xref: /linux/drivers/mmc/core/block.c (revision dc3e0896003ee9b3bcc34c53965dc4bbc8671c44)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	spinlock_t	lock;
104 	struct device	*parent;
105 	struct gendisk	*disk;
106 	struct mmc_queue queue;
107 	struct list_head part;
108 	struct list_head rpmbs;
109 
110 	unsigned int	flags;
111 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
113 
114 	unsigned int	usage;
115 	unsigned int	read_only;
116 	unsigned int	part_type;
117 	unsigned int	reset_done;
118 #define MMC_BLK_READ		BIT(0)
119 #define MMC_BLK_WRITE		BIT(1)
120 #define MMC_BLK_DISCARD		BIT(2)
121 #define MMC_BLK_SECDISCARD	BIT(3)
122 #define MMC_BLK_CQE_RECOVERY	BIT(4)
123 
124 	/*
125 	 * Only set in main mmc_blk_data associated
126 	 * with mmc_card with dev_set_drvdata, and keeps
127 	 * track of the current selected device partition.
128 	 */
129 	unsigned int	part_curr;
130 	struct device_attribute force_ro;
131 	struct device_attribute power_ro_lock;
132 	int	area_type;
133 
134 	/* debugfs files (only in main mmc_blk_data) */
135 	struct dentry *status_dentry;
136 	struct dentry *ext_csd_dentry;
137 };
138 
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141 
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 	.name = "mmc_rpmb",
145 };
146 
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157 	struct device dev;
158 	struct cdev chrdev;
159 	int id;
160 	unsigned int part_index;
161 	struct mmc_blk_data *md;
162 	struct list_head node;
163 };
164 
165 static DEFINE_MUTEX(open_lock);
166 
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 				      unsigned int part_type);
172 
173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 {
175 	struct mmc_blk_data *md;
176 
177 	mutex_lock(&open_lock);
178 	md = disk->private_data;
179 	if (md && md->usage == 0)
180 		md = NULL;
181 	if (md)
182 		md->usage++;
183 	mutex_unlock(&open_lock);
184 
185 	return md;
186 }
187 
188 static inline int mmc_get_devidx(struct gendisk *disk)
189 {
190 	int devidx = disk->first_minor / perdev_minors;
191 	return devidx;
192 }
193 
194 static void mmc_blk_put(struct mmc_blk_data *md)
195 {
196 	mutex_lock(&open_lock);
197 	md->usage--;
198 	if (md->usage == 0) {
199 		int devidx = mmc_get_devidx(md->disk);
200 		blk_put_queue(md->queue.queue);
201 		ida_simple_remove(&mmc_blk_ida, devidx);
202 		put_disk(md->disk);
203 		kfree(md);
204 	}
205 	mutex_unlock(&open_lock);
206 }
207 
208 static ssize_t power_ro_lock_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	int ret;
212 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 	struct mmc_card *card = md->queue.card;
214 	int locked = 0;
215 
216 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 		locked = 2;
218 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 		locked = 1;
220 
221 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 
223 	mmc_blk_put(md);
224 
225 	return ret;
226 }
227 
228 static ssize_t power_ro_lock_store(struct device *dev,
229 		struct device_attribute *attr, const char *buf, size_t count)
230 {
231 	int ret;
232 	struct mmc_blk_data *md, *part_md;
233 	struct mmc_queue *mq;
234 	struct request *req;
235 	unsigned long set;
236 
237 	if (kstrtoul(buf, 0, &set))
238 		return -EINVAL;
239 
240 	if (set != 1)
241 		return count;
242 
243 	md = mmc_blk_get(dev_to_disk(dev));
244 	mq = &md->queue;
245 
246 	/* Dispatch locking to the block layer */
247 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
248 	if (IS_ERR(req)) {
249 		count = PTR_ERR(req);
250 		goto out_put;
251 	}
252 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 	blk_execute_rq(mq->queue, NULL, req, 0);
254 	ret = req_to_mmc_queue_req(req)->drv_op_result;
255 	blk_put_request(req);
256 
257 	if (!ret) {
258 		pr_info("%s: Locking boot partition ro until next power on\n",
259 			md->disk->disk_name);
260 		set_disk_ro(md->disk, 1);
261 
262 		list_for_each_entry(part_md, &md->part, part)
263 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 				set_disk_ro(part_md->disk, 1);
266 			}
267 	}
268 out_put:
269 	mmc_blk_put(md);
270 	return count;
271 }
272 
273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 			     char *buf)
275 {
276 	int ret;
277 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 
279 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 		       get_disk_ro(dev_to_disk(dev)) ^
281 		       md->read_only);
282 	mmc_blk_put(md);
283 	return ret;
284 }
285 
286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 			      const char *buf, size_t count)
288 {
289 	int ret;
290 	char *end;
291 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 	unsigned long set = simple_strtoul(buf, &end, 0);
293 	if (end == buf) {
294 		ret = -EINVAL;
295 		goto out;
296 	}
297 
298 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 	ret = count;
300 out:
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 {
307 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 	int ret = -ENXIO;
309 
310 	mutex_lock(&block_mutex);
311 	if (md) {
312 		if (md->usage == 2)
313 			check_disk_change(bdev);
314 		ret = 0;
315 
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = memdup_user((void __user *)(unsigned long)
380 				 idata->ic.data_ptr, idata->buf_bytes);
381 	if (IS_ERR(idata->buf)) {
382 		err = PTR_ERR(idata->buf);
383 		goto idata_err;
384 	}
385 
386 	return idata;
387 
388 idata_err:
389 	kfree(idata);
390 out:
391 	return ERR_PTR(err);
392 }
393 
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 				      struct mmc_blk_ioc_data *idata)
396 {
397 	struct mmc_ioc_cmd *ic = &idata->ic;
398 
399 	if (copy_to_user(&(ic_ptr->response), ic->response,
400 			 sizeof(ic->response)))
401 		return -EFAULT;
402 
403 	if (!idata->ic.write_flag) {
404 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 				 idata->buf, idata->buf_bytes))
406 			return -EFAULT;
407 	}
408 
409 	return 0;
410 }
411 
412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
413 				       u32 retries_max)
414 {
415 	int err;
416 	u32 retry_count = 0;
417 
418 	if (!status || !retries_max)
419 		return -EINVAL;
420 
421 	do {
422 		err = __mmc_send_status(card, status, 5);
423 		if (err)
424 			break;
425 
426 		if (!R1_STATUS(*status) &&
427 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
428 			break; /* RPMB programming operation complete */
429 
430 		/*
431 		 * Rechedule to give the MMC device a chance to continue
432 		 * processing the previous command without being polled too
433 		 * frequently.
