1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 spinlock_t lock; 104 struct device *parent; 105 struct gendisk *disk; 106 struct mmc_queue queue; 107 struct list_head part; 108 struct list_head rpmbs; 109 110 unsigned int flags; 111 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 112 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 113 114 unsigned int usage; 115 unsigned int read_only; 116 unsigned int part_type; 117 unsigned int reset_done; 118 #define MMC_BLK_READ BIT(0) 119 #define MMC_BLK_WRITE BIT(1) 120 #define MMC_BLK_DISCARD BIT(2) 121 #define MMC_BLK_SECDISCARD BIT(3) 122 #define MMC_BLK_CQE_RECOVERY BIT(4) 123 124 /* 125 * Only set in main mmc_blk_data associated 126 * with mmc_card with dev_set_drvdata, and keeps 127 * track of the current selected device partition. 128 */ 129 unsigned int part_curr; 130 struct device_attribute force_ro; 131 struct device_attribute power_ro_lock; 132 int area_type; 133 134 /* debugfs files (only in main mmc_blk_data) */ 135 struct dentry *status_dentry; 136 struct dentry *ext_csd_dentry; 137 }; 138 139 /* Device type for RPMB character devices */ 140 static dev_t mmc_rpmb_devt; 141 142 /* Bus type for RPMB character devices */ 143 static struct bus_type mmc_rpmb_bus_type = { 144 .name = "mmc_rpmb", 145 }; 146 147 /** 148 * struct mmc_rpmb_data - special RPMB device type for these areas 149 * @dev: the device for the RPMB area 150 * @chrdev: character device for the RPMB area 151 * @id: unique device ID number 152 * @part_index: partition index (0 on first) 153 * @md: parent MMC block device 154 * @node: list item, so we can put this device on a list 155 */ 156 struct mmc_rpmb_data { 157 struct device dev; 158 struct cdev chrdev; 159 int id; 160 unsigned int part_index; 161 struct mmc_blk_data *md; 162 struct list_head node; 163 }; 164 165 static DEFINE_MUTEX(open_lock); 166 167 module_param(perdev_minors, int, 0444); 168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 169 170 static inline int mmc_blk_part_switch(struct mmc_card *card, 171 unsigned int part_type); 172 173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 174 { 175 struct mmc_blk_data *md; 176 177 mutex_lock(&open_lock); 178 md = disk->private_data; 179 if (md && md->usage == 0) 180 md = NULL; 181 if (md) 182 md->usage++; 183 mutex_unlock(&open_lock); 184 185 return md; 186 } 187 188 static inline int mmc_get_devidx(struct gendisk *disk) 189 { 190 int devidx = disk->first_minor / perdev_minors; 191 return devidx; 192 } 193 194 static void mmc_blk_put(struct mmc_blk_data *md) 195 { 196 mutex_lock(&open_lock); 197 md->usage--; 198 if (md->usage == 0) { 199 int devidx = mmc_get_devidx(md->disk); 200 blk_put_queue(md->queue.queue); 201 ida_simple_remove(&mmc_blk_ida, devidx); 202 put_disk(md->disk); 203 kfree(md); 204 } 205 mutex_unlock(&open_lock); 206 } 207 208 static ssize_t power_ro_lock_show(struct device *dev, 209 struct device_attribute *attr, char *buf) 210 { 211 int ret; 212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 213 struct mmc_card *card = md->queue.card; 214 int locked = 0; 215 216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 217 locked = 2; 218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 219 locked = 1; 220 221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 222 223 mmc_blk_put(md); 224 225 return ret; 226 } 227 228 static ssize_t power_ro_lock_store(struct device *dev, 229 struct device_attribute *attr, const char *buf, size_t count) 230 { 231 int ret; 232 struct mmc_blk_data *md, *part_md; 233 struct mmc_queue *mq; 234 struct request *req; 235 unsigned long set; 236 237 if (kstrtoul(buf, 0, &set)) 238 return -EINVAL; 239 240 if (set != 1) 241 return count; 242 243 md = mmc_blk_get(dev_to_disk(dev)); 244 mq = &md->queue; 245 246 /* Dispatch locking to the block layer */ 247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 248 if (IS_ERR(req)) { 249 count = PTR_ERR(req); 250 goto out_put; 251 } 252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 253 blk_execute_rq(mq->queue, NULL, req, 0); 254 ret = req_to_mmc_queue_req(req)->drv_op_result; 255 blk_put_request(req); 256 257 if (!ret) { 258 pr_info("%s: Locking boot partition ro until next power on\n", 259 md->disk->disk_name); 260 set_disk_ro(md->disk, 1); 261 262 list_for_each_entry(part_md, &md->part, part) 263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 265 set_disk_ro(part_md->disk, 1); 266 } 267 } 268 out_put: 269 mmc_blk_put(md); 270 return count; 271 } 272 273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 274 char *buf) 275 { 276 int ret; 277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 278 279 ret = snprintf(buf, PAGE_SIZE, "%d\n", 280 get_disk_ro(dev_to_disk(dev)) ^ 281 md->read_only); 282 mmc_blk_put(md); 283 return ret; 284 } 285 286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int ret; 290 char *end; 291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 292 unsigned long set = simple_strtoul(buf, &end, 0); 293 if (end == buf) { 294 ret = -EINVAL; 295 goto out; 296 } 297 298 set_disk_ro(dev_to_disk(dev), set || md->read_only); 299 ret = count; 300 out: 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 306 { 307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 308 int ret = -ENXIO; 309 310 mutex_lock(&block_mutex); 311 if (md) { 312 if (md->usage == 2) 313 check_disk_change(bdev); 314 ret = 0; 315 316 if ((mode & FMODE_WRITE) && md->read_only) { 317 mmc_blk_put(md); 318 ret = -EROFS; 319 } 320 } 321 mutex_unlock(&block_mutex); 322 323 return ret; 324 } 325 326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 327 { 328 struct mmc_blk_data *md = disk->private_data; 329 330 mutex_lock(&block_mutex); 331 mmc_blk_put(md); 332 mutex_unlock(&block_mutex); 333 } 334 335 static int 336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 337 { 338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 339 geo->heads = 4; 340 geo->sectors = 16; 341 return 0; 342 } 343 344 struct mmc_blk_ioc_data { 345 struct mmc_ioc_cmd ic; 346 unsigned char *buf; 347 u64 buf_bytes; 348 struct mmc_rpmb_data *rpmb; 349 }; 350 351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 352 struct mmc_ioc_cmd __user *user) 353 { 354 struct mmc_blk_ioc_data *idata; 355 int err; 356 357 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 358 if (!idata) { 359 err = -ENOMEM; 360 goto out; 361 } 362 363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 364 err = -EFAULT; 365 goto idata_err; 366 } 367 368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 370 err = -EOVERFLOW; 371 goto idata_err; 372 } 373 374 if (!idata->buf_bytes) { 375 idata->buf = NULL; 376 return idata; 377 } 378 379 idata->buf = memdup_user((void __user *)(unsigned long) 380 idata->ic.data_ptr, idata->buf_bytes); 381 if (IS_ERR(idata->buf)) { 382 err = PTR_ERR(idata->buf); 383 goto idata_err; 384 } 385 386 return idata; 387 388 idata_err: 389 kfree(idata); 390 out: 391 return ERR_PTR(err); 392 } 393 394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 395 struct mmc_blk_ioc_data *idata) 396 { 397 struct mmc_ioc_cmd *ic = &idata->ic; 398 399 if (copy_to_user(&(ic_ptr->response), ic->response, 400 sizeof(ic->response))) 401 return -EFAULT; 402 403 if (!idata->ic.write_flag) { 404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 405 idata->buf, idata->buf_bytes)) 406 return -EFAULT; 407 } 408 409 return 0; 410 } 411 412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 413 u32 retries_max) 414 { 415 int err; 416 u32 retry_count = 0; 417 418 if (!status || !retries_max) 419 return -EINVAL; 420 421 do { 422 err = __mmc_send_status(card, status, 5); 423 if (err) 424 break; 425 426 if (!R1_STATUS(*status) && 427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 428 break; /* RPMB programming operation complete */ 429 430 /* 431 * Rechedule to give the MMC device a chance to continue 432 * processing the previous command without being polled too 433 * frequently. 434 */ 435 usleep_range(1000, 5000); 436 } while (++retry_count < retries_max); 437 438 if (retry_count == retries_max) 439 err = -EPERM; 440 441 return err; 442 } 443 444 static int ioctl_do_sanitize(struct mmc_card *card) 445 { 446 int err; 447 448 if (!mmc_can_sanitize(card)) { 449 pr_warn("%s: %s - SANITIZE is not supported\n", 450 mmc_hostname(card->host), __func__); 451 err = -EOPNOTSUPP; 452 goto out; 453 } 454 455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 456 mmc_hostname(card->host), __func__); 457 458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 459 EXT_CSD_SANITIZE_START, 1, 460 MMC_SANITIZE_REQ_TIMEOUT); 461 462 if (err) 463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 464 mmc_hostname(card->host), __func__, err); 465 466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 467 __func__); 468 out: 469 return err; 470 } 471 472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 473 struct mmc_blk_ioc_data *idata) 474 { 475 struct mmc_command cmd = {}, sbc = {}; 476 struct mmc_data data = {}; 477 struct mmc_request mrq = {}; 478 struct scatterlist sg; 479 int err; 480 unsigned int target_part; 481 u32 status = 0; 482 483 if (!card || !md || !idata) 484 return -EINVAL; 485 486 /* 487 * The RPMB accesses comes in from the character device, so we 488 * need to target these explicitly. Else we just target the 489 * partition type for the block device the ioctl() was issued 490 * on. 491 */ 492 if (idata->rpmb) { 493 /* Support multiple RPMB partitions */ 494 target_part = idata->rpmb->part_index; 495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 496 } else { 497 target_part = md->part_type; 498 } 499 500 cmd.opcode = idata->ic.opcode; 501 cmd.arg = idata->ic.arg; 502 cmd.flags = idata->ic.flags; 503 504 if (idata->buf_bytes) { 505 data.sg = &sg; 506 data.sg_len = 1; 507 data.blksz = idata->ic.blksz; 508 data.blocks = idata->ic.blocks; 509 510 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 511 512 if (idata->ic.write_flag) 513 data.flags = MMC_DATA_WRITE; 514 else 515 data.flags = MMC_DATA_READ; 516 517 /* data.flags must already be set before doing this. */ 518 mmc_set_data_timeout(&data, card); 519 520 /* Allow overriding the timeout_ns for empirical tuning. */ 521 if (idata->ic.data_timeout_ns) 522 data.timeout_ns = idata->ic.data_timeout_ns; 523 524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 525 /* 526 * Pretend this is a data transfer and rely on the 527 * host driver to compute timeout. When all host 528 * drivers support cmd.cmd_timeout for R1B, this 529 * can be changed to: 530 * 531 * mrq.data = NULL; 532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 533 */ 534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 535 } 536 537 mrq.data = &data; 538 } 539 540 mrq.cmd = &cmd; 541 542 err = mmc_blk_part_switch(card, target_part); 543 if (err) 544 return err; 545 546 if (idata->ic.is_acmd) { 547 err = mmc_app_cmd(card->host, card); 548 if (err) 549 return err; 550 } 551 552 if (idata->rpmb) { 553 sbc.opcode = MMC_SET_BLOCK_COUNT; 554 /* 555 * We don't do any blockcount validation because the max size 556 * may be increased by a future standard. We just copy the 557 * 'Reliable Write' bit here. 558 */ 559 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 560 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 561 mrq.sbc = &sbc; 562 } 563 564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 565 (cmd.opcode == MMC_SWITCH)) { 566 err = ioctl_do_sanitize(card); 567 568 if (err) 569 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 570 __func__, err); 571 572 return err; 573 } 574 575 mmc_wait_for_req(card->host, &mrq); 576 577 if (cmd.error) { 578 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 579 __func__, cmd.error); 580 return cmd.error; 581 } 582 if (data.error) { 583 dev_err(mmc_dev(card->host), "%s: data error %d\n", 584 __func__, data.error); 585 return data.error; 586 } 587 588 /* 589 * Make sure the cache of the PARTITION_CONFIG register and 590 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 591 * changed it successfully. 592 */ 593 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 594 (cmd.opcode == MMC_SWITCH)) { 595 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 597 598 /* 599 * Update cache so the next mmc_blk_part_switch call operates 600 * on up-to-date data. 601 */ 602 card->ext_csd.part_config = value; 603 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 604 } 605 606 /* 607 * According to the SD specs, some commands require a delay after 608 * issuing the command. 609 */ 610 if (idata->ic.postsleep_min_us) 611 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 612 613 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 614 615 if (idata->rpmb) { 616 /* 617 * Ensure RPMB command has completed by polling CMD13 618 * "Send Status". 619 */ 620 err = ioctl_rpmb_card_status_poll(card, &status, 5); 621 if (err) 622 dev_err(mmc_dev(card->host), 623 "%s: Card Status=0x%08X, error %d\n", 624 __func__, status, err); 625 } 626 627 return err; 628 } 629 630 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 631 struct mmc_ioc_cmd __user *ic_ptr, 632 struct mmc_rpmb_data *rpmb) 633 { 634 struct mmc_blk_ioc_data *idata; 635 struct mmc_blk_ioc_data *idatas[1]; 636 struct mmc_queue *mq; 637 struct mmc_card *card; 638 int err = 0, ioc_err = 0; 639 struct request *req; 640 641 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 642 if (IS_ERR(idata)) 643 return PTR_ERR(idata); 644 /* This will be NULL on non-RPMB ioctl():s */ 645 idata->rpmb = rpmb; 646 647 card = md->queue.card; 648 if (IS_ERR(card)) { 649 err = PTR_ERR(card); 650 goto cmd_done; 651 } 652 653 /* 654 * Dispatch the ioctl() into the block request queue. 655 */ 656 mq = &md->queue; 657 req = blk_get_request(mq->queue, 658 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 659 if (IS_ERR(req)) { 660 err = PTR_ERR(req); 661 goto cmd_done; 662 } 663 idatas[0] = idata; 664 req_to_mmc_queue_req(req)->drv_op = 665 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 666 req_to_mmc_queue_req(req)->drv_op_data = idatas; 667 req_to_mmc_queue_req(req)->ioc_count = 1; 668 blk_execute_rq(mq->queue, NULL, req, 0); 669 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 670 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 671 blk_put_request(req); 672 673 cmd_done: 674 kfree(idata->buf); 675 kfree(idata); 676 return ioc_err ? ioc_err : err; 677 } 678 679 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 680 struct mmc_ioc_multi_cmd __user *user, 681 struct mmc_rpmb_data *rpmb) 682 { 683 struct mmc_blk_ioc_data **idata = NULL; 684 struct mmc_ioc_cmd __user *cmds = user->cmds; 685 struct mmc_card *card; 686 struct mmc_queue *mq; 687 int i, err = 0, ioc_err = 0; 688 __u64 num_of_cmds; 689 struct request *req; 690 691 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 692 sizeof(num_of_cmds))) 693 return -EFAULT; 694 695 if (!num_of_cmds) 696 return 0; 697 698 if (num_of_cmds > MMC_IOC_MAX_CMDS) 699 return -EINVAL; 700 701 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 702 if (!idata) 703 return -ENOMEM; 704 705 for (i = 0; i < num_of_cmds; i++) { 706 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 707 if (IS_ERR(idata[i])) { 708 err = PTR_ERR(idata[i]); 709 num_of_cmds = i; 710 goto cmd_err; 711 } 712 /* This will be NULL on non-RPMB ioctl():s */ 713 idata[i]->rpmb = rpmb; 714 } 715 716 card = md->queue.card; 717 if (IS_ERR(card)) { 718 err = PTR_ERR(card); 719 goto cmd_err; 720 } 721 722 723 /* 724 * Dispatch the ioctl()s into the block request queue. 725 */ 726 mq = &md->queue; 727 req = blk_get_request(mq->queue, 728 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 729 if (IS_ERR(req)) { 730 err = PTR_ERR(req); 731 goto cmd_err; 732 } 733 req_to_mmc_queue_req(req)->drv_op = 734 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 735 req_to_mmc_queue_req(req)->drv_op_data = idata; 736 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 737 blk_execute_rq(mq->queue, NULL, req, 0); 738 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 739 740 /* copy to user if data and response */ 741 for (i = 0; i < num_of_cmds && !err; i++) 742 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 743 744 blk_put_request(req); 745 746 cmd_err: 747 for (i = 0; i < num_of_cmds; i++) { 748 kfree(idata[i]->buf); 749 kfree(idata[i]); 750 } 751 kfree(idata); 752 return ioc_err ? ioc_err : err; 753 } 754 755 static int mmc_blk_check_blkdev(struct block_device *bdev) 756 { 757 /* 758 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 759 * whole block device, not on a partition. This prevents overspray 760 * between sibling partitions. 761 */ 762 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 763 return -EPERM; 764 return 0; 765 } 766 767 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 768 unsigned int cmd, unsigned long arg) 769 { 770 struct mmc_blk_data *md; 771 int ret; 772 773 switch (cmd) { 774 case MMC_IOC_CMD: 775 ret = mmc_blk_check_blkdev(bdev); 776 if (ret) 777 return ret; 778 md = mmc_blk_get(bdev->bd_disk); 779 if (!md) 780 return -EINVAL; 781 ret = mmc_blk_ioctl_cmd(md, 782 (struct mmc_ioc_cmd __user *)arg, 783 NULL); 784 mmc_blk_put(md); 785 return ret; 786 case MMC_IOC_MULTI_CMD: 787 ret = mmc_blk_check_blkdev(bdev); 788 if (ret) 789 return ret; 790 md = mmc_blk_get(bdev->bd_disk); 791 if (!md) 792 return -EINVAL; 793 ret = mmc_blk_ioctl_multi_cmd(md, 794 (struct mmc_ioc_multi_cmd __user *)arg, 795 NULL); 796 mmc_blk_put(md); 797 return ret; 798 default: 799 return -EINVAL; 800 } 801 } 802 803 #ifdef CONFIG_COMPAT 804 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 805 unsigned int cmd, unsigned long arg) 806 { 807 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 808 } 809 #endif 810 811 static const struct block_device_operations mmc_bdops = { 812 .open = mmc_blk_open, 813 .release = mmc_blk_release, 814 .getgeo = mmc_blk_getgeo, 815 .owner = THIS_MODULE, 816 .ioctl = mmc_blk_ioctl, 817 #ifdef CONFIG_COMPAT 818 .compat_ioctl = mmc_blk_compat_ioctl, 819 #endif 820 }; 821 822 static int mmc_blk_part_switch_pre(struct mmc_card *card, 823 unsigned int part_type) 824 { 825 int ret = 0; 826 827 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 828 if (card->ext_csd.cmdq_en) { 829 ret = mmc_cmdq_disable(card); 830 if (ret) 831 return ret; 832 } 833 mmc_retune_pause(card->host); 834 } 835 836 return ret; 837 } 838 839 static int mmc_blk_part_switch_post(struct mmc_card *card, 840 unsigned int part_type) 841 { 842 int ret = 0; 843 844 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 845 mmc_retune_unpause(card->host); 846 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 847 ret = mmc_cmdq_enable(card); 848 } 849 850 return ret; 851 } 852 853 static inline int mmc_blk_part_switch(struct mmc_card *card, 854 unsigned int part_type) 855 { 856 int ret = 0; 857 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 858 859 if (main_md->part_curr == part_type) 860 return 0; 861 862 if (mmc_card_mmc(card)) { 863 u8 part_config = card->ext_csd.part_config; 864 865 ret = mmc_blk_part_switch_pre(card, part_type); 866 if (ret) 867 return ret; 868 869 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 870 part_config |= part_type; 871 872 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 873 EXT_CSD_PART_CONFIG, part_config, 874 card->ext_csd.part_time); 875 if (ret) { 876 mmc_blk_part_switch_post(card, part_type); 877 return ret; 878 } 879 880 card->ext_csd.part_config = part_config; 881 882 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 883 } 884 885 main_md->part_curr = part_type; 886 return ret; 887 } 888 889 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 890 { 891 int err; 892 u32 result; 893 __be32 *blocks; 894 895 struct mmc_request mrq = {}; 896 struct mmc_command cmd = {}; 897 struct mmc_data data = {}; 898 899 struct scatterlist sg; 900 901 cmd.opcode = MMC_APP_CMD; 902 cmd.arg = card->rca << 16; 903 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 904 905 err = mmc_wait_for_cmd(card->host, &cmd, 0); 906 if (err) 907 return err; 908 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 909 return -EIO; 910 911 memset(&cmd, 0, sizeof(struct mmc_command)); 912 913 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 914 cmd.arg = 0; 915 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 916 917 data.blksz = 4; 918 data.blocks = 1; 919 data.flags = MMC_DATA_READ; 920 data.sg = &sg; 921 data.sg_len = 1; 922 mmc_set_data_timeout(&data, card); 923 924 mrq.cmd = &cmd; 925 mrq.data = &data; 926 927 blocks = kmalloc(4, GFP_KERNEL); 928 if (!blocks) 929 return -ENOMEM; 930 931 sg_init_one(&sg, blocks, 4); 932 933 mmc_wait_for_req(card->host, &mrq); 934 935 result = ntohl(*blocks); 936 kfree(blocks); 937 938 if (cmd.error || data.error) 939 return -EIO; 940 941 *written_blocks = result; 942 943 return 0; 944 } 945 946 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 947 { 948 if (host->actual_clock) 949 return host->actual_clock / 1000; 950 951 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 952 if (host->ios.clock) 953 return host->ios.clock / 2000; 954 955 /* How can there be no clock */ 956 WARN_ON_ONCE(1); 957 return 100; /* 100 kHz is minimum possible value */ 958 } 959 960 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 961 struct mmc_data *data) 962 { 963 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 964 unsigned int khz; 965 966 if (data->timeout_clks) { 967 khz = mmc_blk_clock_khz(host); 968 ms += DIV_ROUND_UP(data->timeout_clks, khz); 969 } 970 971 return ms; 972 } 973 974 static inline bool mmc_blk_in_tran_state(u32 status) 975 { 976 /* 977 * Some cards mishandle the status bits, so make sure to check both the 978 * busy indication and the card state. 