1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 static int mmc_spi_err_check(struct mmc_card *card); 182 static int mmc_blk_busy_cb(void *cb_data, bool *busy); 183 184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 185 { 186 struct mmc_blk_data *md; 187 188 mutex_lock(&open_lock); 189 md = disk->private_data; 190 if (md && !kref_get_unless_zero(&md->kref)) 191 md = NULL; 192 mutex_unlock(&open_lock); 193 194 return md; 195 } 196 197 static inline int mmc_get_devidx(struct gendisk *disk) 198 { 199 int devidx = disk->first_minor / perdev_minors; 200 return devidx; 201 } 202 203 static void mmc_blk_kref_release(struct kref *ref) 204 { 205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 206 int devidx; 207 208 devidx = mmc_get_devidx(md->disk); 209 ida_simple_remove(&mmc_blk_ida, devidx); 210 211 mutex_lock(&open_lock); 212 md->disk->private_data = NULL; 213 mutex_unlock(&open_lock); 214 215 put_disk(md->disk); 216 kfree(md); 217 } 218 219 static void mmc_blk_put(struct mmc_blk_data *md) 220 { 221 kref_put(&md->kref, mmc_blk_kref_release); 222 } 223 224 static ssize_t power_ro_lock_show(struct device *dev, 225 struct device_attribute *attr, char *buf) 226 { 227 int ret; 228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 229 struct mmc_card *card = md->queue.card; 230 int locked = 0; 231 232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 233 locked = 2; 234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 235 locked = 1; 236 237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 238 239 mmc_blk_put(md); 240 241 return ret; 242 } 243 244 static ssize_t power_ro_lock_store(struct device *dev, 245 struct device_attribute *attr, const char *buf, size_t count) 246 { 247 int ret; 248 struct mmc_blk_data *md, *part_md; 249 struct mmc_queue *mq; 250 struct request *req; 251 unsigned long set; 252 253 if (kstrtoul(buf, 0, &set)) 254 return -EINVAL; 255 256 if (set != 1) 257 return count; 258 259 md = mmc_blk_get(dev_to_disk(dev)); 260 mq = &md->queue; 261 262 /* Dispatch locking to the block layer */ 263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 264 if (IS_ERR(req)) { 265 count = PTR_ERR(req); 266 goto out_put; 267 } 268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 269 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 270 blk_execute_rq(req, false); 271 ret = req_to_mmc_queue_req(req)->drv_op_result; 272 blk_mq_free_request(req); 273 274 if (!ret) { 275 pr_info("%s: Locking boot partition ro until next power on\n", 276 md->disk->disk_name); 277 set_disk_ro(md->disk, 1); 278 279 list_for_each_entry(part_md, &md->part, part) 280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 282 set_disk_ro(part_md->disk, 1); 283 } 284 } 285 out_put: 286 mmc_blk_put(md); 287 return count; 288 } 289 290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 291 power_ro_lock_show, power_ro_lock_store); 292 293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 294 char *buf) 295 { 296 int ret; 297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 298 299 ret = snprintf(buf, PAGE_SIZE, "%d\n", 300 get_disk_ro(dev_to_disk(dev)) ^ 301 md->read_only); 302 mmc_blk_put(md); 303 return ret; 304 } 305 306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 307 const char *buf, size_t count) 308 { 309 int ret; 310 char *end; 311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 312 unsigned long set = simple_strtoul(buf, &end, 0); 313 if (end == buf) { 314 ret = -EINVAL; 315 goto out; 316 } 317 318 set_disk_ro(dev_to_disk(dev), set || md->read_only); 319 ret = count; 320 out: 321 mmc_blk_put(md); 322 return ret; 323 } 324 325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 326 327 static struct attribute *mmc_disk_attrs[] = { 328 &dev_attr_force_ro.attr, 329 &dev_attr_ro_lock_until_next_power_on.attr, 330 NULL, 331 }; 332 333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 334 struct attribute *a, int n) 335 { 336 struct device *dev = kobj_to_dev(kobj); 337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 338 umode_t mode = a->mode; 339 340 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 342 md->queue.card->ext_csd.boot_ro_lockable) { 343 mode = S_IRUGO; 344 if (!(md->queue.card->ext_csd.boot_ro_lock & 345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 346 mode |= S_IWUSR; 347 } 348 349 mmc_blk_put(md); 350 return mode; 351 } 352 353 static const struct attribute_group mmc_disk_attr_group = { 354 .is_visible = mmc_disk_attrs_is_visible, 355 .attrs = mmc_disk_attrs, 356 }; 357 358 static const struct attribute_group *mmc_disk_attr_groups[] = { 359 &mmc_disk_attr_group, 360 NULL, 361 }; 362 363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 364 { 365 struct mmc_blk_data *md = mmc_blk_get(disk); 366 int ret = -ENXIO; 367 368 mutex_lock(&block_mutex); 369 if (md) { 370 ret = 0; 371 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 372 mmc_blk_put(md); 373 ret = -EROFS; 374 } 375 } 376 mutex_unlock(&block_mutex); 377 378 return ret; 379 } 380 381 static void mmc_blk_release(struct gendisk *disk) 382 { 383 struct mmc_blk_data *md = disk->private_data; 384 385 mutex_lock(&block_mutex); 386 mmc_blk_put(md); 387 mutex_unlock(&block_mutex); 388 } 389 390 static int 391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 392 { 393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 394 geo->heads = 4; 395 geo->sectors = 16; 396 return 0; 397 } 398 399 struct mmc_blk_ioc_data { 400 struct mmc_ioc_cmd ic; 401 unsigned char *buf; 402 u64 buf_bytes; 403 struct mmc_rpmb_data *rpmb; 404 }; 405 406 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 407 struct mmc_ioc_cmd __user *user) 408 { 409 struct mmc_blk_ioc_data *idata; 410 int err; 411 412 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 413 if (!idata) { 414 err = -ENOMEM; 415 goto out; 416 } 417 418 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 419 err = -EFAULT; 420 goto idata_err; 421 } 422 423 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 424 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 425 err = -EOVERFLOW; 426 goto idata_err; 427 } 428 429 if (!idata->buf_bytes) { 430 idata->buf = NULL; 431 return idata; 432 } 433 434 idata->buf = memdup_user((void __user *)(unsigned long) 435 idata->ic.data_ptr, idata->buf_bytes); 436 if (IS_ERR(idata->buf)) { 437 err = PTR_ERR(idata->buf); 438 goto idata_err; 439 } 440 441 return idata; 442 443 idata_err: 444 kfree(idata); 445 out: 446 return ERR_PTR(err); 447 } 448 449 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 450 struct mmc_blk_ioc_data *idata) 451 { 452 struct mmc_ioc_cmd *ic = &idata->ic; 453 454 if (copy_to_user(&(ic_ptr->response), ic->response, 455 sizeof(ic->response))) 456 return -EFAULT; 457 458 if (!idata->ic.write_flag) { 459 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 460 idata->buf, idata->buf_bytes)) 461 return -EFAULT; 462 } 463 464 return 0; 465 } 466 467 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 468 struct mmc_blk_ioc_data *idata) 469 { 470 struct mmc_command cmd = {}, sbc = {}; 471 struct mmc_data data = {}; 472 struct mmc_request mrq = {}; 473 struct scatterlist sg; 474 bool r1b_resp; 475 unsigned int busy_timeout_ms; 476 int err; 477 unsigned int target_part; 478 479 if (!card || !md || !idata) 480 return -EINVAL; 481 482 /* 483 * The RPMB accesses comes in from the character device, so we 484 * need to target these explicitly. Else we just target the 485 * partition type for the block device the ioctl() was issued 486 * on. 487 */ 488 if (idata->rpmb) { 489 /* Support multiple RPMB partitions */ 490 target_part = idata->rpmb->part_index; 491 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 492 } else { 493 target_part = md->part_type; 494 } 495 496 cmd.opcode = idata->ic.opcode; 497 cmd.arg = idata->ic.arg; 498 cmd.flags = idata->ic.flags; 499 500 if (idata->buf_bytes) { 501 data.sg = &sg; 502 data.sg_len = 1; 503 data.blksz = idata->ic.blksz; 504 data.blocks = idata->ic.blocks; 505 506 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 507 508 if (idata->ic.write_flag) 509 data.flags = MMC_DATA_WRITE; 510 else 511 data.flags = MMC_DATA_READ; 512 513 /* data.flags must already be set before doing this. */ 514 mmc_set_data_timeout(&data, card); 515 516 /* Allow overriding the timeout_ns for empirical tuning. */ 517 if (idata->ic.data_timeout_ns) 518 data.timeout_ns = idata->ic.data_timeout_ns; 519 520 mrq.data = &data; 521 } 522 523 mrq.cmd = &cmd; 524 525 err = mmc_blk_part_switch(card, target_part); 526 if (err) 527 return err; 528 529 if (idata->ic.is_acmd) { 530 err = mmc_app_cmd(card->host, card); 531 if (err) 532 return err; 533 } 534 535 if (idata->rpmb) { 536 sbc.opcode = MMC_SET_BLOCK_COUNT; 537 /* 538 * We don't do any blockcount validation because the max size 539 * may be increased by a future standard. We just copy the 540 * 'Reliable Write' bit here. 541 */ 542 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 543 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 544 mrq.sbc = &sbc; 545 } 546 547 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 548 (cmd.opcode == MMC_SWITCH)) 549 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 550 551 /* If it's an R1B response we need some more preparations. */ 552 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 553 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 554 if (r1b_resp) 555 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms); 556 557 mmc_wait_for_req(card->host, &mrq); 558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 559 560 if (cmd.error) { 561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 562 __func__, cmd.error); 563 return cmd.error; 564 } 565 if (data.error) { 566 dev_err(mmc_dev(card->host), "%s: data error %d\n", 567 __func__, data.error); 568 return data.error; 569 } 570 571 /* 572 * Make sure the cache of the PARTITION_CONFIG register and 573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 574 * changed it successfully. 575 */ 576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 577 (cmd.opcode == MMC_SWITCH)) { 578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 580 581 /* 582 * Update cache so the next mmc_blk_part_switch call operates 583 * on up-to-date data. 584 */ 585 card->ext_csd.part_config = value; 586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 587 } 588 589 /* 590 * Make sure to update CACHE_CTRL in case it was changed. The cache 591 * will get turned back on if the card is re-initialized, e.g. 592 * suspend/resume or hw reset in recovery. 