434 		 */
435 		usleep_range(1000, 5000);
436 	} while (++retry_count < retries_max);
437 
438 	if (retry_count == retries_max)
439 		err = -EPERM;
440 
441 	return err;
442 }
443 
444 static int ioctl_do_sanitize(struct mmc_card *card)
445 {
446 	int err;
447 
448 	if (!mmc_can_sanitize(card)) {
449 			pr_warn("%s: %s - SANITIZE is not supported\n",
450 				mmc_hostname(card->host), __func__);
451 			err = -EOPNOTSUPP;
452 			goto out;
453 	}
454 
455 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
456 		mmc_hostname(card->host), __func__);
457 
458 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
459 					EXT_CSD_SANITIZE_START, 1,
460 					MMC_SANITIZE_REQ_TIMEOUT);
461 
462 	if (err)
463 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
464 		       mmc_hostname(card->host), __func__, err);
465 
466 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
467 					     __func__);
468 out:
469 	return err;
470 }
471 
472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 			       struct mmc_blk_ioc_data *idata)
474 {
475 	struct mmc_command cmd = {}, sbc = {};
476 	struct mmc_data data = {};
477 	struct mmc_request mrq = {};
478 	struct scatterlist sg;
479 	int err;
480 	unsigned int target_part;
481 	u32 status = 0;
482 
483 	if (!card || !md || !idata)
484 		return -EINVAL;
485 
486 	/*
487 	 * The RPMB accesses comes in from the character device, so we
488 	 * need to target these explicitly. Else we just target the
489 	 * partition type for the block device the ioctl() was issued
490 	 * on.
491 	 */
492 	if (idata->rpmb) {
493 		/* Support multiple RPMB partitions */
494 		target_part = idata->rpmb->part_index;
495 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
496 	} else {
497 		target_part = md->part_type;
498 	}
499 
500 	cmd.opcode = idata->ic.opcode;
501 	cmd.arg = idata->ic.arg;
502 	cmd.flags = idata->ic.flags;
503 
504 	if (idata->buf_bytes) {
505 		data.sg = &sg;
506 		data.sg_len = 1;
507 		data.blksz = idata->ic.blksz;
508 		data.blocks = idata->ic.blocks;
509 
510 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
511 
512 		if (idata->ic.write_flag)
513 			data.flags = MMC_DATA_WRITE;
514 		else
515 			data.flags = MMC_DATA_READ;
516 
517 		/* data.flags must already be set before doing this. */
518 		mmc_set_data_timeout(&data, card);
519 
520 		/* Allow overriding the timeout_ns for empirical tuning. */
521 		if (idata->ic.data_timeout_ns)
522 			data.timeout_ns = idata->ic.data_timeout_ns;
523 
524 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
525 			/*
526 			 * Pretend this is a data transfer and rely on the
527 			 * host driver to compute timeout.  When all host
528 			 * drivers support cmd.cmd_timeout for R1B, this
529 			 * can be changed to:
530 			 *
531 			 *     mrq.data = NULL;
532 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
533 			 */
534 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
535 		}
536 
537 		mrq.data = &data;
538 	}
539 
540 	mrq.cmd = &cmd;
541 
542 	err = mmc_blk_part_switch(card, target_part);
543 	if (err)
544 		return err;
545 
546 	if (idata->ic.is_acmd) {
547 		err = mmc_app_cmd(card->host, card);
548 		if (err)
549 			return err;
550 	}
551 
552 	if (idata->rpmb) {
553 		sbc.opcode = MMC_SET_BLOCK_COUNT;
554 		/*
555 		 * We don't do any blockcount validation because the max size
556 		 * may be increased by a future standard. We just copy the
557 		 * 'Reliable Write' bit here.
558 		 */
559 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
560 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
561 		mrq.sbc = &sbc;
562 	}
563 
564 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
565 	    (cmd.opcode == MMC_SWITCH)) {
566 		err = ioctl_do_sanitize(card);
567 
568 		if (err)
569 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
570 			       __func__, err);
571 
572 		return err;
573 	}
574 
575 	mmc_wait_for_req(card->host, &mrq);
576 
577 	if (cmd.error) {
578 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
579 						__func__, cmd.error);
580 		return cmd.error;
581 	}
582 	if (data.error) {
583 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
584 						__func__, data.error);
585 		return data.error;
586 	}
587 
588 	/*
589 	 * Make sure the cache of the PARTITION_CONFIG register and
590 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
591 	 * changed it successfully.
592 	 */
593 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
594 	    (cmd.opcode == MMC_SWITCH)) {
595 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
596 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
597 
598 		/*
599 		 * Update cache so the next mmc_blk_part_switch call operates
600 		 * on up-to-date data.
601 		 */
602 		card->ext_csd.part_config = value;
603 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
604 	}
605 
606 	/*
607 	 * According to the SD specs, some commands require a delay after
608 	 * issuing the command.
609 	 */
610 	if (idata->ic.postsleep_min_us)
611 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
612 
613 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
614 
615 	if (idata->rpmb) {
616 		/*
617 		 * Ensure RPMB command has completed by polling CMD13
618 		 * "Send Status".
619 		 */
620 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
621 		if (err)
622 			dev_err(mmc_dev(card->host),
623 					"%s: Card Status=0x%08X, error %d\n",
624 					__func__, status, err);
625 	}
626 
627 	return err;
628 }
629 
630 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
631 			     struct mmc_ioc_cmd __user *ic_ptr,
632 			     struct mmc_rpmb_data *rpmb)
633 {
634 	struct mmc_blk_ioc_data *idata;
635 	struct mmc_blk_ioc_data *idatas[1];
636 	struct mmc_queue *mq;
637 	struct mmc_card *card;
638 	int err = 0, ioc_err = 0;
639 	struct request *req;
640 
641 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
642 	if (IS_ERR(idata))
643 		return PTR_ERR(idata);
644 	/* This will be NULL on non-RPMB ioctl():s */
645 	idata->rpmb = rpmb;
646 
647 	card = md->queue.card;
648 	if (IS_ERR(card)) {
649 		err = PTR_ERR(card);
650 		goto cmd_done;
651 	}
652 
653 	/*
654 	 * Dispatch the ioctl() into the block request queue.
