1350 brq->data.flags = MMC_DATA_WRITE; 1351 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1352 } 1353 1354 brq->data.blksz = 512; 1355 brq->data.blocks = blk_rq_sectors(req); 1356 brq->data.blk_addr = blk_rq_pos(req); 1357 1358 /* 1359 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1360 * The eMMC will give "high" priority tasks priority over "simple" 1361 * priority tasks. Here we always set "simple" priority by not setting 1362 * MMC_DATA_PRIO. 1363 */ 1364 1365 /* 1366 * The block layer doesn't support all sector count 1367 * restrictions, so we need to be prepared for too big 1368 * requests. 1369 */ 1370 if (brq->data.blocks > card->host->max_blk_count) 1371 brq->data.blocks = card->host->max_blk_count; 1372 1373 if (brq->data.blocks > 1) { 1374 /* 1375 * Some SD cards in SPI mode return a CRC error or even lock up 1376 * completely when trying to read the last block using a 1377 * multiblock read command. 1378 */ 1379 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1380 (blk_rq_pos(req) + blk_rq_sectors(req) == 1381 get_capacity(md->disk))) 1382 brq->data.blocks--; 1383 1384 /* 1385 * After a read error, we redo the request one (native) sector 1386 * at a time in order to accurately determine which 1387 * sectors can be read successfully. 1388 */ 1389 if (recovery_mode) 1390 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1391 1392 /* 1393 * Some controllers have HW issues while operating 1394 * in multiple I/O mode 1395 */ 1396 if (card->host->ops->multi_io_quirk) 1397 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1398 (rq_data_dir(req) == READ) ? 1399 MMC_DATA_READ : MMC_DATA_WRITE, 1400 brq->data.blocks); 1401 } 1402 1403 if (do_rel_wr) { 1404 mmc_apply_rel_rw(brq, card, req); 1405 brq->data.flags |= MMC_DATA_REL_WR; 1406 } 1407 1408 /* 1409 * Data tag is used only during writing meta data to speed 1410 * up write and any subsequent read of this meta data 1411 */ 1412 do_data_tag = card->ext_csd.data_tag_unit_size && 1413 (req->cmd_flags & REQ_META) && 1414 (rq_data_dir(req) == WRITE) && 1415 ((brq->data.blocks * brq->data.blksz) >= 1416 card->ext_csd.data_tag_unit_size); 1417 1418 if (do_data_tag) 1419 brq->data.flags |= MMC_DATA_DAT_TAG; 1420 1421 mmc_set_data_timeout(&brq->data, card); 1422 1423 brq->data.sg = mqrq->sg; 1424 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1425 1426 /* 1427 * Adjust the sg list so it is the same size as the 1428 * request. 1429 */ 1430 if (brq->data.blocks != blk_rq_sectors(req)) { 1431 int i, data_size = brq->data.blocks << 9; 1432 struct scatterlist *sg; 1433 1434 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1435 data_size -= sg->length; 1436 if (data_size <= 0) { 1437 sg->length += data_size; 1438 i++; 1439 break; 1440 } 1441 } 1442 brq->data.sg_len = i; 1443 } 1444 1445 if (do_rel_wr_p) 1446 *do_rel_wr_p = do_rel_wr; 1447 1448 if (do_data_tag_p) 1449 *do_data_tag_p = do_data_tag; 1450 } 1451 1452 #define MMC_CQE_RETRIES 2 1453 1454 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1455 { 1456 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1457 struct mmc_request *mrq = &mqrq->brq.mrq; 1458 struct request_queue *q = req->q; 1459 struct mmc_host *host = mq->card->host; 1460 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1461 unsigned long flags; 1462 bool put_card; 1463 int err; 1464 1465 mmc_cqe_post_req(host, mrq); 1466 1467 if (mrq->cmd && mrq->cmd->error) 1468 err = mrq->cmd->error; 1469 else if (mrq->data && mrq->data->error) 1470 err = mrq->data->error; 1471 else 1472 err = 0; 1473 1474 if (err) { 1475 if (mqrq->retries++ < MMC_CQE_RETRIES) 1476 blk_mq_requeue_request(req, true); 1477 else 1478 blk_mq_end_request(req, BLK_STS_IOERR); 1479 } else if (mrq->data) { 1480 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1481 blk_mq_requeue_request(req, true); 1482 else 1483 __blk_mq_end_request(req, BLK_STS_OK); 1484 } else { 1485 blk_mq_end_request(req, BLK_STS_OK); 1486 } 1487 1488 spin_lock_irqsave(&mq->lock, flags); 1489 1490 mq->in_flight[issue_type] -= 1; 1491 1492 put_card = (mmc_tot_in_flight(mq) == 0); 1493 1494 mmc_cqe_check_busy(mq); 1495 1496 spin_unlock_irqrestore(&mq->lock, flags); 1497 1498 if (!mq->cqe_busy) 1499 blk_mq_run_hw_queues(q, true); 1500 1501 if (put_card) 1502 mmc_put_card(mq->card, &mq->ctx); 1503 } 1504 1505 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1506 { 1507 struct mmc_card *card = mq->card; 1508 struct mmc_host *host = card->host; 1509 int err; 1510 1511 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1512 1513 err = mmc_cqe_recovery(host); 1514 if (err) 1515 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1516 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1517 1518 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1519 } 1520 1521 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1522 { 1523 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1524 brq.mrq); 1525 struct request *req = mmc_queue_req_to_req(mqrq); 1526 struct request_queue *q = req->q; 1527 struct mmc_queue *mq = q->queuedata; 1528 1529 /* 1530 * Block layer timeouts race with completions which means the normal 1531 * completion path cannot be used during recovery. 1532 */ 1533 if (mq->in_recovery) 1534 mmc_blk_cqe_complete_rq(mq, req); 1535 else if (likely(!blk_should_fake_timeout(req->q))) 1536 blk_mq_complete_request(req); 1537 } 1538 1539 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1540 { 1541 mrq->done = mmc_blk_cqe_req_done; 1542 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1543 1544 return mmc_cqe_start_req(host, mrq); 1545 } 1546 1547 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1548 struct request *req) 1549 { 1550 struct mmc_blk_request *brq = &mqrq->brq; 1551 1552 memset(brq, 0, sizeof(*brq)); 1553 1554 brq->mrq.cmd = &brq->cmd; 1555 brq->mrq.tag = req->tag; 1556 1557 return &brq->mrq; 1558 } 1559 1560 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1561 { 1562 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1563 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1564 1565 mrq->cmd->opcode = MMC_SWITCH; 1566 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1567 (EXT_CSD_FLUSH_CACHE << 16) | 1568 (1 << 8) | 1569 EXT_CSD_CMD_SET_NORMAL; 1570 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1571 1572 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1573 } 1574 1575 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1576 { 1577 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1578 struct mmc_host *host = mq->card->host; 1579 int err; 1580 1581 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1582 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1583 mmc_pre_req(host, &mqrq->brq.mrq); 1584 1585 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1586 if (err) 1587 mmc_post_req(host, &mqrq->brq.mrq, err); 1588 1589 return err; 1590 } 1591 1592 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1593 { 1594 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1595 struct mmc_host *host = mq->card->host; 1596 1597 if (host->hsq_enabled) 1598 return mmc_blk_hsq_issue_rw_rq(mq, req); 1599 1600 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1601 1602 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1603 } 1604 1605 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1606 struct mmc_card *card, 1607 int recovery_mode, 1608 struct mmc_queue *mq) 1609 { 1610 u32 readcmd, writecmd; 1611 struct mmc_blk_request *brq = &mqrq->brq; 1612 struct request *req = mmc_queue_req_to_req(mqrq); 1613 struct mmc_blk_data *md = mq->blkdata; 1614 bool do_rel_wr, do_data_tag; 1615 1616 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1617 1618 brq->mrq.cmd = &brq->cmd; 1619 1620 brq->cmd.arg = blk_rq_pos(req); 1621 if (!mmc_card_blockaddr(card)) 1622 brq->cmd.arg <<= 9; 1623 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1624 1625 if (brq->data.blocks > 1 || do_rel_wr) { 1626 /* SPI multiblock writes terminate using a special 1627 * token, not a STOP_TRANSMISSION request. 1628 */ 1629 if (!mmc_host_is_spi(card->host) || 1630 rq_data_dir(req) == READ) 1631 brq->mrq.stop = &brq->stop; 1632 readcmd = MMC_READ_MULTIPLE_BLOCK; 1633 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1634 } else { 1635 brq->mrq.stop = NULL; 1636 readcmd = MMC_READ_SINGLE_BLOCK; 1637 writecmd = MMC_WRITE_BLOCK; 1638 } 1639 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1640 1641 /* 1642 * Pre-defined multi-block transfers are preferable to 1643 * open ended-ones (and necessary for reliable writes). 1644 * However, it is not sufficient to just send CMD23, 1645 * and avoid the final CMD12, as on an error condition 1646 * CMD12 (stop) needs to be sent anyway. This, coupled 1647 * with Auto-CMD23 enhancements provided by some 1648 * hosts, means that the complexity of dealing 1649 * with this is best left to the host. If CMD23 is 1650 * supported by card and host, we'll fill sbc in and let 1651 * the host deal with handling it correctly. This means 1652 * that for hosts that don't expose MMC_CAP_CMD23, no 1653 * change of behavior will be observed. 1654 * 1655 * N.B: Some MMC cards experience perf degradation. 1656 * We'll avoid using CMD23-bounded multiblock writes for 1657 * these, while retaining features like reliable writes. 1658 */ 1659 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1660 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1661 do_data_tag)) { 1662 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1663 brq->sbc.arg = brq->data.blocks | 1664 (do_rel_wr ? (1 << 31) : 0) | 1665 (do_data_tag ? (1 << 29) : 0); 1666 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1667 brq->mrq.sbc = &brq->sbc; 1668 } 1669 } 1670 1671 #define MMC_MAX_RETRIES 5 1672 #define MMC_DATA_RETRIES 2 1673 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1674 1675 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1676 { 1677 struct mmc_command cmd = { 1678 .opcode = MMC_STOP_TRANSMISSION, 1679 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1680 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1681 .busy_timeout = timeout, 1682 }; 1683 1684 return mmc_wait_for_cmd(card->host, &cmd, 5); 1685 } 1686 1687 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1688 { 1689 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1690 struct mmc_blk_request *brq = &mqrq->brq; 1691 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1692 int err; 1693 1694 mmc_retune_hold_now(card->host); 1695 1696 mmc_blk_send_stop(card, timeout); 1697 1698 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1699 1700 mmc_retune_release(card->host); 1701 1702 return err; 1703 } 1704 1705 #define MMC_READ_SINGLE_RETRIES 2 1706 1707 /* Single (native) sector read during recovery */ 1708 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1709 { 1710 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1711 struct mmc_request *mrq = &mqrq->brq.mrq; 1712 struct mmc_card *card = mq->card; 1713 struct mmc_host *host = card->host; 1714 blk_status_t error = BLK_STS_OK; 1715 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1716 1717 do { 1718 u32 status; 1719 int err; 1720 int retries = 0; 1721 1722 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1723 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1724 1725 mmc_wait_for_req(host, mrq); 1726 1727 err = mmc_send_status(card, &status); 1728 if (err) 1729 goto error_exit; 1730 1731 if (!mmc_host_is_spi(host) && 1732 !mmc_ready_for_data(status)) { 1733 err = mmc_blk_fix_state(card, req); 1734 if (err) 1735 goto error_exit; 1736 } 1737 1738 if (!mrq->cmd->error) 1739 break; 1740 } 1741 1742 if (mrq->cmd->error || 1743 mrq->data->error || 1744 (!mmc_host_is_spi(host) && 1745 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1746 error = BLK_STS_IOERR; 1747 else 1748 error = BLK_STS_OK; 1749 1750 } while (blk_update_request(req, error, bytes_per_read)); 1751 1752 return; 1753 1754 error_exit: 1755 mrq->data->bytes_xfered = 0; 1756 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1757 /* Let it try the remaining request again */ 1758 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1759 mqrq->retries = MMC_MAX_RETRIES - 1; 1760 } 1761 1762 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1763 { 1764 return !!brq->mrq.sbc; 1765 } 1766 1767 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1768 { 1769 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1770 } 1771 1772 /* 1773 * Check for errors the host controller driver might not have seen such as 1774 * response mode errors or invalid card state. 