593 */ 594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 595 (cmd.opcode == MMC_SWITCH)) { 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 597 598 card->ext_csd.cache_ctrl = value; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 if (mmc_host_is_spi(card->host)) { 609 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) 610 return mmc_spi_err_check(card); 611 return err; 612 } 613 614 /* 615 * Ensure RPMB, writes and R1B responses are completed by polling with 616 * CMD13. Note that, usually we don't need to poll when using HW busy 617 * detection, but here it's needed since some commands may indicate the 618 * error through the R1 status bits. 619 */ 620 if (idata->rpmb || idata->ic.write_flag || r1b_resp) { 621 struct mmc_blk_busy_data cb_data = { 622 .card = card, 623 }; 624 625 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms, 626 &mmc_blk_busy_cb, &cb_data); 627 628 idata->ic.response[0] = cb_data.status; 629 } 630 631 return err; 632 } 633 634 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 635 struct mmc_ioc_cmd __user *ic_ptr, 636 struct mmc_rpmb_data *rpmb) 637 { 638 struct mmc_blk_ioc_data *idata; 639 struct mmc_blk_ioc_data *idatas[1]; 640 struct mmc_queue *mq; 641 struct mmc_card *card; 642 int err = 0, ioc_err = 0; 643 struct request *req; 644 645 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 646 if (IS_ERR(idata)) 647 return PTR_ERR(idata); 648 /* This will be NULL on non-RPMB ioctl():s */ 649 idata->rpmb = rpmb; 650 651 card = md->queue.card; 652 if (IS_ERR(card)) { 653 err = PTR_ERR(card); 654 goto cmd_done; 655 } 656 657 /* 658 * Dispatch the ioctl() into the block request queue. 659 */ 660 mq = &md->queue; 661 req = blk_mq_alloc_request(mq->queue, 662 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 663 if (IS_ERR(req)) { 664 err = PTR_ERR(req); 665 goto cmd_done; 666 } 667 idatas[0] = idata; 668 req_to_mmc_queue_req(req)->drv_op = 669 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 670 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 671 req_to_mmc_queue_req(req)->drv_op_data = idatas; 672 req_to_mmc_queue_req(req)->ioc_count = 1; 673 blk_execute_rq(req, false); 674 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 675 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 676 blk_mq_free_request(req); 677 678 cmd_done: 679 kfree(idata->buf); 680 kfree(idata); 681 return ioc_err ? ioc_err : err; 682 } 683 684 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 685 struct mmc_ioc_multi_cmd __user *user, 686 struct mmc_rpmb_data *rpmb) 687 { 688 struct mmc_blk_ioc_data **idata = NULL; 689 struct mmc_ioc_cmd __user *cmds = user->cmds; 690 struct mmc_card *card; 691 struct mmc_queue *mq; 692 int err = 0, ioc_err = 0; 693 __u64 num_of_cmds; 694 unsigned int i, n; 695 struct request *req; 696 697 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 698 sizeof(num_of_cmds))) 699 return -EFAULT; 700 701 if (!num_of_cmds) 702 return 0; 703 704 if (num_of_cmds > MMC_IOC_MAX_CMDS) 705 return -EINVAL; 706 707 n = num_of_cmds; 708 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 709 if (!idata) 710 return -ENOMEM; 711 712 for (i = 0; i < n; i++) { 713 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 714 if (IS_ERR(idata[i])) { 715 err = PTR_ERR(idata[i]); 716 n = i; 717 goto cmd_err; 718 } 719 /* This will be NULL on non-RPMB ioctl():s */ 720 idata[i]->rpmb = rpmb; 721 } 722 723 card = md->queue.card; 724 if (IS_ERR(card)) { 725 err = PTR_ERR(card); 726 goto cmd_err; 727 } 728 729 730 /* 731 * Dispatch the ioctl()s into the block request queue. 732 */ 733 mq = &md->queue; 734 req = blk_mq_alloc_request(mq->queue, 735 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 736 if (IS_ERR(req)) { 737 err = PTR_ERR(req); 738 goto cmd_err; 739 } 740 req_to_mmc_queue_req(req)->drv_op = 741 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 742 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 743 req_to_mmc_queue_req(req)->drv_op_data = idata; 744 req_to_mmc_queue_req(req)->ioc_count = n; 745 blk_execute_rq(req, false); 746 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 747 748 /* copy to user if data and response */ 749 for (i = 0; i < n && !err; i++) 750 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 751 752 blk_mq_free_request(req); 753 754 cmd_err: 755 for (i = 0; i < n; i++) { 756 kfree(idata[i]->buf); 757 kfree(idata[i]); 758 } 759 kfree(idata); 760 return ioc_err ? ioc_err : err; 761 } 762 763 static int mmc_blk_check_blkdev(struct block_device *bdev) 764 { 765 /* 766 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 767 * whole block device, not on a partition. This prevents overspray 768 * between sibling partitions. 769 */ 770 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 771 return -EPERM; 772 return 0; 773 } 774 775 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 776 unsigned int cmd, unsigned long arg) 777 { 778 struct mmc_blk_data *md; 779 int ret; 780 781 switch (cmd) { 782 case MMC_IOC_CMD: 783 ret = mmc_blk_check_blkdev(bdev); 784 if (ret) 785 return ret; 786 md = mmc_blk_get(bdev->bd_disk); 787 if (!md) 788 return -EINVAL; 789 ret = mmc_blk_ioctl_cmd(md, 790 (struct mmc_ioc_cmd __user *)arg, 791 NULL); 792 mmc_blk_put(md); 793 return ret; 794 case MMC_IOC_MULTI_CMD: 795 ret = mmc_blk_check_blkdev(bdev); 796 if (ret) 797 return ret; 798 md = mmc_blk_get(bdev->bd_disk); 799 if (!md) 800 return -EINVAL; 801 ret = mmc_blk_ioctl_multi_cmd(md, 802 (struct mmc_ioc_multi_cmd __user *)arg, 803 NULL); 804 mmc_blk_put(md); 805 return ret; 806 default: 807 return -EINVAL; 808 } 809 } 810 811 #ifdef CONFIG_COMPAT 812 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 813 unsigned int cmd, unsigned long arg) 814 { 815 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 816 } 817 #endif 818 819 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 820 sector_t *sector) 821 { 822 struct mmc_blk_data *md; 823 int ret; 824 825 md = mmc_blk_get(disk); 826 if (!md) 827 return -EINVAL; 828 829 if (md->queue.card) 830 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 831 else 832 ret = -ENODEV; 833 834 mmc_blk_put(md); 835 836 return ret; 837 } 838 839 static const struct block_device_operations mmc_bdops = { 840 .open = mmc_blk_open, 841 .release = mmc_blk_release, 842 .getgeo = mmc_blk_getgeo, 843 .owner = THIS_MODULE, 844 .ioctl = mmc_blk_ioctl, 845 #ifdef CONFIG_COMPAT 846 .compat_ioctl = mmc_blk_compat_ioctl, 847 #endif 848 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 849 }; 850 851 static int mmc_blk_part_switch_pre(struct mmc_card *card, 852 unsigned int part_type) 853 { 854 int ret = 0; 855 856 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 857 if (card->ext_csd.cmdq_en) { 858 ret = mmc_cmdq_disable(card); 859 if (ret) 860 return ret; 861 } 862 mmc_retune_pause(card->host); 863 } 864 865 return ret; 866 } 867 868 static int mmc_blk_part_switch_post(struct mmc_card *card, 869 unsigned int part_type) 870 { 871 int ret = 0; 872 873 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 874 mmc_retune_unpause(card->host); 875 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 876 ret = mmc_cmdq_enable(card); 877 } 878 879 return ret; 880 } 881 882 static inline int mmc_blk_part_switch(struct mmc_card *card, 883 unsigned int part_type) 884 { 885 int ret = 0; 886 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 887 888 if (main_md->part_curr == part_type) 889 return 0; 890 891 if (mmc_card_mmc(card)) { 892 u8 part_config = card->ext_csd.part_config; 893 894 ret = mmc_blk_part_switch_pre(card, part_type); 895 if (ret) 896 return ret; 897 898 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 899 part_config |= part_type; 900 901 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 902 EXT_CSD_PART_CONFIG, part_config, 903 card->ext_csd.part_time); 904 if (ret) { 905 mmc_blk_part_switch_post(card, part_type); 906 return ret; 907 } 908 909 card->ext_csd.part_config = part_config; 910 911 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 912 } 913 914 main_md->part_curr = part_type; 915 return ret; 916 } 917 918 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 919 { 920 int err; 921 u32 result; 922 __be32 *blocks; 923 924 struct mmc_request mrq = {}; 925 struct mmc_command cmd = {}; 926 struct mmc_data data = {}; 927 928 struct scatterlist sg; 929 930 err = mmc_app_cmd(card->host, card); 931 if (err) 932 return err; 933 934 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 935 cmd.arg = 0; 936 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 937 938 data.blksz = 4; 939 data.blocks = 1; 940 data.flags = MMC_DATA_READ; 941 data.sg = &sg; 942 data.sg_len = 1; 943 mmc_set_data_timeout(&data, card); 944 945 mrq.cmd = &cmd; 946 mrq.data = &data; 947 948 blocks = kmalloc(4, GFP_KERNEL); 949 if (!blocks) 950 return -ENOMEM; 951 952 sg_init_one(&sg, blocks, 4); 953 954 mmc_wait_for_req(card->host, &mrq); 955 956 result = ntohl(*blocks); 957 kfree(blocks); 958 959 if (cmd.error || data.error) 960 return -EIO; 961 962 *written_blocks = result; 963 964 return 0; 965 } 966 967 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 968 { 969 if (host->actual_clock) 970 return host->actual_clock / 1000; 971 972 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 973 if (host->ios.clock) 974 return host->ios.clock / 2000; 975 976 /* How can there be no clock */ 977 WARN_ON_ONCE(1); 978 return 100; /* 100 kHz is minimum possible value */ 979 } 980 981 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 982 struct mmc_data *data) 983 { 984 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 985 unsigned int khz; 986 987 if (data->timeout_clks) { 988 khz = mmc_blk_clock_khz(host); 989 ms += DIV_ROUND_UP(data->timeout_clks, khz); 990 } 991 992 return ms; 993 } 994 995 /* 996 * Attempts to reset the card and get back to the requested partition. 997 * Therefore any error here must result in cancelling the block layer 998 * request, it must not be reattempted without going through the mmc_blk 999 * partition sanity checks. 