655 	 */
656 	mq = &md->queue;
657 	req = blk_get_request(mq->queue,
658 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
659 	if (IS_ERR(req)) {
660 		err = PTR_ERR(req);
661 		goto cmd_done;
662 	}
663 	idatas[0] = idata;
664 	req_to_mmc_queue_req(req)->drv_op =
665 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
666 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
667 	req_to_mmc_queue_req(req)->ioc_count = 1;
668 	blk_execute_rq(mq->queue, NULL, req, 0);
669 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
670 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
671 	blk_put_request(req);
672 
673 cmd_done:
674 	kfree(idata->buf);
675 	kfree(idata);
676 	return ioc_err ? ioc_err : err;
677 }
678 
679 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
680 				   struct mmc_ioc_multi_cmd __user *user,
681 				   struct mmc_rpmb_data *rpmb)
682 {
683 	struct mmc_blk_ioc_data **idata = NULL;
684 	struct mmc_ioc_cmd __user *cmds = user->cmds;
685 	struct mmc_card *card;
686 	struct mmc_queue *mq;
687 	int i, err = 0, ioc_err = 0;
688 	__u64 num_of_cmds;
689 	struct request *req;
690 
691 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
692 			   sizeof(num_of_cmds)))
693 		return -EFAULT;
694 
695 	if (!num_of_cmds)
696 		return 0;
697 
698 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
699 		return -EINVAL;
700 
701 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
702 	if (!idata)
703 		return -ENOMEM;
704 
705 	for (i = 0; i < num_of_cmds; i++) {
706 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
707 		if (IS_ERR(idata[i])) {
708 			err = PTR_ERR(idata[i]);
709 			num_of_cmds = i;
710 			goto cmd_err;
711 		}
712 		/* This will be NULL on non-RPMB ioctl():s */
713 		idata[i]->rpmb = rpmb;
714 	}
715 
716 	card = md->queue.card;
717 	if (IS_ERR(card)) {
718 		err = PTR_ERR(card);
719 		goto cmd_err;
720 	}
721 
722 
723 	/*
724 	 * Dispatch the ioctl()s into the block request queue.
725 	 */
726 	mq = &md->queue;
727 	req = blk_get_request(mq->queue,
728 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
729 	if (IS_ERR(req)) {
730 		err = PTR_ERR(req);
731 		goto cmd_err;
732 	}
733 	req_to_mmc_queue_req(req)->drv_op =
734 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
735 	req_to_mmc_queue_req(req)->drv_op_data = idata;
736 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
737 	blk_execute_rq(mq->queue, NULL, req, 0);
738 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
739 
740 	/* copy to user if data and response */
741 	for (i = 0; i < num_of_cmds && !err; i++)
742 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
743 
744 	blk_put_request(req);
745 
746 cmd_err:
747 	for (i = 0; i < num_of_cmds; i++) {
748 		kfree(idata[i]->buf);
749 		kfree(idata[i]);
750 	}
751 	kfree(idata);
752 	return ioc_err ? ioc_err : err;
753 }
754 
755 static int mmc_blk_check_blkdev(struct block_device *bdev)
756 {
757 	/*
758 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
759 	 * whole block device, not on a partition.  This prevents overspray
760 	 * between sibling partitions.
761 	 */
762 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
763 		return -EPERM;
764 	return 0;
765 }
766 
767 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
768 	unsigned int cmd, unsigned long arg)
769 {
770 	struct mmc_blk_data *md;
771 	int ret;
772 
773 	switch (cmd) {
774 	case MMC_IOC_CMD:
775 		ret = mmc_blk_check_blkdev(bdev);
776 		if (ret)
777 			return ret;
778 		md = mmc_blk_get(bdev->bd_disk);
779 		if (!md)
780 			return -EINVAL;
781 		ret = mmc_blk_ioctl_cmd(md,
782 					(struct mmc_ioc_cmd __user *)arg,
783 					NULL);
784 		mmc_blk_put(md);
785 		return ret;
786 	case MMC_IOC_MULTI_CMD:
787 		ret = mmc_blk_check_blkdev(bdev);
788 		if (ret)
789 			return ret;
790 		md = mmc_blk_get(bdev->bd_disk);
791 		if (!md)
792 			return -EINVAL;
793 		ret = mmc_blk_ioctl_multi_cmd(md,
794 					(struct mmc_ioc_multi_cmd __user *)arg,
795 					NULL);
796 		mmc_blk_put(md);
797 		return ret;
798 	default:
799 		return -EINVAL;
800 	}
801 }
802 
803 #ifdef CONFIG_COMPAT
804 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
805 	unsigned int cmd, unsigned long arg)
806 {
807 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
808 }
809 #endif
810 
811 static const struct block_device_operations mmc_bdops = {
812 	.open			= mmc_blk_open,
813 	.release		= mmc_blk_release,
814 	.getgeo			= mmc_blk_getgeo,
815 	.owner			= THIS_MODULE,
816 	.ioctl			= mmc_blk_ioctl,
817 #ifdef CONFIG_COMPAT
818 	.compat_ioctl		= mmc_blk_compat_ioctl,
819 #endif
820 };
821 
822 static int mmc_blk_part_switch_pre(struct mmc_card *card,
823 				   unsigned int part_type)
824 {
825 	int ret = 0;
826 
827 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
828 		if (card->ext_csd.cmdq_en) {
829 			ret = mmc_cmdq_disable(card);
830 			if (ret)
831 				return ret;
832 		}
833 		mmc_retune_pause(card->host);
834 	}
835 
836 	return ret;
837 }
838 
839 static int mmc_blk_part_switch_post(struct mmc_card *card,
840 				    unsigned int part_type)
841 {
842 	int ret = 0;
843 
844 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
845 		mmc_retune_unpause(card->host);
846 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
847 			ret = mmc_cmdq_enable(card);
848 	}
849 
850 	return ret;
851 }
852 
853 static inline int mmc_blk_part_switch(struct mmc_card *card,
854 				      unsigned int part_type)
855 {
856 	int ret = 0;
857 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
858 
859 	if (main_md->part_curr == part_type)
860 		return 0;
861 
862 	if (mmc_card_mmc(card)) {
863 		u8 part_config = card->ext_csd.part_config;
864 
865 		ret = mmc_blk_part_switch_pre(card, part_type);
866 		if (ret)
867 			return ret;
868 
869 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
870 		part_config |= part_type;
871 
872 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
873 				 EXT_CSD_PART_CONFIG, part_config,
874 				 card->ext_csd.part_time);
875 		if (ret) {
876 			mmc_blk_part_switch_post(card, part_type);
877 			return ret;
878 		}
879 
880 		card->ext_csd.part_config = part_config;
881 
882 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
883 	}
884 
885 	main_md->part_curr = part_type;
886 	return ret;
887 }
888 
889 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
890 {
891 	int err;
892 	u32 result;
893 	__be32 *blocks;
894 
895 	struct mmc_request mrq = {};
896 	struct mmc_command cmd = {};
897 	struct mmc_data data = {};
898 
899 	struct scatterlist sg;
900 
901 	cmd.opcode = MMC_APP_CMD;
902 	cmd.arg = card->rca << 16;
903 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
904 
905 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
906 	if (err)
907 		return err;
908 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
909 		return -EIO;
910 
911 	memset(&cmd, 0, sizeof(struct mmc_command));
912 
913 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
914 	cmd.arg = 0;
915 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
916 
917 	data.blksz = 4;
918 	data.blocks = 1;
919 	data.flags = MMC_DATA_READ;
920 	data.sg = &sg;
921 	data.sg_len = 1;
922 	mmc_set_data_timeout(&data, card);
923 
924 	mrq.cmd = &cmd;
925 	mrq.data = &data;
926 
927 	blocks = kmalloc(4, GFP_KERNEL);
928 	if (!blocks)
929 		return -ENOMEM;
930 
931 	sg_init_one(&sg, blocks, 4);
932 
933 	mmc_wait_for_req(card->host, &mrq);
934 
935 	result = ntohl(*blocks);
936 	kfree(blocks);
937 
938 	if (cmd.error || data.error)
939 		return -EIO;
940 
941 	*written_blocks = result;
942 
943 	return 0;
944 }
945 
946 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
947 {
948 	if (host->actual_clock)
949 		return host->actual_clock / 1000;
950 
951 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
952 	if (host->ios.clock)
953 		return host->ios.clock / 2000;
954 
955 	/* How can there be no clock */
956 	WARN_ON_ONCE(1);
957 	return 100; /* 100 kHz is minimum possible value */
958 }
959 
960 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
961 					    struct mmc_data *data)
962 {
963 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
964 	unsigned int khz;
965 
966 	if (data->timeout_clks) {
967 		khz = mmc_blk_clock_khz(host);
968 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
969 	}
970 
971 	return ms;
972 }
973 
974 static inline bool mmc_blk_in_tran_state(u32 status)
975 {
976 	/*
977 	 * Some cards mishandle the status bits, so make sure to check both the
978 	 * busy indication and the card state.