979 */ 980 return status & R1_READY_FOR_DATA && 981 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 982 } 983 984 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 985 struct request *req, u32 *resp_errs) 986 { 987 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 988 int err = 0; 989 u32 status; 990 991 do { 992 bool done = time_after(jiffies, timeout); 993 994 err = __mmc_send_status(card, &status, 5); 995 if (err) { 996 pr_err("%s: error %d requesting status\n", 997 req->rq_disk->disk_name, err); 998 return err; 999 } 1000 1001 /* Accumulate any response error bits seen */ 1002 if (resp_errs) 1003 *resp_errs |= status; 1004 1005 /* 1006 * Timeout if the device never becomes ready for data and never 1007 * leaves the program state. 1008 */ 1009 if (done) { 1010 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1011 mmc_hostname(card->host), 1012 req->rq_disk->disk_name, __func__, status); 1013 return -ETIMEDOUT; 1014 } 1015 1016 /* 1017 * Some cards mishandle the status bits, 1018 * so make sure to check both the busy 1019 * indication and the card state. 1020 */ 1021 } while (!mmc_blk_in_tran_state(status)); 1022 1023 return err; 1024 } 1025 1026 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1027 int type) 1028 { 1029 int err; 1030 1031 if (md->reset_done & type) 1032 return -EEXIST; 1033 1034 md->reset_done |= type; 1035 err = mmc_hw_reset(host); 1036 /* Ensure we switch back to the correct partition */ 1037 if (err != -EOPNOTSUPP) { 1038 struct mmc_blk_data *main_md = 1039 dev_get_drvdata(&host->card->dev); 1040 int part_err; 1041 1042 main_md->part_curr = main_md->part_type; 1043 part_err = mmc_blk_part_switch(host->card, md->part_type); 1044 if (part_err) { 1045 /* 1046 * We have failed to get back into the correct 1047 * partition, so we need to abort the whole request. 1048 */ 1049 return -ENODEV; 1050 } 1051 } 1052 return err; 1053 } 1054 1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1056 { 1057 md->reset_done &= ~type; 1058 } 1059 1060 /* 1061 * The non-block commands come back from the block layer after it queued it and 1062 * processed it with all other requests and then they get issued in this 1063 * function. 1064 */ 1065 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1066 { 1067 struct mmc_queue_req *mq_rq; 1068 struct mmc_card *card = mq->card; 1069 struct mmc_blk_data *md = mq->blkdata; 1070 struct mmc_blk_ioc_data **idata; 1071 bool rpmb_ioctl; 1072 u8 **ext_csd; 1073 u32 status; 1074 int ret; 1075 int i; 1076 1077 mq_rq = req_to_mmc_queue_req(req); 1078 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1079 1080 switch (mq_rq->drv_op) { 1081 case MMC_DRV_OP_IOCTL: 1082 case MMC_DRV_OP_IOCTL_RPMB: 1083 idata = mq_rq->drv_op_data; 1084 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1085 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1086 if (ret) 1087 break; 1088 } 1089 /* Always switch back to main area after RPMB access */ 1090 if (rpmb_ioctl) 1091 mmc_blk_part_switch(card, 0); 1092 break; 1093 case MMC_DRV_OP_BOOT_WP: 1094 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1095 card->ext_csd.boot_ro_lock | 1096 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1097 card->ext_csd.part_time); 1098 if (ret) 1099 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1100 md->disk->disk_name, ret); 1101 else 1102 card->ext_csd.boot_ro_lock |= 1103 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1104 break; 1105 case MMC_DRV_OP_GET_CARD_STATUS: 1106 ret = mmc_send_status(card, &status); 1107 if (!ret) 1108 ret = status; 1109 break; 1110 case MMC_DRV_OP_GET_EXT_CSD: 1111 ext_csd = mq_rq->drv_op_data; 1112 ret = mmc_get_ext_csd(card, ext_csd); 1113 break; 1114 default: 1115 pr_err("%s: unknown driver specific operation\n", 1116 md->disk->disk_name); 1117 ret = -EINVAL; 1118 break; 1119 } 1120 mq_rq->drv_op_result = ret; 1121 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1122 } 1123 1124 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1125 { 1126 struct mmc_blk_data *md = mq->blkdata; 1127 struct mmc_card *card = md->queue.card; 1128 unsigned int from, nr, arg; 1129 int err = 0, type = MMC_BLK_DISCARD; 1130 blk_status_t status = BLK_STS_OK; 1131 1132 if (!mmc_can_erase(card)) { 1133 status = BLK_STS_NOTSUPP; 1134 goto fail; 1135 } 1136 1137 from = blk_rq_pos(req); 1138 nr = blk_rq_sectors(req); 1139 1140 if (mmc_can_discard(card)) 1141 arg = MMC_DISCARD_ARG; 1142 else if (mmc_can_trim(card)) 1143 arg = MMC_TRIM_ARG; 1144 else 1145 arg = MMC_ERASE_ARG; 1146 do { 1147 err = 0; 1148 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1149 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1150 INAND_CMD38_ARG_EXT_CSD, 1151 arg == MMC_TRIM_ARG ? 1152 INAND_CMD38_ARG_TRIM : 1153 INAND_CMD38_ARG_ERASE, 1154 0); 1155 } 1156 if (!err) 1157 err = mmc_erase(card, from, nr, arg); 1158 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1159 if (err) 1160 status = BLK_STS_IOERR; 1161 else 1162 mmc_blk_reset_success(md, type); 1163 fail: 1164 blk_mq_end_request(req, status); 1165 } 1166 1167 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1168 struct request *req) 1169 { 1170 struct mmc_blk_data *md = mq->blkdata; 1171 struct mmc_card *card = md->queue.card; 1172 unsigned int from, nr, arg; 1173 int err = 0, type = MMC_BLK_SECDISCARD; 1174 blk_status_t status = BLK_STS_OK; 1175 1176 if (!(mmc_can_secure_erase_trim(card))) { 1177 status = BLK_STS_NOTSUPP; 1178 goto out; 1179 } 1180 1181 from = blk_rq_pos(req); 1182 nr = blk_rq_sectors(req); 1183 1184 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1185 arg = MMC_SECURE_TRIM1_ARG; 1186 else 1187 arg = MMC_SECURE_ERASE_ARG; 1188 1189 retry: 1190 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1191 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1192 INAND_CMD38_ARG_EXT_CSD, 1193 arg == MMC_SECURE_TRIM1_ARG ? 1194 INAND_CMD38_ARG_SECTRIM1 : 1195 INAND_CMD38_ARG_SECERASE, 1196 0); 1197 if (err) 1198 goto out_retry; 1199 } 1200 1201 err = mmc_erase(card, from, nr, arg); 1202 if (err == -EIO) 1203 goto out_retry; 1204 if (err) { 1205 status = BLK_STS_IOERR; 1206 goto out; 1207 } 1208 1209 if (arg == MMC_SECURE_TRIM1_ARG) { 1210 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1211 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1212 INAND_CMD38_ARG_EXT_CSD, 1213 INAND_CMD38_ARG_SECTRIM2, 1214 0); 1215 if (err) 1216 goto out_retry; 1217 } 1218 1219 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1220 if (err == -EIO) 1221 goto out_retry; 1222 if (err) { 1223 status = BLK_STS_IOERR; 1224 goto out; 1225 } 1226 } 1227 1228 out_retry: 1229 if (err && !mmc_blk_reset(md, card->host, type)) 1230 goto retry; 1231 if (!err) 1232 mmc_blk_reset_success(md, type); 1233 out: 1234 blk_mq_end_request(req, status); 1235 } 1236 1237 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1238 { 1239 struct mmc_blk_data *md = mq->blkdata; 1240 struct mmc_card *card = md->queue.card; 1241 int ret = 0; 1242 1243 ret = mmc_flush_cache(card); 1244 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1245 } 1246 1247 /* 1248 * Reformat current write as a reliable write, supporting 1249 * both legacy and the enhanced reliable write MMC cards. 1250 * In each transfer we'll handle only as much as a single 1251 * reliable write can handle, thus finish the request in 1252 * partial completions. 1253 */ 1254 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1255 struct mmc_card *card, 1256 struct request *req) 1257 { 1258 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1259 /* Legacy mode imposes restrictions on transfers. */ 1260 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1261 brq->data.blocks = 1; 1262 1263 if (brq->data.blocks > card->ext_csd.rel_sectors) 1264 brq->data.blocks = card->ext_csd.rel_sectors; 1265 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1266 brq->data.blocks = 1; 1267 } 1268 } 1269 1270 #define CMD_ERRORS_EXCL_OOR \ 1271 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1272 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1273 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1274 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1275 R1_CC_ERROR | /* Card controller error */ \ 1276 R1_ERROR) /* General/unknown error */ 1277 1278 #define CMD_ERRORS \ 1279 (CMD_ERRORS_EXCL_OOR | \ 1280 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1281 1282 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1283 { 1284 u32 val; 1285 1286 /* 1287 * Per the SD specification(physical layer version 4.10)[1], 1288 * section 4.3.3, it explicitly states that "When the last 1289 * block of user area is read using CMD18, the host should 1290 * ignore OUT_OF_RANGE error that may occur even the sequence 1291 * is correct". And JESD84-B51 for eMMC also has a similar 1292 * statement on section 6.8.3. 