1000 */ 1001 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1002 int type) 1003 { 1004 int err; 1005 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 1006 1007 if (md->reset_done & type) 1008 return -EEXIST; 1009 1010 md->reset_done |= type; 1011 err = mmc_hw_reset(host->card); 1012 /* 1013 * A successful reset will leave the card in the main partition, but 1014 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1015 * in that case. 1016 */ 1017 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1018 if (err) 1019 return err; 1020 /* Ensure we switch back to the correct partition */ 1021 if (mmc_blk_part_switch(host->card, md->part_type)) 1022 /* 1023 * We have failed to get back into the correct 1024 * partition, so we need to abort the whole request. 1025 */ 1026 return -ENODEV; 1027 return 0; 1028 } 1029 1030 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1031 { 1032 md->reset_done &= ~type; 1033 } 1034 1035 /* 1036 * The non-block commands come back from the block layer after it queued it and 1037 * processed it with all other requests and then they get issued in this 1038 * function. 1039 */ 1040 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1041 { 1042 struct mmc_queue_req *mq_rq; 1043 struct mmc_card *card = mq->card; 1044 struct mmc_blk_data *md = mq->blkdata; 1045 struct mmc_blk_ioc_data **idata; 1046 bool rpmb_ioctl; 1047 u8 **ext_csd; 1048 u32 status; 1049 int ret; 1050 int i; 1051 1052 mq_rq = req_to_mmc_queue_req(req); 1053 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1054 1055 switch (mq_rq->drv_op) { 1056 case MMC_DRV_OP_IOCTL: 1057 if (card->ext_csd.cmdq_en) { 1058 ret = mmc_cmdq_disable(card); 1059 if (ret) 1060 break; 1061 } 1062 fallthrough; 1063 case MMC_DRV_OP_IOCTL_RPMB: 1064 idata = mq_rq->drv_op_data; 1065 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1066 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1067 if (ret) 1068 break; 1069 } 1070 /* Always switch back to main area after RPMB access */ 1071 if (rpmb_ioctl) 1072 mmc_blk_part_switch(card, 0); 1073 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1074 mmc_cmdq_enable(card); 1075 break; 1076 case MMC_DRV_OP_BOOT_WP: 1077 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1078 card->ext_csd.boot_ro_lock | 1079 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1080 card->ext_csd.part_time); 1081 if (ret) 1082 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1083 md->disk->disk_name, ret); 1084 else 1085 card->ext_csd.boot_ro_lock |= 1086 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1087 break; 1088 case MMC_DRV_OP_GET_CARD_STATUS: 1089 ret = mmc_send_status(card, &status); 1090 if (!ret) 1091 ret = status; 1092 break; 1093 case MMC_DRV_OP_GET_EXT_CSD: 1094 ext_csd = mq_rq->drv_op_data; 1095 ret = mmc_get_ext_csd(card, ext_csd); 1096 break; 1097 default: 1098 pr_err("%s: unknown driver specific operation\n", 1099 md->disk->disk_name); 1100 ret = -EINVAL; 1101 break; 1102 } 1103 mq_rq->drv_op_result = ret; 1104 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1105 } 1106 1107 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1108 int type, unsigned int erase_arg) 1109 { 1110 struct mmc_blk_data *md = mq->blkdata; 1111 struct mmc_card *card = md->queue.card; 1112 unsigned int from, nr; 1113 int err = 0; 1114 blk_status_t status = BLK_STS_OK; 1115 1116 if (!mmc_can_erase(card)) { 1117 status = BLK_STS_NOTSUPP; 1118 goto fail; 1119 } 1120 1121 from = blk_rq_pos(req); 1122 nr = blk_rq_sectors(req); 1123 1124 do { 1125 err = 0; 1126 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1127 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1128 INAND_CMD38_ARG_EXT_CSD, 1129 erase_arg == MMC_TRIM_ARG ? 1130 INAND_CMD38_ARG_TRIM : 1131 INAND_CMD38_ARG_ERASE, 1132 card->ext_csd.generic_cmd6_time); 1133 } 1134 if (!err) 1135 err = mmc_erase(card, from, nr, erase_arg); 1136 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1137 if (err) 1138 status = BLK_STS_IOERR; 1139 else 1140 mmc_blk_reset_success(md, type); 1141 fail: 1142 blk_mq_end_request(req, status); 1143 } 1144 1145 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1146 { 1147 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1148 } 1149 1150 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1151 { 1152 struct mmc_blk_data *md = mq->blkdata; 1153 struct mmc_card *card = md->queue.card; 1154 unsigned int arg = card->erase_arg; 1155 1156 if (mmc_card_broken_sd_discard(card)) 1157 arg = SD_ERASE_ARG; 1158 1159 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1160 } 1161 1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1163 struct request *req) 1164 { 1165 struct mmc_blk_data *md = mq->blkdata; 1166 struct mmc_card *card = md->queue.card; 1167 unsigned int from, nr, arg; 1168 int err = 0, type = MMC_BLK_SECDISCARD; 1169 blk_status_t status = BLK_STS_OK; 1170 1171 if (!(mmc_can_secure_erase_trim(card))) { 1172 status = BLK_STS_NOTSUPP; 1173 goto out; 1174 } 1175 1176 from = blk_rq_pos(req); 1177 nr = blk_rq_sectors(req); 1178 1179 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1180 arg = MMC_SECURE_TRIM1_ARG; 1181 else 1182 arg = MMC_SECURE_ERASE_ARG; 1183 1184 retry: 1185 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1186 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1187 INAND_CMD38_ARG_EXT_CSD, 1188 arg == MMC_SECURE_TRIM1_ARG ? 1189 INAND_CMD38_ARG_SECTRIM1 : 1190 INAND_CMD38_ARG_SECERASE, 1191 card->ext_csd.generic_cmd6_time); 1192 if (err) 1193 goto out_retry; 1194 } 1195 1196 err = mmc_erase(card, from, nr, arg); 1197 if (err == -EIO) 1198 goto out_retry; 1199 if (err) { 1200 status = BLK_STS_IOERR; 1201 goto out; 1202 } 1203 1204 if (arg == MMC_SECURE_TRIM1_ARG) { 1205 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1206 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1207 INAND_CMD38_ARG_EXT_CSD, 1208 INAND_CMD38_ARG_SECTRIM2, 1209 card->ext_csd.generic_cmd6_time); 1210 if (err) 1211 goto out_retry; 1212 } 1213 1214 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1215 if (err == -EIO) 1216 goto out_retry; 1217 if (err) { 1218 status = BLK_STS_IOERR; 1219 goto out; 1220 } 1221 } 1222 1223 out_retry: 1224 if (err && !mmc_blk_reset(md, card->host, type)) 1225 goto retry; 1226 if (!err) 1227 mmc_blk_reset_success(md, type); 1228 out: 1229 blk_mq_end_request(req, status); 1230 } 1231 1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1233 { 1234 struct mmc_blk_data *md = mq->blkdata; 1235 struct mmc_card *card = md->queue.card; 1236 int ret = 0; 1237 1238 ret = mmc_flush_cache(card->host); 1239 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1240 } 1241 1242 /* 1243 * Reformat current write as a reliable write, supporting 1244 * both legacy and the enhanced reliable write MMC cards. 1245 * In each transfer we'll handle only as much as a single 1246 * reliable write can handle, thus finish the request in 1247 * partial completions. 1248 */ 1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1250 struct mmc_card *card, 1251 struct request *req) 1252 { 1253 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1254 /* Legacy mode imposes restrictions on transfers. */ 1255 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1256 brq->data.blocks = 1; 1257 1258 if (brq->data.blocks > card->ext_csd.rel_sectors) 1259 brq->data.blocks = card->ext_csd.rel_sectors; 1260 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1261 brq->data.blocks = 1; 1262 } 1263 } 1264 1265 #define CMD_ERRORS_EXCL_OOR \ 1266 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1267 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1268 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1269 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1270 R1_CC_ERROR | /* Card controller error */ \ 1271 R1_ERROR) /* General/unknown error */ 1272 1273 #define CMD_ERRORS \ 1274 (CMD_ERRORS_EXCL_OOR | \ 1275 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1276 1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1278 { 1279 u32 val; 1280 1281 /* 1282 * Per the SD specification(physical layer version 4.10)[1], 1283 * section 4.3.3, it explicitly states that "When the last 1284 * block of user area is read using CMD18, the host should 1285 * ignore OUT_OF_RANGE error that may occur even the sequence 1286 * is correct". And JESD84-B51 for eMMC also has a similar 1287 * statement on section 6.8.3. 1288 * 1289 * Multiple block read/write could be done by either predefined 1290 * method, namely CMD23, or open-ending mode. For open-ending mode, 1291 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1292 * 1293 * However the spec[1] doesn't tell us whether we should also 1294 * ignore that for predefined method. But per the spec[1], section 1295 * 4.15 Set Block Count Command, it says"If illegal block count 1296 * is set, out of range error will be indicated during read/write 1297 * operation (For example, data transfer is stopped at user area 1298 * boundary)." In another word, we could expect a out of range error 1299 * in the response for the following CMD18/25. And if argument of 1300 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1301 * we could also expect to get a -ETIMEDOUT or any error number from 1302 * the host drivers due to missing data response(for write)/data(for 1303 * read), as the cards will stop the data transfer by itself per the 1304 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1305 */ 1306 1307 if (!brq->stop.error) { 1308 bool oor_with_open_end; 1309 /* If there is no error yet, check R1 response */ 1310 1311 val = brq->stop.resp[0] & CMD_ERRORS; 1312 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1313 1314 if (val && !oor_with_open_end) 1315 brq->stop.error = -EIO; 1316 } 1317 } 1318 1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1320 int recovery_mode, bool *do_rel_wr_p, 1321 bool *do_data_tag_p) 1322 { 1323 struct mmc_blk_data *md = mq->blkdata; 1324 struct mmc_card *card = md->queue.card; 1325 struct mmc_blk_request *brq = &mqrq->brq; 1326 struct request *req = mmc_queue_req_to_req(mqrq); 1327 bool do_rel_wr, do_data_tag; 1328 1329 /* 1330 * Reliable writes are used to implement Forced Unit Access and 1331 * are supported only on MMCs. 1332 */ 1333 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1334 rq_data_dir(req) == WRITE && 1335 (md->flags & MMC_BLK_REL_WR); 1336 1337 memset(brq, 0, sizeof(struct mmc_blk_request)); 1338 1339 mmc_crypto_prepare_req(mqrq); 1340 1341 brq->mrq.data = &brq->data; 1342 brq->mrq.tag = req->tag; 1343 1344 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1345 brq->stop.arg = 0; 1346 1347 if (rq_data_dir(req) == READ) { 1348 brq->data.flags = MMC_DATA_READ; 1349 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1350 } else { 1351 brq->data.flags = MMC_DATA_WRITE; 1352 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1353 } 1354 1355 brq->data.blksz = 512; 1356 brq->data.blocks = blk_rq_sectors(req); 1357 brq->data.blk_addr = blk_rq_pos(req); 1358 1359 /* 1360 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1361 * The eMMC will give "high" priority tasks priority over "simple" 1362 * priority tasks. Here we always set "simple" priority by not setting 1363 * MMC_DATA_PRIO. 1364 */ 1365 1366 /* 1367 * The block layer doesn't support all sector count 1368 * restrictions, so we need to be prepared for too big 1369 * requests. 