979 	 */
980 	return status & R1_READY_FOR_DATA &&
981 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
982 }
983 
984 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
985 			    struct request *req, u32 *resp_errs)
986 {
987 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
988 	int err = 0;
989 	u32 status;
990 
991 	do {
992 		bool done = time_after(jiffies, timeout);
993 
994 		err = __mmc_send_status(card, &status, 5);
995 		if (err) {
996 			pr_err("%s: error %d requesting status\n",
997 			       req->rq_disk->disk_name, err);
998 			return err;
999 		}
1000 
1001 		/* Accumulate any response error bits seen */
1002 		if (resp_errs)
1003 			*resp_errs |= status;
1004 
1005 		/*
1006 		 * Timeout if the device never becomes ready for data and never
1007 		 * leaves the program state.
1008 		 */
1009 		if (done) {
1010 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1011 				mmc_hostname(card->host),
1012 				req->rq_disk->disk_name, __func__, status);
1013 			return -ETIMEDOUT;
1014 		}
1015 
1016 		/*
1017 		 * Some cards mishandle the status bits,
1018 		 * so make sure to check both the busy
1019 		 * indication and the card state.
1020 		 */
1021 	} while (!mmc_blk_in_tran_state(status));
1022 
1023 	return err;
1024 }
1025 
1026 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 			 int type)
1028 {
1029 	int err;
1030 
1031 	if (md->reset_done & type)
1032 		return -EEXIST;
1033 
1034 	md->reset_done |= type;
1035 	err = mmc_hw_reset(host);
1036 	/* Ensure we switch back to the correct partition */
1037 	if (err != -EOPNOTSUPP) {
1038 		struct mmc_blk_data *main_md =
1039 			dev_get_drvdata(&host->card->dev);
1040 		int part_err;
1041 
1042 		main_md->part_curr = main_md->part_type;
1043 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1044 		if (part_err) {
1045 			/*
1046 			 * We have failed to get back into the correct
1047 			 * partition, so we need to abort the whole request.
1048 			 */
1049 			return -ENODEV;
1050 		}
1051 	}
1052 	return err;
1053 }
1054 
1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056 {
1057 	md->reset_done &= ~type;
1058 }
1059 
1060 /*
1061  * The non-block commands come back from the block layer after it queued it and
1062  * processed it with all other requests and then they get issued in this
1063  * function.
1064  */
1065 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1066 {
1067 	struct mmc_queue_req *mq_rq;
1068 	struct mmc_card *card = mq->card;
1069 	struct mmc_blk_data *md = mq->blkdata;
1070 	struct mmc_blk_ioc_data **idata;
1071 	bool rpmb_ioctl;
1072 	u8 **ext_csd;
1073 	u32 status;
1074 	int ret;
1075 	int i;
1076 
1077 	mq_rq = req_to_mmc_queue_req(req);
1078 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1079 
1080 	switch (mq_rq->drv_op) {
1081 	case MMC_DRV_OP_IOCTL:
1082 	case MMC_DRV_OP_IOCTL_RPMB:
1083 		idata = mq_rq->drv_op_data;
1084 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1085 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1086 			if (ret)
1087 				break;
1088 		}
1089 		/* Always switch back to main area after RPMB access */
1090 		if (rpmb_ioctl)
1091 			mmc_blk_part_switch(card, 0);
1092 		break;
1093 	case MMC_DRV_OP_BOOT_WP:
1094 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1095 				 card->ext_csd.boot_ro_lock |
1096 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1097 				 card->ext_csd.part_time);
1098 		if (ret)
1099 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1100 			       md->disk->disk_name, ret);
1101 		else
1102 			card->ext_csd.boot_ro_lock |=
1103 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1104 		break;
1105 	case MMC_DRV_OP_GET_CARD_STATUS:
1106 		ret = mmc_send_status(card, &status);
1107 		if (!ret)
1108 			ret = status;
1109 		break;
1110 	case MMC_DRV_OP_GET_EXT_CSD:
1111 		ext_csd = mq_rq->drv_op_data;
1112 		ret = mmc_get_ext_csd(card, ext_csd);
1113 		break;
1114 	default:
1115 		pr_err("%s: unknown driver specific operation\n",
1116 		       md->disk->disk_name);
1117 		ret = -EINVAL;
1118 		break;
1119 	}
1120 	mq_rq->drv_op_result = ret;
1121 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1122 }
1123 
1124 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1125 {
1126 	struct mmc_blk_data *md = mq->blkdata;
1127 	struct mmc_card *card = md->queue.card;
1128 	unsigned int from, nr, arg;
1129 	int err = 0, type = MMC_BLK_DISCARD;
1130 	blk_status_t status = BLK_STS_OK;
1131 
1132 	if (!mmc_can_erase(card)) {
1133 		status = BLK_STS_NOTSUPP;
1134 		goto fail;
1135 	}
1136 
1137 	from = blk_rq_pos(req);
1138 	nr = blk_rq_sectors(req);
1139 
1140 	if (mmc_can_discard(card))
1141 		arg = MMC_DISCARD_ARG;
1142 	else if (mmc_can_trim(card))
1143 		arg = MMC_TRIM_ARG;
1144 	else
1145 		arg = MMC_ERASE_ARG;
1146 	do {
1147 		err = 0;
1148 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1149 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1150 					 INAND_CMD38_ARG_EXT_CSD,
1151 					 arg == MMC_TRIM_ARG ?