1293 * 1294 * Multiple block read/write could be done by either predefined 1295 * method, namely CMD23, or open-ending mode. For open-ending mode, 1296 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1297 * 1298 * However the spec[1] doesn't tell us whether we should also 1299 * ignore that for predefined method. But per the spec[1], section 1300 * 4.15 Set Block Count Command, it says"If illegal block count 1301 * is set, out of range error will be indicated during read/write 1302 * operation (For example, data transfer is stopped at user area 1303 * boundary)." In another word, we could expect a out of range error 1304 * in the response for the following CMD18/25. And if argument of 1305 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1306 * we could also expect to get a -ETIMEDOUT or any error number from 1307 * the host drivers due to missing data response(for write)/data(for 1308 * read), as the cards will stop the data transfer by itself per the 1309 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1310 */ 1311 1312 if (!brq->stop.error) { 1313 bool oor_with_open_end; 1314 /* If there is no error yet, check R1 response */ 1315 1316 val = brq->stop.resp[0] & CMD_ERRORS; 1317 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1318 1319 if (val && !oor_with_open_end) 1320 brq->stop.error = -EIO; 1321 } 1322 } 1323 1324 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1325 int disable_multi, bool *do_rel_wr_p, 1326 bool *do_data_tag_p) 1327 { 1328 struct mmc_blk_data *md = mq->blkdata; 1329 struct mmc_card *card = md->queue.card; 1330 struct mmc_blk_request *brq = &mqrq->brq; 1331 struct request *req = mmc_queue_req_to_req(mqrq); 1332 bool do_rel_wr, do_data_tag; 1333 1334 /* 1335 * Reliable writes are used to implement Forced Unit Access and 1336 * are supported only on MMCs. 1337 */ 1338 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1339 rq_data_dir(req) == WRITE && 1340 (md->flags & MMC_BLK_REL_WR); 1341 1342 memset(brq, 0, sizeof(struct mmc_blk_request)); 1343 1344 brq->mrq.data = &brq->data; 1345 brq->mrq.tag = req->tag; 1346 1347 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1348 brq->stop.arg = 0; 1349 1350 if (rq_data_dir(req) == READ) { 1351 brq->data.flags = MMC_DATA_READ; 1352 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1353 } else { 1354 brq->data.flags = MMC_DATA_WRITE; 1355 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1356 } 1357 1358 brq->data.blksz = 512; 1359 brq->data.blocks = blk_rq_sectors(req); 1360 brq->data.blk_addr = blk_rq_pos(req); 1361 1362 /* 1363 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1364 * The eMMC will give "high" priority tasks priority over "simple" 1365 * priority tasks. Here we always set "simple" priority by not setting 1366 * MMC_DATA_PRIO. 1367 */ 1368 1369 /* 1370 * The block layer doesn't support all sector count 1371 * restrictions, so we need to be prepared for too big 1372 * requests. 1373 */ 1374 if (brq->data.blocks > card->host->max_blk_count) 1375 brq->data.blocks = card->host->max_blk_count; 1376 1377 if (brq->data.blocks > 1) { 1378 /* 1379 * Some SD cards in SPI mode return a CRC error or even lock up 1380 * completely when trying to read the last block using a 1381 * multiblock read command. 1382 */ 1383 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1384 (blk_rq_pos(req) + blk_rq_sectors(req) == 1385 get_capacity(md->disk))) 1386 brq->data.blocks--; 1387 1388 /* 1389 * After a read error, we redo the request one sector 1390 * at a time in order to accurately determine which 1391 * sectors can be read successfully. 1392 */ 1393 if (disable_multi) 1394 brq->data.blocks = 1; 1395 1396 /* 1397 * Some controllers have HW issues while operating 1398 * in multiple I/O mode 1399 */ 1400 if (card->host->ops->multi_io_quirk) 1401 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1402 (rq_data_dir(req) == READ) ? 1403 MMC_DATA_READ : MMC_DATA_WRITE, 1404 brq->data.blocks); 1405 } 1406 1407 if (do_rel_wr) { 1408 mmc_apply_rel_rw(brq, card, req); 1409 brq->data.flags |= MMC_DATA_REL_WR; 1410 } 1411 1412 /* 1413 * Data tag is used only during writing meta data to speed 1414 * up write and any subsequent read of this meta data 1415 */ 1416 do_data_tag = card->ext_csd.data_tag_unit_size && 1417 (req->cmd_flags & REQ_META) && 1418 (rq_data_dir(req) == WRITE) && 1419 ((brq->data.blocks * brq->data.blksz) >= 1420 card->ext_csd.data_tag_unit_size); 1421 1422 if (do_data_tag) 1423 brq->data.flags |= MMC_DATA_DAT_TAG; 1424 1425 mmc_set_data_timeout(&brq->data, card); 1426 1427 brq->data.sg = mqrq->sg; 1428 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1429 1430 /* 1431 * Adjust the sg list so it is the same size as the 1432 * request. 1433 */ 1434 if (brq->data.blocks != blk_rq_sectors(req)) { 1435 int i, data_size = brq->data.blocks << 9; 1436 struct scatterlist *sg; 1437 1438 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1439 data_size -= sg->length; 1440 if (data_size <= 0) { 1441 sg->length += data_size; 1442 i++; 1443 break; 1444 } 1445 } 1446 brq->data.sg_len = i; 1447 } 1448 1449 if (do_rel_wr_p) 1450 *do_rel_wr_p = do_rel_wr; 1451 1452 if (do_data_tag_p) 1453 *do_data_tag_p = do_data_tag; 1454 } 1455 1456 #define MMC_CQE_RETRIES 2 1457 1458 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1459 { 1460 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1461 struct mmc_request *mrq = &mqrq->brq.mrq; 1462 struct request_queue *q = req->q; 1463 struct mmc_host *host = mq->card->host; 1464 unsigned long flags; 1465 bool put_card; 1466 int err; 1467 1468 mmc_cqe_post_req(host, mrq); 1469 1470 if (mrq->cmd && mrq->cmd->error) 1471 err = mrq->cmd->error; 1472 else if (mrq->data && mrq->data->error) 1473 err = mrq->data->error; 1474 else 1475 err = 0; 1476 1477 if (err) { 1478 if (mqrq->retries++ < MMC_CQE_RETRIES) 1479 blk_mq_requeue_request(req, true); 1480 else 1481 blk_mq_end_request(req, BLK_STS_IOERR); 1482 } else if (mrq->data) { 1483 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1484 blk_mq_requeue_request(req, true); 1485 else 1486 __blk_mq_end_request(req, BLK_STS_OK); 1487 } else { 1488 blk_mq_end_request(req, BLK_STS_OK); 1489 } 1490 1491 spin_lock_irqsave(q->queue_lock, flags); 1492 1493 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1494 1495 put_card = (mmc_tot_in_flight(mq) == 0); 1496 1497 mmc_cqe_check_busy(mq); 1498 1499 spin_unlock_irqrestore(q->queue_lock, flags); 1500 1501 if (!mq->cqe_busy) 1502 blk_mq_run_hw_queues(q, true); 1503 1504 if (put_card) 1505 mmc_put_card(mq->card, &mq->ctx); 1506 } 1507 1508 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1509 { 1510 struct mmc_card *card = mq->card; 1511 struct mmc_host *host = card->host; 1512 int err; 1513 1514 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1515 1516 err = mmc_cqe_recovery(host); 1517 if (err) 1518 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1519 else 1520 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1521 1522 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1523 } 1524 1525 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1526 { 1527 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1528 brq.mrq); 1529 struct request *req = mmc_queue_req_to_req(mqrq); 1530 struct request_queue *q = req->q; 1531 struct mmc_queue *mq = q->queuedata; 1532 1533 /* 1534 * Block layer timeouts race with completions which means the normal 1535 * completion path cannot be used during recovery. 1536 */ 1537 if (mq->in_recovery) 1538 mmc_blk_cqe_complete_rq(mq, req); 1539 else 1540 blk_mq_complete_request(req); 1541 } 1542 1543 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1544 { 1545 mrq->done = mmc_blk_cqe_req_done; 1546 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1547 1548 return mmc_cqe_start_req(host, mrq); 1549 } 1550 1551 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1552 struct request *req) 1553 { 1554 struct mmc_blk_request *brq = &mqrq->brq; 1555 1556 memset(brq, 0, sizeof(*brq)); 1557 1558 brq->mrq.cmd = &brq->cmd; 1559 brq->mrq.tag = req->tag; 1560 1561 return &brq->mrq; 1562 } 1563 1564 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1565 { 1566 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1567 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1568 1569 mrq->cmd->opcode = MMC_SWITCH; 1570 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1571 (EXT_CSD_FLUSH_CACHE << 16) | 1572 (1 << 8) | 1573 EXT_CSD_CMD_SET_NORMAL; 1574 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1575 1576 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1577 } 1578 1579 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1580 { 1581 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1582 1583 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1584 1585 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1586 } 1587 1588 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1589 struct mmc_card *card, 1590 int disable_multi, 1591 struct mmc_queue *mq) 1592 { 1593 u32 readcmd, writecmd; 1594 struct mmc_blk_request *brq = &mqrq->brq; 1595 struct request *req = mmc_queue_req_to_req(mqrq); 1596 struct mmc_blk_data *md = mq->blkdata; 1597 bool do_rel_wr, do_data_tag; 1598 1599 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1600 1601 brq->mrq.cmd = &brq->cmd; 1602 1603 brq->cmd.arg = blk_rq_pos(req); 1604 if (!mmc_card_blockaddr(card)) 1605 brq->cmd.arg <<= 9; 1606 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1607 1608 if (brq->data.blocks > 1 || do_rel_wr) { 1609 /* SPI multiblock writes terminate using a special 1610 * token, not a STOP_TRANSMISSION request. 1611 */ 1612 if (!mmc_host_is_spi(card->host) || 1613 rq_data_dir(req) == READ) 1614 brq->mrq.stop = &brq->stop; 1615 readcmd = MMC_READ_MULTIPLE_BLOCK; 1616 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1617 } else { 1618 brq->mrq.stop = NULL; 1619 readcmd = MMC_READ_SINGLE_BLOCK; 1620 writecmd = MMC_WRITE_BLOCK; 1621 } 1622 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1623 1624 /* 1625 * Pre-defined multi-block transfers are preferable to 1626 * open ended-ones (and necessary for reliable writes). 1627 * However, it is not sufficient to just send CMD23, 1628 * and avoid the final CMD12, as on an error condition 1629 * CMD12 (stop) needs to be sent anyway. This, coupled 1630 * with Auto-CMD23 enhancements provided by some 1631 * hosts, means that the complexity of dealing 1632 * with this is best left to the host. If CMD23 is 1633 * supported by card and host, we'll fill sbc in and let 1634 * the host deal with handling it correctly. This means 1635 * that for hosts that don't expose MMC_CAP_CMD23, no 1636 * change of behavior will be observed. 