1775 */ 1776 static bool mmc_blk_status_error(struct request *req, u32 status) 1777 { 1778 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1779 struct mmc_blk_request *brq = &mqrq->brq; 1780 struct mmc_queue *mq = req->q->queuedata; 1781 u32 stop_err_bits; 1782 1783 if (mmc_host_is_spi(mq->card->host)) 1784 return false; 1785 1786 stop_err_bits = mmc_blk_stop_err_bits(brq); 1787 1788 return brq->cmd.resp[0] & CMD_ERRORS || 1789 brq->stop.resp[0] & stop_err_bits || 1790 status & stop_err_bits || 1791 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1792 } 1793 1794 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1795 { 1796 return !brq->sbc.error && !brq->cmd.error && 1797 !(brq->cmd.resp[0] & CMD_ERRORS); 1798 } 1799 1800 /* 1801 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1802 * policy: 1803 * 1. A request that has transferred at least some data is considered 1804 * successful and will be requeued if there is remaining data to 1805 * transfer. 1806 * 2. Otherwise the number of retries is incremented and the request 1807 * will be requeued if there are remaining retries. 1808 * 3. Otherwise the request will be errored out. 1809 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1810 * mqrq->retries. So there are only 4 possible actions here: 1811 * 1. do not accept the bytes_xfered value i.e. set it to zero 1812 * 2. change mqrq->retries to determine the number of retries 1813 * 3. try to reset the card 1814 * 4. read one sector at a time 1815 */ 1816 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1817 { 1818 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1819 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1820 struct mmc_blk_request *brq = &mqrq->brq; 1821 struct mmc_blk_data *md = mq->blkdata; 1822 struct mmc_card *card = mq->card; 1823 u32 status; 1824 u32 blocks; 1825 int err; 1826 1827 /* 1828 * Some errors the host driver might not have seen. Set the number of 1829 * bytes transferred to zero in that case. 1830 */ 1831 err = __mmc_send_status(card, &status, 0); 1832 if (err || mmc_blk_status_error(req, status)) 1833 brq->data.bytes_xfered = 0; 1834 1835 mmc_retune_release(card->host); 1836 1837 /* 1838 * Try again to get the status. This also provides an opportunity for 1839 * re-tuning. 1840 */ 1841 if (err) 1842 err = __mmc_send_status(card, &status, 0); 1843 1844 /* 1845 * Nothing more to do after the number of bytes transferred has been 1846 * updated and there is no card. 1847 */ 1848 if (err && mmc_detect_card_removed(card->host)) 1849 return; 1850 1851 /* Try to get back to "tran" state */ 1852 if (!mmc_host_is_spi(mq->card->host) && 1853 (err || !mmc_ready_for_data(status))) 1854 err = mmc_blk_fix_state(mq->card, req); 1855 1856 /* 1857 * Special case for SD cards where the card might record the number of 1858 * blocks written. 1859 */ 1860 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1861 rq_data_dir(req) == WRITE) { 1862 if (mmc_sd_num_wr_blocks(card, &blocks)) 1863 brq->data.bytes_xfered = 0; 1864 else 1865 brq->data.bytes_xfered = blocks << 9; 1866 } 1867 1868 /* Reset if the card is in a bad state */ 1869 if (!mmc_host_is_spi(mq->card->host) && 1870 err && mmc_blk_reset(md, card->host, type)) { 1871 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1872 mqrq->retries = MMC_NO_RETRIES; 1873 return; 1874 } 1875 1876 /* 1877 * If anything was done, just return and if there is anything remaining 1878 * on the request it will get requeued. 1879 */ 1880 if (brq->data.bytes_xfered) 1881 return; 1882 1883 /* Reset before last retry */ 1884 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1885 mmc_blk_reset(md, card->host, type)) 1886 return; 1887 1888 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1889 if (brq->sbc.error || brq->cmd.error) 1890 return; 1891 1892 /* Reduce the remaining retries for data errors */ 1893 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1894 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1895 return; 1896 } 1897 1898 if (rq_data_dir(req) == READ && brq->data.blocks > 1899 queue_physical_block_size(mq->queue) >> 9) { 1900 /* Read one (native) sector at a time */ 1901 mmc_blk_read_single(mq, req); 1902 return; 1903 } 1904 } 1905 1906 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1907 { 1908 mmc_blk_eval_resp_error(brq); 1909 1910 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1911 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1912 } 1913 1914 static int mmc_spi_err_check(struct mmc_card *card) 1915 { 1916 u32 status = 0; 1917 int err; 1918 1919 /* 1920 * SPI does not have a TRAN state we have to wait on, instead the 1921 * card is ready again when it no longer holds the line LOW. 1922 * We still have to ensure two things here before we know the write 1923 * was successful: 1924 * 1. The card has not disconnected during busy and we actually read our 1925 * own pull-up, thinking it was still connected, so ensure it 1926 * still responds. 1927 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1928 * just reconnected card after being disconnected during busy. 1929 */ 1930 err = __mmc_send_status(card, &status, 0); 1931 if (err) 1932 return err; 1933 /* All R1 and R2 bits of SPI are errors in our case */ 1934 if (status) 1935 return -EIO; 1936 return 0; 1937 } 1938 1939 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1940 { 1941 struct mmc_blk_busy_data *data = cb_data; 1942 u32 status = 0; 1943 int err; 1944 1945 err = mmc_send_status(data->card, &status); 1946 if (err) 1947 return err; 1948 1949 /* Accumulate response error bits. */ 1950 data->status |= status; 1951 1952 *busy = !mmc_ready_for_data(status); 1953 return 0; 1954 } 1955 1956 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1957 { 1958 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1959 struct mmc_blk_busy_data cb_data; 1960 int err; 1961 1962 if (rq_data_dir(req) == READ) 1963 return 0; 1964 1965 if (mmc_host_is_spi(card->host)) { 1966 err = mmc_spi_err_check(card); 1967 if (err) 1968 mqrq->brq.data.bytes_xfered = 0; 1969 return err; 1970 } 1971 1972 cb_data.card = card; 1973 cb_data.status = 0; 1974 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1975 &mmc_blk_busy_cb, &cb_data); 1976 1977 /* 1978 * Do not assume data transferred correctly if there are any error bits 1979 * set. 1980 */ 1981 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1982 mqrq->brq.data.bytes_xfered = 0; 1983 err = err ? err : -EIO; 1984 } 1985 1986 /* Copy the exception bit so it will be seen later on */ 1987 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1988 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1989 1990 return err; 1991 } 1992 1993 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1994 struct request *req) 1995 { 1996 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1997 1998 mmc_blk_reset_success(mq->blkdata, type); 1999 } 2000 2001 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 2002 { 2003 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2004 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 2005 2006 if (nr_bytes) { 2007 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2008 blk_mq_requeue_request(req, true); 2009 else 2010 __blk_mq_end_request(req, BLK_STS_OK); 2011 } else if (!blk_rq_bytes(req)) { 2012 __blk_mq_end_request(req, BLK_STS_IOERR); 2013 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2014 blk_mq_requeue_request(req, true); 2015 } else { 2016 if (mmc_card_removed(mq->card)) 2017 req->rq_flags |= RQF_QUIET; 2018 blk_mq_end_request(req, BLK_STS_IOERR); 2019 } 2020 } 2021 2022 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2023 struct mmc_queue_req *mqrq) 2024 { 2025 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2026 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2027 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2028 } 2029 2030 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2031 struct mmc_queue_req *mqrq) 2032 { 2033 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2034 mmc_run_bkops(mq->card); 2035 } 2036 2037 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2038 { 2039 struct mmc_queue_req *mqrq = 2040 container_of(mrq, struct mmc_queue_req, brq.mrq); 2041 struct request *req = mmc_queue_req_to_req(mqrq); 2042 struct request_queue *q = req->q; 2043 struct mmc_queue *mq = q->queuedata; 2044 struct mmc_host *host = mq->card->host; 2045 unsigned long flags; 2046 2047 if (mmc_blk_rq_error(&mqrq->brq) || 2048 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2049 spin_lock_irqsave(&mq->lock, flags); 2050 mq->recovery_needed = true; 2051 mq->recovery_req = req; 2052 spin_unlock_irqrestore(&mq->lock, flags); 2053 2054 host->cqe_ops->cqe_recovery_start(host); 2055 2056 schedule_work(&mq->recovery_work); 2057 return; 2058 } 2059 2060 mmc_blk_rw_reset_success(mq, req); 2061 2062 /* 2063 * Block layer timeouts race with completions which means the normal 2064 * completion path cannot be used during recovery. 2065 */ 2066 if (mq->in_recovery) 2067 mmc_blk_cqe_complete_rq(mq, req); 2068 else if (likely(!blk_should_fake_timeout(req->q))) 2069 blk_mq_complete_request(req); 2070 } 2071 2072 void mmc_blk_mq_complete(struct request *req) 2073 { 2074 struct mmc_queue *mq = req->q->queuedata; 2075 struct mmc_host *host = mq->card->host; 2076 2077 if (host->cqe_enabled) 2078 mmc_blk_cqe_complete_rq(mq, req); 2079 else if (likely(!blk_should_fake_timeout(req->q))) 2080 mmc_blk_mq_complete_rq(mq, req); 2081 } 2082 2083 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2084 struct request *req) 2085 { 2086 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2087 struct mmc_host *host = mq->card->host; 2088 2089 if (mmc_blk_rq_error(&mqrq->brq) || 2090 mmc_blk_card_busy(mq->card, req)) { 2091 mmc_blk_mq_rw_recovery(mq, req); 2092 } else { 2093 mmc_blk_rw_reset_success(mq, req); 2094 mmc_retune_release(host); 2095 } 2096 2097 mmc_blk_urgent_bkops(mq, mqrq); 2098 } 2099 2100 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2101 { 2102 unsigned long flags; 2103 bool put_card; 2104 2105 spin_lock_irqsave(&mq->lock, flags); 2106 2107 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2108 2109 put_card = (mmc_tot_in_flight(mq) == 0); 2110 2111 spin_unlock_irqrestore(&mq->lock, flags); 2112 2113 if (put_card) 2114 mmc_put_card(mq->card, &mq->ctx); 2115 } 2116 2117 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2118 bool can_sleep) 2119 { 2120 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2121 struct mmc_request *mrq = &mqrq->brq.mrq; 2122 struct mmc_host *host = mq->card->host; 2123 2124 mmc_post_req(host, mrq, 0); 2125 2126 /* 2127 * Block layer timeouts race with completions which means the normal 2128 * completion path cannot be used during recovery. 2129 */ 2130 if (mq->in_recovery) { 2131 mmc_blk_mq_complete_rq(mq, req); 2132 } else if (likely(!blk_should_fake_timeout(req->q))) { 2133 if (can_sleep) 2134 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2135 else 2136 blk_mq_complete_request(req); 2137 } 2138 2139 mmc_blk_mq_dec_in_flight(mq, req); 2140 } 2141 2142 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2143 { 2144 struct request *req = mq->recovery_req; 2145 struct mmc_host *host = mq->card->host; 2146 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2147 2148 mq->recovery_req = NULL; 2149 mq->rw_wait = false; 2150 2151 if (mmc_blk_rq_error(&mqrq->brq)) { 2152 mmc_retune_hold_now(host); 2153 mmc_blk_mq_rw_recovery(mq, req); 2154 } 2155 2156 mmc_blk_urgent_bkops(mq, mqrq); 2157 2158 mmc_blk_mq_post_req(mq, req, true); 2159 } 2160 2161 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2162 struct request **prev_req) 2163 { 2164 if (mmc_host_done_complete(mq->card->host)) 2165 return; 2166 2167 mutex_lock(&mq->complete_lock); 2168 2169 if (!mq->complete_req) 2170 goto out_unlock; 2171 2172 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2173 2174 if (prev_req) 2175 *prev_req = mq->complete_req; 2176 else 2177 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2178 2179 mq->complete_req = NULL; 2180 2181 out_unlock: 2182 mutex_unlock(&mq->complete_lock); 2183 } 2184 2185 void mmc_blk_mq_complete_work(struct work_struct *work) 2186 { 2187 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2188 complete_work); 2189 2190 mmc_blk_mq_complete_prev_req(mq, NULL); 2191 } 2192 2193 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2194 { 2195 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2196 brq.mrq); 2197 struct request *req = mmc_queue_req_to_req(mqrq); 2198 struct request_queue *q = req->q; 2199 struct mmc_queue *mq = q->queuedata; 2200 struct mmc_host *host = mq->card->host; 2201 unsigned long flags; 2202 2203 if (!mmc_host_done_complete(host)) { 2204 bool waiting; 2205 2206 /* 2207 * We cannot complete the request in this context, so record 2208 * that there is a request to complete, and that a following 2209 * request does not need to wait (although it does need to 2210 * complete complete_req first). 