1152 					 INAND_CMD38_ARG_TRIM :
1153 					 INAND_CMD38_ARG_ERASE,
1154 					 0);
1155 		}
1156 		if (!err)
1157 			err = mmc_erase(card, from, nr, arg);
1158 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1159 	if (err)
1160 		status = BLK_STS_IOERR;
1161 	else
1162 		mmc_blk_reset_success(md, type);
1163 fail:
1164 	blk_mq_end_request(req, status);
1165 }
1166 
1167 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1168 				       struct request *req)
1169 {
1170 	struct mmc_blk_data *md = mq->blkdata;
1171 	struct mmc_card *card = md->queue.card;
1172 	unsigned int from, nr, arg;
1173 	int err = 0, type = MMC_BLK_SECDISCARD;
1174 	blk_status_t status = BLK_STS_OK;
1175 
1176 	if (!(mmc_can_secure_erase_trim(card))) {
1177 		status = BLK_STS_NOTSUPP;
1178 		goto out;
1179 	}
1180 
1181 	from = blk_rq_pos(req);
1182 	nr = blk_rq_sectors(req);
1183 
1184 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1185 		arg = MMC_SECURE_TRIM1_ARG;
1186 	else
1187 		arg = MMC_SECURE_ERASE_ARG;
1188 
1189 retry:
1190 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1191 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1192 				 INAND_CMD38_ARG_EXT_CSD,
1193 				 arg == MMC_SECURE_TRIM1_ARG ?
1194 				 INAND_CMD38_ARG_SECTRIM1 :
1195 				 INAND_CMD38_ARG_SECERASE,
1196 				 0);
1197 		if (err)
1198 			goto out_retry;
1199 	}
1200 
1201 	err = mmc_erase(card, from, nr, arg);
1202 	if (err == -EIO)
1203 		goto out_retry;
1204 	if (err) {
1205 		status = BLK_STS_IOERR;
1206 		goto out;
1207 	}
1208 
1209 	if (arg == MMC_SECURE_TRIM1_ARG) {
1210 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1211 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1212 					 INAND_CMD38_ARG_EXT_CSD,
1213 					 INAND_CMD38_ARG_SECTRIM2,
1214 					 0);
1215 			if (err)
1216 				goto out_retry;
1217 		}
1218 
1219 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1220 		if (err == -EIO)
1221 			goto out_retry;
1222 		if (err) {
1223 			status = BLK_STS_IOERR;
1224 			goto out;
1225 		}
1226 	}
1227 
1228 out_retry:
1229 	if (err && !mmc_blk_reset(md, card->host, type))
1230 		goto retry;
1231 	if (!err)
1232 		mmc_blk_reset_success(md, type);
1233 out:
1234 	blk_mq_end_request(req, status);
1235 }
1236 
1237 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1238 {
1239 	struct mmc_blk_data *md = mq->blkdata;
1240 	struct mmc_card *card = md->queue.card;
1241 	int ret = 0;
1242 
1243 	ret = mmc_flush_cache(card);
1244 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1245 }
1246 
1247 /*
1248  * Reformat current write as a reliable write, supporting
1249  * both legacy and the enhanced reliable write MMC cards.
1250  * In each transfer we'll handle only as much as a single
1251  * reliable write can handle, thus finish the request in
1252  * partial completions.
1253  */
1254 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1255 				    struct mmc_card *card,
1256 				    struct request *req)
1257 {
1258 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1259 		/* Legacy mode imposes restrictions on transfers. */
1260 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1261 			brq->data.blocks = 1;
1262 
1263 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1264 			brq->data.blocks = card->ext_csd.rel_sectors;
1265 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1266 			brq->data.blocks = 1;
1267 	}
1268 }
1269 
1270 #define CMD_ERRORS_EXCL_OOR						\
1271 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1272 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1273 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1274 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1275 	 R1_CC_ERROR |		/* Card controller error */		\
1276 	 R1_ERROR)		/* General/unknown error */
1277 
1278 #define CMD_ERRORS							\
1279 	(CMD_ERRORS_EXCL_OOR |						\
1280 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1281 
1282 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1283 {
1284 	u32 val;
1285 
1286 	/*
1287 	 * Per the SD specification(physical layer version 4.10)[1],
1288 	 * section 4.3.3, it explicitly states that "When the last
1289 	 * block of user area is read using CMD18, the host should
1290 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1291 	 * is correct". And JESD84-B51 for eMMC also has a similar
1292 	 * statement on section 6.8.3.
1293 	 *
1294 	 * Multiple block read/write could be done by either predefined
1295 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1296 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1297 	 *
1298 	 * However the spec[1] doesn't tell us whether we should also
1299 	 * ignore that for predefined method. But per the spec[1], section
1300 	 * 4.15 Set Block Count Command, it says"If illegal block count
1301 	 * is set, out of range error will be indicated during read/write
1302 	 * operation (For example, data transfer is stopped at user area
1303 	 * boundary)." In another word, we could expect a out of range error
1304 	 * in the response for the following CMD18/25. And if argument of
1305 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1306 	 * we could also expect to get a -ETIMEDOUT or any error number from
1307 	 * the host drivers due to missing data response(for write)/data(for
1308 	 * read), as the cards will stop the data transfer by itself per the
1309 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1310 	 */
1311 
1312 	if (!brq->stop.error) {
1313 		bool oor_with_open_end;
1314 		/* If there is no error yet, check R1 response */
1315 
1316 		val = brq->stop.resp[0] & CMD_ERRORS;
1317 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1318 
1319 		if (val && !oor_with_open_end)
1320 			brq->stop.error = -EIO;
1321 	}
1322 }
1323 
1324 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1325 			      int disable_multi, bool *do_rel_wr_p,
1326 			      bool *do_data_tag_p)
1327 {
1328 	struct mmc_blk_data *md = mq->blkdata;
1329 	struct mmc_card *card = md->queue.card;
1330 	struct mmc_blk_request *brq = &mqrq->brq;
1331 	struct request *req = mmc_queue_req_to_req(mqrq);
1332 	bool do_rel_wr, do_data_tag;
1333 
1334 	/*
1335 	 * Reliable writes are used to implement Forced Unit Access and
1336 	 * are supported only on MMCs.