1370 */ 1371 if (brq->data.blocks > card->host->max_blk_count) 1372 brq->data.blocks = card->host->max_blk_count; 1373 1374 if (brq->data.blocks > 1) { 1375 /* 1376 * Some SD cards in SPI mode return a CRC error or even lock up 1377 * completely when trying to read the last block using a 1378 * multiblock read command. 1379 */ 1380 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1381 (blk_rq_pos(req) + blk_rq_sectors(req) == 1382 get_capacity(md->disk))) 1383 brq->data.blocks--; 1384 1385 /* 1386 * After a read error, we redo the request one (native) sector 1387 * at a time in order to accurately determine which 1388 * sectors can be read successfully. 1389 */ 1390 if (recovery_mode) 1391 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1392 1393 /* 1394 * Some controllers have HW issues while operating 1395 * in multiple I/O mode 1396 */ 1397 if (card->host->ops->multi_io_quirk) 1398 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1399 (rq_data_dir(req) == READ) ? 1400 MMC_DATA_READ : MMC_DATA_WRITE, 1401 brq->data.blocks); 1402 } 1403 1404 if (do_rel_wr) { 1405 mmc_apply_rel_rw(brq, card, req); 1406 brq->data.flags |= MMC_DATA_REL_WR; 1407 } 1408 1409 /* 1410 * Data tag is used only during writing meta data to speed 1411 * up write and any subsequent read of this meta data 1412 */ 1413 do_data_tag = card->ext_csd.data_tag_unit_size && 1414 (req->cmd_flags & REQ_META) && 1415 (rq_data_dir(req) == WRITE) && 1416 ((brq->data.blocks * brq->data.blksz) >= 1417 card->ext_csd.data_tag_unit_size); 1418 1419 if (do_data_tag) 1420 brq->data.flags |= MMC_DATA_DAT_TAG; 1421 1422 mmc_set_data_timeout(&brq->data, card); 1423 1424 brq->data.sg = mqrq->sg; 1425 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1426 1427 /* 1428 * Adjust the sg list so it is the same size as the 1429 * request. 1430 */ 1431 if (brq->data.blocks != blk_rq_sectors(req)) { 1432 int i, data_size = brq->data.blocks << 9; 1433 struct scatterlist *sg; 1434 1435 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1436 data_size -= sg->length; 1437 if (data_size <= 0) { 1438 sg->length += data_size; 1439 i++; 1440 break; 1441 } 1442 } 1443 brq->data.sg_len = i; 1444 } 1445 1446 if (do_rel_wr_p) 1447 *do_rel_wr_p = do_rel_wr; 1448 1449 if (do_data_tag_p) 1450 *do_data_tag_p = do_data_tag; 1451 } 1452 1453 #define MMC_CQE_RETRIES 2 1454 1455 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1456 { 1457 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1458 struct mmc_request *mrq = &mqrq->brq.mrq; 1459 struct request_queue *q = req->q; 1460 struct mmc_host *host = mq->card->host; 1461 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1462 unsigned long flags; 1463 bool put_card; 1464 int err; 1465 1466 mmc_cqe_post_req(host, mrq); 1467 1468 if (mrq->cmd && mrq->cmd->error) 1469 err = mrq->cmd->error; 1470 else if (mrq->data && mrq->data->error) 1471 err = mrq->data->error; 1472 else 1473 err = 0; 1474 1475 if (err) { 1476 if (mqrq->retries++ < MMC_CQE_RETRIES) 1477 blk_mq_requeue_request(req, true); 1478 else 1479 blk_mq_end_request(req, BLK_STS_IOERR); 1480 } else if (mrq->data) { 1481 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1482 blk_mq_requeue_request(req, true); 1483 else 1484 __blk_mq_end_request(req, BLK_STS_OK); 1485 } else if (mq->in_recovery) { 1486 blk_mq_requeue_request(req, true); 1487 } else { 1488 blk_mq_end_request(req, BLK_STS_OK); 1489 } 1490 1491 spin_lock_irqsave(&mq->lock, flags); 1492 1493 mq->in_flight[issue_type] -= 1; 1494 1495 put_card = (mmc_tot_in_flight(mq) == 0); 1496 1497 mmc_cqe_check_busy(mq); 1498 1499 spin_unlock_irqrestore(&mq->lock, flags); 1500 1501 if (!mq->cqe_busy) 1502 blk_mq_run_hw_queues(q, true); 1503 1504 if (put_card) 1505 mmc_put_card(mq->card, &mq->ctx); 1506 } 1507 1508 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1509 { 1510 struct mmc_card *card = mq->card; 1511 struct mmc_host *host = card->host; 1512 int err; 1513 1514 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1515 1516 err = mmc_cqe_recovery(host); 1517 if (err) 1518 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1519 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1520 1521 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1522 } 1523 1524 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1525 { 1526 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1527 brq.mrq); 1528 struct request *req = mmc_queue_req_to_req(mqrq); 1529 struct request_queue *q = req->q; 1530 struct mmc_queue *mq = q->queuedata; 1531 1532 /* 1533 * Block layer timeouts race with completions which means the normal 1534 * completion path cannot be used during recovery. 1535 */ 1536 if (mq->in_recovery) 1537 mmc_blk_cqe_complete_rq(mq, req); 1538 else if (likely(!blk_should_fake_timeout(req->q))) 1539 blk_mq_complete_request(req); 1540 } 1541 1542 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1543 { 1544 mrq->done = mmc_blk_cqe_req_done; 1545 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1546 1547 return mmc_cqe_start_req(host, mrq); 1548 } 1549 1550 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1551 struct request *req) 1552 { 1553 struct mmc_blk_request *brq = &mqrq->brq; 1554 1555 memset(brq, 0, sizeof(*brq)); 1556 1557 brq->mrq.cmd = &brq->cmd; 1558 brq->mrq.tag = req->tag; 1559 1560 return &brq->mrq; 1561 } 1562 1563 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1564 { 1565 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1566 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1567 1568 mrq->cmd->opcode = MMC_SWITCH; 1569 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1570 (EXT_CSD_FLUSH_CACHE << 16) | 1571 (1 << 8) | 1572 EXT_CSD_CMD_SET_NORMAL; 1573 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1574 1575 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1576 } 1577 1578 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1579 { 1580 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1581 struct mmc_host *host = mq->card->host; 1582 int err; 1583 1584 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1585 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1586 mmc_pre_req(host, &mqrq->brq.mrq); 1587 1588 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1589 if (err) 1590 mmc_post_req(host, &mqrq->brq.mrq, err); 1591 1592 return err; 1593 } 1594 1595 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1596 { 1597 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1598 struct mmc_host *host = mq->card->host; 1599 1600 if (host->hsq_enabled) 1601 return mmc_blk_hsq_issue_rw_rq(mq, req); 1602 1603 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1604 1605 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1606 } 1607 1608 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1609 struct mmc_card *card, 1610 int recovery_mode, 1611 struct mmc_queue *mq) 1612 { 1613 u32 readcmd, writecmd; 1614 struct mmc_blk_request *brq = &mqrq->brq; 1615 struct request *req = mmc_queue_req_to_req(mqrq); 1616 struct mmc_blk_data *md = mq->blkdata; 1617 bool do_rel_wr, do_data_tag; 1618 1619 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1620 1621 brq->mrq.cmd = &brq->cmd; 1622 1623 brq->cmd.arg = blk_rq_pos(req); 1624 if (!mmc_card_blockaddr(card)) 1625 brq->cmd.arg <<= 9; 1626 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1627 1628 if (brq->data.blocks > 1 || do_rel_wr) { 1629 /* SPI multiblock writes terminate using a special 1630 * token, not a STOP_TRANSMISSION request. 1631 */ 1632 if (!mmc_host_is_spi(card->host) || 1633 rq_data_dir(req) == READ) 1634 brq->mrq.stop = &brq->stop; 1635 readcmd = MMC_READ_MULTIPLE_BLOCK; 1636 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1637 } else { 1638 brq->mrq.stop = NULL; 1639 readcmd = MMC_READ_SINGLE_BLOCK; 1640 writecmd = MMC_WRITE_BLOCK; 1641 } 1642 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1643 1644 /* 1645 * Pre-defined multi-block transfers are preferable to 1646 * open ended-ones (and necessary for reliable writes). 1647 * However, it is not sufficient to just send CMD23, 1648 * and avoid the final CMD12, as on an error condition 1649 * CMD12 (stop) needs to be sent anyway. This, coupled 1650 * with Auto-CMD23 enhancements provided by some 1651 * hosts, means that the complexity of dealing 1652 * with this is best left to the host. If CMD23 is 1653 * supported by card and host, we'll fill sbc in and let 1654 * the host deal with handling it correctly. This means 1655 * that for hosts that don't expose MMC_CAP_CMD23, no 1656 * change of behavior will be observed. 1657 * 1658 * N.B: Some MMC cards experience perf degradation. 1659 * We'll avoid using CMD23-bounded multiblock writes for 1660 * these, while retaining features like reliable writes. 