2211 */ 2212 spin_lock_irqsave(&mq->lock, flags); 2213 mq->complete_req = req; 2214 mq->rw_wait = false; 2215 waiting = mq->waiting; 2216 spin_unlock_irqrestore(&mq->lock, flags); 2217 2218 /* 2219 * If 'waiting' then the waiting task will complete this 2220 * request, otherwise queue a work to do it. Note that 2221 * complete_work may still race with the dispatch of a following 2222 * request. 2223 */ 2224 if (waiting) 2225 wake_up(&mq->wait); 2226 else 2227 queue_work(mq->card->complete_wq, &mq->complete_work); 2228 2229 return; 2230 } 2231 2232 /* Take the recovery path for errors or urgent background operations */ 2233 if (mmc_blk_rq_error(&mqrq->brq) || 2234 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2235 spin_lock_irqsave(&mq->lock, flags); 2236 mq->recovery_needed = true; 2237 mq->recovery_req = req; 2238 spin_unlock_irqrestore(&mq->lock, flags); 2239 wake_up(&mq->wait); 2240 schedule_work(&mq->recovery_work); 2241 return; 2242 } 2243 2244 mmc_blk_rw_reset_success(mq, req); 2245 2246 mq->rw_wait = false; 2247 wake_up(&mq->wait); 2248 2249 /* context unknown */ 2250 mmc_blk_mq_post_req(mq, req, false); 2251 } 2252 2253 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2254 { 2255 unsigned long flags; 2256 bool done; 2257 2258 /* 2259 * Wait while there is another request in progress, but not if recovery 2260 * is needed. Also indicate whether there is a request waiting to start. 2261 */ 2262 spin_lock_irqsave(&mq->lock, flags); 2263 if (mq->recovery_needed) { 2264 *err = -EBUSY; 2265 done = true; 2266 } else { 2267 done = !mq->rw_wait; 2268 } 2269 mq->waiting = !done; 2270 spin_unlock_irqrestore(&mq->lock, flags); 2271 2272 return done; 2273 } 2274 2275 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2276 { 2277 int err = 0; 2278 2279 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2280 2281 /* Always complete the previous request if there is one */ 2282 mmc_blk_mq_complete_prev_req(mq, prev_req); 2283 2284 return err; 2285 } 2286 2287 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2288 struct request *req) 2289 { 2290 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2291 struct mmc_host *host = mq->card->host; 2292 struct request *prev_req = NULL; 2293 int err = 0; 2294 2295 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2296 2297 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2298 2299 mmc_pre_req(host, &mqrq->brq.mrq); 2300 2301 err = mmc_blk_rw_wait(mq, &prev_req); 2302 if (err) 2303 goto out_post_req; 2304 2305 mq->rw_wait = true; 2306 2307 err = mmc_start_request(host, &mqrq->brq.mrq); 2308 2309 if (prev_req) 2310 mmc_blk_mq_post_req(mq, prev_req, true); 2311 2312 if (err) 2313 mq->rw_wait = false; 2314 2315 /* Release re-tuning here where there is no synchronization required */ 2316 if (err || mmc_host_done_complete(host)) 2317 mmc_retune_release(host); 2318 2319 out_post_req: 2320 if (err) 2321 mmc_post_req(host, &mqrq->brq.mrq, err); 2322 2323 return err; 2324 } 2325 2326 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2327 { 2328 if (host->cqe_enabled) 2329 return host->cqe_ops->cqe_wait_for_idle(host); 2330 2331 return mmc_blk_rw_wait(mq, NULL); 2332 } 2333 2334 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2335 { 2336 struct mmc_blk_data *md = mq->blkdata; 2337 struct mmc_card *card = md->queue.card; 2338 struct mmc_host *host = card->host; 2339 int ret; 2340 2341 ret = mmc_blk_part_switch(card, md->part_type); 2342 if (ret) 2343 return MMC_REQ_FAILED_TO_START; 2344 2345 switch (mmc_issue_type(mq, req)) { 2346 case MMC_ISSUE_SYNC: 2347 ret = mmc_blk_wait_for_idle(mq, host); 2348 if (ret) 2349 return MMC_REQ_BUSY; 2350 switch (req_op(req)) { 2351 case REQ_OP_DRV_IN: 2352 case REQ_OP_DRV_OUT: 2353 mmc_blk_issue_drv_op(mq, req); 2354 break; 2355 case REQ_OP_DISCARD: 2356 mmc_blk_issue_discard_rq(mq, req); 2357 break; 2358 case REQ_OP_SECURE_ERASE: 2359 mmc_blk_issue_secdiscard_rq(mq, req); 2360 break; 2361 case REQ_OP_WRITE_ZEROES: 2362 mmc_blk_issue_trim_rq(mq, req); 2363 break; 2364 case REQ_OP_FLUSH: 2365 mmc_blk_issue_flush(mq, req); 2366 break; 2367 default: 2368 WARN_ON_ONCE(1); 2369 return MMC_REQ_FAILED_TO_START; 2370 } 2371 return MMC_REQ_FINISHED; 2372 case MMC_ISSUE_DCMD: 2373 case MMC_ISSUE_ASYNC: 2374 switch (req_op(req)) { 2375 case REQ_OP_FLUSH: 2376 if (!mmc_cache_enabled(host)) { 2377 blk_mq_end_request(req, BLK_STS_OK); 2378 return MMC_REQ_FINISHED; 2379 } 2380 ret = mmc_blk_cqe_issue_flush(mq, req); 2381 break; 2382 case REQ_OP_READ: 2383 case REQ_OP_WRITE: 2384 if (host->cqe_enabled) 2385 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2386 else 2387 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2388 break; 2389 default: 2390 WARN_ON_ONCE(1); 2391 ret = -EINVAL; 2392 } 2393 if (!ret) 2394 return MMC_REQ_STARTED; 2395 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2396 default: 2397 WARN_ON_ONCE(1); 2398 return MMC_REQ_FAILED_TO_START; 2399 } 2400 } 2401 2402 static inline int mmc_blk_readonly(struct mmc_card *card) 2403 { 2404 return mmc_card_readonly(card) || 2405 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2406 } 2407 2408 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2409 struct device *parent, 2410 sector_t size, 2411 bool default_ro, 2412 const char *subname, 2413 int area_type, 2414 unsigned int part_type) 2415 { 2416 struct mmc_blk_data *md; 2417 int devidx, ret; 2418 char cap_str[10]; 2419 bool cache_enabled = false; 2420 bool fua_enabled = false; 2421 2422 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2423 if (devidx < 0) { 2424 /* 2425 * We get -ENOSPC because there are no more any available 2426 * devidx. The reason may be that, either userspace haven't yet 2427 * unmounted the partitions, which postpones mmc_blk_release() 2428 * from being called, or the device has more partitions than 2429 * what we support. 2430 */ 2431 if (devidx == -ENOSPC) 2432 dev_err(mmc_dev(card->host), 2433 "no more device IDs available\n"); 2434 2435 return ERR_PTR(devidx); 2436 } 2437 2438 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2439 if (!md) { 2440 ret = -ENOMEM; 2441 goto out; 2442 } 2443 2444 md->area_type = area_type; 2445 2446 /* 2447 * Set the read-only status based on the supported commands 2448 * and the write protect switch. 