1637 * 1638 * N.B: Some MMC cards experience perf degradation. 1639 * We'll avoid using CMD23-bounded multiblock writes for 1640 * these, while retaining features like reliable writes. 1641 */ 1642 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1643 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1644 do_data_tag)) { 1645 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1646 brq->sbc.arg = brq->data.blocks | 1647 (do_rel_wr ? (1 << 31) : 0) | 1648 (do_data_tag ? (1 << 29) : 0); 1649 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1650 brq->mrq.sbc = &brq->sbc; 1651 } 1652 } 1653 1654 #define MMC_MAX_RETRIES 5 1655 #define MMC_DATA_RETRIES 2 1656 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1657 1658 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1659 { 1660 struct mmc_command cmd = { 1661 .opcode = MMC_STOP_TRANSMISSION, 1662 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1663 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1664 .busy_timeout = timeout, 1665 }; 1666 1667 return mmc_wait_for_cmd(card->host, &cmd, 5); 1668 } 1669 1670 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1671 { 1672 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1673 struct mmc_blk_request *brq = &mqrq->brq; 1674 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1675 int err; 1676 1677 mmc_retune_hold_now(card->host); 1678 1679 mmc_blk_send_stop(card, timeout); 1680 1681 err = card_busy_detect(card, timeout, req, NULL); 1682 1683 mmc_retune_release(card->host); 1684 1685 return err; 1686 } 1687 1688 #define MMC_READ_SINGLE_RETRIES 2 1689 1690 /* Single sector read during recovery */ 1691 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1692 { 1693 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1694 struct mmc_request *mrq = &mqrq->brq.mrq; 1695 struct mmc_card *card = mq->card; 1696 struct mmc_host *host = card->host; 1697 blk_status_t error = BLK_STS_OK; 1698 int retries = 0; 1699 1700 do { 1701 u32 status; 1702 int err; 1703 1704 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1705 1706 mmc_wait_for_req(host, mrq); 1707 1708 err = mmc_send_status(card, &status); 1709 if (err) 1710 goto error_exit; 1711 1712 if (!mmc_host_is_spi(host) && 1713 !mmc_blk_in_tran_state(status)) { 1714 err = mmc_blk_fix_state(card, req); 1715 if (err) 1716 goto error_exit; 1717 } 1718 1719 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1720 continue; 1721 1722 retries = 0; 1723 1724 if (mrq->cmd->error || 1725 mrq->data->error || 1726 (!mmc_host_is_spi(host) && 1727 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1728 error = BLK_STS_IOERR; 1729 else 1730 error = BLK_STS_OK; 1731 1732 } while (blk_update_request(req, error, 512)); 1733 1734 return; 1735 1736 error_exit: 1737 mrq->data->bytes_xfered = 0; 1738 blk_update_request(req, BLK_STS_IOERR, 512); 1739 /* Let it try the remaining request again */ 1740 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1741 mqrq->retries = MMC_MAX_RETRIES - 1; 1742 } 1743 1744 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1745 { 1746 return !!brq->mrq.sbc; 1747 } 1748 1749 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1750 { 1751 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1752 } 1753 1754 /* 1755 * Check for errors the host controller driver might not have seen such as 1756 * response mode errors or invalid card state. 1757 */ 1758 static bool mmc_blk_status_error(struct request *req, u32 status) 1759 { 1760 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1761 struct mmc_blk_request *brq = &mqrq->brq; 1762 struct mmc_queue *mq = req->q->queuedata; 1763 u32 stop_err_bits; 1764 1765 if (mmc_host_is_spi(mq->card->host)) 1766 return false; 1767 1768 stop_err_bits = mmc_blk_stop_err_bits(brq); 1769 1770 return brq->cmd.resp[0] & CMD_ERRORS || 1771 brq->stop.resp[0] & stop_err_bits || 1772 status & stop_err_bits || 1773 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1774 } 1775 1776 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1777 { 1778 return !brq->sbc.error && !brq->cmd.error && 1779 !(brq->cmd.resp[0] & CMD_ERRORS); 1780 } 1781 1782 /* 1783 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1784 * policy: 1785 * 1. A request that has transferred at least some data is considered 1786 * successful and will be requeued if there is remaining data to 1787 * transfer. 1788 * 2. Otherwise the number of retries is incremented and the request 1789 * will be requeued if there are remaining retries. 1790 * 3. Otherwise the request will be errored out. 1791 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1792 * mqrq->retries. So there are only 4 possible actions here: 1793 * 1. do not accept the bytes_xfered value i.e. set it to zero 1794 * 2. change mqrq->retries to determine the number of retries 1795 * 3. try to reset the card 1796 * 4. read one sector at a time 1797 */ 1798 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1799 { 1800 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1801 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1802 struct mmc_blk_request *brq = &mqrq->brq; 1803 struct mmc_blk_data *md = mq->blkdata; 1804 struct mmc_card *card = mq->card; 1805 u32 status; 1806 u32 blocks; 1807 int err; 1808 1809 /* 1810 * Some errors the host driver might not have seen. Set the number of 1811 * bytes transferred to zero in that case. 1812 */ 1813 err = __mmc_send_status(card, &status, 0); 1814 if (err || mmc_blk_status_error(req, status)) 1815 brq->data.bytes_xfered = 0; 1816 1817 mmc_retune_release(card->host); 1818 1819 /* 1820 * Try again to get the status. This also provides an opportunity for 1821 * re-tuning. 1822 */ 1823 if (err) 1824 err = __mmc_send_status(card, &status, 0); 1825 1826 /* 1827 * Nothing more to do after the number of bytes transferred has been 1828 * updated and there is no card. 1829 */ 1830 if (err && mmc_detect_card_removed(card->host)) 1831 return; 1832 1833 /* Try to get back to "tran" state */ 1834 if (!mmc_host_is_spi(mq->card->host) && 1835 (err || !mmc_blk_in_tran_state(status))) 1836 err = mmc_blk_fix_state(mq->card, req); 1837 1838 /* 1839 * Special case for SD cards where the card might record the number of 1840 * blocks written. 1841 */ 1842 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1843 rq_data_dir(req) == WRITE) { 1844 if (mmc_sd_num_wr_blocks(card, &blocks)) 1845 brq->data.bytes_xfered = 0; 1846 else 1847 brq->data.bytes_xfered = blocks << 9; 1848 } 1849 1850 /* Reset if the card is in a bad state */ 1851 if (!mmc_host_is_spi(mq->card->host) && 1852 err && mmc_blk_reset(md, card->host, type)) { 1853 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1854 mqrq->retries = MMC_NO_RETRIES; 1855 return; 1856 } 1857 1858 /* 1859 * If anything was done, just return and if there is anything remaining 1860 * on the request it will get requeued. 1861 */ 1862 if (brq->data.bytes_xfered) 1863 return; 1864 1865 /* Reset before last retry */ 1866 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1867 mmc_blk_reset(md, card->host, type); 1868 1869 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1870 if (brq->sbc.error || brq->cmd.error) 1871 return; 1872 1873 /* Reduce the remaining retries for data errors */ 1874 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1875 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1876 return; 1877 } 1878 1879 /* FIXME: Missing single sector read for large sector size */ 1880 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1881 brq->data.blocks > 1) { 1882 /* Read one sector at a time */ 1883 mmc_blk_read_single(mq, req); 1884 return; 1885 } 1886 } 1887 1888 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1889 { 1890 mmc_blk_eval_resp_error(brq); 1891 1892 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1893 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1894 } 1895 1896 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1897 { 1898 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1899 u32 status = 0; 1900 int err; 1901 1902 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1903 return 0; 1904 1905 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1906 1907 /* 1908 * Do not assume data transferred correctly if there are any error bits 1909 * set. 1910 */ 1911 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1912 mqrq->brq.data.bytes_xfered = 0; 1913 err = err ? err : -EIO; 1914 } 1915 1916 /* Copy the exception bit so it will be seen later on */ 1917 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1918 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1919 1920 return err; 1921 } 1922 1923 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1924 struct request *req) 1925 { 1926 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1927 1928 mmc_blk_reset_success(mq->blkdata, type); 1929 } 1930 1931 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1932 { 1933 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1934 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1935 1936 if (nr_bytes) { 1937 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1938 blk_mq_requeue_request(req, true); 1939 else 1940 __blk_mq_end_request(req, BLK_STS_OK); 1941 } else if (!blk_rq_bytes(req)) { 1942 __blk_mq_end_request(req, BLK_STS_IOERR); 1943 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1944 blk_mq_requeue_request(req, true); 1945 } else { 1946 if (mmc_card_removed(mq->card)) 1947 req->rq_flags |= RQF_QUIET; 1948 blk_mq_end_request(req, BLK_STS_IOERR); 1949 } 1950 } 1951 1952 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1953 struct mmc_queue_req *mqrq) 1954 { 1955 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1956 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1957 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1958 } 1959 1960 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1961 struct mmc_queue_req *mqrq) 1962 { 1963 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1964 mmc_start_bkops(mq->card, true); 1965 } 1966 1967 void mmc_blk_mq_complete(struct request *req) 1968 { 1969 struct mmc_queue *mq = req->q->queuedata; 1970 1971 if (mq->use_cqe) 1972 mmc_blk_cqe_complete_rq(mq, req); 1973 else 1974 mmc_blk_mq_complete_rq(mq, req); 1975 } 1976 1977 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1978 struct request *req) 1979 { 1980 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1981 struct mmc_host *host = mq->card->host; 1982 1983 if (mmc_blk_rq_error(&mqrq->brq) || 1984 mmc_blk_card_busy(mq->card, req)) { 1985 mmc_blk_mq_rw_recovery(mq, req); 1986 } else { 1987 mmc_blk_rw_reset_success(mq, req); 1988 mmc_retune_release(host); 1989 } 1990 1991 mmc_blk_urgent_bkops(mq, mqrq); 1992 } 1993 1994 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1995 { 1996 struct request_queue *q = req->q; 1997 unsigned long flags; 1998 bool put_card; 1999 2000 spin_lock_irqsave(q->queue_lock, flags); 2001 2002 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2003 2004 put_card = (mmc_tot_in_flight(mq) == 0); 2005 2006 spin_unlock_irqrestore(q->queue_lock, flags); 2007 2008 if (put_card) 2009 mmc_put_card(mq->card, &mq->ctx); 2010 } 2011 2012 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2013 { 2014 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2015 struct mmc_request *mrq = &mqrq->brq.mrq; 2016 struct mmc_host *host = mq->card->host; 2017 2018 mmc_post_req(host, mrq, 0); 2019 2020 /* 2021 * Block layer timeouts race with completions which means the normal 2022 * completion path cannot be used during recovery. 