xref: /linux/drivers/mmc/core/block.c (revision cb787f4ac0c2e439ea8d7e6387b925f74576bdf8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45 
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51 
52 #include <linux/uaccess.h>
53 
54 #include "queue.h"
55 #include "block.h"
56 #include "core.h"
57 #include "card.h"
58 #include "crypto.h"
59 #include "host.h"
60 #include "bus.h"
61 #include "mmc_ops.h"
62 #include "quirks.h"
63 #include "sd_ops.h"
64 
65 MODULE_ALIAS("mmc:block");
66 #ifdef MODULE_PARAM_PREFIX
67 #undef MODULE_PARAM_PREFIX
68 #endif
69 #define MODULE_PARAM_PREFIX "mmcblk."
70 
71 /*
72  * Set a 10 second timeout for polling write request busy state. Note, mmc core
73  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
74  * second software timer to timeout the whole request, so 10 seconds should be
75  * ample.
76  */
77 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
78 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
79 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
80 
81 /**
82  * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
83  *
84  * @stuff        : stuff bytes
85  * @key_mac      : The authentication key or the message authentication
86  *                 code (MAC) depending on the request/response type.
87  *                 The MAC will be delivered in the last (or the only)
88  *                 block of data.
89  * @data         : Data to be written or read by signed access.
90  * @nonce        : Random number generated by the host for the requests
91  *                 and copied to the response by the RPMB engine.
92  * @write_counter: Counter value for the total amount of the successful
93  *                 authenticated data write requests made by the host.
94  * @addr         : Address of the data to be programmed to or read
95  *                 from the RPMB. Address is the serial number of
96  *                 the accessed block (half sector 256B).
97  * @block_count  : Number of blocks (half sectors, 256B) requested to be
98  *                 read/programmed.
99  * @result       : Includes information about the status of the write counter
100  *                 (valid, expired) and result of the access made to the RPMB.
101  * @req_resp     : Defines the type of request and response to/from the memory.
102  *
103  * The stuff bytes and big-endian properties are modeled to fit to the spec.
104  */
105 struct rpmb_frame {
106 	u8     stuff[196];
107 	u8     key_mac[32];
108 	u8     data[256];
109 	u8     nonce[16];
110 	__be32 write_counter;
111 	__be16 addr;
112 	__be16 block_count;
113 	__be16 result;
114 	__be16 req_resp;
115 } __packed;
116 
117 #define RPMB_PROGRAM_KEY       0x1    /* Program RPMB Authentication Key */
118 #define RPMB_GET_WRITE_COUNTER 0x2    /* Read RPMB write counter */
119 #define RPMB_WRITE_DATA        0x3    /* Write data to RPMB partition */
120 #define RPMB_READ_DATA         0x4    /* Read data from RPMB partition */
121 #define RPMB_RESULT_READ       0x5    /* Read result request  (Internal) */
122 
123 static DEFINE_MUTEX(block_mutex);
124 
125 /*
126  * The defaults come from config options but can be overriden by module
127  * or bootarg options.
128  */
129 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
130 
131 /*
132  * We've only got one major, so number of mmcblk devices is
133  * limited to (1 << 20) / number of minors per device.  It is also
134  * limited by the MAX_DEVICES below.
135  */
136 static int max_devices;
137 
138 #define MAX_DEVICES 256
139 
140 static DEFINE_IDA(mmc_blk_ida);
141 static DEFINE_IDA(mmc_rpmb_ida);
142 
143 struct mmc_blk_busy_data {
144 	struct mmc_card *card;
145 	u32 status;
146 };
147 
148 /*
149  * There is one mmc_blk_data per slot.
150  */
151 struct mmc_blk_data {
152 	struct device	*parent;
153 	struct gendisk	*disk;
154 	struct mmc_queue queue;
155 	struct list_head part;
156 	struct list_head rpmbs;
157 
158 	unsigned int	flags;
159 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
160 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
161 
162 	struct kref	kref;
163 	unsigned int	read_only;
164 	unsigned int	part_type;
165 	unsigned int	reset_done;
166 #define MMC_BLK_READ		BIT(0)
167 #define MMC_BLK_WRITE		BIT(1)
168 #define MMC_BLK_DISCARD		BIT(2)
169 #define MMC_BLK_SECDISCARD	BIT(3)
170 #define MMC_BLK_CQE_RECOVERY	BIT(4)
171 #define MMC_BLK_TRIM		BIT(5)
172 
173 	/*
174 	 * Only set in main mmc_blk_data associated
175 	 * with mmc_card with dev_set_drvdata, and keeps
176 	 * track of the current selected device partition.
177 	 */
178 	unsigned int	part_curr;
179 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
180 	int	area_type;
181 
182 	/* debugfs files (only in main mmc_blk_data) */
183 	struct dentry *status_dentry;
184 	struct dentry *ext_csd_dentry;
185 };
186 
187 /* Device type for RPMB character devices */
188 static dev_t mmc_rpmb_devt;
189 
190 /* Bus type for RPMB character devices */
191 static const struct bus_type mmc_rpmb_bus_type = {
192 	.name = "mmc_rpmb",
193 };
194 
195 /**
196  * struct mmc_rpmb_data - special RPMB device type for these areas
197  * @dev: the device for the RPMB area
198  * @chrdev: character device for the RPMB area
199  * @id: unique device ID number
200  * @part_index: partition index (0 on first)
201  * @md: parent MMC block device
202  * @rdev: registered RPMB device
203  * @node: list item, so we can put this device on a list
204  */
205 struct mmc_rpmb_data {
206 	struct device dev;
207 	struct cdev chrdev;
208 	int id;
209 	unsigned int part_index;
210 	struct mmc_blk_data *md;
211 	struct rpmb_dev *rdev;
212 	struct list_head node;
213 };
214 
215 static DEFINE_MUTEX(open_lock);
216 
217 module_param(perdev_minors, int, 0444);
218 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
219 
220 static inline int mmc_blk_part_switch(struct mmc_card *card,
221 				      unsigned int part_type);
222 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
223 			       struct mmc_card *card,
224 			       int recovery_mode,
225 			       struct mmc_queue *mq);
226 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
227 static int mmc_spi_err_check(struct mmc_card *card);
228 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
229 
230 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
231 {
232 	struct mmc_blk_data *md;
233 
234 	mutex_lock(&open_lock);
235 	md = disk->private_data;
236 	if (md && !kref_get_unless_zero(&md->kref))
237 		md = NULL;
238 	mutex_unlock(&open_lock);
239 
240 	return md;
241 }
242 
243 static inline int mmc_get_devidx(struct gendisk *disk)
244 {
245 	int devidx = disk->first_minor / perdev_minors;
246 	return devidx;
247 }
248 
249 static void mmc_blk_kref_release(struct kref *ref)
250 {
251 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
252 	int devidx;
253 
254 	devidx = mmc_get_devidx(md->disk);
255 	ida_free(&mmc_blk_ida, devidx);
256 
257 	mutex_lock(&open_lock);
258 	md->disk->private_data = NULL;
259 	mutex_unlock(&open_lock);
260 
261 	put_disk(md->disk);
262 	kfree(md);
263 }
264 
265 static void mmc_blk_put(struct mmc_blk_data *md)
266 {
267 	kref_put(&md->kref, mmc_blk_kref_release);
268 }
269 
270 static ssize_t power_ro_lock_show(struct device *dev,
271 		struct device_attribute *attr, char *buf)
272 {
273 	int ret;
274 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
275 	struct mmc_card *card = md->queue.card;
276 	int locked = 0;
277 
278 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
279 		locked = 2;
280 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
281 		locked = 1;
282 
283 	ret = sysfs_emit(buf, "%d\n", locked);
284 
285 	mmc_blk_put(md);
286 
287 	return ret;
288 }
289 
290 static ssize_t power_ro_lock_store(struct device *dev,
291 		struct device_attribute *attr, const char *buf, size_t count)
292 {
293 	int ret;
294 	struct mmc_blk_data *md, *part_md;
295 	struct mmc_queue *mq;
296 	struct request *req;
297 	unsigned long set;
298 
299 	if (kstrtoul(buf, 0, &set))
300 		return -EINVAL;
301 
302 	if (set != 1)
303 		return count;
304 
305 	md = mmc_blk_get(dev_to_disk(dev));
306 	mq = &md->queue;
307 
308 	/* Dispatch locking to the block layer */
309 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
310 	if (IS_ERR(req)) {
311 		count = PTR_ERR(req);
312 		goto out_put;
313 	}
314 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
315 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
316 	blk_execute_rq(req, false);
317 	ret = req_to_mmc_queue_req(req)->drv_op_result;
318 	blk_mq_free_request(req);
319 
320 	if (!ret) {
321 		pr_info("%s: Locking boot partition ro until next power on\n",
322 			md->disk->disk_name);
323 		set_disk_ro(md->disk, 1);
324 
325 		list_for_each_entry(part_md, &md->part, part)
326 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
327 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
328 				set_disk_ro(part_md->disk, 1);
329 			}
330 	}
331 out_put:
332 	mmc_blk_put(md);
333 	return count;
334 }
335 
336 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
337 		power_ro_lock_show, power_ro_lock_store);
338 
339 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
340 			     char *buf)
341 {
342 	int ret;
343 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
344 
345 	ret = sysfs_emit(buf, "%d\n",
346 			 get_disk_ro(dev_to_disk(dev)) ^
347 			 md->read_only);
348 	mmc_blk_put(md);
349 	return ret;
350 }
351 
352 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
353 			      const char *buf, size_t count)
354 {
355 	int ret;
356 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
357 	unsigned long set;
358 
359 	if (kstrtoul(buf, 0, &set)) {
360 		ret = -EINVAL;
361 		goto out;
362 	}
363 
364 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
365 	ret = count;
366 out:
367 	mmc_blk_put(md);
368 	return ret;
369 }
370 
371 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
372 
373 static struct attribute *mmc_disk_attrs[] = {
374 	&dev_attr_force_ro.attr,
375 	&dev_attr_ro_lock_until_next_power_on.attr,
376 	NULL,
377 };
378 
379 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
380 		struct attribute *a, int n)
381 {
382 	struct device *dev = kobj_to_dev(kobj);
383 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
384 	umode_t mode = a->mode;
385 
386 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
387 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
388 	    md->queue.card->ext_csd.boot_ro_lockable) {
389 		mode = S_IRUGO;
390 		if (!(md->queue.card->ext_csd.boot_ro_lock &
391 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
392 			mode |= S_IWUSR;
393 	}
394 
395 	mmc_blk_put(md);
396 	return mode;
397 }
398 
399 static const struct attribute_group mmc_disk_attr_group = {
400 	.is_visible	= mmc_disk_attrs_is_visible,
401 	.attrs		= mmc_disk_attrs,
402 };
403 
404 static const struct attribute_group *mmc_disk_attr_groups[] = {
405 	&mmc_disk_attr_group,
406 	NULL,
407 };
408 
409 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
410 {
411 	struct mmc_blk_data *md = mmc_blk_get(disk);
412 	int ret = -ENXIO;
413 
414 	mutex_lock(&block_mutex);
415 	if (md) {
416 		ret = 0;
417 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
418 			mmc_blk_put(md);
419 			ret = -EROFS;
420 		}
421 	}
422 	mutex_unlock(&block_mutex);
423 
424 	return ret;
425 }
426 
427 static void mmc_blk_release(struct gendisk *disk)
428 {
429 	struct mmc_blk_data *md = disk->private_data;
430 
431 	mutex_lock(&block_mutex);
432 	mmc_blk_put(md);
433 	mutex_unlock(&block_mutex);
434 }
435 
436 static int
437 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
438 {
439 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
440 	geo->heads = 4;
441 	geo->sectors = 16;
442 	return 0;
443 }
444 
445 struct mmc_blk_ioc_data {
446 	struct mmc_ioc_cmd ic;
447 	unsigned char *buf;
448 	u64 buf_bytes;
449 	unsigned int flags;
450 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
451 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
452 
453 	struct mmc_rpmb_data *rpmb;
454 };
455 
456 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
457 	struct mmc_ioc_cmd __user *user)
458 {
459 	struct mmc_blk_ioc_data *idata;
460 	int err;
461 
462 	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
463 	if (!idata) {
464 		err = -ENOMEM;
465 		goto out;
466 	}
467 
468 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
469 		err = -EFAULT;
470 		goto idata_err;
471 	}
472 
473 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
474 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
475 		err = -EOVERFLOW;
476 		goto idata_err;
477 	}
478 
479 	if (!idata->buf_bytes) {
480 		idata->buf = NULL;
481 		return idata;
482 	}
483 
484 	idata->buf = memdup_user((void __user *)(unsigned long)
485 				 idata->ic.data_ptr, idata->buf_bytes);
486 	if (IS_ERR(idata->buf)) {
487 		err = PTR_ERR(idata->buf);
488 		goto idata_err;
489 	}
490 
491 	return idata;
492 
493 idata_err:
494 	kfree(idata);
495 out:
496 	return ERR_PTR(err);
497 }
498 
499 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
500 				      struct mmc_blk_ioc_data *idata)
501 {
502 	struct mmc_ioc_cmd *ic = &idata->ic;
503 
504 	if (copy_to_user(&(ic_ptr->response), ic->response,
505 			 sizeof(ic->response)))
506 		return -EFAULT;
507 
508 	if (!idata->ic.write_flag) {
509 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
510 				 idata->buf, idata->buf_bytes))
511 			return -EFAULT;
512 	}
513 
514 	return 0;
515 }
516 
517 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
518 			       struct mmc_blk_ioc_data **idatas, int i)
519 {
520 	struct mmc_command cmd = {}, sbc = {};
521 	struct mmc_data data = {};
522 	struct mmc_request mrq = {};
523 	struct scatterlist sg;
524 	bool r1b_resp;
525 	unsigned int busy_timeout_ms;
526 	int err;
527 	unsigned int target_part;
528 	struct mmc_blk_ioc_data *idata = idatas[i];
529 	struct mmc_blk_ioc_data *prev_idata = NULL;
530 
531 	if (!card || !md || !idata)
532 		return -EINVAL;
533 
534 	if (idata->flags & MMC_BLK_IOC_DROP)
535 		return 0;
536 
537 	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
538 		prev_idata = idatas[i - 1];
539 
540 	/*
541 	 * The RPMB accesses comes in from the character device, so we
542 	 * need to target these explicitly. Else we just target the
543 	 * partition type for the block device the ioctl() was issued
544 	 * on.