2449 */ 2450 md->read_only = mmc_blk_readonly(card); 2451 2452 md->disk = mmc_init_queue(&md->queue, card); 2453 if (IS_ERR(md->disk)) { 2454 ret = PTR_ERR(md->disk); 2455 goto err_kfree; 2456 } 2457 2458 INIT_LIST_HEAD(&md->part); 2459 INIT_LIST_HEAD(&md->rpmbs); 2460 kref_init(&md->kref); 2461 2462 md->queue.blkdata = md; 2463 md->part_type = part_type; 2464 2465 md->disk->major = MMC_BLOCK_MAJOR; 2466 md->disk->minors = perdev_minors; 2467 md->disk->first_minor = devidx * perdev_minors; 2468 md->disk->fops = &mmc_bdops; 2469 md->disk->private_data = md; 2470 md->parent = parent; 2471 set_disk_ro(md->disk, md->read_only || default_ro); 2472 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2473 md->disk->flags |= GENHD_FL_NO_PART; 2474 2475 /* 2476 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2477 * 2478 * - be set for removable media with permanent block devices 2479 * - be unset for removable block devices with permanent media 2480 * 2481 * Since MMC block devices clearly fall under the second 2482 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2483 * should use the block device creation/destruction hotplug 2484 * messages to tell when the card is present. 2485 */ 2486 2487 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2488 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2489 2490 set_capacity(md->disk, size); 2491 2492 if (mmc_host_cmd23(card->host)) { 2493 if ((mmc_card_mmc(card) && 2494 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2495 (mmc_card_sd(card) && 2496 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2497 md->flags |= MMC_BLK_CMD23; 2498 } 2499 2500 if (md->flags & MMC_BLK_CMD23 && 2501 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2502 card->ext_csd.rel_sectors)) { 2503 md->flags |= MMC_BLK_REL_WR; 2504 fua_enabled = true; 2505 cache_enabled = true; 2506 } 2507 if (mmc_cache_enabled(card->host)) 2508 cache_enabled = true; 2509 2510 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2511 2512 string_get_size((u64)size, 512, STRING_UNITS_2, 2513 cap_str, sizeof(cap_str)); 2514 pr_info("%s: %s %s %s%s\n", 2515 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2516 cap_str, md->read_only ? " (ro)" : ""); 2517 2518 /* used in ->open, must be set before add_disk: */ 2519 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2520 dev_set_drvdata(&card->dev, md); 2521 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2522 if (ret) 2523 goto err_put_disk; 2524 return md; 2525 2526 err_put_disk: 2527 put_disk(md->disk); 2528 blk_mq_free_tag_set(&md->queue.tag_set); 2529 err_kfree: 2530 kfree(md); 2531 out: 2532 ida_simple_remove(&mmc_blk_ida, devidx); 2533 return ERR_PTR(ret); 2534 } 2535 2536 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2537 { 2538 sector_t size; 2539 2540 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2541 /* 2542 * The EXT_CSD sector count is in number or 512 byte 2543 * sectors. 2544 */ 2545 size = card->ext_csd.sectors; 2546 } else { 2547 /* 2548 * The CSD capacity field is in units of read_blkbits. 2549 * set_capacity takes units of 512 bytes. 2550 */ 2551 size = (typeof(sector_t))card->csd.capacity 2552 << (card->csd.read_blkbits - 9); 2553 } 2554 2555 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2556 MMC_BLK_DATA_AREA_MAIN, 0); 2557 } 2558 2559 static int mmc_blk_alloc_part(struct mmc_card *card, 2560 struct mmc_blk_data *md, 2561 unsigned int part_type, 2562 sector_t size, 2563 bool default_ro, 2564 const char *subname, 2565 int area_type) 2566 { 2567 struct mmc_blk_data *part_md; 2568 2569 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2570 subname, area_type, part_type); 2571 if (IS_ERR(part_md)) 2572 return PTR_ERR(part_md); 2573 list_add(&part_md->part, &md->part); 2574 2575 return 0; 2576 } 2577 2578 /** 2579 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2580 * @filp: the character device file 2581 * @cmd: the ioctl() command 2582 * @arg: the argument from userspace 2583 * 2584 * This will essentially just redirect the ioctl()s coming in over to 2585 * the main block device spawning the RPMB character device. 2586 */ 2587 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2588 unsigned long arg) 2589 { 2590 struct mmc_rpmb_data *rpmb = filp->private_data; 2591 int ret; 2592 2593 switch (cmd) { 2594 case MMC_IOC_CMD: 2595 ret = mmc_blk_ioctl_cmd(rpmb->md, 2596 (struct mmc_ioc_cmd __user *)arg, 2597 rpmb); 2598 break; 2599 case MMC_IOC_MULTI_CMD: 2600 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2601 (struct mmc_ioc_multi_cmd __user *)arg, 2602 rpmb); 2603 break; 2604 default: 2605 ret = -EINVAL; 2606 break; 2607 } 2608 2609 return ret; 2610 } 2611 2612 #ifdef CONFIG_COMPAT 2613 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2614 unsigned long arg) 2615 { 2616 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2617 } 2618 #endif 2619 2620 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2621 { 2622 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2623 struct mmc_rpmb_data, chrdev); 2624 2625 get_device(&rpmb->dev); 2626 filp->private_data = rpmb; 2627 mmc_blk_get(rpmb->md->disk); 2628 2629 return nonseekable_open(inode, filp); 2630 } 2631 2632 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2633 { 2634 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2635 struct mmc_rpmb_data, chrdev); 2636 2637 mmc_blk_put(rpmb->md); 2638 put_device(&rpmb->dev); 2639 2640 return 0; 2641 } 2642 2643 static const struct file_operations mmc_rpmb_fileops = { 2644 .release = mmc_rpmb_chrdev_release, 2645 .open = mmc_rpmb_chrdev_open, 2646 .owner = THIS_MODULE, 2647 .llseek = no_llseek, 2648 .unlocked_ioctl = mmc_rpmb_ioctl, 2649 #ifdef CONFIG_COMPAT 2650 .compat_ioctl = mmc_rpmb_ioctl_compat, 2651 #endif 2652 }; 2653 2654 static void mmc_blk_rpmb_device_release(struct device *dev) 2655 { 2656 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2657 2658 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2659 kfree(rpmb); 2660 } 2661 2662 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2663 struct mmc_blk_data *md, 2664 unsigned int part_index, 2665 sector_t size, 2666 const char *subname) 2667 { 2668 int devidx, ret; 2669 char