1337 	 */
1338 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1339 		    rq_data_dir(req) == WRITE &&
1340 		    (md->flags & MMC_BLK_REL_WR);
1341 
1342 	memset(brq, 0, sizeof(struct mmc_blk_request));
1343 
1344 	brq->mrq.data = &brq->data;
1345 	brq->mrq.tag = req->tag;
1346 
1347 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1348 	brq->stop.arg = 0;
1349 
1350 	if (rq_data_dir(req) == READ) {
1351 		brq->data.flags = MMC_DATA_READ;
1352 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1353 	} else {
1354 		brq->data.flags = MMC_DATA_WRITE;
1355 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1356 	}
1357 
1358 	brq->data.blksz = 512;
1359 	brq->data.blocks = blk_rq_sectors(req);
1360 	brq->data.blk_addr = blk_rq_pos(req);
1361 
1362 	/*
1363 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1364 	 * The eMMC will give "high" priority tasks priority over "simple"
1365 	 * priority tasks. Here we always set "simple" priority by not setting
1366 	 * MMC_DATA_PRIO.
1367 	 */
1368 
1369 	/*
1370 	 * The block layer doesn't support all sector count
1371 	 * restrictions, so we need to be prepared for too big
1372 	 * requests.
1373 	 */
1374 	if (brq->data.blocks > card->host->max_blk_count)
1375 		brq->data.blocks = card->host->max_blk_count;
1376 
1377 	if (brq->data.blocks > 1) {
1378 		/*
1379 		 * Some SD cards in SPI mode return a CRC error or even lock up
1380 		 * completely when trying to read the last block using a
1381 		 * multiblock read command.
1382 		 */
1383 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1384 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1385 		     get_capacity(md->disk)))
1386 			brq->data.blocks--;
1387 
1388 		/*
1389 		 * After a read error, we redo the request one sector
1390 		 * at a time in order to accurately determine which
1391 		 * sectors can be read successfully.
1392 		 */
1393 		if (disable_multi)
1394 			brq->data.blocks = 1;
1395 
1396 		/*
1397 		 * Some controllers have HW issues while operating
1398 		 * in multiple I/O mode
1399 		 */
1400 		if (card->host->ops->multi_io_quirk)
1401 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1402 						(rq_data_dir(req) == READ) ?
1403 						MMC_DATA_READ : MMC_DATA_WRITE,
1404 						brq->data.blocks);
1405 	}
1406 
1407 	if (do_rel_wr) {
1408 		mmc_apply_rel_rw(brq, card, req);
1409 		brq->data.flags |= MMC_DATA_REL_WR;
1410 	}
1411 
1412 	/*
1413 	 * Data tag is used only during writing meta data to speed
1414 	 * up write and any subsequent read of this meta data
1415 	 */
1416 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1417 		      (req->cmd_flags & REQ_META) &&
1418 		      (rq_data_dir(req) == WRITE) &&
1419 		      ((brq->data.blocks * brq->data.blksz) >=
1420 		       card->ext_csd.data_tag_unit_size);
1421 
1422 	if (do_data_tag)
1423 		brq->data.flags |= MMC_DATA_DAT_TAG;
1424 
1425 	mmc_set_data_timeout(&brq->data, card);
1426 
1427 	brq->data.sg = mqrq->sg;
1428 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1429 
1430 	/*
1431 	 * Adjust the sg list so it is the same size as the
1432 	 * request.
1433 	 */
1434 	if (brq->data.blocks != blk_rq_sectors(req)) {
1435 		int i, data_size = brq->data.blocks << 9;
1436 		struct scatterlist *sg;
1437 
1438 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1439 			data_size -= sg->length;
1440 			if (data_size <= 0) {
1441 				sg->length += data_size;
1442 				i++;
1443 				break;
1444 			}
1445 		}
1446 		brq->data.sg_len = i;
1447 	}
1448 
1449 	if (do_rel_wr_p)
1450 		*do_rel_wr_p = do_rel_wr;
1451 
1452 	if (do_data_tag_p)
1453 		*do_data_tag_p = do_data_tag;
1454 }
1455 
1456 #define MMC_CQE_RETRIES 2
1457 
1458 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1459 {
1460 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1461 	struct mmc_request *mrq = &mqrq->brq.mrq;
1462 	struct request_queue *q = req->q;
1463 	struct mmc_host *host = mq->card->host;
1464 	unsigned long flags;
1465 	bool put_card;
1466 	int err;
1467 
1468 	mmc_cqe_post_req(host, mrq);
1469 
1470 	if (mrq->cmd && mrq->cmd->error)
1471 		err = mrq->cmd->error;
1472 	else if (mrq->data && mrq->data->error)
1473 		err = mrq->data->error;
1474 	else
1475 		err = 0;
1476 
1477 	if (err) {
1478 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1479 			blk_mq_requeue_request(req, true);
1480 		else
1481 			blk_mq_end_request(req, BLK_STS_IOERR);
1482 	} else if (mrq->data) {
1483 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1484 			blk_mq_requeue_request(req, true);
1485 		else
1486 			__blk_mq_end_request(req, BLK_STS_OK);
1487 	} else {
1488 		blk_mq_end_request(req, BLK_STS_OK);
1489 	}
1490 
1491 	spin_lock_irqsave(q->queue_lock, flags);
1492 
1493 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1494 
1495 	put_card = (mmc_tot_in_flight(mq) == 0);
1496 
1497 	mmc_cqe_check_busy(mq);
1498 
1499 	spin_unlock_irqrestore(q->queue_lock, flags);
1500 
1501 	if (!mq->cqe_busy)
1502 		blk_mq_run_hw_queues(q, true);
1503 
1504 	if (put_card)
1505 		mmc_put_card(mq->card, &mq->ctx);
1506 }
1507 
1508 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1509 {
1510 	struct mmc_card *card = mq->card;
1511 	struct mmc_host *host = card->host;
1512 	int err;
1513 
1514 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1515 
1516 	err = mmc_cqe_recovery(host);
1517 	if (err)
1518 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1519 	else
1520 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1521 
1522 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1523 }
1524 
1525 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1526 {
1527 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1528 						  brq.mrq);
1529 	struct request *req = mmc_queue_req_to_req(mqrq);
1530 	struct request_queue *q = req->q;
1531 	struct mmc_queue *mq = q->queuedata;
1532 
1533 	/*
1534 	 * Block layer timeouts race with completions which means the normal
1535 	 * completion path cannot be used during recovery.