2023 */ 2024 if (mq->in_recovery) 2025 mmc_blk_mq_complete_rq(mq, req); 2026 else 2027 blk_mq_complete_request(req); 2028 2029 mmc_blk_mq_dec_in_flight(mq, req); 2030 } 2031 2032 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2033 { 2034 struct request *req = mq->recovery_req; 2035 struct mmc_host *host = mq->card->host; 2036 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2037 2038 mq->recovery_req = NULL; 2039 mq->rw_wait = false; 2040 2041 if (mmc_blk_rq_error(&mqrq->brq)) { 2042 mmc_retune_hold_now(host); 2043 mmc_blk_mq_rw_recovery(mq, req); 2044 } 2045 2046 mmc_blk_urgent_bkops(mq, mqrq); 2047 2048 mmc_blk_mq_post_req(mq, req); 2049 } 2050 2051 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2052 struct request **prev_req) 2053 { 2054 if (mmc_host_done_complete(mq->card->host)) 2055 return; 2056 2057 mutex_lock(&mq->complete_lock); 2058 2059 if (!mq->complete_req) 2060 goto out_unlock; 2061 2062 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2063 2064 if (prev_req) 2065 *prev_req = mq->complete_req; 2066 else 2067 mmc_blk_mq_post_req(mq, mq->complete_req); 2068 2069 mq->complete_req = NULL; 2070 2071 out_unlock: 2072 mutex_unlock(&mq->complete_lock); 2073 } 2074 2075 void mmc_blk_mq_complete_work(struct work_struct *work) 2076 { 2077 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2078 complete_work); 2079 2080 mmc_blk_mq_complete_prev_req(mq, NULL); 2081 } 2082 2083 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2084 { 2085 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2086 brq.mrq); 2087 struct request *req = mmc_queue_req_to_req(mqrq); 2088 struct request_queue *q = req->q; 2089 struct mmc_queue *mq = q->queuedata; 2090 struct mmc_host *host = mq->card->host; 2091 unsigned long flags; 2092 2093 if (!mmc_host_done_complete(host)) { 2094 bool waiting; 2095 2096 /* 2097 * We cannot complete the request in this context, so record 2098 * that there is a request to complete, and that a following 2099 * request does not need to wait (although it does need to 2100 * complete complete_req first). 2101 */ 2102 spin_lock_irqsave(q->queue_lock, flags); 2103 mq->complete_req = req; 2104 mq->rw_wait = false; 2105 waiting = mq->waiting; 2106 spin_unlock_irqrestore(q->queue_lock, flags); 2107 2108 /* 2109 * If 'waiting' then the waiting task will complete this 2110 * request, otherwise queue a work to do it. Note that 2111 * complete_work may still race with the dispatch of a following 2112 * request. 2113 */ 2114 if (waiting) 2115 wake_up(&mq->wait); 2116 else 2117 kblockd_schedule_work(&mq->complete_work); 2118 2119 return; 2120 } 2121 2122 /* Take the recovery path for errors or urgent background operations */ 2123 if (mmc_blk_rq_error(&mqrq->brq) || 2124 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2125 spin_lock_irqsave(q->queue_lock, flags); 2126 mq->recovery_needed = true; 2127 mq->recovery_req = req; 2128 spin_unlock_irqrestore(q->queue_lock, flags); 2129 wake_up(&mq->wait); 2130 schedule_work(&mq->recovery_work); 2131 return; 2132 } 2133 2134 mmc_blk_rw_reset_success(mq, req); 2135 2136 mq->rw_wait = false; 2137 wake_up(&mq->wait); 2138 2139 mmc_blk_mq_post_req(mq, req); 2140 } 2141 2142 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2143 { 2144 struct request_queue *q = mq->queue; 2145 unsigned long flags; 2146 bool done; 2147 2148 /* 2149 * Wait while there is another request in progress, but not if recovery 2150 * is needed. Also indicate whether there is a request waiting to start. 2151 */ 2152 spin_lock_irqsave(q->queue_lock, flags); 2153 if (mq->recovery_needed) { 2154 *err = -EBUSY; 2155 done = true; 2156 } else { 2157 done = !mq->rw_wait; 2158 } 2159 mq->waiting = !done; 2160 spin_unlock_irqrestore(q->queue_lock, flags); 2161 2162 return done; 2163 } 2164 2165 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2166 { 2167 int err = 0; 2168 2169 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2170 2171 /* Always complete the previous request if there is one */ 2172 mmc_blk_mq_complete_prev_req(mq, prev_req); 2173 2174 return err; 2175 } 2176 2177 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2178 struct request *req) 2179 { 2180 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2181 struct mmc_host *host = mq->card->host; 2182 struct request *prev_req = NULL; 2183 int err = 0; 2184 2185 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2186 2187 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2188 2189 mmc_pre_req(host, &mqrq->brq.mrq); 2190 2191 err = mmc_blk_rw_wait(mq, &prev_req); 2192 if (err) 2193 goto out_post_req; 2194 2195 mq->rw_wait = true; 2196 2197 err = mmc_start_request(host, &mqrq->brq.mrq); 2198 2199 if (prev_req) 2200 mmc_blk_mq_post_req(mq, prev_req); 2201 2202 if (err) 2203 mq->rw_wait = false; 2204 2205 /* Release re-tuning here where there is no synchronization required */ 2206 if (err || mmc_host_done_complete(host)) 2207 mmc_retune_release(host); 2208 2209 out_post_req: 2210 if (err) 2211 mmc_post_req(host, &mqrq->brq.mrq, err); 2212 2213 return err; 2214 } 2215 2216 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2217 { 2218 if (mq->use_cqe) 2219 return host->cqe_ops->cqe_wait_for_idle(host); 2220 2221 return mmc_blk_rw_wait(mq, NULL); 2222 } 2223 2224 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2225 { 2226 struct mmc_blk_data *md = mq->blkdata; 2227 struct mmc_card *card = md->queue.card; 2228 struct mmc_host *host = card->host; 2229 int ret; 2230 2231 ret = mmc_blk_part_switch(card, md->part_type); 2232 if (ret) 2233 return MMC_REQ_FAILED_TO_START; 2234 2235 switch (mmc_issue_type(mq, req)) { 2236 case MMC_ISSUE_SYNC: 2237 ret = mmc_blk_wait_for_idle(mq, host); 2238 if (ret) 2239 return MMC_REQ_BUSY; 2240 switch (req_op(req)) { 2241 case REQ_OP_DRV_IN: 2242 case REQ_OP_DRV_OUT: 2243 mmc_blk_issue_drv_op(mq, req); 2244 break; 2245 case REQ_OP_DISCARD: 2246 mmc_blk_issue_discard_rq(mq, req); 2247 break; 2248 case REQ_OP_SECURE_ERASE: 2249 mmc_blk_issue_secdiscard_rq(mq, req); 2250 break; 2251 case REQ_OP_FLUSH: 2252 mmc_blk_issue_flush(mq, req); 2253 break; 2254 default: 2255 WARN_ON_ONCE(1); 2256 return MMC_REQ_FAILED_TO_START; 2257 } 2258 return MMC_REQ_FINISHED; 2259 case MMC_ISSUE_DCMD: 2260 case MMC_ISSUE_ASYNC: 2261 switch (req_op(req)) { 2262 case REQ_OP_FLUSH: 2263 ret = mmc_blk_cqe_issue_flush(mq, req); 2264 break; 2265 case REQ_OP_READ: 2266 case REQ_OP_WRITE: 2267 if (mq->use_cqe) 2268 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2269 else 2270 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2271 break; 2272 default: 2273 WARN_ON_ONCE(1); 2274 ret = -EINVAL; 2275 } 2276 if (!ret) 2277 return MMC_REQ_STARTED; 2278 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2279 default: 2280 WARN_ON_ONCE(1); 2281 return MMC_REQ_FAILED_TO_START; 2282 } 2283 } 2284 2285 static inline int mmc_blk_readonly(struct mmc_card *card) 2286 { 2287 return mmc_card_readonly(card) || 2288 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2289 } 2290 2291 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2292 struct device *parent, 2293 sector_t size, 2294 bool default_ro, 2295 const char *subname, 2296 int area_type) 2297 { 2298 struct mmc_blk_data *md; 2299 int devidx, ret; 2300 2301 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2302 if (devidx < 0) { 2303 /* 2304 * We get -ENOSPC because there are no more any available 2305 * devidx. The reason may be that, either userspace haven't yet 2306 * unmounted the partitions, which postpones mmc_blk_release() 2307 * from being called, or the device has more partitions than 2308 * what we support. 2309 */ 2310 if (devidx == -ENOSPC) 2311 dev_err(mmc_dev(card->host), 2312 "no more device IDs available\n"); 2313 2314 return ERR_PTR(devidx); 2315 } 2316 2317 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2318 if (!md) { 2319 ret = -ENOMEM; 2320 goto out; 2321 } 2322 2323 md->area_type = area_type; 2324 2325 /* 2326 * Set the read-only status based on the supported commands 2327 * and the write protect switch. 2328 */ 2329 md->read_only = mmc_blk_readonly(card); 2330 2331 md->disk = alloc_disk(perdev_minors); 2332 if (md->disk == NULL) { 2333 ret = -ENOMEM; 2334 goto err_kfree; 2335 } 2336 2337 spin_lock_init(&md->lock); 2338 INIT_LIST_HEAD(&md->part); 2339 INIT_LIST_HEAD(&md->rpmbs); 2340 md->usage = 1; 2341 2342 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2343 if (ret) 2344 goto err_putdisk; 2345 2346 md->queue.blkdata = md; 2347 2348 /* 2349 * Keep an extra reference to the queue so that we can shutdown the 2350 * queue (i.e. call blk_cleanup_queue()) while there are still 2351 * references to the 'md'. The corresponding blk_put_queue() is in 2352 * mmc_blk_put(). 