rpmb_name[DISK_NAME_LEN]; 2670 char cap_str[10]; 2671 struct mmc_rpmb_data *rpmb; 2672 2673 /* This creates the minor number for the RPMB char device */ 2674 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2675 if (devidx < 0) 2676 return devidx; 2677 2678 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2679 if (!rpmb) { 2680 ida_simple_remove(&mmc_rpmb_ida, devidx); 2681 return -ENOMEM; 2682 } 2683 2684 snprintf(rpmb_name, sizeof(rpmb_name), 2685 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2686 2687 rpmb->id = devidx; 2688 rpmb->part_index = part_index; 2689 rpmb->dev.init_name = rpmb_name; 2690 rpmb->dev.bus = &mmc_rpmb_bus_type; 2691 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2692 rpmb->dev.parent = &card->dev; 2693 rpmb->dev.release = mmc_blk_rpmb_device_release; 2694 device_initialize(&rpmb->dev); 2695 dev_set_drvdata(&rpmb->dev, rpmb); 2696 rpmb->md = md; 2697 2698 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2699 rpmb->chrdev.owner = THIS_MODULE; 2700 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2701 if (ret) { 2702 pr_err("%s: could not add character device\n", rpmb_name); 2703 goto out_put_device; 2704 } 2705 2706 list_add(&rpmb->node, &md->rpmbs); 2707 2708 string_get_size((u64)size, 512, STRING_UNITS_2, 2709 cap_str, sizeof(cap_str)); 2710 2711 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2712 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2713 MAJOR(mmc_rpmb_devt), rpmb->id); 2714 2715 return 0; 2716 2717 out_put_device: 2718 put_device(&rpmb->dev); 2719 return ret; 2720 } 2721 2722 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2723 2724 { 2725 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2726 put_device(&rpmb->dev); 2727 } 2728 2729 /* MMC Physical partitions consist of two boot partitions and 2730 * up to four general purpose partitions. 2731 * For each partition enabled in EXT_CSD a block device will be allocatedi 2732 * to provide access to the partition. 2733 */ 2734 2735 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2736 { 2737 int idx, ret; 2738 2739 if (!mmc_card_mmc(card)) 2740 return 0; 2741 2742 for (idx = 0; idx < card->nr_parts; idx++) { 2743 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2744 /* 2745 * RPMB partitions does not provide block access, they 2746 * are only accessed using ioctl():s. Thus create 2747 * special RPMB block devices that do not have a 2748 * backing block queue for these. 2749 */ 2750 ret = mmc_blk_alloc_rpmb_part(card, md, 2751 card->part[idx].part_cfg, 2752 card->part[idx].size >> 9, 2753 card->part[idx].name); 2754 if (ret) 2755 return ret; 2756 } else if (card->part[idx].size) { 2757 ret = mmc_blk_alloc_part(card, md, 2758 card->part[idx].part_cfg, 2759 card->part[idx].size >> 9, 2760 card->part[idx].force_ro, 2761 card->part[idx].name, 2762 card->part[idx].area_type); 2763 if (ret) 2764 return ret; 2765 } 2766 } 2767 2768 return 0; 2769 } 2770 2771 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2772 { 2773 /* 2774 * Flush remaining requests and free queues. It is freeing the queue 2775 * that stops new requests from being accepted. 2776 */ 2777 del_gendisk(md->disk); 2778 mmc_cleanup_queue(&md->queue); 2779 mmc_blk_put(md); 2780 } 2781 2782 static void mmc_blk_remove_parts(struct mmc_card *card, 2783 struct mmc_blk_data *md) 2784 { 2785 struct list_head *pos, *q; 2786 struct mmc_blk_data *part_md; 2787 struct mmc_rpmb_data *rpmb; 2788 2789 /* Remove RPMB partitions */ 2790 list_for_each_safe(pos, q, &md->rpmbs) { 2791 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2792 list_del(pos); 2793 mmc_blk_remove_rpmb_part(rpmb); 2794 } 2795 /* Remove block partitions */ 2796 list_for_each_safe(pos, q, &md->part) { 2797 part_md = list_entry(pos, struct mmc_blk_data, part); 2798 list_del(pos); 2799 mmc_blk_remove_req(part_md); 2800 } 2801 } 2802 2803 #ifdef CONFIG_DEBUG_FS 2804 2805 static int mmc_dbg_card_status_get(void *data, u64 *val) 2806 { 2807 struct mmc_card *card = data; 2808 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2809 struct mmc_queue *mq = &md->queue; 2810 struct request *req; 2811 int ret; 2812 2813 /* Ask the block layer about the card status */ 2814 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2815 if (IS_ERR(req)) 2816 return PTR_ERR(req); 2817 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2818 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2819 blk_execute_rq(req, false); 2820 ret = req_to_mmc_queue_req(req)->drv_op_result; 2821 if (ret >= 0) { 2822 *val = ret; 2823 ret = 0; 2824 } 2825 blk_mq_free_request(req); 2826 2827 return ret; 2828 } 2829 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2830 NULL, "%08llx\n"); 2831 2832 /* That is two digits * 512 + 1 for newline */ 2833 #define EXT_CSD_STR_LEN 1025 2834 2835 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2836 { 2837 struct mmc_card *card = inode->i_private; 2838 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2839 struct mmc_queue *mq = &md->queue; 2840 struct request *req; 2841 char *buf; 2842 ssize_t n = 0; 2843 u8 *ext_csd; 2844 int err, i; 2845 2846 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2847 if (!buf) 2848 return -ENOMEM; 2849 2850 /* Ask the block layer for the EXT CSD */ 2851 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2852 if (IS_ERR(req)) { 2853 err = PTR_ERR(req); 2854 goto out_free; 2855 } 2856 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2857 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2858 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2859 blk_execute_rq(req, false); 2860 err = req_to_mmc_queue_req(req)->drv_op_result; 2861 blk_mq_free_request(req); 2862 if (err) { 2863 pr_err("FAILED %d\n", err); 2864 goto out_free; 2865 } 2866 2867 for (i = 0; i < 512; i++) 2868 n += sprintf(buf + n, "%02x", ext_csd[i]); 2869 n += sprintf(buf + n, "\n"); 2870 2871 if (n != EXT_CSD_STR_LEN) { 2872 err = -EINVAL; 2873 kfree(ext_csd); 2874 goto out_free; 2875 } 2876 2877 filp->private_data = buf; 2878 kfree(ext_csd); 2879 return 0; 2880 2881 out_free: 2882 kfree(buf); 2883 return err; 2884 } 2885 2886 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2887 size_t cnt, loff_t *ppos) 2888 { 2889 char *buf = filp->private_data; 2890 2891 return simple_read_from_buffer(ubuf, cnt, ppos, 2892 buf, EXT_CSD_STR_LEN); 2893 } 2894 2895 