1536 	 */
1537 	if (mq->in_recovery)
1538 		mmc_blk_cqe_complete_rq(mq, req);
1539 	else
1540 		blk_mq_complete_request(req);
1541 }
1542 
1543 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1544 {
1545 	mrq->done		= mmc_blk_cqe_req_done;
1546 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1547 
1548 	return mmc_cqe_start_req(host, mrq);
1549 }
1550 
1551 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1552 						 struct request *req)
1553 {
1554 	struct mmc_blk_request *brq = &mqrq->brq;
1555 
1556 	memset(brq, 0, sizeof(*brq));
1557 
1558 	brq->mrq.cmd = &brq->cmd;
1559 	brq->mrq.tag = req->tag;
1560 
1561 	return &brq->mrq;
1562 }
1563 
1564 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1565 {
1566 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1567 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1568 
1569 	mrq->cmd->opcode = MMC_SWITCH;
1570 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1571 			(EXT_CSD_FLUSH_CACHE << 16) |
1572 			(1 << 8) |
1573 			EXT_CSD_CMD_SET_NORMAL;
1574 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1575 
1576 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1577 }
1578 
1579 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1580 {
1581 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1582 
1583 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1584 
1585 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1586 }
1587 
1588 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1589 			       struct mmc_card *card,
1590 			       int disable_multi,
1591 			       struct mmc_queue *mq)
1592 {
1593 	u32 readcmd, writecmd;
1594 	struct mmc_blk_request *brq = &mqrq->brq;
1595 	struct request *req = mmc_queue_req_to_req(mqrq);
1596 	struct mmc_blk_data *md = mq->blkdata;
1597 	bool do_rel_wr, do_data_tag;
1598 
1599 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1600 
1601 	brq->mrq.cmd = &brq->cmd;
1602 
1603 	brq->cmd.arg = blk_rq_pos(req);
1604 	if (!mmc_card_blockaddr(card))
1605 		brq->cmd.arg <<= 9;
1606 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1607 
1608 	if (brq->data.blocks > 1 || do_rel_wr) {
1609 		/* SPI multiblock writes terminate using a special
1610 		 * token, not a STOP_TRANSMISSION request.
1611 		 */
1612 		if (!mmc_host_is_spi(card->host) ||
1613 		    rq_data_dir(req) == READ)
1614 			brq->mrq.stop = &brq->stop;
1615 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1616 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1617 	} else {
1618 		brq->mrq.stop = NULL;
1619 		readcmd = MMC_READ_SINGLE_BLOCK;
1620 		writecmd = MMC_WRITE_BLOCK;
1621 	}
1622 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1623 
1624 	/*
1625 	 * Pre-defined multi-block transfers are preferable to
1626 	 * open ended-ones (and necessary for reliable writes).
1627 	 * However, it is not sufficient to just send CMD23,
1628 	 * and avoid the final CMD12, as on an error condition
1629 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1630 	 * with Auto-CMD23 enhancements provided by some
1631 	 * hosts, means that the complexity of dealing
1632 	 * with this is best left to the host. If CMD23 is
1633 	 * supported by card and host, we'll fill sbc in and let
1634 	 * the host deal with handling it correctly. This means
1635 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1636 	 * change of behavior will be observed.
1637 	 *
1638 	 * N.B: Some MMC cards experience perf degradation.
1639 	 * We'll avoid using CMD23-bounded multiblock writes for
1640 	 * these, while retaining features like reliable writes.
1641 	 */
1642 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1643 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1644 	     do_data_tag)) {
1645 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1646 		brq->sbc.arg = brq->data.blocks |
1647 			(do_rel_wr ? (1 << 31) : 0) |
1648 			(do_data_tag ? (1 << 29) : 0);
1649 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1650 		brq->mrq.sbc = &brq->sbc;
1651 	}
1652 }
1653 
1654 #define MMC_MAX_RETRIES		5
1655 #define MMC_DATA_RETRIES	2
1656 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1657 
1658 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1659 {
1660 	struct mmc_command cmd = {
1661 		.opcode = MMC_STOP_TRANSMISSION,
1662 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1663 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1664 		.busy_timeout = timeout,
1665 	};
1666 
1667 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1668 }
1669 
1670 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1671 {
1672 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1673 	struct mmc_blk_request *brq = &mqrq->brq;
1674 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1675 	int err;
1676 
1677 	mmc_retune_hold_now(card->host);
1678 
1679 	mmc_blk_send_stop(card, timeout);
1680 
1681 	err = card_busy_detect(card, timeout, req, NULL);
1682 
1683 	mmc_retune_release(card->host);
1684 
1685 	return err;
1686 }
1687 
1688 #define MMC_READ_SINGLE_RETRIES	2
1689 
1690 /* Single sector read during recovery */
1691 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1692 {
1693 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1694 	struct mmc_request *mrq = &mqrq->brq.mrq;
1695 	struct mmc_card *card = mq->card;
1696 	struct mmc_host *host = card->host;
1697 	blk_status_t error = BLK_STS_OK;
1698 	int retries = 0;
1699 
1700 	do {
1701 		u32 status;
1702 		int err;
1703 
1704 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1705 
1706 		mmc_wait_for_req(host, mrq);
1707 
1708 		err = mmc_send_status(card, &status);
1709 		if (err)
1710 			goto error_exit;
1711 
1712 		if (!mmc_host_is_spi(host) &&
1713 		    !mmc_blk_in_tran_state(status)) {
1714 			err = mmc_blk_fix_state(card, req);
1715 			if (err)
1716 				goto error_exit;
1717 		}
1718 
1719 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1720 			continue;
1721 
1722 		retries = 0;
1723 
1724 		if (mrq->cmd->error ||
1725 		    mrq->data->error ||
1726 		    (!mmc_host_is_spi(host) &&
1727 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1728 			error = BLK_STS_IOERR;
1729 		else
1730 			error = BLK_STS_OK;
1731 
1732 	} while (blk_update_request(req, error, 512));
1733 
1734 	return;
1735 
1736 error_exit:
1737 	mrq->data->bytes_xfered = 0;
1738 	blk_update_request(req, BLK_STS_IOERR, 512);
1739 	/* Let it try the remaining request again */
1740 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1741 		mqrq->retries = MMC_MAX_RETRIES - 1;
1742 }
1743 
1744 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1745 {
1746 	return !!brq->mrq.sbc;
1747 }
1748 
1749 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1750 {
1751 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1752 }
1753 
1754 /*
1755  * Check for errors the host controller driver might not have seen such as
1756  * response mode errors or invalid card state.