1661 */ 1662 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1663 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1664 do_data_tag)) { 1665 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1666 brq->sbc.arg = brq->data.blocks | 1667 (do_rel_wr ? (1 << 31) : 0) | 1668 (do_data_tag ? (1 << 29) : 0); 1669 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1670 brq->mrq.sbc = &brq->sbc; 1671 } 1672 } 1673 1674 #define MMC_MAX_RETRIES 5 1675 #define MMC_DATA_RETRIES 2 1676 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1677 1678 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1679 { 1680 struct mmc_command cmd = { 1681 .opcode = MMC_STOP_TRANSMISSION, 1682 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1683 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1684 .busy_timeout = timeout, 1685 }; 1686 1687 return mmc_wait_for_cmd(card->host, &cmd, 5); 1688 } 1689 1690 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1691 { 1692 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1693 struct mmc_blk_request *brq = &mqrq->brq; 1694 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1695 int err; 1696 1697 mmc_retune_hold_now(card->host); 1698 1699 mmc_blk_send_stop(card, timeout); 1700 1701 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1702 1703 mmc_retune_release(card->host); 1704 1705 return err; 1706 } 1707 1708 #define MMC_READ_SINGLE_RETRIES 2 1709 1710 /* Single (native) sector read during recovery */ 1711 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1712 { 1713 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1714 struct mmc_request *mrq = &mqrq->brq.mrq; 1715 struct mmc_card *card = mq->card; 1716 struct mmc_host *host = card->host; 1717 blk_status_t error = BLK_STS_OK; 1718 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1719 1720 do { 1721 u32 status; 1722 int err; 1723 int retries = 0; 1724 1725 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1726 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1727 1728 mmc_wait_for_req(host, mrq); 1729 1730 err = mmc_send_status(card, &status); 1731 if (err) 1732 goto error_exit; 1733 1734 if (!mmc_host_is_spi(host) && 1735 !mmc_ready_for_data(status)) { 1736 err = mmc_blk_fix_state(card, req); 1737 if (err) 1738 goto error_exit; 1739 } 1740 1741 if (!mrq->cmd->error) 1742 break; 1743 } 1744 1745 if (mrq->cmd->error || 1746 mrq->data->error || 1747 (!mmc_host_is_spi(host) && 1748 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1749 error = BLK_STS_IOERR; 1750 else 1751 error = BLK_STS_OK; 1752 1753 } while (blk_update_request(req, error, bytes_per_read)); 1754 1755 return; 1756 1757 error_exit: 1758 mrq->data->bytes_xfered = 0; 1759 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1760 /* Let it try the remaining request again */ 1761 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1762 mqrq->retries = MMC_MAX_RETRIES - 1; 1763 } 1764 1765 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1766 { 1767 return !!brq->mrq.sbc; 1768 } 1769 1770 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1771 { 1772 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1773 } 1774 1775 /* 1776 * Check for errors the host controller driver might not have seen such as 1777 * response mode errors or invalid card state. 1778 */ 1779 static bool mmc_blk_status_error(struct request *req, u32 status) 1780 { 1781 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1782 struct mmc_blk_request *brq = &mqrq->brq; 1783 struct mmc_queue *mq = req->q->queuedata; 1784 u32 stop_err_bits; 1785 1786 if (mmc_host_is_spi(mq->card->host)) 1787 return false; 1788 1789 stop_err_bits = mmc_blk_stop_err_bits(brq); 1790 1791 return brq->cmd.resp[0] & CMD_ERRORS || 1792 brq->stop.resp[0] & stop_err_bits || 1793 status & stop_err_bits || 1794 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1795 } 1796 1797 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1798 { 1799 return !brq->sbc.error && !brq->cmd.error && 1800 !(brq->cmd.resp[0] & CMD_ERRORS); 1801 } 1802 1803 /* 1804 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1805 * policy: 1806 * 1. A request that has transferred at least some data is considered 1807 * successful and will be requeued if there is remaining data to 1808 * transfer. 1809 * 2. Otherwise the number of retries is incremented and the request 1810 * will be requeued if there are remaining retries. 1811 * 3. Otherwise the request will be errored out. 1812 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1813 * mqrq->retries. So there are only 4 possible actions here: 1814 * 1. do not accept the bytes_xfered value i.e. set it to zero 1815 * 2. change mqrq->retries to determine the number of retries 1816 * 3. try to reset the card 1817 * 4. read one sector at a time 1818 */ 1819 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1820 { 1821 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1822 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1823 struct mmc_blk_request *brq = &mqrq->brq; 1824 struct mmc_blk_data *md = mq->blkdata; 1825 struct mmc_card *card = mq->card; 1826 u32 status; 1827 u32 blocks; 1828 int err; 1829 1830 /* 1831 * Some errors the host driver might not have seen. Set the number of 1832 * bytes transferred to zero in that case. 1833 */ 1834 err = __mmc_send_status(card, &status, 0); 1835 if (err || mmc_blk_status_error(req, status)) 1836 brq->data.bytes_xfered = 0; 1837 1838 mmc_retune_release(card->host); 1839 1840 /* 1841 * Try again to get the status. This also provides an opportunity for 1842 * re-tuning. 1843 */ 1844 if (err) 1845 err = __mmc_send_status(card, &status, 0); 1846 1847 /* 1848 * Nothing more to do after the number of bytes transferred has been 1849 * updated and there is no card. 1850 */ 1851 if (err && mmc_detect_card_removed(card->host)) 1852 return; 1853 1854 /* Try to get back to "tran" state */ 1855 if (!mmc_host_is_spi(mq->card->host) && 1856 (err || !mmc_ready_for_data(status))) 1857 err = mmc_blk_fix_state(mq->card, req); 1858 1859 /* 1860 * Special case for SD cards where the card might record the number of 1861 * blocks written. 1862 */ 1863 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1864 rq_data_dir(req) == WRITE) { 1865 if (mmc_sd_num_wr_blocks(card, &blocks)) 1866 brq->data.bytes_xfered = 0; 1867 else 1868 brq->data.bytes_xfered = blocks << 9; 1869 } 1870 1871 /* Reset if the card is in a bad state */ 1872 if (!mmc_host_is_spi(mq->card->host) && 1873 err && mmc_blk_reset(md, card->host, type)) { 1874 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1875 mqrq->retries = MMC_NO_RETRIES; 1876 return; 1877 } 1878 1879 /* 1880 * If anything was done, just return and if there is anything remaining 1881 * on the request it will get requeued. 1882 */ 1883 if (brq->data.bytes_xfered) 1884 return; 1885 1886 /* Reset before last retry */ 1887 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1888 mmc_blk_reset(md, card->host, type)) 1889 return; 1890 1891 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1892 if (brq->sbc.error || brq->cmd.error) 1893 return; 1894 1895 /* Reduce the remaining retries for data errors */ 1896 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1897 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1898 return; 1899 } 1900 1901 if (rq_data_dir(req) == READ && brq->data.blocks > 1902 queue_physical_block_size(mq->queue) >> 9) { 1903 /* Read one (native) sector at a time */ 1904 mmc_blk_read_single(mq, req); 1905 return; 1906 } 1907 } 1908 1909 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1910 { 1911 mmc_blk_eval_resp_error(brq); 1912 1913 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1914 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1915 } 1916 1917 static int mmc_spi_err_check(struct mmc_card *card) 1918 { 1919 u32 status = 0; 1920 int err; 1921 1922 /* 1923 * SPI does not have a TRAN state we have to wait on, instead the 1924 * card is ready again when it no longer holds the line LOW. 1925 * We still have to ensure two things here before we know the write 1926 * was successful: 1927 * 1. The card has not disconnected during busy and we actually read our 1928 * own pull-up, thinking it was still connected, so ensure it 1929 * still responds. 1930 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1931 * just reconnected card after being disconnected during busy. 1932 */ 1933 err = __mmc_send_status(card, &status, 0); 1934 if (err) 1935 return err; 1936 /* All R1 and R2 bits of SPI are errors in our case */ 1937 if (status) 1938 return -EIO; 1939 return 0; 1940 } 1941 1942 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1943 { 1944 struct mmc_blk_busy_data *data = cb_data; 1945 u32 status = 0; 1946 int err; 1947 1948 err = mmc_send_status(data->card, &status); 1949 if (err) 1950 return err; 1951 1952 /* Accumulate response error bits. */ 1953 data->status |= status; 1954 1955 *busy = !mmc_ready_for_data(status); 1956 return 0; 1957 } 1958 1959 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1960 { 1961 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1962 struct mmc_blk_busy_data cb_data; 1963 int err; 1964 1965 if (rq_data_dir(req) == READ) 1966 return 0; 1967 1968 if (mmc_host_is_spi(card->host)) { 1969 err = mmc_spi_err_check(card); 1970 if (err) 1971 mqrq->brq.data.bytes_xfered = 0; 1972 return err; 1973 } 1974 1975 cb_data.card = card; 1976 cb_data.status = 0; 1977 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1978 &mmc_blk_busy_cb, &cb_data); 1979 1980 /* 1981 * Do not assume data transferred correctly if there are any error bits 1982 * set. 1983 */ 1984 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1985 mqrq->brq.data.bytes_xfered = 0; 1986 err = err ? err : -EIO; 1987 } 1988 1989 /* Copy the exception bit so it will be seen later on */ 1990 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1991 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1992 1993 return err; 1994 } 1995 1996 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1997 struct request *req) 1998 { 1999 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 2000 2001 mmc_blk_reset_success(mq->blkdata, type); 2002 } 2003 2004 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 2005 { 2006 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2007 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 2008 2009 if (nr_bytes) { 2010 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2011 blk_mq_requeue_request(req, true); 2012 else 2013 __blk_mq_end_request(req, BLK_STS_OK); 2014 } else if (!blk_rq_bytes(req)) { 2015 __blk_mq_end_request(req, BLK_STS_IOERR); 2016 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2017 