545 	 */
546 	if (idata->rpmb) {
547 		/* Support multiple RPMB partitions */
548 		target_part = idata->rpmb->part_index;
549 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
550 	} else {
551 		target_part = md->part_type;
552 	}
553 
554 	cmd.opcode = idata->ic.opcode;
555 	cmd.arg = idata->ic.arg;
556 	cmd.flags = idata->ic.flags;
557 
558 	if (idata->buf_bytes) {
559 		data.sg = &sg;
560 		data.sg_len = 1;
561 		data.blksz = idata->ic.blksz;
562 		data.blocks = idata->ic.blocks;
563 
564 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
565 
566 		if (idata->ic.write_flag)
567 			data.flags = MMC_DATA_WRITE;
568 		else
569 			data.flags = MMC_DATA_READ;
570 
571 		/* data.flags must already be set before doing this. */
572 		mmc_set_data_timeout(&data, card);
573 
574 		/* Allow overriding the timeout_ns for empirical tuning. */
575 		if (idata->ic.data_timeout_ns)
576 			data.timeout_ns = idata->ic.data_timeout_ns;
577 
578 		mrq.data = &data;
579 	}
580 
581 	mrq.cmd = &cmd;
582 
583 	err = mmc_blk_part_switch(card, target_part);
584 	if (err)
585 		return err;
586 
587 	if (idata->ic.is_acmd) {
588 		err = mmc_app_cmd(card->host, card);
589 		if (err)
590 			return err;
591 	}
592 
593 	if (idata->rpmb || prev_idata) {
594 		sbc.opcode = MMC_SET_BLOCK_COUNT;
595 		/*
596 		 * We don't do any blockcount validation because the max size
597 		 * may be increased by a future standard. We just copy the
598 		 * 'Reliable Write' bit here.
599 		 */
600 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
601 		if (prev_idata)
602 			sbc.arg = prev_idata->ic.arg;
603 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
604 		mrq.sbc = &sbc;
605 	}
606 
607 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
608 	    (cmd.opcode == MMC_SWITCH))
609 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
610 
611 	/* If it's an R1B response we need some more preparations. */
612 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
613 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
614 	if (r1b_resp)
615 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
616 
617 	mmc_wait_for_req(card->host, &mrq);
618 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
619 
620 	if (prev_idata) {
621 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
622 		if (sbc.error) {
623 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
624 							__func__, sbc.error);
625 			return sbc.error;
626 		}
627 	}
628 
629 	if (cmd.error) {
630 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
631 						__func__, cmd.error);
632 		return cmd.error;
633 	}
634 	if (data.error) {
635 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
636 						__func__, data.error);
637 		return data.error;
638 	}
639 
640 	/*
641 	 * Make sure the cache of the PARTITION_CONFIG register and
642 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
643 	 * changed it successfully.
644 	 */
645 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
646 	    (cmd.opcode == MMC_SWITCH)) {
647 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
648 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
649 
650 		/*
651 		 * Update cache so the next mmc_blk_part_switch call operates
652 		 * on up-to-date data.
653 		 */
654 		card->ext_csd.part_config = value;
655 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
656 	}
657 
658 	/*
659 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
660 	 * will get turned back on if the card is re-initialized, e.g.
661 	 * suspend/resume or hw reset in recovery.
662 	 */
663 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
664 	    (cmd.opcode == MMC_SWITCH)) {
665 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
666 
667 		card->ext_csd.cache_ctrl = value;
668 	}
669 
670 	/*
671 	 * According to the SD specs, some commands require a delay after
672 	 * issuing the command.
673 	 */
674 	if (idata->ic.postsleep_min_us)
675 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
676 
677 	if (mmc_host_is_spi(card->host)) {
678 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
679 			return mmc_spi_err_check(card);
680 		return err;
681 	}
682 
683 	/*
684 	 * Ensure RPMB, writes and R1B responses are completed by polling with
685 	 * CMD13. Note that, usually we don't need to poll when using HW busy
686 	 * detection, but here it's needed since some commands may indicate the
687 	 * error through the R1 status bits.
688 	 */
689 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
690 		struct mmc_blk_busy_data cb_data = {
691 			.card = card,
692 		};
693 
694 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
695 					  &mmc_blk_busy_cb, &cb_data);
696 
697 		idata->ic.response[0] = cb_data.status;
698 	}
699 
700 	return err;
701 }
702 
703 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
704 			     struct mmc_ioc_cmd __user *ic_ptr,
705 			     struct mmc_rpmb_data *rpmb)
706 {
707 	struct mmc_blk_ioc_data *idata;
708 	struct mmc_blk_ioc_data *idatas[1];
709 	struct mmc_queue *mq;
710 	struct mmc_card *card;
711 	int err = 0, ioc_err = 0;
712 	struct request *req;
713 
714 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
715 	if (IS_ERR(idata))
716 		return PTR_ERR(idata);
717 	/* This will be NULL on non-RPMB ioctl():s */
718 	idata->rpmb = rpmb;
719 
720 	card = md->queue.card;
721 	if (IS_ERR(card)) {
722 		err = PTR_ERR(card);
723 		goto cmd_done;
724 	}
725 
726 	/*
727 	 * Dispatch the ioctl() into the block request queue.
728 	 */
729 	mq = &md->queue;
730 	req = blk_mq_alloc_request(mq->queue,
731 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
732 	if (IS_ERR(req)) {
733 		err = PTR_ERR(req);
734 		goto cmd_done;
735 	}
736 	idatas[0] = idata;
737 	req_to_mmc_queue_req(req)->drv_op =
738 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
739 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
740 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
741 	req_to_mmc_queue_req(req)->ioc_count = 1;
742 	blk_execute_rq(req, false);
743 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
744 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
745 	blk_mq_free_request(req);
746 
747 cmd_done:
748 	kfree(idata->buf);
749 	kfree(idata);
750 	return ioc_err ? ioc_err : err;
751 }
752 
753 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
754 				   struct mmc_ioc_multi_cmd __user *user,
755 				   struct mmc_rpmb_data *rpmb)
756 {
757 	struct mmc_blk_ioc_data **idata = NULL;
758 	struct mmc_ioc_cmd __user *cmds = user->cmds;
759 	struct mmc_card *card;
760 	struct mmc_queue *mq;
761 	int err = 0, ioc_err = 0;
762 	__u64 num_of_cmds;
763 	unsigned int i, n;
764 	struct request *req;
765 
766 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
767 			   sizeof(num_of_cmds)))
768 		return -EFAULT;
769 
770 	if (!num_of_cmds)
771 		return 0;
772 
773 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
774 		return -EINVAL;
775 
776 	n = num_of_cmds;
777 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
778 	if (!idata)
779 		return -ENOMEM;
780 
781 	for (i = 0; i < n; i++) {
782 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
783 		if (IS_ERR(idata[i])) {
784 			err = PTR_ERR(idata[i]);
785 			n = i;
786 			goto cmd_err;
787 		}
788 		/* This will be NULL on non-RPMB ioctl():s */
789 		idata[i]->rpmb = rpmb;
790 	}
791 
792 	card = md->queue.card;
793 	if (IS_ERR(card)) {
794 		err = PTR_ERR(card);
795 		goto cmd_err;
796 	}
797 
798 
799 	/*
800 	 * Dispatch the ioctl()s into the block request queue.
801 	 */
802 	mq = &md->queue;
803 	req = blk_mq_alloc_request(mq->queue,
804 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
805 	if (IS_ERR(req)) {
806 		err = PTR_ERR(req);
807 		goto cmd_err;
808 	}
809 	req_to_mmc_queue_req(req)->drv_op =
810 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
811 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
812 	req_to_mmc_queue_req(req)->drv_op_data = idata;
813 	req_to_mmc_queue_req(req)->ioc_count = n;
814 	blk_execute_rq(req, false);
815 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
816 
817 	/* copy to user if data and response */
818 	for (i = 0; i < n && !err; i++)
819 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
820 
821 	blk_mq_free_request(req);
822 
823 cmd_err:
824 	for (i = 0; i < n; i++) {
825 		kfree(idata[i]->buf);
826 		kfree(idata[i]);
827 	}
828 	kfree(idata);
829 	return ioc_err ? ioc_err : err;
830 }
831 
832 static int mmc_blk_check_blkdev(struct block_device *bdev)
833 {
834 	/*
835 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
836 	 * whole block device, not on a partition.  This prevents overspray
837 	 * between sibling partitions.