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2896 { 2897 kfree(file->private_data); 2898 return 0; 2899 } 2900 2901 static const struct file_operations mmc_dbg_ext_csd_fops = { 2902 .open = mmc_ext_csd_open, 2903 .read = mmc_ext_csd_read, 2904 .release = mmc_ext_csd_release, 2905 .llseek = default_llseek, 2906 }; 2907 2908 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2909 { 2910 struct dentry *root; 2911 2912 if (!card->debugfs_root) 2913 return; 2914 2915 root = card->debugfs_root; 2916 2917 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2918 md->status_dentry = 2919 debugfs_create_file_unsafe("status", 0400, root, 2920 card, 2921 &mmc_dbg_card_status_fops); 2922 } 2923 2924 if (mmc_card_mmc(card)) { 2925 md->ext_csd_dentry = 2926 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2927 &mmc_dbg_ext_csd_fops); 2928 } 2929 } 2930 2931 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2932 struct mmc_blk_data *md) 2933 { 2934 if (!card->debugfs_root) 2935 return; 2936 2937 debugfs_remove(md->status_dentry); 2938 md->status_dentry = NULL; 2939 2940 debugfs_remove(md->ext_csd_dentry); 2941 md->ext_csd_dentry = NULL; 2942 } 2943 2944 #else 2945 2946 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2947 { 2948 } 2949 2950 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2951 struct mmc_blk_data *md) 2952 { 2953 } 2954 2955 #endif /* CONFIG_DEBUG_FS */ 2956 2957 static int mmc_blk_probe(struct mmc_card *card) 2958 { 2959 struct mmc_blk_data *md; 2960 int ret = 0; 2961 2962 /* 2963 * Check that the card supports the command class(es) we need. 2964 */ 2965 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2966 return -ENODEV; 2967 2968 mmc_fixup_device(card, mmc_blk_fixups); 2969 2970 card->complete_wq = alloc_workqueue("mmc_complete", 2971 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2972 if (!card->complete_wq) { 2973 pr_err("Failed to create mmc completion workqueue"); 2974 return -ENOMEM; 2975 } 2976 2977 md = mmc_blk_alloc(card); 2978 if (IS_ERR(md)) { 2979 ret = PTR_ERR(md); 2980 goto out_free; 2981 } 2982 2983 ret = mmc_blk_alloc_parts(card, md); 2984 if (ret) 2985 goto out; 2986 2987 /* Add two debugfs entries */ 2988 mmc_blk_add_debugfs(card, md); 2989 2990 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2991 pm_runtime_use_autosuspend(&card->dev); 2992 2993 /* 2994 * Don't enable runtime PM for SD-combo cards here. Leave that 2995 * decision to be taken during the SDIO init sequence instead. 2996 */ 2997 if (!mmc_card_sd_combo(card)) { 2998 pm_runtime_set_active(&card->dev); 2999 pm_runtime_enable(&card->dev); 3000 } 3001 3002 return 0; 3003 3004 out: 3005 mmc_blk_remove_parts(card, md); 3006 mmc_blk_remove_req(md); 3007 out_free: 3008 destroy_workqueue(card->complete_wq); 3009 return ret; 3010 } 3011 3012 static void mmc_blk_remove(struct mmc_card *card) 3013 { 3014 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3015 3016 mmc_blk_remove_debugfs(card, md); 3017 mmc_blk_remove_parts(card, md); 3018 pm_runtime_get_sync(&card->dev); 3019 if (md->part_curr != md->part_type) { 3020 mmc_claim_host(card->host); 3021 mmc_blk_part_switch(card, md->part_type); 3022 mmc_release_host(card->host); 3023 } 3024 if (!mmc_card_sd_combo(card)) 3025 pm_runtime_disable(&card->dev); 3026 pm_runtime_put_noidle(&card->dev); 3027 mmc_blk_remove_req(md); 3028 dev_set_drvdata(&card->dev, NULL); 3029 destroy_workqueue(card->complete_wq); 3030 } 3031 3032 static int _mmc_blk_suspend(struct mmc_card *card) 3033 { 3034 struct mmc_blk_data *part_md; 3035 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3036 3037 if (md) { 3038 mmc_queue_suspend(&md->queue); 3039 list_for_each_entry(part_md, &md->part, part) { 3040 mmc_queue_suspend(&part_md->queue); 3041 } 3042 } 3043 return 0; 3044 } 3045 3046 static void mmc_blk_shutdown(struct mmc_card *card) 3047 { 3048 _mmc_blk_suspend(card); 3049 } 3050 3051 #ifdef CONFIG_PM_SLEEP 3052 static int mmc_blk_suspend(struct device *dev) 3053 { 3054 struct mmc_card *card = mmc_dev_to_card(dev); 3055 3056 return _mmc_blk_suspend(card); 3057 } 3058 3059 static int mmc_blk_resume(struct device *dev) 3060 { 3061 struct mmc_blk_data *part_md; 3062 struct mmc_blk_data *md = dev_get_drvdata(dev); 3063 3064 if (md) { 3065 /* 3066 * Resume involves the card going into idle state, 3067 * so current partition is always the main one. 3068 */ 3069 md->part_curr = md->part_type; 3070 mmc_queue_resume(&md->queue); 3071 list_for_each_entry(part_md, &md->part, part) { 3072 mmc_queue_resume(&part_md->queue); 3073 } 3074 } 3075 return 0; 3076 } 3077 #endif 3078 3079 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3080 3081 static struct mmc_driver mmc_driver = { 3082 .drv = { 3083 .name = "mmcblk", 3084 .pm = &mmc_blk_pm_ops, 3085 }, 3086 .probe = mmc_blk_probe, 3087 .remove = mmc_blk_remove, 3088 .shutdown = mmc_blk_shutdown, 3089 }; 3090 3091 static int __init mmc_blk_init(void) 3092 { 3093 int res; 3094 3095 res = bus_register(&mmc_rpmb_bus_type); 3096 if (res < 0) { 3097 pr_err("mmcblk: could not register RPMB bus type\n"); 3098 return res; 3099 } 3100 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3101 if (res < 0) { 3102 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3103 goto out_bus_unreg; 3104 } 3105 3106 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3107 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3108 3109 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3110 3111 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3112 if (res) 3113 goto out_chrdev_unreg; 3114 3115 res = mmc_register_driver(&mmc_driver); 3116 if (res) 3117 goto out_blkdev_unreg; 3118 3119 return 0; 3120 3121 out_blkdev_unreg: 3122 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3123 out_chrdev_unreg: 3124 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3125 out_bus_unreg: 3126 bus_unregister(&mmc_rpmb_bus_type); 3127 return res; 3128 } 3129 3130 static void __exit mmc_blk_exit(void) 3131 { 3132 mmc_unregister_driver(&mmc_driver); 3133 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3134 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3135 bus_unregister(&mmc_rpmb_bus_type); 3136 } 3137 3138 module_init(mmc_blk_init); 3139 module_exit(mmc_blk_exit); 3140 3141 MODULE_LICENSE("GPL"); 3142 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3143 3144