blk_mq_requeue_request(req, true); 2018 } else { 2019 if (mmc_card_removed(mq->card)) 2020 req->rq_flags |= RQF_QUIET; 2021 blk_mq_end_request(req, BLK_STS_IOERR); 2022 } 2023 } 2024 2025 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2026 struct mmc_queue_req *mqrq) 2027 { 2028 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2029 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2030 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2031 } 2032 2033 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2034 struct mmc_queue_req *mqrq) 2035 { 2036 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2037 mmc_run_bkops(mq->card); 2038 } 2039 2040 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2041 { 2042 struct mmc_queue_req *mqrq = 2043 container_of(mrq, struct mmc_queue_req, brq.mrq); 2044 struct request *req = mmc_queue_req_to_req(mqrq); 2045 struct request_queue *q = req->q; 2046 struct mmc_queue *mq = q->queuedata; 2047 struct mmc_host *host = mq->card->host; 2048 unsigned long flags; 2049 2050 if (mmc_blk_rq_error(&mqrq->brq) || 2051 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2052 spin_lock_irqsave(&mq->lock, flags); 2053 mq->recovery_needed = true; 2054 mq->recovery_req = req; 2055 spin_unlock_irqrestore(&mq->lock, flags); 2056 2057 host->cqe_ops->cqe_recovery_start(host); 2058 2059 schedule_work(&mq->recovery_work); 2060 return; 2061 } 2062 2063 mmc_blk_rw_reset_success(mq, req); 2064 2065 /* 2066 * Block layer timeouts race with completions which means the normal 2067 * completion path cannot be used during recovery. 2068 */ 2069 if (mq->in_recovery) 2070 mmc_blk_cqe_complete_rq(mq, req); 2071 else if (likely(!blk_should_fake_timeout(req->q))) 2072 blk_mq_complete_request(req); 2073 } 2074 2075 void mmc_blk_mq_complete(struct request *req) 2076 { 2077 struct mmc_queue *mq = req->q->queuedata; 2078 struct mmc_host *host = mq->card->host; 2079 2080 if (host->cqe_enabled) 2081 mmc_blk_cqe_complete_rq(mq, req); 2082 else if (likely(!blk_should_fake_timeout(req->q))) 2083 mmc_blk_mq_complete_rq(mq, req); 2084 } 2085 2086 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2087 struct request *req) 2088 { 2089 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2090 struct mmc_host *host = mq->card->host; 2091 2092 if (mmc_blk_rq_error(&mqrq->brq) || 2093 mmc_blk_card_busy(mq->card, req)) { 2094 mmc_blk_mq_rw_recovery(mq, req); 2095 } else { 2096 mmc_blk_rw_reset_success(mq, req); 2097 mmc_retune_release(host); 2098 } 2099 2100 mmc_blk_urgent_bkops(mq, mqrq); 2101 } 2102 2103 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) 2104 { 2105 unsigned long flags; 2106 bool put_card; 2107 2108 spin_lock_irqsave(&mq->lock, flags); 2109 2110 mq->in_flight[issue_type] -= 1; 2111 2112 put_card = (mmc_tot_in_flight(mq) == 0); 2113 2114 spin_unlock_irqrestore(&mq->lock, flags); 2115 2116 if (put_card) 2117 mmc_put_card(mq->card, &mq->ctx); 2118 } 2119 2120 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2121 bool can_sleep) 2122 { 2123 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 2124 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2125 struct mmc_request *mrq = &mqrq->brq.mrq; 2126 struct mmc_host *host = mq->card->host; 2127 2128 mmc_post_req(host, mrq, 0); 2129 2130 /* 2131 * Block layer timeouts race with completions which means the normal 2132 * completion path cannot be used during recovery. 2133 */ 2134 if (mq->in_recovery) { 2135 mmc_blk_mq_complete_rq(mq, req); 2136 } else if (likely(!blk_should_fake_timeout(req->q))) { 2137 if (can_sleep) 2138 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2139 else 2140 blk_mq_complete_request(req); 2141 } 2142 2143 mmc_blk_mq_dec_in_flight(mq, issue_type); 2144 } 2145 2146 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2147 { 2148 struct request *req = mq->recovery_req; 2149 struct mmc_host *host = mq->card->host; 2150 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2151 2152 mq->recovery_req = NULL; 2153 mq->rw_wait = false; 2154 2155 if (mmc_blk_rq_error(&mqrq->brq)) { 2156 mmc_retune_hold_now(host); 2157 mmc_blk_mq_rw_recovery(mq, req); 2158 } 2159 2160 mmc_blk_urgent_bkops(mq, mqrq); 2161 2162 mmc_blk_mq_post_req(mq, req, true); 2163 } 2164 2165 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2166 struct request **prev_req) 2167 { 2168 if (mmc_host_done_complete(mq->card->host)) 2169 return; 2170 2171 mutex_lock(&mq->complete_lock); 2172 2173 if (!mq->complete_req) 2174 goto out_unlock; 2175 2176 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2177 2178 if (prev_req) 2179 *prev_req = mq->complete_req; 2180 else 2181 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2182 2183 mq->complete_req = NULL; 2184 2185 out_unlock: 2186 mutex_unlock(&mq->complete_lock); 2187 } 2188 2189 void mmc_blk_mq_complete_work(struct work_struct *work) 2190 { 2191 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2192 complete_work); 2193 2194 mmc_blk_mq_complete_prev_req(mq, NULL); 2195 } 2196 2197 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2198 { 2199 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2200 brq.mrq); 2201 struct request *req = mmc_queue_req_to_req(mqrq); 2202 struct request_queue *q = req->q; 2203 struct mmc_queue *mq = q->queuedata; 2204 struct mmc_host *host = mq->card->host; 2205 unsigned long flags; 2206 2207 if (!mmc_host_done_complete(host)) { 2208 bool waiting; 2209 2210 /* 2211 * We cannot complete the request in this context, so record 2212 * that there is a request to complete, and that a following 2213 * request does not need to wait (although it does need to 2214 * complete complete_req first). 2215 */ 2216 spin_lock_irqsave(&mq->lock, flags); 2217 mq->complete_req = req; 2218 mq->rw_wait = false; 2219 waiting = mq->waiting; 2220 spin_unlock_irqrestore(&mq->lock, flags); 2221 2222 /* 2223 * If 'waiting' then the waiting task will complete this 2224 * request, otherwise queue a work to do it. Note that 2225 * complete_work may still race with the dispatch of a following 2226 * request. 2227 */ 2228 if (waiting) 2229 wake_up(&mq->wait); 2230 else 2231 queue_work(mq->card->complete_wq, &mq->complete_work); 2232 2233 return; 2234 } 2235 2236 /* Take the recovery path for errors or urgent background operations */ 2237 if (mmc_blk_rq_error(&mqrq->brq) || 2238 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2239 spin_lock_irqsave(&mq->lock, flags); 2240 mq->recovery_needed = true; 2241 mq->recovery_req = req; 2242 spin_unlock_irqrestore(&mq->lock, flags); 2243 wake_up(&mq->wait); 2244 schedule_work(&mq->recovery_work); 2245 return; 2246 } 2247 2248 mmc_blk_rw_reset_success(mq, req); 2249 2250 mq->rw_wait = false; 2251 wake_up(&mq->wait); 2252 2253 /* context unknown */ 2254 mmc_blk_mq_post_req(mq, req, false); 2255 } 2256 2257 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2258 { 2259 unsigned long flags; 2260 bool done; 2261 2262 /* 2263 * Wait while there is another request in progress, but not if recovery 2264 * is needed. Also indicate whether there is a request waiting to start. 2265 */ 2266 spin_lock_irqsave(&mq->lock, flags); 2267 if (mq->recovery_needed) { 2268 *err = -EBUSY; 2269 done = true; 2270 } else { 2271 done = !mq->rw_wait; 2272 } 2273 mq->waiting = !done; 2274 spin_unlock_irqrestore(&mq->lock, flags); 2275 2276 return done; 2277 } 2278 2279 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2280 { 2281 int err = 0; 2282 2283 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2284 2285 /* Always complete the previous request if there is one */ 2286 mmc_blk_mq_complete_prev_req(mq, prev_req); 2287 2288 return err; 2289 } 2290 2291 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2292 struct request *req) 2293 { 2294 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2295 struct mmc_host *host = mq->card->host; 2296 struct request *prev_req = NULL; 2297 int err = 0; 2298 2299 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2300 2301 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2302 2303 mmc_pre_req(host, &mqrq->brq.mrq); 2304 2305 err = mmc_blk_rw_wait(mq, &prev_req); 2306 if (err) 2307 goto out_post_req; 2308 2309 mq->rw_wait = true; 2310 2311 err = mmc_start_request(host, &mqrq->brq.mrq); 2312 2313 if (prev_req) 2314 mmc_blk_mq_post_req(mq, prev_req, true); 2315 2316 if (err) 2317 mq->rw_wait = false; 2318 2319 /* Release re-tuning here where there is no synchronization required */ 2320 if (err || mmc_host_done_complete(host)) 2321 mmc_retune_release(host); 2322 2323 out_post_req: 2324 if (err) 2325 mmc_post_req(host, &mqrq->brq.mrq, err); 2326 2327 return err; 2328 } 2329 2330 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2331 { 2332 if (host->cqe_enabled) 2333 return host->cqe_ops->cqe_wait_for_idle(host); 2334 2335 return mmc_blk_rw_wait(mq, NULL); 2336 } 2337 2338 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2339 { 2340 struct mmc_blk_data *md = mq->blkdata; 2341 struct mmc_card *card = md->queue.card; 2342 struct mmc_host *host = card->host; 2343 int ret; 2344 2345 ret = mmc_blk_part_switch(card, md->part_type); 2346 if (ret) 2347 return MMC_REQ_FAILED_TO_START; 2348 2349 switch (mmc_issue_type(mq, req)) { 2350 case MMC_ISSUE_SYNC: 2351 ret = mmc_blk_wait_for_idle(mq, host); 2352 if (ret) 2353 return MMC_REQ_BUSY; 2354 switch (req_op(req)) { 2355 case REQ_OP_DRV_IN: 2356 case REQ_OP_DRV_OUT: 2357 mmc_blk_issue_drv_op(mq, req); 2358 break; 2359 case REQ_OP_DISCARD: 2360 mmc_blk_issue_discard_rq(mq, req); 2361 break; 2362 case REQ_OP_SECURE_ERASE: 2363 mmc_blk_issue_secdiscard_rq(mq, req); 2364 break; 2365 case REQ_OP_WRITE_ZEROES: 2366 mmc_blk_issue_trim_rq(mq, req); 2367 break; 2368 case REQ_OP_FLUSH: 2369 mmc_blk_issue_flush(mq, req); 2370 break; 2371 default: 2372 WARN_ON_ONCE(1); 2373 return MMC_REQ_FAILED_TO_START; 2374 } 2375 return MMC_REQ_FINISHED; 2376 case MMC_ISSUE_DCMD: 2377 case MMC_ISSUE_ASYNC: 2378 switch (req_op(req)) { 2379 case REQ_OP_FLUSH: 2380 if (!mmc_cache_enabled(host)) { 2381 blk_mq_end_request(req, BLK_STS_OK); 2382 return MMC_REQ_FINISHED; 2383 } 2384 ret = mmc_blk_cqe_issue_flush(mq, req); 2385 break; 2386 case REQ_OP_WRITE: 2387 card->written_flag = true; 2388 fallthrough; 2389 case REQ_OP_READ: 2390 if (host->cqe_enabled) 2391 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2392 else 2393 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2394 break; 2395 default: 2396 WARN_ON_ONCE(1); 2397 ret = -EINVAL; 2398 } 2399 if (!ret) 2400 return MMC_REQ_STARTED; 2401 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2402 default: 2403 WARN_ON_ONCE(1); 2404 return MMC_REQ_FAILED_TO_START; 2405 } 2406 } 2407 2408 static inline int mmc_blk_readonly(struct mmc_card *card) 2409 { 2410 return mmc_card_readonly(card) || 2411 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2412 } 2413 2414 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2415 struct device *parent, 2416 sector_t size, 2417 bool default_ro, 2418 const char *subname, 2419 int area_type, 2420 unsigned int part_type) 2421 { 2422 struct mmc_blk_data *md; 2423 int devidx, ret; 2424 char cap_str[10]; 2425 bool cache_enabled = false; 2426 bool fua_enabled = false; 2427 2428 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2429 if (devidx < 0) { 2430 /* 2431 * We get -ENOSPC because there are no more any available 2432 * devidx. The reason may be that, either userspace haven't yet 2433 * unmounted the partitions, which postpones mmc_blk_release() 2434 * from being called, or the device has more partitions than 2435 * what we support. 