838 	 */
839 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
840 		return -EPERM;
841 	return 0;
842 }
843 
844 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
845 	unsigned int cmd, unsigned long arg)
846 {
847 	struct mmc_blk_data *md;
848 	int ret;
849 
850 	switch (cmd) {
851 	case MMC_IOC_CMD:
852 		ret = mmc_blk_check_blkdev(bdev);
853 		if (ret)
854 			return ret;
855 		md = mmc_blk_get(bdev->bd_disk);
856 		if (!md)
857 			return -EINVAL;
858 		ret = mmc_blk_ioctl_cmd(md,
859 					(struct mmc_ioc_cmd __user *)arg,
860 					NULL);
861 		mmc_blk_put(md);
862 		return ret;
863 	case MMC_IOC_MULTI_CMD:
864 		ret = mmc_blk_check_blkdev(bdev);
865 		if (ret)
866 			return ret;
867 		md = mmc_blk_get(bdev->bd_disk);
868 		if (!md)
869 			return -EINVAL;
870 		ret = mmc_blk_ioctl_multi_cmd(md,
871 					(struct mmc_ioc_multi_cmd __user *)arg,
872 					NULL);
873 		mmc_blk_put(md);
874 		return ret;
875 	default:
876 		return -EINVAL;
877 	}
878 }
879 
880 #ifdef CONFIG_COMPAT
881 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
882 	unsigned int cmd, unsigned long arg)
883 {
884 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
885 }
886 #endif
887 
888 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
889 					  sector_t *sector)
890 {
891 	struct mmc_blk_data *md;
892 	int ret;
893 
894 	md = mmc_blk_get(disk);
895 	if (!md)
896 		return -EINVAL;
897 
898 	if (md->queue.card)
899 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
900 	else
901 		ret = -ENODEV;
902 
903 	mmc_blk_put(md);
904 
905 	return ret;
906 }
907 
908 static const struct block_device_operations mmc_bdops = {
909 	.open			= mmc_blk_open,
910 	.release		= mmc_blk_release,
911 	.getgeo			= mmc_blk_getgeo,
912 	.owner			= THIS_MODULE,
913 	.ioctl			= mmc_blk_ioctl,
914 #ifdef CONFIG_COMPAT
915 	.compat_ioctl		= mmc_blk_compat_ioctl,
916 #endif
917 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
918 };
919 
920 static int mmc_blk_part_switch_pre(struct mmc_card *card,
921 				   unsigned int part_type)
922 {
923 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
924 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
925 	int ret = 0;
926 
927 	if ((part_type & mask) == rpmb) {
928 		if (card->ext_csd.cmdq_en) {
929 			ret = mmc_cmdq_disable(card);
930 			if (ret)
931 				return ret;
932 		}
933 		mmc_retune_pause(card->host);
934 	}
935 
936 	return ret;
937 }
938 
939 static int mmc_blk_part_switch_post(struct mmc_card *card,
940 				    unsigned int part_type)
941 {
942 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
943 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
944 	int ret = 0;
945 
946 	if ((part_type & mask) == rpmb) {
947 		mmc_retune_unpause(card->host);
948 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
949 			ret = mmc_cmdq_enable(card);
950 	}
951 
952 	return ret;
953 }
954 
955 static inline int mmc_blk_part_switch(struct mmc_card *card,
956 				      unsigned int part_type)
957 {
958 	int ret = 0;
959 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
960 
961 	if (main_md->part_curr == part_type)
962 		return 0;
963 
964 	if (mmc_card_mmc(card)) {
965 		u8 part_config = card->ext_csd.part_config;
966 
967 		ret = mmc_blk_part_switch_pre(card, part_type);
968 		if (ret)
969 			return ret;
970 
971 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
972 		part_config |= part_type;
973 
974 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
975 				 EXT_CSD_PART_CONFIG, part_config,
976 				 card->ext_csd.part_time);
977 		if (ret) {
978 			mmc_blk_part_switch_post(card, part_type);
979 			return ret;
980 		}
981 
982 		card->ext_csd.part_config = part_config;
983 
984 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
985 	}
986 
987 	main_md->part_curr = part_type;
988 	return ret;
989 }
990 
991 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
992 {
993 	int err;
994 	u32 result;
995 	__be32 *blocks;
996 
997 	struct mmc_request mrq = {};
998 	struct mmc_command cmd = {};
999 	struct mmc_data data = {};
1000 
1001 	struct scatterlist sg;
1002 
1003 	err = mmc_app_cmd(card->host, card);
1004 	if (err)
1005 		return err;
1006 
1007 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1008 	cmd.arg = 0;
1009 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1010 
1011 	data.blksz = 4;
1012 	data.blocks = 1;
1013 	data.flags = MMC_DATA_READ;
1014 	data.sg = &sg;
1015 	data.sg_len = 1;
1016 	mmc_set_data_timeout(&data, card);
1017 
1018 	mrq.cmd = &cmd;
1019 	mrq.data = &data;
1020 
1021 	blocks = kmalloc(4, GFP_KERNEL);
1022 	if (!blocks)
1023 		return -ENOMEM;
1024 
1025 	sg_init_one(&sg, blocks, 4);
1026 
1027 	mmc_wait_for_req(card->host, &mrq);
1028 
1029 	result = ntohl(*blocks);
1030 	kfree(blocks);
1031 
1032 	if (cmd.error || data.error)
1033 		return -EIO;
1034 
1035 	*written_blocks = result;
1036 
1037 	return 0;
1038 }
1039 
1040 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1041 {
1042 	if (host->actual_clock)
1043 		return host->actual_clock / 1000;
1044 
1045 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1046 	if (host->ios.clock)
1047 		return host->ios.clock / 2000;
1048 
1049 	/* How can there be no clock */
1050 	WARN_ON_ONCE(1);
1051 	return 100; /* 100 kHz is minimum possible value */
1052 }
1053 
1054 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1055 					    struct mmc_data *data)
1056 {
1057 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1058 	unsigned int khz;
1059 
1060 	if (data->timeout_clks) {
1061 		khz = mmc_blk_clock_khz(host);
1062 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1063 	}
1064 
1065 	return ms;
1066 }
1067 
1068 /*
1069  * Attempts to reset the card and get back to the requested partition.
1070  * Therefore any error here must result in cancelling the block layer
1071  * request, it must not be reattempted without going through the mmc_blk
1072  * partition sanity checks.
1073  */
1074 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1075 			 int type)
1076 {
1077 	int err;
1078 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1079 
1080 	if (md->reset_done & type)
1081 		return -EEXIST;
1082 
1083 	md->reset_done |= type;
1084 	err = mmc_hw_reset(host->card);
1085 	/*
1086 	 * A successful reset will leave the card in the main partition, but
1087 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1088 	 * in that case.
1089 	 */
1090 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1091 	if (err)
1092 		return err;
1093 	/* Ensure we switch back to the correct partition */
1094 	if (mmc_blk_part_switch(host->card, md->part_type))
1095 		/*
1096 		 * We have failed to get back into the correct
1097 		 * partition, so we need to abort the whole request.
1098 		 */
1099 		return -ENODEV;
1100 	return 0;
1101 }
1102 
1103 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1104 {
1105 	md->reset_done &= ~type;
1106 }
1107 
1108 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1109 {
1110 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1111 	int i;
1112 
1113 	for (i = 1; i < mq_rq->ioc_count; i++) {
1114 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1115 		    mmc_op_multi(idata[i]->ic.opcode)) {
1116 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1117 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1118 		}
1119 	}
1120 }
1121 
1122 /*
1123  * The non-block commands come back from the block layer after it queued it and
1124  * processed it with all other requests and then they get issued in this
1125  * function.
1126  */
1127 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1128 {
1129 	struct mmc_queue_req *mq_rq;
1130 	struct mmc_card *card = mq->card;
1131 	struct mmc_blk_data *md = mq->blkdata;
1132 	struct mmc_blk_ioc_data **idata;
1133 	bool rpmb_ioctl;
1134 	u8 **ext_csd;
1135 	u32 status;
1136 	int ret;
1137 	int i;
1138 
1139 	mq_rq = req_to_mmc_queue_req(req);
1140 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1141 
1142 	switch (mq_rq->drv_op) {
1143 	case MMC_DRV_OP_IOCTL:
1144 		if (card->ext_csd.cmdq_en) {
1145 			ret = mmc_cmdq_disable(card);
1146 			if (ret)
1147 				break;
1148 		}
1149 
1150 		mmc_blk_check_sbc(mq_rq);
1151 
1152 		fallthrough;
1153 	case MMC_DRV_OP_IOCTL_RPMB:
1154 		idata = mq_rq->drv_op_data;
1155 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1156 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1157 			if (ret)
1158 				break;
1159 		}
1160 		/* Always switch back to main area after RPMB access */
1161 		if (rpmb_ioctl)
1162 			mmc_blk_part_switch(card, 0);
1163 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1164 			mmc_cmdq_enable(card);
1165 		break;
1166 	case MMC_DRV_OP_BOOT_WP:
1167 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1168 				 card->ext_csd.boot_ro_lock |
1169 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1170 				 card->ext_csd.part_time);
1171 		if (ret)
1172 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1173 			       md->disk->disk_name, ret);
1174 		else
1175 			card->ext_csd.boot_ro_lock |=
1176 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1177 		break;
1178 	case MMC_DRV_OP_GET_CARD_STATUS:
1179 		ret = mmc_send_status(card, &status);
1180 		if (!ret)
1181 			ret = status;
1182 		break;
1183 	case MMC_DRV_OP_GET_EXT_CSD:
1184 		ext_csd = mq_rq->drv_op_data;
1185 		ret = mmc_get_ext_csd(card, ext_csd);
1186 		break;
1187 	default:
1188 		pr_err("%s: unknown driver specific operation\n",
1189 		       md->disk->disk_name);
1190 		ret = -EINVAL;
1191 		break;
1192 	}
1193 	mq_rq->drv_op_result = ret;
1194 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1195 }
1196 
1197 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1198 				   int type, unsigned int erase_arg)
1199 {
1200 	struct mmc_blk_data *md = mq->blkdata;
1201 	struct mmc_card *card = md->queue.card;
1202 	unsigned int from, nr;
1203 	int err = 0;
1204 	blk_status_t status = BLK_STS_OK;
1205 
1206 	if (!mmc_can_erase(card)) {
1207 		status = BLK_STS_NOTSUPP;
1208 		goto fail;
1209 	}
1210 
1211 	from = blk_rq_pos(req);
1212 	nr = blk_rq_sectors(req);
1213 
1214 	do {
1215 		err = 0;
1216 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1217 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1218 					 INAND_CMD38_ARG_EXT_CSD,
1219 					 erase_arg == MMC_TRIM_ARG ?
1220 					 INAND_CMD38_ARG_TRIM :
1221 					 INAND_CMD38_ARG_ERASE,
1222 					 card->ext_csd.generic_cmd6_time);
1223 		}
1224 		if (!err)
1225 			err = mmc_erase(card, from, nr, erase_arg);
1226 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1227 	if (err)
1228 		status = BLK_STS_IOERR;
1229 	else
1230 		mmc_blk_reset_success(md, type);
1231 fail:
1232 	blk_mq_end_request(req, status);
1233 }
1234 
1235 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1236 {
1237 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1238 }
1239 
1240 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1241 {
1242 	struct mmc_blk_data *md = mq->blkdata;
1243 	struct mmc_card *card = md->queue.card;
1244 	unsigned int arg = card->erase_arg;
1245 
1246 	if (mmc_card_broken_sd_discard(card))
1247 		arg = SD_ERASE_ARG;
1248 
1249 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1250 }
1251 
1252 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1253 				       struct request *req)
1254 {
1255 	struct mmc_blk_data *md = mq->blkdata;
1256 	struct mmc_card *card = md->queue.card;
1257 	unsigned int from, nr, arg;
1258 	int err = 0, type = MMC_BLK_SECDISCARD;
1259 	blk_status_t status = BLK_STS_OK;
1260 
1261 	if (!(mmc_can_secure_erase_trim(card))) {
1262 		status = BLK_STS_NOTSUPP;
1263 		goto out;
1264 	}
1265 
1266 	from = blk_rq_pos(req);
1267 	nr = blk_rq_sectors(req);
1268 
1269 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1270 		arg = MMC_SECURE_TRIM1_ARG;
1271 	else
1272 		arg = MMC_SECURE_ERASE_ARG;
1273 
1274 retry:
1275 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1276 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1277 				 INAND_CMD38_ARG_EXT_CSD,
1278 				 arg == MMC_SECURE_TRIM1_ARG ?
1279 				 INAND_CMD38_ARG_SECTRIM1 :
1280 				 INAND_CMD38_ARG_SECERASE,
1281 				 card->ext_csd.generic_cmd6_time);
1282 		if (err)
1283 			goto out_retry;
1284 	}
1285 
1286 	err = mmc_erase(card, from, nr, arg);
1287 	if (err == -EIO)
1288 		goto out_retry;
1289 	if (err) {
1290 		status = BLK_STS_IOERR;
1291 		goto out;
1292 	}
1293 
1294 	if (arg == MMC_SECURE_TRIM1_ARG) {
1295 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1296 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1297 					 INAND_CMD38_ARG_EXT_CSD,
1298 					 INAND_CMD38_ARG_SECTRIM2,
1299 					 card->ext_csd.generic_cmd6_time);
1300 			if (err)
1301 				goto out_retry;
1302 		}
1303 
1304 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1305 		if (err == -EIO)
1306 			goto out_retry;
1307 		if (err) {
1308 			status = BLK_STS_IOERR;
1309 			goto out;
1310 		}
1311 	}
1312 
1313 out_retry:
1314 	if (err && !mmc_blk_reset(md, card->host, type))
1315 		goto retry;
1316 	if (!err)
1317 		mmc_blk_reset_success(md, type);
1318 out:
1319 	blk_mq_end_request(req, status);
1320 }
1321 
1322 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1323 {
1324 	struct mmc_blk_data *md = mq->blkdata;
1325 	struct mmc_card *card = md->queue.card;
1326 	int ret = 0;
1327 
1328 	ret = mmc_flush_cache(card->host);
1329 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1330 }
1331 
1332 /*
1333  * Reformat current write as a reliable write, supporting
1334  * both legacy and the enhanced reliable write MMC cards.
1335  * In each transfer we'll handle only as much as a single
1336  * reliable write can handle, thus finish the request in
1337  * partial completions.
1338  */
1339 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1340 				    struct mmc_card *card,
1341 				    struct request *req)
1342 {
1343 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1344 		/* Legacy mode imposes restrictions on transfers. */
1345 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1346 			brq->data.blocks = 1;
1347 
1348 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1349 			brq->data.blocks = card->ext_csd.rel_sectors;
1350 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1351 			brq->data.blocks = 1;
1352 	}
1353 }
1354 
1355 #define CMD_ERRORS_EXCL_OOR						\
1356 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1357 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1358 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1359 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1360 	 R1_CC_ERROR |		/* Card controller error */		\
1361 	 R1_ERROR)		/* General/unknown error */
1362 
1363 #define CMD_ERRORS							\
1364 	(CMD_ERRORS_EXCL_OOR |						\
1365 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1366 
1367 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1368 {
1369 	u32 val;
1370 
1371 	/*
1372 	 * Per the SD specification(physical layer version 4.10)[1],
1373 	 * section 4.3.3, it explicitly states that "When the last
1374 	 * block of user area is read using CMD18, the host should
1375 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1376 	 * is correct". And JESD84-B51 for eMMC also has a similar
1377 	 * statement on section 6.8.3.