2353 */ 2354 if (!blk_get_queue(md->queue.queue)) { 2355 mmc_cleanup_queue(&md->queue); 2356 ret = -ENODEV; 2357 goto err_putdisk; 2358 } 2359 2360 md->disk->major = MMC_BLOCK_MAJOR; 2361 md->disk->first_minor = devidx * perdev_minors; 2362 md->disk->fops = &mmc_bdops; 2363 md->disk->private_data = md; 2364 md->disk->queue = md->queue.queue; 2365 md->parent = parent; 2366 set_disk_ro(md->disk, md->read_only || default_ro); 2367 md->disk->flags = GENHD_FL_EXT_DEVT; 2368 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2369 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2370 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2371 2372 /* 2373 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2374 * 2375 * - be set for removable media with permanent block devices 2376 * - be unset for removable block devices with permanent media 2377 * 2378 * Since MMC block devices clearly fall under the second 2379 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2380 * should use the block device creation/destruction hotplug 2381 * messages to tell when the card is present. 2382 */ 2383 2384 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2385 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2386 2387 if (mmc_card_mmc(card)) 2388 blk_queue_logical_block_size(md->queue.queue, 2389 card->ext_csd.data_sector_size); 2390 else 2391 blk_queue_logical_block_size(md->queue.queue, 512); 2392 2393 set_capacity(md->disk, size); 2394 2395 if (mmc_host_cmd23(card->host)) { 2396 if ((mmc_card_mmc(card) && 2397 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2398 (mmc_card_sd(card) && 2399 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2400 md->flags |= MMC_BLK_CMD23; 2401 } 2402 2403 if (mmc_card_mmc(card) && 2404 md->flags & MMC_BLK_CMD23 && 2405 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2406 card->ext_csd.rel_sectors)) { 2407 md->flags |= MMC_BLK_REL_WR; 2408 blk_queue_write_cache(md->queue.queue, true, true); 2409 } 2410 2411 return md; 2412 2413 err_putdisk: 2414 put_disk(md->disk); 2415 err_kfree: 2416 kfree(md); 2417 out: 2418 ida_simple_remove(&mmc_blk_ida, devidx); 2419 return ERR_PTR(ret); 2420 } 2421 2422 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2423 { 2424 sector_t size; 2425 2426 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2427 /* 2428 * The EXT_CSD sector count is in number or 512 byte 2429 * sectors. 2430 */ 2431 size = card->ext_csd.sectors; 2432 } else { 2433 /* 2434 * The CSD capacity field is in units of read_blkbits. 2435 * set_capacity takes units of 512 bytes. 2436 */ 2437 size = (typeof(sector_t))card->csd.capacity 2438 << (card->csd.read_blkbits - 9); 2439 } 2440 2441 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2442 MMC_BLK_DATA_AREA_MAIN); 2443 } 2444 2445 static int mmc_blk_alloc_part(struct mmc_card *card, 2446 struct mmc_blk_data *md, 2447 unsigned int part_type, 2448 sector_t size, 2449 bool default_ro, 2450 const char *subname, 2451 int area_type) 2452 { 2453 char cap_str[10]; 2454 struct mmc_blk_data *part_md; 2455 2456 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2457 subname, area_type); 2458 if (IS_ERR(part_md)) 2459 return PTR_ERR(part_md); 2460 part_md->part_type = part_type; 2461 list_add(&part_md->part, &md->part); 2462 2463 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2464 cap_str, sizeof(cap_str)); 2465 pr_info("%s: %s %s partition %u %s\n", 2466 part_md->disk->disk_name, mmc_card_id(card), 2467 mmc_card_name(card), part_md->part_type, cap_str); 2468 return 0; 2469 } 2470 2471 /** 2472 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2473 * @filp: the character device file 2474 * @cmd: the ioctl() command 2475 * @arg: the argument from userspace 2476 * 2477 * This will essentially just redirect the ioctl()s coming in over to 2478 * the main block device spawning the RPMB character device. 2479 */ 2480 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2481 unsigned long arg) 2482 { 2483 struct mmc_rpmb_data *rpmb = filp->private_data; 2484 int ret; 2485 2486 switch (cmd) { 2487 case MMC_IOC_CMD: 2488 ret = mmc_blk_ioctl_cmd(rpmb->md, 2489 (struct mmc_ioc_cmd __user *)arg, 2490 rpmb); 2491 break; 2492 case MMC_IOC_MULTI_CMD: 2493 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2494 (struct mmc_ioc_multi_cmd __user *)arg, 2495 rpmb); 2496 break; 2497 default: 2498 ret = -EINVAL; 2499 break; 2500 } 2501 2502 return ret; 2503 } 2504 2505 #ifdef CONFIG_COMPAT 2506 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2507 unsigned long arg) 2508 { 2509 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2510 } 2511 #endif 2512 2513 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2514 { 2515 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2516 struct mmc_rpmb_data, chrdev); 2517 2518 get_device(&rpmb->dev); 2519 filp->private_data = rpmb; 2520 mmc_blk_get(rpmb->md->disk); 2521 2522 return nonseekable_open(inode, filp); 2523 } 2524 2525 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2526 { 2527 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2528 struct mmc_rpmb_data, chrdev); 2529 2530 put_device(&rpmb->dev); 2531 mmc_blk_put(rpmb->md); 2532 2533 return 0; 2534 } 2535 2536 static const struct file_operations mmc_rpmb_fileops = { 2537 .release = mmc_rpmb_chrdev_release, 2538 .open = mmc_rpmb_chrdev_open, 2539 .owner = THIS_MODULE, 2540 .llseek = no_llseek, 2541 .unlocked_ioctl = mmc_rpmb_ioctl, 2542 #ifdef CONFIG_COMPAT 2543 .compat_ioctl = mmc_rpmb_ioctl_compat, 2544 #endif 2545 }; 2546 2547 static void mmc_blk_rpmb_device_release(struct device *dev) 2548 { 2549 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2550 2551 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2552 kfree(rpmb); 2553 } 2554 2555 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2556 struct mmc_blk_data *md, 2557 unsigned int part_index, 2558 sector_t size, 2559 const char *subname) 2560 { 2561 int devidx, ret; 2562 char rpmb_name[DISK_NAME_LEN]; 2563 char cap_str[10]; 2564 struct mmc_rpmb_data *rpmb; 2565 2566 /* This creates the minor number for the RPMB char device */ 2567 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2568 if (devidx < 0) 2569 return devidx; 2570 2571 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2572 if (!rpmb) { 2573 ida_simple_remove(&mmc_rpmb_ida, devidx); 2574 return -ENOMEM; 2575 } 2576 2577 snprintf(rpmb_name, sizeof(rpmb_name), 2578 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2579 2580 rpmb->id = devidx; 2581 rpmb->part_index = part_index; 2582 rpmb->dev.init_name = rpmb_name; 2583 rpmb->dev.bus = &mmc_rpmb_bus_type; 2584 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2585 rpmb->dev.parent = &card->dev; 2586 rpmb->dev.release = mmc_blk_rpmb_device_release; 2587 device_initialize(&rpmb->dev); 2588 dev_set_drvdata(&rpmb->dev, rpmb); 2589 rpmb->md = md; 2590 2591 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2592 rpmb->chrdev.owner = THIS_MODULE; 2593 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2594 if (ret) { 2595 pr_err("%s: could not add character device\n", rpmb_name); 2596 goto out_put_device; 2597 } 2598 2599 list_add(&rpmb->node, &md->rpmbs); 2600 2601 string_get_size((u64)size, 512, STRING_UNITS_2, 2602 cap_str, sizeof(cap_str)); 2603 2604 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2605 rpmb_name, mmc_card_id(card), 2606 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2607 MAJOR(mmc_rpmb_devt), rpmb->id); 2608 2609 return 0; 2610 2611 out_put_device: 2612 put_device(&rpmb->dev); 2613 return ret; 2614 } 2615 2616 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2617 2618 { 2619 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2620 put_device(&rpmb->dev); 2621 } 2622 2623 /* MMC Physical partitions consist of two boot partitions and 2624 * up to four general purpose partitions. 2625 * For each partition enabled in EXT_CSD a block device will be allocatedi 2626 * to provide access to the partition. 2627 */ 2628 2629 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2630 { 2631 int idx, ret; 2632 2633 if (!mmc_card_mmc(card)) 2634 return 0; 2635 2636 for (idx = 0; idx < card->nr_parts; idx++) { 2637 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2638 /* 2639 * RPMB partitions does not provide block access, they 2640 * are only accessed using ioctl():s. Thus create 2641 * special RPMB block devices that do not have a 2642 * backing block queue for these. 2643 */ 2644 ret = mmc_blk_alloc_rpmb_part(card, md, 2645 card->part[idx].part_cfg, 2646 card->part[idx].size >> 9, 2647 card->part[idx].name); 2648 if (ret) 2649 return ret; 2650 } else if (card->part[idx].size) { 2651 ret = mmc_blk_alloc_part(card, md, 2652 card->part[idx].part_cfg, 2653 card->part[idx].size >> 9, 2654 card->part[idx].force_ro, 2655 card->part[idx].name, 2656 card->part[idx].area_type); 2657 if (ret) 2658 return ret; 2659 } 2660 } 2661 2662 return 0; 2663 } 2664 2665 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2666 { 2667 struct mmc_card *card; 2668 2669 if (md) { 2670 /* 2671 * Flush remaining requests and free queues. It 2672 * is freeing the queue that stops new requests 2673 * from being accepted. 