2436 */ 2437 if (devidx == -ENOSPC) 2438 dev_err(mmc_dev(card->host), 2439 "no more device IDs available\n"); 2440 2441 return ERR_PTR(devidx); 2442 } 2443 2444 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2445 if (!md) { 2446 ret = -ENOMEM; 2447 goto out; 2448 } 2449 2450 md->area_type = area_type; 2451 2452 /* 2453 * Set the read-only status based on the supported commands 2454 * and the write protect switch. 2455 */ 2456 md->read_only = mmc_blk_readonly(card); 2457 2458 md->disk = mmc_init_queue(&md->queue, card); 2459 if (IS_ERR(md->disk)) { 2460 ret = PTR_ERR(md->disk); 2461 goto err_kfree; 2462 } 2463 2464 INIT_LIST_HEAD(&md->part); 2465 INIT_LIST_HEAD(&md->rpmbs); 2466 kref_init(&md->kref); 2467 2468 md->queue.blkdata = md; 2469 md->part_type = part_type; 2470 2471 md->disk->major = MMC_BLOCK_MAJOR; 2472 md->disk->minors = perdev_minors; 2473 md->disk->first_minor = devidx * perdev_minors; 2474 md->disk->fops = &mmc_bdops; 2475 md->disk->private_data = md; 2476 md->parent = parent; 2477 set_disk_ro(md->disk, md->read_only || default_ro); 2478 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2479 md->disk->flags |= GENHD_FL_NO_PART; 2480 2481 /* 2482 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2483 * 2484 * - be set for removable media with permanent block devices 2485 * - be unset for removable block devices with permanent media 2486 * 2487 * Since MMC block devices clearly fall under the second 2488 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2489 * should use the block device creation/destruction hotplug 2490 * messages to tell when the card is present. 2491 */ 2492 2493 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2494 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2495 2496 set_capacity(md->disk, size); 2497 2498 if (mmc_host_cmd23(card->host)) { 2499 if ((mmc_card_mmc(card) && 2500 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2501 (mmc_card_sd(card) && 2502 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2503 md->flags |= MMC_BLK_CMD23; 2504 } 2505 2506 if (md->flags & MMC_BLK_CMD23 && 2507 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2508 card->ext_csd.rel_sectors)) { 2509 md->flags |= MMC_BLK_REL_WR; 2510 fua_enabled = true; 2511 cache_enabled = true; 2512 } 2513 if (mmc_cache_enabled(card->host)) 2514 cache_enabled = true; 2515 2516 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2517 2518 string_get_size((u64)size, 512, STRING_UNITS_2, 2519 cap_str, sizeof(cap_str)); 2520 pr_info("%s: %s %s %s%s\n", 2521 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2522 cap_str, md->read_only ? " (ro)" : ""); 2523 2524 /* used in ->open, must be set before add_disk: */ 2525 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2526 dev_set_drvdata(&card->dev, md); 2527 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2528 if (ret) 2529 goto err_put_disk; 2530 return md; 2531 2532 err_put_disk: 2533 put_disk(md->disk); 2534 blk_mq_free_tag_set(&md->queue.tag_set); 2535 err_kfree: 2536 kfree(md); 2537 out: 2538 ida_simple_remove(&mmc_blk_ida, devidx); 2539 return ERR_PTR(ret); 2540 } 2541 2542 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2543 { 2544 sector_t size; 2545 2546 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2547 /* 2548 * The EXT_CSD sector count is in number or 512 byte 2549 * sectors. 2550 */ 2551 size = card->ext_csd.sectors; 2552 } else { 2553 /* 2554 * The CSD capacity field is in units of read_blkbits. 2555 * set_capacity takes units of 512 bytes. 2556 */ 2557 size = (typeof(sector_t))card->csd.capacity 2558 << (card->csd.read_blkbits - 9); 2559 } 2560 2561 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2562 MMC_BLK_DATA_AREA_MAIN, 0); 2563 } 2564 2565 static int mmc_blk_alloc_part(struct mmc_card *card, 2566 struct mmc_blk_data *md, 2567 unsigned int part_type, 2568 sector_t size, 2569 bool default_ro, 2570 const char *subname, 2571 int area_type) 2572 { 2573 struct mmc_blk_data *part_md; 2574 2575 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2576 subname, area_type, part_type); 2577 if (IS_ERR(part_md)) 2578 return PTR_ERR(part_md); 2579 list_add(&part_md->part, &md->part); 2580 2581 return 0; 2582 } 2583 2584 /** 2585 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2586 * @filp: the character device file 2587 * @cmd: the ioctl() command 2588 * @arg: the argument from userspace 2589 * 2590 * This will essentially just redirect the ioctl()s coming in over to 2591 * the main block device spawning the RPMB character device. 2592 */ 2593 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2594 unsigned long arg) 2595 { 2596 struct mmc_rpmb_data *rpmb = filp->private_data; 2597 int ret; 2598 2599 switch (cmd) { 2600 case MMC_IOC_CMD: 2601 ret = mmc_blk_ioctl_cmd(rpmb->md, 2602 (struct mmc_ioc_cmd __user *)arg, 2603 rpmb); 2604 break; 2605 case MMC_IOC_MULTI_CMD: 2606 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2607 (struct mmc_ioc_multi_cmd __user *)arg, 2608 rpmb); 2609 break; 2610 default: 2611 ret = -EINVAL; 2612 break; 2613 } 2614 2615 return ret; 2616 } 2617 2618 #ifdef CONFIG_COMPAT 2619 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2620 unsigned long arg) 2621 { 2622 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2623 } 2624 #endif 2625 2626 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2627 { 2628 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2629 struct mmc_rpmb_data, chrdev); 2630 2631 get_device(&rpmb->dev); 2632 filp->private_data = rpmb; 2633 mmc_blk_get(rpmb->md->disk); 2634 2635 return nonseekable_open(inode, filp); 2636 } 2637 2638 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2639 { 2640 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2641 struct mmc_rpmb_data, chrdev); 2642 2643 mmc_blk_put(rpmb->md); 2644 put_device(&rpmb->dev); 2645 2646 return 0; 2647 } 2648 2649 static const struct file_operations mmc_rpmb_fileops = { 2650 .release = mmc_rpmb_chrdev_release, 2651 .open = mmc_rpmb_chrdev_open, 2652 .owner = THIS_MODULE, 2653 .llseek = no_llseek, 2654 .unlocked_ioctl = mmc_rpmb_ioctl, 2655 #ifdef CONFIG_COMPAT 2656 .compat_ioctl = mmc_rpmb_ioctl_compat, 2657 #endif 2658 }; 2659 2660 static void mmc_blk_rpmb_device_release(struct device *dev) 2661 { 2662 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2663 2664 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2665 kfree(rpmb); 2666 } 2667 2668 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2669 struct mmc_blk_data *md, 2670 unsigned int part_index, 2671 sector_t size, 2672 const char *subname) 2673 { 2674 int devidx, ret; 2675 char rpmb_name[DISK_NAME_LEN]; 2676 char cap_str[10]; 2677 struct mmc_rpmb_data *rpmb; 2678 2679 /* This creates the minor number for the RPMB char device */ 2680 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2681 if (devidx < 0) 2682 return devidx; 2683 2684 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2685 if (!rpmb) { 2686 ida_simple_remove(&mmc_rpmb_ida, devidx); 2687 return -ENOMEM; 2688 } 2689 2690 snprintf(rpmb_name, sizeof(rpmb_name), 2691 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2692 2693 rpmb->id = devidx; 2694 rpmb->part_index = part_index; 2695 rpmb->dev.init_name = rpmb_name; 2696 rpmb->dev.bus = &mmc_rpmb_bus_type; 2697 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2698 rpmb->dev.parent = &card->dev; 2699 rpmb->dev.release = mmc_blk_rpmb_device_release; 2700 device_initialize(&rpmb->dev); 2701 dev_set_drvdata(&rpmb->dev, rpmb); 2702 rpmb->md = md; 2703 2704 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2705 rpmb->chrdev.owner = THIS_MODULE; 2706 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2707 if (ret) { 2708 pr_err("%s: could not add character device\n", rpmb_name); 2709 goto out_put_device; 2710 } 2711 2712 list_add(&rpmb->node, &md->rpmbs); 2713 2714 string_get_size((u64)size, 512, STRING_UNITS_2, 2715 cap_str, sizeof(cap_str)); 2716 2717 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2718 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2719 MAJOR(mmc_rpmb_devt), rpmb->id); 2720 2721 return 0; 2722 2723 out_put_device: 2724 put_device(&rpmb->dev); 2725 return ret; 2726 } 2727 2728 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2729 2730 { 2731 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2732 put_device(&rpmb->dev); 2733 } 2734 2735 /* MMC Physical partitions consist of two boot partitions and 2736 * up to four general purpose partitions. 2737 * For each partition enabled in EXT_CSD a block device will be allocatedi 2738 * to provide access to the partition. 2739 */ 2740 2741 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2742 { 2743 int idx, ret; 2744 2745 if (!mmc_card_mmc(card)) 2746 return 0; 2747 2748 for (idx = 0; idx < card->nr_parts; idx++) { 2749 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2750 /* 2751 * RPMB partitions does not provide block access, they 2752 * are only accessed using ioctl():s. Thus create 2753 * special RPMB block devices that do not have a 2754 * backing block queue for these. 