1378 	 *
1379 	 * Multiple block read/write could be done by either predefined
1380 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1381 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1382 	 *
1383 	 * However the spec[1] doesn't tell us whether we should also
1384 	 * ignore that for predefined method. But per the spec[1], section
1385 	 * 4.15 Set Block Count Command, it says"If illegal block count
1386 	 * is set, out of range error will be indicated during read/write
1387 	 * operation (For example, data transfer is stopped at user area
1388 	 * boundary)." In another word, we could expect a out of range error
1389 	 * in the response for the following CMD18/25. And if argument of
1390 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1391 	 * we could also expect to get a -ETIMEDOUT or any error number from
1392 	 * the host drivers due to missing data response(for write)/data(for
1393 	 * read), as the cards will stop the data transfer by itself per the
1394 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1395 	 */
1396 
1397 	if (!brq->stop.error) {
1398 		bool oor_with_open_end;
1399 		/* If there is no error yet, check R1 response */
1400 
1401 		val = brq->stop.resp[0] & CMD_ERRORS;
1402 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1403 
1404 		if (val && !oor_with_open_end)
1405 			brq->stop.error = -EIO;
1406 	}
1407 }
1408 
1409 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1410 			      int recovery_mode, bool *do_rel_wr_p,
1411 			      bool *do_data_tag_p)
1412 {
1413 	struct mmc_blk_data *md = mq->blkdata;
1414 	struct mmc_card *card = md->queue.card;
1415 	struct mmc_blk_request *brq = &mqrq->brq;
1416 	struct request *req = mmc_queue_req_to_req(mqrq);
1417 	bool do_rel_wr, do_data_tag;
1418 
1419 	/*
1420 	 * Reliable writes are used to implement Forced Unit Access and
1421 	 * are supported only on MMCs.
1422 	 */
1423 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1424 		    rq_data_dir(req) == WRITE &&
1425 		    (md->flags & MMC_BLK_REL_WR);
1426 
1427 	memset(brq, 0, sizeof(struct mmc_blk_request));
1428 
1429 	mmc_crypto_prepare_req(mqrq);
1430 
1431 	brq->mrq.data = &brq->data;
1432 	brq->mrq.tag = req->tag;
1433 
1434 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1435 	brq->stop.arg = 0;
1436 
1437 	if (rq_data_dir(req) == READ) {
1438 		brq->data.flags = MMC_DATA_READ;
1439 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1440 	} else {
1441 		brq->data.flags = MMC_DATA_WRITE;
1442 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1443 	}
1444 
1445 	brq->data.blksz = 512;
1446 	brq->data.blocks = blk_rq_sectors(req);
1447 	brq->data.blk_addr = blk_rq_pos(req);
1448 
1449 	/*
1450 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1451 	 * The eMMC will give "high" priority tasks priority over "simple"
1452 	 * priority tasks. Here we always set "simple" priority by not setting
1453 	 * MMC_DATA_PRIO.
1454 	 */
1455 
1456 	/*
1457 	 * The block layer doesn't support all sector count
1458 	 * restrictions, so we need to be prepared for too big
1459 	 * requests.
1460 	 */
1461 	if (brq->data.blocks > card->host->max_blk_count)
1462 		brq->data.blocks = card->host->max_blk_count;
1463 
1464 	if (brq->data.blocks > 1) {
1465 		/*
1466 		 * Some SD cards in SPI mode return a CRC error or even lock up
1467 		 * completely when trying to read the last block using a
1468 		 * multiblock read command.
1469 		 */
1470 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1471 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1472 		     get_capacity(md->disk)))
1473 			brq->data.blocks--;
1474 
1475 		/*
1476 		 * After a read error, we redo the request one (native) sector
1477 		 * at a time in order to accurately determine which
1478 		 * sectors can be read successfully.
1479 		 */
1480 		if (recovery_mode)
1481 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1482 
1483 		/*
1484 		 * Some controllers have HW issues while operating
1485 		 * in multiple I/O mode
1486 		 */
1487 		if (card->host->ops->multi_io_quirk)
1488 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1489 						(rq_data_dir(req) == READ) ?
1490 						MMC_DATA_READ : MMC_DATA_WRITE,
1491 						brq->data.blocks);
1492 	}
1493 
1494 	if (do_rel_wr) {
1495 		mmc_apply_rel_rw(brq, card, req);
1496 		brq->data.flags |= MMC_DATA_REL_WR;
1497 	}
1498 
1499 	/*
1500 	 * Data tag is used only during writing meta data to speed
1501 	 * up write and any subsequent read of this meta data
1502 	 */
1503 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1504 		      (req->cmd_flags & REQ_META) &&
1505 		      (rq_data_dir(req) == WRITE) &&
1506 		      ((brq->data.blocks * brq->data.blksz) >=
1507 		       card->ext_csd.data_tag_unit_size);
1508 
1509 	if (do_data_tag)
1510 		brq->data.flags |= MMC_DATA_DAT_TAG;
1511 
1512 	mmc_set_data_timeout(&brq->data, card);
1513 
1514 	brq->data.sg = mqrq->sg;
1515 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1516 
1517 	/*
1518 	 * Adjust the sg list so it is the same size as the
1519 	 * request.
1520 	 */
1521 	if (brq->data.blocks != blk_rq_sectors(req)) {
1522 		int i, data_size = brq->data.blocks << 9;
1523 		struct scatterlist *sg;
1524 
1525 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1526 			data_size -= sg->length;
1527 			if (data_size <= 0) {
1528 				sg->length += data_size;
1529 				i++;
1530 				break;
1531 			}
1532 		}
1533 		brq->data.sg_len = i;
1534 	}
1535 
1536 	if (do_rel_wr_p)
1537 		*do_rel_wr_p = do_rel_wr;
1538 
1539 	if (do_data_tag_p)
1540 		*do_data_tag_p = do_data_tag;
1541 }
1542 
1543 #define MMC_CQE_RETRIES 2
1544 
1545 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1546 {
1547 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1548 	struct mmc_request *mrq = &mqrq->brq.mrq;
1549 	struct request_queue *q = req->q;
1550 	struct mmc_host *host = mq->card->host;
1551 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1552 	unsigned long flags;
1553 	bool put_card;
1554 	int err;
1555 
1556 	mmc_cqe_post_req(host, mrq);
1557 
1558 	if (mrq->cmd && mrq->cmd->error)
1559 		err = mrq->cmd->error;
1560 	else if (mrq->data && mrq->data->error)
1561 		err = mrq->data->error;
1562 	else
1563 		err = 0;
1564 
1565 	if (err) {
1566 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1567 			blk_mq_requeue_request(req, true);
1568 		else
1569 			blk_mq_end_request(req, BLK_STS_IOERR);
1570 	} else if (mrq->data) {
1571 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1572 			blk_mq_requeue_request(req, true);
1573 		else
1574 			__blk_mq_end_request(req, BLK_STS_OK);
1575 	} else if (mq->in_recovery) {
1576 		blk_mq_requeue_request(req, true);
1577 	} else {
1578 		blk_mq_end_request(req, BLK_STS_OK);
1579 	}
1580 
1581 	spin_lock_irqsave(&mq->lock, flags);
1582 
1583 	mq->in_flight[issue_type] -= 1;
1584 
1585 	put_card = (mmc_tot_in_flight(mq) == 0);
1586 
1587 	mmc_cqe_check_busy(mq);
1588 
1589 	spin_unlock_irqrestore(&mq->lock, flags);
1590 
1591 	if (!mq->cqe_busy)
1592 		blk_mq_run_hw_queues(q, true);
1593 
1594 	if (put_card)
1595 		mmc_put_card(mq->card, &mq->ctx);
1596 }
1597 
1598 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1599 {
1600 	struct mmc_card *card = mq->card;
1601 	struct mmc_host *host = card->host;
1602 	int err;
1603 
1604 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1605 
1606 	err = mmc_cqe_recovery(host);
1607 	if (err)
1608 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1609 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1610 
1611 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1612 }
1613 
1614 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1615 {
1616 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1617 						  brq.mrq);
1618 	struct request *req = mmc_queue_req_to_req(mqrq);
1619 	struct request_queue *q = req->q;
1620 	struct mmc_queue *mq = q->queuedata;
1621 
1622 	/*
1623 	 * Block layer timeouts race with completions which means the normal
1624 	 * completion path cannot be used during recovery.
1625 	 */
1626 	if (mq->in_recovery)
1627 		mmc_blk_cqe_complete_rq(mq, req);
1628 	else if (likely(!blk_should_fake_timeout(req->q)))
1629 		blk_mq_complete_request(req);
1630 }
1631 
1632 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1633 {
1634 	mrq->done		= mmc_blk_cqe_req_done;
1635 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1636 
1637 	return mmc_cqe_start_req(host, mrq);
1638 }
1639 
1640 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1641 						 struct request *req)
1642 {
1643 	struct mmc_blk_request *brq = &mqrq->brq;
1644 
1645 	memset(brq, 0, sizeof(*brq));
1646 
1647 	brq->mrq.cmd = &brq->cmd;
1648 	brq->mrq.tag = req->tag;
1649 
1650 	return &brq->mrq;
1651 }
1652 
1653 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1654 {
1655 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1656 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1657 
1658 	mrq->cmd->opcode = MMC_SWITCH;
1659 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1660 			(EXT_CSD_FLUSH_CACHE << 16) |
1661 			(1 << 8) |
1662 			EXT_CSD_CMD_SET_NORMAL;
1663 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1664 
1665 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1666 }
1667 
1668 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1669 {
1670 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1671 	struct mmc_host *host = mq->card->host;
1672 	int err;
1673 
1674 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1675 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1676 	mmc_pre_req(host, &mqrq->brq.mrq);
1677 
1678 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1679 	if (err)
1680 		mmc_post_req(host, &mqrq->brq.mrq, err);
1681 
1682 	return err;
1683 }
1684 
1685 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1686 {
1687 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688 	struct mmc_host *host = mq->card->host;
1689 
1690 	if (host->hsq_enabled)
1691 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1692 
1693 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1694 
1695 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1696 }
1697 
1698 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1699 			       struct mmc_card *card,
1700 			       int recovery_mode,
1701 			       struct mmc_queue *mq)
1702 {
1703 	u32 readcmd, writecmd;
1704 	struct mmc_blk_request *brq = &mqrq->brq;
1705 	struct request *req = mmc_queue_req_to_req(mqrq);
1706 	struct mmc_blk_data *md = mq->blkdata;
1707 	bool do_rel_wr, do_data_tag;
1708 
1709 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1710 
1711 	brq->mrq.cmd = &brq->cmd;
1712 
1713 	brq->cmd.arg = blk_rq_pos(req);
1714 	if (!mmc_card_blockaddr(card))
1715 		brq->cmd.arg <<= 9;
1716 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1717 
1718 	if (brq->data.blocks > 1 || do_rel_wr) {
1719 		/* SPI multiblock writes terminate using a special
1720 		 * token, not a STOP_TRANSMISSION request.
1721 		 */
1722 		if (!mmc_host_is_spi(card->host) ||
1723 		    rq_data_dir(req) == READ)
1724 			brq->mrq.stop = &brq->stop;
1725 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1726 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1727 	} else {
1728 		brq->mrq.stop = NULL;
1729 		readcmd = MMC_READ_SINGLE_BLOCK;
1730 		writecmd = MMC_WRITE_BLOCK;
1731 	}
1732 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1733 
1734 	/*
1735 	 * Pre-defined multi-block transfers are preferable to
1736 	 * open ended-ones (and necessary for reliable writes).
1737 	 * However, it is not sufficient to just send CMD23,
1738 	 * and avoid the final CMD12, as on an error condition
1739 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1740 	 * with Auto-CMD23 enhancements provided by some
1741 	 * hosts, means that the complexity of dealing
1742 	 * with this is best left to the host. If CMD23 is
1743 	 * supported by card and host, we'll fill sbc in and let
1744 	 * the host deal with handling it correctly. This means
1745 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1746 	 * change of behavior will be observed.
1747 	 *
1748 	 * N.B: Some MMC cards experience perf degradation.
1749 	 * We'll avoid using CMD23-bounded multiblock writes for
1750 	 * these, while retaining features like reliable writes.