2674 */ 2675 card = md->queue.card; 2676 if (md->disk->flags & GENHD_FL_UP) { 2677 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2678 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2679 card->ext_csd.boot_ro_lockable) 2680 device_remove_file(disk_to_dev(md->disk), 2681 &md->power_ro_lock); 2682 2683 del_gendisk(md->disk); 2684 } 2685 mmc_cleanup_queue(&md->queue); 2686 mmc_blk_put(md); 2687 } 2688 } 2689 2690 static void mmc_blk_remove_parts(struct mmc_card *card, 2691 struct mmc_blk_data *md) 2692 { 2693 struct list_head *pos, *q; 2694 struct mmc_blk_data *part_md; 2695 struct mmc_rpmb_data *rpmb; 2696 2697 /* Remove RPMB partitions */ 2698 list_for_each_safe(pos, q, &md->rpmbs) { 2699 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2700 list_del(pos); 2701 mmc_blk_remove_rpmb_part(rpmb); 2702 } 2703 /* Remove block partitions */ 2704 list_for_each_safe(pos, q, &md->part) { 2705 part_md = list_entry(pos, struct mmc_blk_data, part); 2706 list_del(pos); 2707 mmc_blk_remove_req(part_md); 2708 } 2709 } 2710 2711 static int mmc_add_disk(struct mmc_blk_data *md) 2712 { 2713 int ret; 2714 struct mmc_card *card = md->queue.card; 2715 2716 device_add_disk(md->parent, md->disk, NULL); 2717 md->force_ro.show = force_ro_show; 2718 md->force_ro.store = force_ro_store; 2719 sysfs_attr_init(&md->force_ro.attr); 2720 md->force_ro.attr.name = "force_ro"; 2721 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2722 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2723 if (ret) 2724 goto force_ro_fail; 2725 2726 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2727 card->ext_csd.boot_ro_lockable) { 2728 umode_t mode; 2729 2730 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2731 mode = S_IRUGO; 2732 else 2733 mode = S_IRUGO | S_IWUSR; 2734 2735 md->power_ro_lock.show = power_ro_lock_show; 2736 md->power_ro_lock.store = power_ro_lock_store; 2737 sysfs_attr_init(&md->power_ro_lock.attr); 2738 md->power_ro_lock.attr.mode = mode; 2739 md->power_ro_lock.attr.name = 2740 "ro_lock_until_next_power_on"; 2741 ret = device_create_file(disk_to_dev(md->disk), 2742 &md->power_ro_lock); 2743 if (ret) 2744 goto power_ro_lock_fail; 2745 } 2746 return ret; 2747 2748 power_ro_lock_fail: 2749 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2750 force_ro_fail: 2751 del_gendisk(md->disk); 2752 2753 return ret; 2754 } 2755 2756 #ifdef CONFIG_DEBUG_FS 2757 2758 static int mmc_dbg_card_status_get(void *data, u64 *val) 2759 { 2760 struct mmc_card *card = data; 2761 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2762 struct mmc_queue *mq = &md->queue; 2763 struct request *req; 2764 int ret; 2765 2766 /* Ask the block layer about the card status */ 2767 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2768 if (IS_ERR(req)) 2769 return PTR_ERR(req); 2770 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2771 blk_execute_rq(mq->queue, NULL, req, 0); 2772 ret = req_to_mmc_queue_req(req)->drv_op_result; 2773 if (ret >= 0) { 2774 *val = ret; 2775 ret = 0; 2776 } 2777 blk_put_request(req); 2778 2779 return ret; 2780 } 2781 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2782 NULL, "%08llx\n"); 2783 2784 /* That is two digits * 512 + 1 for newline */ 2785 #define EXT_CSD_STR_LEN 1025 2786 2787 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2788 { 2789 struct mmc_card *card = inode->i_private; 2790 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2791 struct mmc_queue *mq = &md->queue; 2792 struct request *req; 2793 char *buf; 2794 ssize_t n = 0; 2795 u8 *ext_csd; 2796 int err, i; 2797 2798 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2799 if (!buf) 2800 return -ENOMEM; 2801 2802 /* Ask the block layer for the EXT CSD */ 2803 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2804 if (IS_ERR(req)) { 2805 err = PTR_ERR(req); 2806 goto out_free; 2807 } 2808 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2809 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2810 blk_execute_rq(mq->queue, NULL, req, 0); 2811 err = req_to_mmc_queue_req(req)->drv_op_result; 2812 blk_put_request(req); 2813 if (err) { 2814 pr_err("FAILED %d\n", err); 2815 goto out_free; 2816 } 2817 2818 for (i = 0; i < 512; i++) 2819 n += sprintf(buf + n, "%02x", ext_csd[i]); 2820 n += sprintf(buf + n, "\n"); 2821 2822 if (n != EXT_CSD_STR_LEN) { 2823 err = -EINVAL; 2824 kfree(ext_csd); 2825 goto out_free; 2826 } 2827 2828 filp->private_data = buf; 2829 kfree(ext_csd); 2830 return 0; 2831 2832 out_free: 2833 kfree(buf); 2834 return err; 2835 } 2836 2837 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2838 size_t cnt, loff_t *ppos) 2839 { 2840 char *buf = filp->private_data; 2841 2842 return simple_read_from_buffer(ubuf, cnt, ppos, 2843 buf, EXT_CSD_STR_LEN); 2844 } 2845 2846 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2847 { 2848 kfree(file->private_data); 2849 return 0; 2850 } 2851 2852 static const struct file_operations mmc_dbg_ext_csd_fops = { 2853 .open = mmc_ext_csd_open, 2854 .read = mmc_ext_csd_read, 2855 .release = mmc_ext_csd_release, 2856 .llseek = default_llseek, 2857 }; 2858 2859 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2860 { 2861 struct dentry *root; 2862 2863 if (!card->debugfs_root) 2864 return 0; 2865 2866 root = card->debugfs_root; 2867 2868 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2869 md->status_dentry = 2870 debugfs_create_file("status", S_IRUSR, root, card, 2871 &mmc_dbg_card_status_fops); 2872 if (!md->status_dentry) 2873 return -EIO; 2874 } 2875 2876 if (mmc_card_mmc(card)) { 2877 md->ext_csd_dentry = 2878 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2879 &mmc_dbg_ext_csd_fops); 2880 if (!md->ext_csd_dentry) 2881 return -EIO; 2882 } 2883 2884 return 0; 2885 } 2886 2887 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2888 struct mmc_blk_data *md) 2889 { 2890 if (!card->debugfs_root) 2891 return; 2892 2893 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2894 debugfs_remove(md->status_dentry); 2895 md->status_dentry = NULL; 2896 } 2897 2898 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2899 debugfs_remove(md->ext_csd_dentry); 2900 md->ext_csd_dentry = NULL; 2901 } 2902 } 2903 2904 #else 2905 2906 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2907 { 2908 return 0; 2909 } 2910 2911 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2912 struct mmc_blk_data *md) 2913 { 2914 } 2915 2916 #endif /* CONFIG_DEBUG_FS */ 2917 2918 static int mmc_blk_probe(struct mmc_card *card) 2919 { 2920 struct mmc_blk_data *md, *part_md; 2921 char cap_str[10]; 2922 2923 /* 2924 * Check that the card supports the command class(es) we need. 2925 */ 2926 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2927 return -ENODEV; 2928 2929 mmc_fixup_device(card, mmc_blk_fixups); 2930 2931 md = mmc_blk_alloc(card); 2932 if (IS_ERR(md)) 2933 return PTR_ERR(md); 2934 2935 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2936 cap_str, sizeof(cap_str)); 2937 pr_info("%s: %s %s %s %s\n", 2938 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2939 cap_str, md->read_only ? "(ro)" : ""); 2940 2941 if (mmc_blk_alloc_parts(card, md)) 2942 goto out; 2943 2944 dev_set_drvdata(&card->dev, md); 2945 2946 if (mmc_add_disk(md)) 2947 goto out; 2948 2949 list_for_each_entry(part_md, &md->part, part) { 2950 if (mmc_add_disk(part_md)) 2951 goto out; 2952 } 2953 2954 /* Add two debugfs entries */ 2955 mmc_blk_add_debugfs(card, md); 2956 2957 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2958 pm_runtime_use_autosuspend(&card->dev); 2959 2960 /* 2961 * Don't enable runtime PM for SD-combo cards here. Leave that 2962 * decision to be taken during the SDIO init sequence instead. 2963 */ 2964 if (card->type != MMC_TYPE_SD_COMBO) { 2965 pm_runtime_set_active(&card->dev); 2966 pm_runtime_enable(&card->dev); 2967 } 2968 2969 return 0; 2970 2971 out: 2972 mmc_blk_remove_parts(card, md); 2973 mmc_blk_remove_req(md); 2974 return 0; 2975 } 2976 2977 static void mmc_blk_remove(struct mmc_card *card) 2978 { 2979 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2980 2981 mmc_blk_remove_debugfs(card, md); 2982 mmc_blk_remove_parts(card, md); 2983 pm_runtime_get_sync(&card->dev); 2984 if (md->part_curr != md->part_type) { 2985 mmc_claim_host(card->host); 2986 mmc_blk_part_switch(card, md->part_type); 2987 mmc_release_host(card->host); 2988 } 2989 if (card->type != MMC_TYPE_SD_COMBO) 2990 pm_runtime_disable(&card->dev); 2991 pm_runtime_put_noidle(&card->dev); 2992 mmc_blk_remove_req(md); 2993 dev_set_drvdata(&card->dev, NULL); 2994 } 2995 2996 static int _mmc_blk_suspend(struct mmc_card *card) 2997 { 2998 struct mmc_blk_data *part_md; 2999 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3000 3001 if (md) { 3002 mmc_queue_suspend(&md->queue); 3003 list_for_each_entry(part_md, &md->part, part) { 3004 mmc_queue_suspend(&part_md->queue); 3005 } 3006 } 3007 return 0; 3008 } 3009 3010 static void mmc_blk_shutdown(struct mmc_card *card) 3011 { 3012 _mmc_blk_suspend(card); 3013 } 3014 3015 #ifdef CONFIG_PM_SLEEP 3016 static int mmc_blk_suspend(struct device *dev) 3017 { 3018 struct mmc_card *card = mmc_dev_to_card(dev); 3019 3020 return _mmc_blk_suspend(card); 3021 } 3022 3023 static int mmc_blk_resume(struct device *dev) 3024 { 3025 struct mmc_blk_data *part_md; 3026 struct mmc_blk_data *md = dev_get_drvdata(dev); 3027 3028 if (md) { 3029 /* 3030 * Resume involves the card going into idle state, 3031 * so current partition is always the main one. 3032 */ 3033 md->part_curr = md->part_type; 3034 mmc_queue_resume(&md->queue); 3035 list_for_each_entry(part_md, &md->part, part) { 3036 mmc_queue_resume(&part_md->queue); 3037 } 3038 } 3039 return 0; 3040 } 3041 #endif 3042 3043 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3044 3045 static struct mmc_driver mmc_driver = { 3046 .drv = { 3047 .name = "mmcblk", 3048 .pm = &mmc_blk_pm_ops, 3049 }, 3050 .probe = mmc_blk_probe, 3051 .remove = mmc_blk_remove, 3052 .shutdown = mmc_blk_shutdown, 3053 }; 3054 3055 static int __init mmc_blk_init(void) 3056 { 3057 int res; 3058 3059 res = bus_register(&mmc_rpmb_bus_type); 3060 if (res < 0) { 3061 pr_err("mmcblk: could not register RPMB bus type\n"); 3062 return res; 3063 } 3064 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3065 if (res < 0) { 3066 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3067 goto out_bus_unreg; 3068 } 3069 3070 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3071 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3072 3073 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3074 3075 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3076 if (res) 3077 goto out_chrdev_unreg; 3078 3079 res = mmc_register_driver(&mmc_driver); 3080 if (res) 3081 goto out_blkdev_unreg; 3082 3083 return 0; 3084 3085 out_blkdev_unreg: 3086 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3087 out_chrdev_unreg: 3088 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3089 out_bus_unreg: 3090 bus_unregister(&mmc_rpmb_bus_type); 3091 return res; 3092 } 3093 3094 static void __exit mmc_blk_exit(void) 3095 { 3096 mmc_unregister_driver(&mmc_driver); 3097 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3098 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3099 bus_unregister(&mmc_rpmb_bus_type); 3100 } 3101 3102 module_init(mmc_blk_init); 3103 module_exit(mmc_blk_exit); 3104 3105 MODULE_LICENSE("GPL"); 3106 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3107 3108