2755 */ 2756 ret = mmc_blk_alloc_rpmb_part(card, md, 2757 card->part[idx].part_cfg, 2758 card->part[idx].size >> 9, 2759 card->part[idx].name); 2760 if (ret) 2761 return ret; 2762 } else if (card->part[idx].size) { 2763 ret = mmc_blk_alloc_part(card, md, 2764 card->part[idx].part_cfg, 2765 card->part[idx].size >> 9, 2766 card->part[idx].force_ro, 2767 card->part[idx].name, 2768 card->part[idx].area_type); 2769 if (ret) 2770 return ret; 2771 } 2772 } 2773 2774 return 0; 2775 } 2776 2777 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2778 { 2779 /* 2780 * Flush remaining requests and free queues. It is freeing the queue 2781 * that stops new requests from being accepted. 2782 */ 2783 del_gendisk(md->disk); 2784 mmc_cleanup_queue(&md->queue); 2785 mmc_blk_put(md); 2786 } 2787 2788 static void mmc_blk_remove_parts(struct mmc_card *card, 2789 struct mmc_blk_data *md) 2790 { 2791 struct list_head *pos, *q; 2792 struct mmc_blk_data *part_md; 2793 struct mmc_rpmb_data *rpmb; 2794 2795 /* Remove RPMB partitions */ 2796 list_for_each_safe(pos, q, &md->rpmbs) { 2797 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2798 list_del(pos); 2799 mmc_blk_remove_rpmb_part(rpmb); 2800 } 2801 /* Remove block partitions */ 2802 list_for_each_safe(pos, q, &md->part) { 2803 part_md = list_entry(pos, struct mmc_blk_data, part); 2804 list_del(pos); 2805 mmc_blk_remove_req(part_md); 2806 } 2807 } 2808 2809 #ifdef CONFIG_DEBUG_FS 2810 2811 static int mmc_dbg_card_status_get(void *data, u64 *val) 2812 { 2813 struct mmc_card *card = data; 2814 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2815 struct mmc_queue *mq = &md->queue; 2816 struct request *req; 2817 int ret; 2818 2819 /* Ask the block layer about the card status */ 2820 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2821 if (IS_ERR(req)) 2822 return PTR_ERR(req); 2823 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2824 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2825 blk_execute_rq(req, false); 2826 ret = req_to_mmc_queue_req(req)->drv_op_result; 2827 if (ret >= 0) { 2828 *val = ret; 2829 ret = 0; 2830 } 2831 blk_mq_free_request(req); 2832 2833 return ret; 2834 } 2835 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2836 NULL, "%08llx\n"); 2837 2838 /* That is two digits * 512 + 1 for newline */ 2839 #define EXT_CSD_STR_LEN 1025 2840 2841 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2842 { 2843 struct mmc_card *card = inode->i_private; 2844 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2845 struct mmc_queue *mq = &md->queue; 2846 struct request *req; 2847 char *buf; 2848 ssize_t n = 0; 2849 u8 *ext_csd; 2850 int err, i; 2851 2852 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2853 if (!buf) 2854 return -ENOMEM; 2855 2856 /* Ask the block layer for the EXT CSD */ 2857 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2858 if (IS_ERR(req)) { 2859 err = PTR_ERR(req); 2860 goto out_free; 2861 } 2862 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2863 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2864 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2865 blk_execute_rq(req, false); 2866 err = req_to_mmc_queue_req(req)->drv_op_result; 2867 blk_mq_free_request(req); 2868 if (err) { 2869 pr_err("FAILED %d\n", err); 2870 goto out_free; 2871 } 2872 2873 for (i = 0; i < 512; i++) 2874 n += sprintf(buf + n, "%02x", ext_csd[i]); 2875 n += sprintf(buf + n, "\n"); 2876 2877 if (n != EXT_CSD_STR_LEN) { 2878 err = -EINVAL; 2879 kfree(ext_csd); 2880 goto out_free; 2881 } 2882 2883 filp->private_data = buf; 2884 kfree(ext_csd); 2885 return 0; 2886 2887 out_free: 2888 kfree(buf); 2889 return err; 2890 } 2891 2892 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2893 size_t cnt, loff_t *ppos) 2894 { 2895 char *buf = filp->private_data; 2896 2897 return simple_read_from_buffer(ubuf, cnt, ppos, 2898 buf, EXT_CSD_STR_LEN); 2899 } 2900 2901 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2902 { 2903 kfree(file->private_data); 2904 return 0; 2905 } 2906 2907 static const struct file_operations mmc_dbg_ext_csd_fops = { 2908 .open = mmc_ext_csd_open, 2909 .read = mmc_ext_csd_read, 2910 .release = mmc_ext_csd_release, 2911 .llseek = default_llseek, 2912 }; 2913 2914 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2915 { 2916 struct dentry *root; 2917 2918 if (!card->debugfs_root) 2919 return; 2920 2921 root = card->debugfs_root; 2922 2923 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2924 md->status_dentry = 2925 debugfs_create_file_unsafe("status", 0400, root, 2926 card, 2927 &mmc_dbg_card_status_fops); 2928 } 2929 2930 if (mmc_card_mmc(card)) { 2931 md->ext_csd_dentry = 2932 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2933 &mmc_dbg_ext_csd_fops); 2934 } 2935 } 2936 2937 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2938 struct mmc_blk_data *md) 2939 { 2940 if (!card->debugfs_root) 2941 return; 2942 2943 debugfs_remove(md->status_dentry); 2944 md->status_dentry = NULL; 2945 2946 debugfs_remove(md->ext_csd_dentry); 2947 md->ext_csd_dentry = NULL; 2948 } 2949 2950 #else 2951 2952 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2953 { 2954 } 2955 2956 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2957 struct mmc_blk_data *md) 2958 { 2959 } 2960 2961 #endif /* CONFIG_DEBUG_FS */ 2962 2963 static int mmc_blk_probe(struct mmc_card *card) 2964 { 2965 struct mmc_blk_data *md; 2966 int ret = 0; 2967 2968 /* 2969 * Check that the card supports the command class(es) we need. 2970 */ 2971 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2972 return -ENODEV; 2973 2974 mmc_fixup_device(card, mmc_blk_fixups); 2975 2976 card->complete_wq = alloc_workqueue("mmc_complete", 2977 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2978 if (!card->complete_wq) { 2979 pr_err("Failed to create mmc completion workqueue"); 2980 return -ENOMEM; 2981 } 2982 2983 md = mmc_blk_alloc(card); 2984 if (IS_ERR(md)) { 2985 ret = PTR_ERR(md); 2986 goto out_free; 2987 } 2988 2989 ret = mmc_blk_alloc_parts(card, md); 2990 if (ret) 2991 goto out; 2992 2993 /* Add two debugfs entries */ 2994 mmc_blk_add_debugfs(card, md); 2995 2996 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2997 pm_runtime_use_autosuspend(&card->dev); 2998 2999 /* 3000 * Don't enable runtime PM for SD-combo cards here. Leave that 3001 * decision to be taken during the SDIO init sequence instead. 3002 */ 3003 if (!mmc_card_sd_combo(card)) { 3004 pm_runtime_set_active(&card->dev); 3005 pm_runtime_enable(&card->dev); 3006 } 3007 3008 return 0; 3009 3010 out: 3011 mmc_blk_remove_parts(card, md); 3012 mmc_blk_remove_req(md); 3013 out_free: 3014 destroy_workqueue(card->complete_wq); 3015 return ret; 3016 } 3017 3018 static void mmc_blk_remove(struct mmc_card *card) 3019 { 3020 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3021 3022 mmc_blk_remove_debugfs(card, md); 3023 mmc_blk_remove_parts(card, md); 3024 pm_runtime_get_sync(&card->dev); 3025 if (md->part_curr != md->part_type) { 3026 mmc_claim_host(card->host); 3027 mmc_blk_part_switch(card, md->part_type); 3028 mmc_release_host(card->host); 3029 } 3030 if (!mmc_card_sd_combo(card)) 3031 pm_runtime_disable(&card->dev); 3032 pm_runtime_put_noidle(&card->dev); 3033 mmc_blk_remove_req(md); 3034 destroy_workqueue(card->complete_wq); 3035 } 3036 3037 static int _mmc_blk_suspend(struct mmc_card *card) 3038 { 3039 struct mmc_blk_data *part_md; 3040 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3041 3042 if (md) { 3043 mmc_queue_suspend(&md->queue); 3044 list_for_each_entry(part_md, &md->part, part) { 3045 mmc_queue_suspend(&part_md->queue); 3046 } 3047 } 3048 return 0; 3049 } 3050 3051 static void mmc_blk_shutdown(struct mmc_card *card) 3052 { 3053 _mmc_blk_suspend(card); 3054 } 3055 3056 #ifdef CONFIG_PM_SLEEP 3057 static int mmc_blk_suspend(struct device *dev) 3058 { 3059 struct mmc_card *card = mmc_dev_to_card(dev); 3060 3061 return _mmc_blk_suspend(card); 3062 } 3063 3064 static int mmc_blk_resume(struct device *dev) 3065 { 3066 struct mmc_blk_data *part_md; 3067 struct mmc_blk_data *md = dev_get_drvdata(dev); 3068 3069 if (md) { 3070 /* 3071 * Resume involves the card going into idle state, 3072 * so current partition is always the main one. 3073 */ 3074 md->part_curr = md->part_type; 3075 mmc_queue_resume(&md->queue); 3076 list_for_each_entry(part_md, &md->part, part) { 3077 mmc_queue_resume(&part_md->queue); 3078 } 3079 } 3080 return 0; 3081 } 3082 #endif 3083 3084 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3085 3086 static struct mmc_driver mmc_driver = { 3087 .drv = { 3088 .name = "mmcblk", 3089 .pm = &mmc_blk_pm_ops, 3090 }, 3091 .probe = mmc_blk_probe, 3092 .remove = mmc_blk_remove, 3093 .shutdown = mmc_blk_shutdown, 3094 }; 3095 3096 static int __init mmc_blk_init(void) 3097 { 3098 int res; 3099 3100 res = bus_register(&mmc_rpmb_bus_type); 3101 if (res < 0) { 3102 pr_err("mmcblk: could not register RPMB bus type\n"); 3103 return res; 3104 } 3105 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3106 if (res < 0) { 3107 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3108 goto out_bus_unreg; 3109 } 3110 3111 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3112 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3113 3114 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3115 3116 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3117 if (res) 3118 goto out_chrdev_unreg; 3119 3120 res = mmc_register_driver(&mmc_driver); 3121 if (res) 3122 goto out_blkdev_unreg; 3123 3124 return 0; 3125 3126 out_blkdev_unreg: 3127 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3128 out_chrdev_unreg: 3129 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3130 out_bus_unreg: 3131 bus_unregister(&mmc_rpmb_bus_type); 3132 return res; 3133 } 3134 3135 static void __exit mmc_blk_exit(void) 3136 { 3137 mmc_unregister_driver(&mmc_driver); 3138 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3139 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3140 bus_unregister(&mmc_rpmb_bus_type); 3141 } 3142 3143 module_init(mmc_blk_init); 3144 module_exit(mmc_blk_exit); 3145 3146 MODULE_LICENSE("GPL"); 3147 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3148 3149