1751 	 */
1752 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1753 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1754 	     do_data_tag)) {
1755 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1756 		brq->sbc.arg = brq->data.blocks |
1757 			(do_rel_wr ? (1 << 31) : 0) |
1758 			(do_data_tag ? (1 << 29) : 0);
1759 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1760 		brq->mrq.sbc = &brq->sbc;
1761 	}
1762 }
1763 
1764 #define MMC_MAX_RETRIES		5
1765 #define MMC_DATA_RETRIES	2
1766 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1767 
1768 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1769 {
1770 	struct mmc_command cmd = {
1771 		.opcode = MMC_STOP_TRANSMISSION,
1772 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1773 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1774 		.busy_timeout = timeout,
1775 	};
1776 
1777 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1778 }
1779 
1780 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1781 {
1782 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1783 	struct mmc_blk_request *brq = &mqrq->brq;
1784 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1785 	int err;
1786 
1787 	mmc_retune_hold_now(card->host);
1788 
1789 	mmc_blk_send_stop(card, timeout);
1790 
1791 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1792 
1793 	mmc_retune_release(card->host);
1794 
1795 	return err;
1796 }
1797 
1798 #define MMC_READ_SINGLE_RETRIES	2
1799 
1800 /* Single (native) sector read during recovery */
1801 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1802 {
1803 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804 	struct mmc_request *mrq = &mqrq->brq.mrq;
1805 	struct mmc_card *card = mq->card;
1806 	struct mmc_host *host = card->host;
1807 	blk_status_t error = BLK_STS_OK;
1808 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1809 
1810 	do {
1811 		u32 status;
1812 		int err;
1813 		int retries = 0;
1814 
1815 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1816 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1817 
1818 			mmc_wait_for_req(host, mrq);
1819 
1820 			err = mmc_send_status(card, &status);
1821 			if (err)
1822 				goto error_exit;
1823 
1824 			if (!mmc_host_is_spi(host) &&
1825 			    !mmc_ready_for_data(status)) {
1826 				err = mmc_blk_fix_state(card, req);
1827 				if (err)
1828 					goto error_exit;
1829 			}
1830 
1831 			if (!mrq->cmd->error)
1832 				break;
1833 		}
1834 
1835 		if (mrq->cmd->error ||
1836 		    mrq->data->error ||
1837 		    (!mmc_host_is_spi(host) &&
1838 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1839 			error = BLK_STS_IOERR;
1840 		else
1841 			error = BLK_STS_OK;
1842 
1843 	} while (blk_update_request(req, error, bytes_per_read));
1844 
1845 	return;
1846 
1847 error_exit:
1848 	mrq->data->bytes_xfered = 0;
1849 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1850 	/* Let it try the remaining request again */
1851 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1852 		mqrq->retries = MMC_MAX_RETRIES - 1;
1853 }
1854 
1855 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1856 {
1857 	return !!brq->mrq.sbc;
1858 }
1859 
1860 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1861 {
1862 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1863 }
1864 
1865 /*
1866  * Check for errors the host controller driver might not have seen such as
1867  * response mode errors or invalid card state.
1868  */
1869 static bool mmc_blk_status_error(struct request *req, u32 status)
1870 {
1871 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1872 	struct mmc_blk_request *brq = &mqrq->brq;
1873 	struct mmc_queue *mq = req->q->queuedata;
1874 	u32 stop_err_bits;
1875 
1876 	if (mmc_host_is_spi(mq->card->host))
1877 		return false;
1878 
1879 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1880 
1881 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1882 	       brq->stop.resp[0] & stop_err_bits ||
1883 	       status            & stop_err_bits ||
1884 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1885 }
1886 
1887 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1888 {
1889 	return !brq->sbc.error && !brq->cmd.error &&
1890 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1891 }
1892 
1893 /*
1894  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1895  * policy:
1896  * 1. A request that has transferred at least some data is considered
1897  * successful and will be requeued if there is remaining data to
1898  * transfer.
1899  * 2. Otherwise the number of retries is incremented and the request
1900  * will be requeued if there are remaining retries.
1901  * 3. Otherwise the request will be errored out.
1902  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1903  * mqrq->retries. So there are only 4 possible actions here:
1904  *	1. do not accept the bytes_xfered value i.e. set it to zero
1905  *	2. change mqrq->retries to determine the number of retries
1906  *	3. try to reset the card
1907  *	4. read one sector at a time
1908  */
1909 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1910 {
1911 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1912 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1913 	struct mmc_blk_request *brq = &mqrq->brq;
1914 	struct mmc_blk_data *md = mq->blkdata;
1915 	struct mmc_card *card = mq->card;
1916 	u32 status;
1917 	u32 blocks;
1918 	int err;
1919 
1920 	/*
1921 	 * Some errors the host driver might not have seen. Set the number of
1922 	 * bytes transferred to zero in that case.
1923 	 */
1924 	err = __mmc_send_status(card, &status, 0);
1925 	if (err || mmc_blk_status_error(req, status))
1926 		brq->data.bytes_xfered = 0;
1927 
1928 	mmc_retune_release(card->host);
1929 
1930 	/*
1931 	 * Try again to get the status. This also provides an opportunity for
1932 	 * re-tuning.
1933 	 */
1934 	if (err)
1935 		err = __mmc_send_status(card, &status, 0);
1936 
1937 	/*
1938 	 * Nothing more to do after the number of bytes transferred has been
1939 	 * updated and there is no card.
1940 	 */
1941 	if (err && mmc_detect_card_removed(card->host))
1942 		return;
1943 
1944 	/* Try to get back to "tran" state */
1945 	if (!mmc_host_is_spi(mq->card->host) &&
1946 	    (err || !mmc_ready_for_data(status)))
1947 		err = mmc_blk_fix_state(mq->card, req);
1948 
1949 	/*
1950 	 * Special case for SD cards where the card might record the number of
1951 	 * blocks written.
1952 	 */
1953 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1954 	    rq_data_dir(req) == WRITE) {
1955 		if (mmc_sd_num_wr_blocks(card, &blocks))
1956 			brq->data.bytes_xfered = 0;
1957 		else
1958 			brq->data.bytes_xfered = blocks << 9;
1959 	}
1960 
1961 	/* Reset if the card is in a bad state */
1962 	if (!mmc_host_is_spi(mq->card->host) &&
1963 	    err && mmc_blk_reset(md, card->host, type)) {
1964 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1965 		mqrq->retries = MMC_NO_RETRIES;
1966 		return;
1967 	}
1968 
1969 	/*
1970 	 * If anything was done, just return and if there is anything remaining
1971 	 * on the request it will get requeued.
1972 	 */
1973 	if (brq->data.bytes_xfered)
1974 		return;
1975 
1976 	/* Reset before last retry */
1977 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1978 	    mmc_blk_reset(md, card->host, type))
1979 		return;
1980 
1981 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1982 	if (brq->sbc.error || brq->cmd.error)
1983 		return;
1984 
1985 	/* Reduce the remaining retries for data errors */
1986 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1987 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1988 		return;
1989 	}
1990 
1991 	if (rq_data_dir(req) == READ && brq->data.blocks >
1992 			queue_physical_block_size(mq->queue) >> 9) {
1993 		/* Read one (native) sector at a time */
1994 		mmc_blk_read_single(mq, req);
1995 		return;
1996 	}
1997 }
1998 
1999 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2000 {
2001 	mmc_blk_eval_resp_error(brq);
2002 
2003 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2004 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2005 }
2006 
2007 static int mmc_spi_err_check(struct mmc_card *card)
2008 {
2009 	u32 status = 0;
2010 	int err;
2011 
2012 	/*
2013 	 * SPI does not have a TRAN state we have to wait on, instead the
2014 	 * card is ready again when it no longer holds the line LOW.
2015 	 * We still have to ensure two things here before we know the write
2016 	 * was successful:
2017 	 * 1. The card has not disconnected during busy and we actually read our
2018 	 * own pull-up, thinking it was still connected, so ensure it
2019 	 * still responds.
2020 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2021 	 * just reconnected card after being disconnected during busy.
2022 	 */
2023 	err = __mmc_send_status(card, &status, 0);
2024 	if (err)
2025 		return err;
2026 	/* All R1 and R2 bits of SPI are errors in our case */
2027 	if (status)
2028 		return -EIO;
2029 	return 0;
2030 }
2031 
2032 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2033 {
2034 	struct mmc_blk_busy_data *data = cb_data;
2035 	u32 status = 0;
2036 	int err;
2037 
2038 	err = mmc_send_status(data->card, &status);
2039 	if (err)
2040 		return err;
2041 
2042 	/* Accumulate response error bits. */
2043 	data->status |= status;
2044 
2045 	*busy = !mmc_ready_for_data(status);
2046 	return 0;
2047 }
2048 
2049 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2050 {
2051 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2052 	struct mmc_blk_busy_data cb_data;
2053 	int err;
2054 
2055 	if (rq_data_dir(req) == READ)
2056 		return 0;
2057 
2058 	if (mmc_host_is_spi(card->host)) {
2059 		err = mmc_spi_err_check(card);
2060 		if (err)
2061 			mqrq->brq.data.bytes_xfered = 0;
2062 		return err;
2063 	}
2064 
2065 	cb_data.card = card;
2066 	cb_data.status = 0;
2067 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2068 				  &mmc_blk_busy_cb, &cb_data);
2069 
2070 	/*
2071 	 * Do not assume data transferred correctly if there are any error bits
2072 	 * set.
2073 	 */
2074 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2075 		mqrq->brq.data.bytes_xfered = 0;
2076 		err = err ? err : -EIO;
2077 	}
2078 
2079 	/* Copy the exception bit so it will be seen later on */
2080 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2081 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2082 
2083 	return err;
2084 }
2085 
2086 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2087 					    struct request *req)
2088 {
2089 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2090 
2091 	mmc_blk_reset_success(mq->blkdata, type);
2092 }
2093 
2094 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2095 {
2096 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2097 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2098 
2099 	if (nr_bytes) {
2100 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2101 			blk_mq_requeue_request(req, true);
2102 		else
2103 			__blk_mq_end_request(req, BLK_STS_OK);
2104 	} else if (!blk_rq_bytes(req)) {
2105 		__blk_mq_end_request(req, BLK_STS_IOERR);
2106 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2107 		blk_mq_requeue_request(req, true);
2108 	} else {
2109 		if (mmc_card_removed(mq->card))
2110 			req->rq_flags |= RQF_QUIET;
2111 		blk_mq_end_request(req, BLK_STS_IOERR);
2112 	}
2113 }
2114 
2115 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2116 					struct mmc_queue_req *mqrq)
2117 {
2118 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2119 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2120 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2121 }
2122 
2123 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2124 				 struct mmc_queue_req *mqrq)
2125 {
2126 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2127 		mmc_run_bkops(mq->card);
2128 }
2129 
2130 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2131 {
2132 	struct mmc_queue_req *mqrq =
2133 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2134 	struct request *req = mmc_queue_req_to_req(mqrq);
2135 	struct request_queue *q = req->q;
2136 	struct mmc_queue *mq = q->queuedata;
2137 	struct mmc_host *host = mq->card->host;
2138 	unsigned long flags;
2139 
2140 	if (mmc_blk_rq_error(&mqrq->brq) ||
2141 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2142 		spin_lock_irqsave(&mq->lock, flags);
2143 		mq->recovery_needed = true;
2144 		mq->recovery_req = req;
2145 		spin_unlock_irqrestore(&mq->lock, flags);
2146 
2147 		host->cqe_ops->cqe_recovery_start(host);
2148 
2149 		schedule_work(&mq->recovery_work);
2150 		return;
2151 	}
2152 
2153 	mmc_blk_rw_reset_success(mq, req);
2154 
2155 	/*
2156 	 * Block layer timeouts race with completions which means the normal
2157 	 * completion path cannot be used during recovery.
2158 	 */
2159 	if (mq->in_recovery)
2160 		mmc_blk_cqe_complete_rq(mq, req);
2161 	else if (likely(!blk_should_fake_timeout(req->q)))
2162 		blk_mq_complete_request(req);
2163 }
2164 
2165 void mmc_blk_mq_complete(struct request *req)
2166 {
2167 	struct mmc_queue *mq = req->q->queuedata;
2168 	struct mmc_host *host = mq->card->host;
2169 
2170 	if (host->cqe_enabled)
2171 		mmc_blk_cqe_complete_rq(mq, req);
2172 	else if (likely(!blk_should_fake_timeout(req->q)))
2173 		mmc_blk_mq_complete_rq(mq, req);
2174 }
2175 
2176 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2177 				       struct request *req)
2178 {
2179 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2180 	struct mmc_host *host = mq->card->host;
2181 
2182 	if (mmc_blk_rq_error(&mqrq->brq) ||
2183 	    mmc_blk_card_busy(mq->card, req)) {
2184 		mmc_blk_mq_rw_recovery(mq, req);
2185 	} else {
2186 		mmc_blk_rw_reset_success(mq, req);
2187 		mmc_retune_release(host);
2188 	}
2189 
2190 	mmc_blk_urgent_bkops(mq, mqrq);
2191 }
2192 
2193 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2194 {
2195 	unsigned long flags;
2196 	bool put_card;
2197 
2198 	spin_lock_irqsave(&mq->lock, flags);
2199 
2200 	mq->in_flight[issue_type] -= 1;
2201 
2202 	put_card = (mmc_tot_in_flight(mq) == 0);
2203 
2204 	spin_unlock_irqrestore(&mq->lock, flags);
2205 
2206 	if (put_card)
2207 		mmc_put_card(mq->card, &mq->ctx);
2208 }
2209 
2210 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2211 				bool can_sleep)
2212 {
2213 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2214 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2215 	struct mmc_request *mrq = &mqrq->brq.mrq;
2216 	struct mmc_host *host = mq->card->host;
2217 
2218 	mmc_post_req(host, mrq, 0);
2219 
2220 	/*
2221 	 * Block layer timeouts race with completions which means the normal
2222 	 * completion path cannot be used during recovery.
2223 	 */
2224 	if (mq->in_recovery) {
2225 		mmc_blk_mq_complete_rq(mq, req);
2226 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2227 		if (can_sleep)
2228 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2229 		else
2230 			blk_mq_complete_request(req);
2231 	}
2232 
2233 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2234 }
2235 
2236 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2237 {
2238 	struct request *req = mq->recovery_req;
2239 	struct mmc_host *host = mq->card->host;
2240 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2241 
2242 	mq->recovery_req = NULL;
2243 	mq->rw_wait = false;
2244 
2245 	if (mmc_blk_rq_error(&mqrq->brq)) {
2246 		mmc_retune_hold_now(host);
2247 		mmc_blk_mq_rw_recovery(mq, req);
2248 	}
2249 
2250 	mmc_blk_urgent_bkops(mq, mqrq);
2251 
2252 	mmc_blk_mq_post_req(mq, req, true);
2253 }
2254 
2255 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2256 					 struct request **prev_req)
2257 {
2258 	if (mmc_host_done_complete(mq->card->host))
2259 		return;
2260 
2261 	mutex_lock(&mq->complete_lock);
2262 
2263 	if (!mq->complete_req)
2264 		goto out_unlock;
2265 
2266 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2267 
2268 	if (prev_req)
2269 		*prev_req = mq->complete_req;
2270 	else
2271 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2272 
2273 	mq->complete_req = NULL;
2274 
2275 out_unlock:
2276 	mutex_unlock(&mq->complete_lock);
2277 }
2278 
2279 void mmc_blk_mq_complete_work(struct work_struct *work)
2280 {
2281 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2282 					    complete_work);
2283 
2284 	mmc_blk_mq_complete_prev_req(mq, NULL);
2285 }
2286 
2287 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2288 {
2289 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2290 						  brq.mrq);
2291 	struct request *req = mmc_queue_req_to_req(mqrq);
2292 	struct request_queue *q = req->q;
2293 	struct mmc_queue *mq = q->queuedata;
2294 	struct mmc_host *host = mq->card->host;
2295 	unsigned long flags;
2296 
2297 	if (!mmc_host_done_complete(host)) {
2298 		bool waiting;
2299 
2300 		/*
2301 		 * We cannot complete the request in this context, so record
2302 		 * that there is a request to complete, and that a following
2303 		 * request does not need to wait (although it does need to
2304 		 * complete complete_req first).
2305 		 */
2306 		spin_lock_irqsave(&mq->lock, flags);
2307 		mq->complete_req = req;
2308 		mq->rw_wait = false;
2309 		waiting = mq->waiting;
2310 		spin_unlock_irqrestore(&mq->lock, flags);
2311 
2312 		/*
2313 		 * If 'waiting' then the waiting task will complete this
2314 		 * request, otherwise queue a work to do it. Note that
2315 		 * complete_work may still race with the dispatch of a following
2316 		 * request.
2317 		 */
2318 		if (waiting)
2319 			wake_up(&mq->wait);
2320 		else
2321 			queue_work(mq->card->complete_wq, &mq->complete_work);
2322 
2323 		return;
2324 	}
2325 
2326 	/* Take the recovery path for errors or urgent background operations */
2327 	if (mmc_blk_rq_error(&mqrq->brq) ||
2328 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2329 		spin_lock_irqsave(&mq->lock, flags);
2330 		mq->recovery_needed = true;
2331 		mq->recovery_req = req;
2332 		spin_unlock_irqrestore(&mq->lock, flags);
2333 		wake_up(&mq->wait);
2334 		schedule_work(&mq->recovery_work);
2335 		return;
2336 	}
2337 
2338 	mmc_blk_rw_reset_success(mq, req);
2339 
2340 	mq->rw_wait = false;
2341 	wake_up(&mq->wait);
2342 
2343 	/* context unknown */
2344 	mmc_blk_mq_post_req(mq, req, false);
2345 }
2346 
2347 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2348 {
2349 	unsigned long flags;
2350 	bool done;
2351 
2352 	/*
2353 	 * Wait while there is another request in progress, but not if recovery
2354 	 * is needed. Also indicate whether there is a request waiting to start.
2355 	 */
2356 	spin_lock_irqsave(&mq->lock, flags);
2357 	if (mq->recovery_needed) {
2358 		*err = -EBUSY;
2359 		done = true;
2360 	} else {
2361 		done = !mq->rw_wait;
2362 	}
2363 	mq->waiting = !done;
2364 	spin_unlock_irqrestore(&mq->lock, flags);
2365 
2366 	return done;
2367 }
2368 
2369 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2370 {
2371 	int err = 0;
2372 
2373 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2374 
2375 	/* Always complete the previous request if there is one */
2376 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2377 
2378 	return err;
2379 }
2380 
2381 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2382 				  struct request *req)
2383 {
2384 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2385 	struct mmc_host *host = mq->card->host;
2386 	struct request *prev_req = NULL;
2387 	int err = 0;
2388 
2389 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2390 
2391 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2392 
2393 	mmc_pre_req(host, &mqrq->brq.mrq);
2394 
2395 	err = mmc_blk_rw_wait(mq, &prev_req);
2396 	if (err)
2397 		goto out_post_req;
2398 
2399 	mq->rw_wait = true;
2400 
2401 	err = mmc_start_request(host, &mqrq->brq.mrq);
2402 
2403 	if (prev_req)
2404 		mmc_blk_mq_post_req(mq, prev_req, true);
2405 
2406 	if (err)
2407 		mq->rw_wait = false;
2408 
2409 	/* Release re-tuning here where there is no synchronization required */
2410 	if (err || mmc_host_done_complete(host))
2411 		mmc_retune_release(host);
2412 
2413 out_post_req:
2414 	if (err)
2415 		mmc_post_req(host, &mqrq->brq.mrq, err);
2416 
2417 	return err;
2418 }
2419 
2420 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2421 {
2422 	if (host->cqe_enabled)
2423 		return host->cqe_ops->cqe_wait_for_idle(host);
2424 
2425 	return mmc_blk_rw_wait(mq, NULL);
2426 }
2427 
2428 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2429 {
2430 	struct mmc_blk_data *md = mq->blkdata;
2431 	struct mmc_card *card = md->queue.card;
2432 	struct mmc_host *host = card->host;
2433 	int ret;
2434 
2435 	ret = mmc_blk_part_switch(card, md->part_type);
2436 	if (ret)
2437 		return MMC_REQ_FAILED_TO_START;
2438 
2439 	switch (mmc_issue_type(mq, req)) {
2440 	case MMC_ISSUE_SYNC:
2441 		ret = mmc_blk_wait_for_idle(mq, host);
2442 		if (ret)
2443 			return MMC_REQ_BUSY;
2444 		switch (req_op(req)) {
2445 		case REQ_OP_DRV_IN:
2446 		case REQ_OP_DRV_OUT:
2447 			mmc_blk_issue_drv_op(mq, req);
2448 			break;
2449 		case REQ_OP_DISCARD:
2450 			mmc_blk_issue_discard_rq(mq, req);
2451 			break;
2452 		case REQ_OP_SECURE_ERASE:
2453 			mmc_blk_issue_secdiscard_rq(mq, req);
2454 			break;
2455 		case REQ_OP_WRITE_ZEROES:
2456 			mmc_blk_issue_trim_rq(mq, req);
2457 			break;
2458 		case REQ_OP_FLUSH:
2459 			mmc_blk_issue_flush(mq, req);
2460 			break;
2461 		default:
2462 			WARN_ON_ONCE(1);
2463 			return MMC_REQ_FAILED_TO_START;
2464 		}
2465 		return MMC_REQ_FINISHED;
2466 	case MMC_ISSUE_DCMD:
2467 	case MMC_ISSUE_ASYNC:
2468 		switch (req_op(req)) {
2469 		case REQ_OP_FLUSH:
2470 			if (!mmc_cache_enabled(host)) {
2471 				blk_mq_end_request(req, BLK_STS_OK);
2472 				return MMC_REQ_FINISHED;
2473 			}
2474 			ret = mmc_blk_cqe_issue_flush(mq, req);
2475 			break;
2476 		case REQ_OP_WRITE:
2477 			card->written_flag = true;
2478 			fallthrough;
2479 		case REQ_OP_READ:
2480 			if (host->cqe_enabled)
2481 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2482 			else
2483 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2484 			break;
2485 		default:
2486 			WARN_ON_ONCE(1);
2487 			ret = -EINVAL;
2488 		}
2489 		if (!ret)
2490 			return MMC_REQ_STARTED;
2491 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2492 	default:
2493 		WARN_ON_ONCE(1);
2494 		return MMC_REQ_FAILED_TO_START;
2495 	}
2496 }
2497 
2498 static inline int mmc_blk_readonly(struct mmc_card *card)
2499 {
2500 	return mmc_card_readonly(card) ||
2501 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2502 }
2503 
2504 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2505 					      struct device *parent,
2506 					      sector_t size,
2507 					      bool default_ro,
2508 					      const char *subname,
2509 					      int area_type,
2510 					      unsigned int part_type)
2511 {
2512 	struct mmc_blk_data *md;
2513 	int devidx, ret;
2514 	char cap_str[10];
2515 	unsigned int features = 0;
2516 
2517 	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2518 	if (devidx < 0) {
2519 		/*
2520 		 * We get -ENOSPC because there are no more any available
2521 		 * devidx. The reason may be that, either userspace haven't yet
2522 		 * unmounted the partitions, which postpones mmc_blk_release()
2523 		 * from being called, or the device has more partitions than
2524 		 * what we support.
2525 		 */
2526 		if (devidx == -ENOSPC)
2527 			dev_err(mmc_dev(card->host),
2528 				"no more device IDs available\n");
2529 
2530 		return ERR_PTR(devidx);
2531 	}
2532 
2533 	md = kzalloc(sizeof(*md), GFP_KERNEL);
2534 	if (!md) {
2535 		ret = -ENOMEM;
2536 		goto out;
2537 	}
2538 
2539 	md->area_type = area_type;
2540 
2541 	/*
2542 	 * Set the read-only status based on the supported commands
2543 	 * and the write protect switch.
2544 	 */
2545 	md->read_only = mmc_blk_readonly(card);
2546 
2547 	if (mmc_host_cmd23(card->host)) {
2548 		if ((mmc_card_mmc(card) &&
2549 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2550 		    (mmc_card_sd(card) &&
2551 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2552 			md->flags |= MMC_BLK_CMD23;
2553 	}
2554 
2555 	if (md->flags & MMC_BLK_CMD23 &&
2556 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2557 	     card->ext_csd.rel_sectors)) {
2558 		md->flags |= MMC_BLK_REL_WR;
2559 		features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2560 	} else if (mmc_cache_enabled(card->host)) {
2561 		features |= BLK_FEAT_WRITE_CACHE;
2562 	}
2563 
2564 	md->disk = mmc_init_queue(&md->queue, card, features);
2565 	if (IS_ERR(md->disk)) {
2566 		ret = PTR_ERR(md->disk);
2567 		goto err_kfree;
2568 	}
2569 
2570 	INIT_LIST_HEAD(&md->part);
2571 	INIT_LIST_HEAD(&md->rpmbs);
2572 	kref_init(&md->kref);
2573 
2574 	md->queue.blkdata = md;
2575 	md->part_type = part_type;
2576 
2577 	md->disk->major	= MMC_BLOCK_MAJOR;
2578 	md->disk->minors = perdev_minors;
2579 	md->disk->first_minor = devidx * perdev_minors;
2580 	md->disk->fops = &mmc_bdops;
2581 	md->disk->private_data = md;
2582 	md->parent = parent;
2583 	set_disk_ro(md->disk, md->read_only || default_ro);
2584 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2585 		md->disk->flags |= GENHD_FL_NO_PART;
2586 
2587 	/*
2588 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2589 	 *
2590 	 * - be set for removable media with permanent block devices
2591 	 * - be unset for removable block devices with permanent media
2592 	 *
2593 	 * Since MMC block devices clearly fall under the second
2594 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2595 	 * should use the block device creation/destruction hotplug
2596 	 * messages to tell when the card is present.
2597 	 */
2598 
2599 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2600 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2601 
2602 	set_capacity(md->disk, size);
2603 
2604 	string_get_size((u64)size, 512, STRING_UNITS_2,
2605 			cap_str, sizeof(cap_str));
2606 	pr_info("%s: %s %s %s%s\n",
2607 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2608 		cap_str, md->read_only ? " (ro)" : "");
2609 
2610 	/* used in ->open, must be set before add_disk: */
2611 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2612 		dev_set_drvdata(&card->dev, md);
2613 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2614 	if (ret)
2615 		goto err_put_disk;
2616 	return md;
2617 
2618  err_put_disk:
2619 	put_disk(md->disk);
2620 	blk_mq_free_tag_set(&md->queue.tag_set);
2621  err_kfree:
2622 	kfree(md);
2623  out:
2624 	ida_free(&mmc_blk_ida, devidx);
2625 	return ERR_PTR(ret);
2626 }
2627 
2628 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2629 {
2630 	sector_t size;
2631 
2632 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2633 		/*
2634 		 * The EXT_CSD sector count is in number or 512 byte
2635 		 * sectors.
2636 		 */
2637 		size = card->ext_csd.sectors;
2638 	} else {
2639 		/*
2640 		 * The CSD capacity field is in units of read_blkbits.
2641 		 * set_capacity takes units of 512 bytes.
2642 		 */
2643 		size = (typeof(sector_t))card->csd.capacity
2644 			<< (card->csd.read_blkbits - 9);
2645 	}
2646 
2647 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2648 					MMC_BLK_DATA_AREA_MAIN, 0);
2649 }
2650 
2651 static int mmc_blk_alloc_part(struct mmc_card *card,
2652 			      struct mmc_blk_data *md,
2653 			      unsigned int part_type,
2654 			      sector_t size,
2655 			      bool default_ro,
2656 			      const char *subname,
2657 			      int area_type)
2658 {
2659 	struct mmc_blk_data *part_md;
2660 
2661 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2662 				    subname, area_type, part_type);
2663 	if (IS_ERR(part_md))
2664 		return PTR_ERR(part_md);
2665 	list_add(&part_md->part, &md->part);
2666 
2667 	return 0;
2668 }
2669 
2670 /**
2671  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2672  * @filp: the character device file
2673  * @cmd: the ioctl() command
2674  * @arg: the argument from userspace
2675  *
2676  * This will essentially just redirect the ioctl()s coming in over to
2677  * the main block device spawning the RPMB character device.
2678  */
2679 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2680 			   unsigned long arg)
2681 {
2682 	struct mmc_rpmb_data *rpmb = filp->private_data;
2683 	int ret;
2684 
2685 	switch (cmd) {
2686 	case MMC_IOC_CMD:
2687 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2688 					(struct mmc_ioc_cmd __user *)arg,
2689 					rpmb);
2690 		break;
2691 	case MMC_IOC_MULTI_CMD:
2692 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2693 					(struct mmc_ioc_multi_cmd __user *)arg,
2694 					rpmb);
2695 		break;
2696 	default:
2697 		ret = -EINVAL;
2698 		break;
2699 	}
2700 
2701 	return ret;
2702 }
2703 
2704 #ifdef CONFIG_COMPAT
2705 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2706 			      unsigned long arg)
2707 {
2708 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2709 }
2710 #endif
2711 
2712 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2713 {
2714 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2715 						  struct mmc_rpmb_data, chrdev);
2716 
2717 	get_device(&rpmb->dev);
2718 	filp->private_data = rpmb;
2719 
2720 	return nonseekable_open(inode, filp);
2721 }
2722 
2723 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2724 {
2725 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2726 						  struct mmc_rpmb_data, chrdev);
2727 
2728 	put_device(&rpmb->dev);
2729 
2730 	return 0;
2731 }
2732 
2733 static const struct file_operations mmc_rpmb_fileops = {
2734 	.release = mmc_rpmb_chrdev_release,
2735 	.open = mmc_rpmb_chrdev_open,
2736 	.owner = THIS_MODULE,
2737 	.unlocked_ioctl = mmc_rpmb_ioctl,
2738 #ifdef CONFIG_COMPAT
2739 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2740 #endif
2741 };
2742 
2743 static void mmc_blk_rpmb_device_release(struct device *dev)
2744 {
2745 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2746 
2747 	rpmb_dev_unregister(rpmb->rdev);
2748 	mmc_blk_put(rpmb->md);
2749 	ida_free(&mmc_rpmb_ida, rpmb->id);
2750 	kfree(rpmb);
2751 }
2752 
2753 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2754 {
2755 	unsigned int n;
2756 
2757 	for (n = 0; n < cmd_count; n++)
2758 		kfree(idata[n]);
2759 	kfree(idata);
2760 }
2761 
2762 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2763 					     unsigned int cmd_count)
2764 {
2765 	struct mmc_blk_ioc_data **idata;
2766 	unsigned int n;
2767 
2768 	idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2769 	if (!idata)
2770 		return NULL;
2771 
2772 	for (n = 0; n < cmd_count; n++) {
2773 		idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2774 		if (!idata[n]) {
2775 			free_idata(idata, n);
2776 			return NULL;
2777 		}
2778 		idata[n]->rpmb = rpmb;
2779 	}
2780 
2781 	return idata;
2782 }
2783 
2784 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2785 		      int write_flag, u8 *buf, unsigned int buf_bytes)
2786 {
2787 	/*
2788 	 * The size of an RPMB frame must match what's expected by the
2789 	 * hardware.
2790 	 */
2791 	BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2792 
2793 	idata->ic.opcode = opcode;
2794 	idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2795 	idata->ic.write_flag = write_flag;
2796 	idata->ic.blksz = sizeof(struct rpmb_frame);
2797 	idata->ic.blocks = buf_bytes /  idata->ic.blksz;
2798 	idata->buf = buf;
2799 	idata->buf_bytes = buf_bytes;
2800 }
2801 
2802 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2803 				 unsigned int req_len, u8 *resp,
2804 				 unsigned int resp_len)
2805 {
2806 	struct rpmb_frame *frm = (struct rpmb_frame *)req;
2807 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2808 	struct mmc_blk_data *md = rpmb->md;
2809 	struct mmc_blk_ioc_data **idata;
2810 	struct mmc_queue_req *mq_rq;
2811 	unsigned int cmd_count;
2812 	struct request *rq;
2813 	u16 req_type;
2814 	bool write;
2815 	int ret;
2816 
2817 	if (IS_ERR(md->queue.card))
2818 		return PTR_ERR(md->queue.card);
2819 
2820 	if (req_len < sizeof(*frm))
2821 		return -EINVAL;
2822 
2823 	req_type = be16_to_cpu(frm->req_resp);
2824 	switch (req_type) {
2825 	case RPMB_PROGRAM_KEY:
2826 		if (req_len != sizeof(struct rpmb_frame) ||
2827 		    resp_len != sizeof(struct rpmb_frame))
2828 			return -EINVAL;
2829 		write = true;
2830 		break;
2831 	case RPMB_GET_WRITE_COUNTER:
2832 		if (req_len != sizeof(struct rpmb_frame) ||
2833 		    resp_len != sizeof(struct rpmb_frame))
2834 			return -EINVAL;
2835 		write = false;
2836 		break;
2837 	case RPMB_WRITE_DATA:
2838 		if (req_len % sizeof(struct rpmb_frame) ||
2839 		    resp_len != sizeof(struct rpmb_frame))
2840 			return -EINVAL;
2841 		write = true;
2842 		break;
2843 	case RPMB_READ_DATA:
2844 		if (req_len != sizeof(struct rpmb_frame) ||
2845 		    resp_len % sizeof(struct rpmb_frame))
2846 			return -EINVAL;
2847 		write = false;
2848 		break;
2849 	default:
2850 		return -EINVAL;
2851 	}
2852 
2853 	if (write)
2854 		cmd_count = 3;
2855 	else
2856 		cmd_count = 2;
2857 
2858 	idata = alloc_idata(rpmb, cmd_count);
2859 	if (!idata)
2860 		return -ENOMEM;
2861 
2862 	if (write) {
2863 		struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2864 
2865 		/* Send write request frame(s) */
2866 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2867 			  1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2868 
2869 		/* Send result request frame */
2870 		memset(frm, 0, sizeof(*frm));
2871 		frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2872 		set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2873 			  resp_len);
2874 
2875 		/* Read response frame */
2876 		set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2877 	} else {
2878 		/* Send write request frame(s) */
2879 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2880 
2881 		/* Read response frame */
2882 		set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2883 	}
2884 
2885 	rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2886 	if (IS_ERR(rq)) {
2887 		ret = PTR_ERR(rq);
2888 		goto out;
2889 	}
2890 
2891 	mq_rq = req_to_mmc_queue_req(rq);
2892 	mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2893 	mq_rq->drv_op_result = -EIO;
2894 	mq_rq->drv_op_data = idata;
2895 	mq_rq->ioc_count = cmd_count;
2896 	blk_execute_rq(rq, false);
2897 	ret = req_to_mmc_queue_req(rq)->drv_op_result;
2898 
2899 	blk_mq_free_request(rq);
2900 
2901 out:
2902 	free_idata(idata, cmd_count);
2903 	return ret;
2904 }
2905 
2906 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2907 				   struct mmc_blk_data *md,
2908 				   unsigned int part_index,
2909 				   sector_t size,
2910 				   const char *subname)
2911 {
2912 	int devidx, ret;
2913 	char rpmb_name[DISK_NAME_LEN];
2914 	char cap_str[10];
2915 	struct mmc_rpmb_data *rpmb;
2916 
2917 	/* This creates the minor number for the RPMB char device */
2918 	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2919 	if (devidx < 0)
2920 		return devidx;
2921 
2922 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2923 	if (!rpmb) {
2924 		ida_free(&mmc_rpmb_ida, devidx);
2925 		return -ENOMEM;
2926 	}
2927 
2928 	snprintf(rpmb_name, sizeof(rpmb_name),
2929 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2930 
2931 	rpmb->id = devidx;
2932 	rpmb->part_index = part_index;
2933 	rpmb->dev.init_name = rpmb_name;
2934 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2935 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2936 	rpmb->dev.parent = &card->dev;
2937 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2938 	device_initialize(&rpmb->dev);
2939 	dev_set_drvdata(&rpmb->dev, rpmb);
2940 	mmc_blk_get(md->disk);
2941 	rpmb->md = md;
2942 
2943 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2944 	rpmb->chrdev.owner = THIS_MODULE;
2945 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2946 	if (ret) {
2947 		pr_err("%s: could not add character device\n", rpmb_name);
2948 		goto out_put_device;
2949 	}
2950 
2951 	list_add(&rpmb->node, &md->rpmbs);
2952 
2953 	string_get_size((u64)size, 512, STRING_UNITS_2,
2954 			cap_str, sizeof(cap_str));
2955 
2956 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2957 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2958 		MAJOR(mmc_rpmb_devt), rpmb->id);
2959 
2960 	return 0;
2961 
2962 out_put_device:
2963 	put_device(&rpmb->dev);
2964 	return ret;
2965 }
2966 
2967 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2968 
2969 {
2970 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2971 	put_device(&rpmb->dev);
2972 }
2973 
2974 /* MMC Physical partitions consist of two boot partitions and
2975  * up to four general purpose partitions.
2976  * For each partition enabled in EXT_CSD a block device will be allocatedi
2977  * to provide access to the partition.
2978  */
2979 
2980 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2981 {
2982 	int idx, ret;
2983 
2984 	if (!mmc_card_mmc(card))
2985 		return 0;
2986 
2987 	for (idx = 0; idx < card->nr_parts; idx++) {
2988 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2989 			/*
2990 			 * RPMB partitions does not provide block access, they
2991 			 * are only accessed using ioctl():s. Thus create
2992 			 * special RPMB block devices that do not have a
2993 			 * backing block queue for these.
2994 			 */
2995 			ret = mmc_blk_alloc_rpmb_part(card, md,
2996 				card->part[idx].part_cfg,
2997 				card->part[idx].size >> 9,
2998 				card->part[idx].name);
2999 			if (ret)
3000 				return ret;
3001 		} else if (card->part[idx].size) {
3002 			ret = mmc_blk_alloc_part(card, md,
3003 				card->part[idx].part_cfg,
3004 				card->part[idx].size >> 9,
3005 				card->part[idx].force_ro,
3006 				card->part[idx].name,
3007 				card->part[idx].area_type);
3008 			if (ret)
3009 				return ret;
3010 		}
3011 	}
3012 
3013 	return 0;
3014 }
3015 
3016 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3017 {
3018 	/*
3019 	 * Flush remaining requests and free queues. It is freeing the queue
3020 	 * that stops new requests from being accepted.
3021 	 */
3022 	del_gendisk(md->disk);
3023 	mmc_cleanup_queue(&md->queue);
3024 	mmc_blk_put(md);
3025 }
3026 
3027 static void mmc_blk_remove_parts(struct mmc_card *card,
3028 				 struct mmc_blk_data *md)
3029 {
3030 	struct list_head *pos, *q;
3031 	struct mmc_blk_data *part_md;
3032 	struct mmc_rpmb_data *rpmb;
3033 
3034 	/* Remove RPMB partitions */
3035 	list_for_each_safe(pos, q, &md->rpmbs) {
3036 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3037 		list_del(pos);
3038 		mmc_blk_remove_rpmb_part(rpmb);
3039 	}
3040 	/* Remove block partitions */
3041 	list_for_each_safe(pos, q, &md->part) {
3042 		part_md = list_entry(pos, struct mmc_blk_data, part);
3043 		list_del(pos);
3044 		mmc_blk_remove_req(part_md);
3045 	}
3046 }
3047 
3048 #ifdef CONFIG_DEBUG_FS
3049 
3050 static int mmc_dbg_card_status_get(void *data, u64 *val)
3051 {
3052 	struct mmc_card *card = data;
3053 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3054 	struct mmc_queue *mq = &md->queue;
3055 	struct request *req;
3056 	int ret;
3057 
3058 	/* Ask the block layer about the card status */
3059 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3060 	if (IS_ERR(req))
3061 		return PTR_ERR(req);
3062 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3063 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3064 	blk_execute_rq(req, false);
3065 	ret = req_to_mmc_queue_req(req)->drv_op_result;
3066 	if (ret >= 0) {
3067 		*val = ret;
3068 		ret = 0;
3069 	}
3070 	blk_mq_free_request(req);
3071 
3072 	return ret;
3073 }
3074 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3075 			 NULL, "%08llx\n");
3076 
3077 /* That is two digits * 512 + 1 for newline */
3078 #define EXT_CSD_STR_LEN 1025
3079 
3080 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3081 {
3082 	struct mmc_card *card = inode->i_private;
3083 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3084 	struct mmc_queue *mq = &md->queue;
3085 	struct request *req;
3086 	char *buf;
3087 	ssize_t n = 0;
3088 	u8 *ext_csd;
3089 	int err, i;
3090 
3091 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3092 	if (!buf)
3093 		return -ENOMEM;
3094 
3095 	/* Ask the block layer for the EXT CSD */
3096 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3097 	if (IS_ERR(req)) {
3098 		err = PTR_ERR(req);
3099 		goto out_free;
3100 	}
3101 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3102 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3103 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3104 	blk_execute_rq(req, false);
3105 	err = req_to_mmc_queue_req(req)->drv_op_result;
3106 	blk_mq_free_request(req);
3107 	if (err) {
3108 		pr_err("FAILED %d\n", err);
3109 		goto out_free;
3110 	}
3111 
3112 	for (i = 0; i < 512; i++)
3113 		n += sprintf(buf + n, "%02x", ext_csd[i]);
3114 	n += sprintf(buf + n, "\n");
3115 
3116 	if (n != EXT_CSD_STR_LEN) {
3117 		err = -EINVAL;
3118 		kfree(ext_csd);
3119 		goto out_free;
3120 	}
3121 
3122 	filp->private_data = buf;
3123 	kfree(ext_csd);
3124 	return 0;
3125 
3126 out_free:
3127 	kfree(buf);
3128 	return err;
3129 }
3130 
3131 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3132 				size_t cnt, loff_t *ppos)
3133 {
3134 	char *buf = filp->private_data;
3135 
3136 	return simple_read_from_buffer(ubuf, cnt, ppos,
3137 				       buf, EXT_CSD_STR_LEN);
3138 }
3139 
3140 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3141 {
3142 	kfree(file->private_data);
3143 	return 0;
3144 }
3145 
3146 static const struct file_operations mmc_dbg_ext_csd_fops = {
3147 	.open		= mmc_ext_csd_open,
3148 	.read		= mmc_ext_csd_read,
3149 	.release	= mmc_ext_csd_release,
3150 	.llseek		= default_llseek,
3151 };
3152 
3153 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3154 {
3155 	struct dentry *root;
3156 
3157 	if (!card->debugfs_root)
3158 		return;
3159 
3160 	root = card->debugfs_root;
3161 
3162 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3163 		md->status_dentry =
3164 			debugfs_create_file_unsafe("status", 0400, root,
3165 						   card,
3166 						   &mmc_dbg_card_status_fops);
3167 	}
3168 
3169 	if (mmc_card_mmc(card)) {
3170 		md->ext_csd_dentry =
3171 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
3172 					    &mmc_dbg_ext_csd_fops);
3173 	}
3174 }
3175 
3176 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3177 				   struct mmc_blk_data *md)
3178 {
3179 	if (!card->debugfs_root)
3180 		return;
3181 
3182 	debugfs_remove(md->status_dentry);
3183 	md->status_dentry = NULL;
3184 
3185 	debugfs_remove(md->ext_csd_dentry);
3186 	md->ext_csd_dentry = NULL;
3187 }
3188 
3189 #else
3190 
3191 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3192 {
3193 }
3194 
3195 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3196 				   struct mmc_blk_data *md)
3197 {
3198 }
3199 
3200 #endif /* CONFIG_DEBUG_FS */
3201 
3202 static void mmc_blk_rpmb_add(struct mmc_card *card)
3203 {
3204 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3205 	struct mmc_rpmb_data *rpmb;
3206 	struct rpmb_dev *rdev;
3207 	unsigned int n;
3208 	u32 cid[4];
3209 	struct rpmb_descr descr = {
3210 		.type = RPMB_TYPE_EMMC,
3211 		.route_frames = mmc_route_rpmb_frames,
3212 		.reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3213 				     2 : 32,
3214 		.capacity = card->ext_csd.raw_rpmb_size_mult,
3215 		.dev_id = (void *)cid,
3216 		.dev_id_len = sizeof(cid),
3217 	};
3218 
3219 	/*
3220 	 * Provice CID as an octet array. The CID needs to be interpreted
3221 	 * when used as input to derive the RPMB key since some fields
3222 	 * will change due to firmware updates.
3223 	 */
3224 	for (n = 0; n < 4; n++)
3225 		cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3226 
3227 	list_for_each_entry(rpmb, &md->rpmbs, node) {
3228 		rdev = rpmb_dev_register(&rpmb->dev, &descr);
3229 		if (IS_ERR(rdev)) {
3230 			pr_warn("%s: could not register RPMB device\n",
3231 				dev_name(&rpmb->dev));
3232 			continue;
3233 		}
3234 		rpmb->rdev = rdev;
3235 	}
3236 }
3237 
3238 static int mmc_blk_probe(struct mmc_card *card)
3239 {
3240 	struct mmc_blk_data *md;
3241 	int ret = 0;
3242 
3243 	/*
3244 	 * Check that the card supports the command class(es) we need.
3245 	 */
3246 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3247 		return -ENODEV;
3248 
3249 	mmc_fixup_device(card, mmc_blk_fixups);
3250 
3251 	card->complete_wq = alloc_workqueue("mmc_complete",
3252 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3253 	if (!card->complete_wq) {
3254 		pr_err("Failed to create mmc completion workqueue");
3255 		return -ENOMEM;
3256 	}
3257 
3258 	md = mmc_blk_alloc(card);
3259 	if (IS_ERR(md)) {
3260 		ret = PTR_ERR(md);
3261 		goto out_free;
3262 	}
3263 
3264 	ret = mmc_blk_alloc_parts(card, md);
3265 	if (ret)
3266 		goto out;
3267 
3268 	/* Add two debugfs entries */
3269 	mmc_blk_add_debugfs(card, md);
3270 
3271 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3272 	pm_runtime_use_autosuspend(&card->dev);
3273 
3274 	/*
3275 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3276 	 * decision to be taken during the SDIO init sequence instead.
3277 	 */
3278 	if (!mmc_card_sd_combo(card)) {
3279 		pm_runtime_set_active(&card->dev);
3280 		pm_runtime_enable(&card->dev);
3281 	}
3282 
3283 	mmc_blk_rpmb_add(card);
3284 
3285 	return 0;
3286 
3287 out:
3288 	mmc_blk_remove_parts(card, md);
3289 	mmc_blk_remove_req(md);
3290 out_free:
3291 	destroy_workqueue(card->complete_wq);
3292 	return ret;
3293 }
3294 
3295 static void mmc_blk_remove(struct mmc_card *card)
3296 {
3297 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3298 
3299 	mmc_blk_remove_debugfs(card, md);
3300 	mmc_blk_remove_parts(card, md);
3301 	pm_runtime_get_sync(&card->dev);
3302 	if (md->part_curr != md->part_type) {
3303 		mmc_claim_host(card->host);
3304 		mmc_blk_part_switch(card, md->part_type);
3305 		mmc_release_host(card->host);
3306 	}
3307 	if (!mmc_card_sd_combo(card))
3308 		pm_runtime_disable(&card->dev);
3309 	pm_runtime_put_noidle(&card->dev);
3310 	mmc_blk_remove_req(md);
3311 	destroy_workqueue(card->complete_wq);
3312 }
3313 
3314 static int _mmc_blk_suspend(struct mmc_card *card)
3315 {
3316 	struct mmc_blk_data *part_md;
3317 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3318 
3319 	if (md) {
3320 		mmc_queue_suspend(&md->queue);
3321 		list_for_each_entry(part_md, &md->part, part) {
3322 			mmc_queue_suspend(&part_md->queue);
3323 		}
3324 	}
3325 	return 0;
3326 }
3327 
3328 static void mmc_blk_shutdown(struct mmc_card *card)
3329 {
3330 	_mmc_blk_suspend(card);
3331 }
3332 
3333 #ifdef CONFIG_PM_SLEEP
3334 static int mmc_blk_suspend(struct device *dev)
3335 {
3336 	struct mmc_card *card = mmc_dev_to_card(dev);
3337 
3338 	return _mmc_blk_suspend(card);
3339 }
3340 
3341 static int mmc_blk_resume(struct device *dev)
3342 {
3343 	struct mmc_blk_data *part_md;
3344 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3345 
3346 	if (md) {
3347 		/*
3348 		 * Resume involves the card going into idle state,
3349 		 * so current partition is always the main one.
3350 		 */
3351 		md->part_curr = md->part_type;
3352 		mmc_queue_resume(&md->queue);
3353 		list_for_each_entry(part_md, &md->part, part) {
3354 			mmc_queue_resume(&part_md->queue);
3355 		}
3356 	}
3357 	return 0;
3358 }
3359 #endif
3360 
3361 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3362 
3363 static struct mmc_driver mmc_driver = {
3364 	.drv		= {
3365 		.name	= "mmcblk",
3366 		.pm	= &mmc_blk_pm_ops,
3367 	},
3368 	.probe		= mmc_blk_probe,
3369 	.remove		= mmc_blk_remove,
3370 	.shutdown	= mmc_blk_shutdown,
3371 };
3372 
3373 static int __init mmc_blk_init(void)
3374 {
3375 	int res;
3376 
3377 	res  = bus_register(&mmc_rpmb_bus_type);
3378 	if (res < 0) {
3379 		pr_err("mmcblk: could not register RPMB bus type\n");
3380 		return res;
3381 	}
3382 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3383 	if (res < 0) {
3384 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3385 		goto out_bus_unreg;
3386 	}
3387 
3388 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3389 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3390 
3391 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3392 
3393 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3394 	if (res)
3395 		goto out_chrdev_unreg;
3396 
3397 	res = mmc_register_driver(&mmc_driver);
3398 	if (res)
3399 		goto out_blkdev_unreg;
3400 
3401 	return 0;
3402 
3403 out_blkdev_unreg:
3404 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3405 out_chrdev_unreg:
3406 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3407 out_bus_unreg:
3408 	bus_unregister(&mmc_rpmb_bus_type);
3409 	return res;
3410 }
3411 
3412 static void __exit mmc_blk_exit(void)
3413 {
3414 	mmc_unregister_driver(&mmc_driver);
3415 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3416 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3417 	bus_unregister(&mmc_rpmb_bus_type);
3418 }
3419 
3420 module_init(mmc_blk_init);
3421 module_exit(mmc_blk_exit);
3422 
3423 MODULE_LICENSE("GPL");
3424 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3425