1757  */
1758 static bool mmc_blk_status_error(struct request *req, u32 status)
1759 {
1760 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1761 	struct mmc_blk_request *brq = &mqrq->brq;
1762 	struct mmc_queue *mq = req->q->queuedata;
1763 	u32 stop_err_bits;
1764 
1765 	if (mmc_host_is_spi(mq->card->host))
1766 		return false;
1767 
1768 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1769 
1770 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1771 	       brq->stop.resp[0] & stop_err_bits ||
1772 	       status            & stop_err_bits ||
1773 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1774 }
1775 
1776 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1777 {
1778 	return !brq->sbc.error && !brq->cmd.error &&
1779 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1780 }
1781 
1782 /*
1783  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1784  * policy:
1785  * 1. A request that has transferred at least some data is considered
1786  * successful and will be requeued if there is remaining data to
1787  * transfer.
1788  * 2. Otherwise the number of retries is incremented and the request
1789  * will be requeued if there are remaining retries.
1790  * 3. Otherwise the request will be errored out.
1791  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1792  * mqrq->retries. So there are only 4 possible actions here:
1793  *	1. do not accept the bytes_xfered value i.e. set it to zero
1794  *	2. change mqrq->retries to determine the number of retries
1795  *	3. try to reset the card
1796  *	4. read one sector at a time
1797  */
1798 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1799 {
1800 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1801 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1802 	struct mmc_blk_request *brq = &mqrq->brq;
1803 	struct mmc_blk_data *md = mq->blkdata;
1804 	struct mmc_card *card = mq->card;
1805 	u32 status;
1806 	u32 blocks;
1807 	int err;
1808 
1809 	/*
1810 	 * Some errors the host driver might not have seen. Set the number of
1811 	 * bytes transferred to zero in that case.
1812 	 */
1813 	err = __mmc_send_status(card, &status, 0);
1814 	if (err || mmc_blk_status_error(req, status))
1815 		brq->data.bytes_xfered = 0;
1816 
1817 	mmc_retune_release(card->host);
1818 
1819 	/*
1820 	 * Try again to get the status. This also provides an opportunity for
1821 	 * re-tuning.
1822 	 */
1823 	if (err)
1824 		err = __mmc_send_status(card, &status, 0);
1825 
1826 	/*
1827 	 * Nothing more to do after the number of bytes transferred has been
1828 	 * updated and there is no card.
1829 	 */
1830 	if (err && mmc_detect_card_removed(card->host))
1831 		return;
1832 
1833 	/* Try to get back to "tran" state */
1834 	if (!mmc_host_is_spi(mq->card->host) &&
1835 	    (err || !mmc_blk_in_tran_state(status)))
1836 		err = mmc_blk_fix_state(mq->card, req);
1837 
1838 	/*
1839 	 * Special case for SD cards where the card might record the number of
1840 	 * blocks written.
1841 	 */
1842 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1843 	    rq_data_dir(req) == WRITE) {
1844 		if (mmc_sd_num_wr_blocks(card, &blocks))
1845 			brq->data.bytes_xfered = 0;
1846 		else
1847 			brq->data.bytes_xfered = blocks << 9;
1848 	}
1849 
1850 	/* Reset if the card is in a bad state */
1851 	if (!mmc_host_is_spi(mq->card->host) &&
1852 	    err && mmc_blk_reset(md, card->host, type)) {
1853 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1854 		mqrq->retries = MMC_NO_RETRIES;
1855 		return;
1856 	}
1857 
1858 	/*
1859 	 * If anything was done, just return and if there is anything remaining
1860 	 * on the request it will get requeued.
1861 	 */
1862 	if (brq->data.bytes_xfered)
1863 		return;
1864 
1865 	/* Reset before last retry */
1866 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1867 		mmc_blk_reset(md, card->host, type);
1868 
1869 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1870 	if (brq->sbc.error || brq->cmd.error)
1871 		return;
1872 
1873 	/* Reduce the remaining retries for data errors */
1874 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1875 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1876 		return;
1877 	}
1878 
1879 	/* FIXME: Missing single sector read for large sector size */
1880 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1881 	    brq->data.blocks > 1) {
1882 		/* Read one sector at a time */
1883 		mmc_blk_read_single(mq, req);
1884 		return;
1885 	}
1886 }
1887 
1888 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1889 {
1890 	mmc_blk_eval_resp_error(brq);
1891 
1892 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1893 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1894 }
1895 
1896 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1897 {
1898 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1899 	u32 status = 0;
1900 	int err;
1901 
1902 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1903 		return 0;
1904 
1905 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1906 
1907 	/*
1908 	 * Do not assume data transferred correctly if there are any error bits
1909 	 * set.
1910 	 */
1911 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1912 		mqrq->brq.data.bytes_xfered = 0;
1913 		err = err ? err : -EIO;
1914 	}
1915 
1916 	/* Copy the exception bit so it will be seen later on */
1917 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1918 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1919 
1920 	return err;
1921 }
1922 
1923 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1924 					    struct request *req)
1925 {
1926 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1927 
1928 	mmc_blk_reset_success(mq->blkdata, type);
1929 }
1930 
1931 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1932 {
1933 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1934 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1935 
1936 	if (nr_bytes) {
1937 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1938 			blk_mq_requeue_request(req, true);
1939 		else
1940 			__blk_mq_end_request(req, BLK_STS_OK);
1941 	} else if (!blk_rq_bytes(req)) {
1942 		__blk_mq_end_request(req, BLK_STS_IOERR);
1943 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1944 		blk_mq_requeue_request(req, true);
1945 	} else {
1946 		if (mmc_card_removed(mq->card))
1947 			req->rq_flags |= RQF_QUIET;
1948 		blk_mq_end_request(req, BLK_STS_IOERR);
1949 	}
1950 }
1951 
1952 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1953 					struct mmc_queue_req *mqrq)
1954 {
1955 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1956 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1957 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1958 }
1959 
1960 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1961 				 struct mmc_queue_req *mqrq)
1962 {
1963 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1964 		mmc_start_bkops(mq->card, true);
1965 }
1966 
1967 void mmc_blk_mq_complete(struct request *req)
1968 {
1969 	struct mmc_queue *mq = req->q->queuedata;
1970 
1971 	if (mq->use_cqe)
1972 		mmc_blk_cqe_complete_rq(mq, req);
1973 	else
1974 		mmc_blk_mq_complete_rq(mq, req);
1975 }
1976 
1977 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1978 				       struct request *req)
1979 {
1980 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1981 	struct mmc_host *host = mq->card->host;
1982 
1983 	if (mmc_blk_rq_error(&mqrq->brq) ||
1984 	    mmc_blk_card_busy(mq->card, req)) {
1985 		mmc_blk_mq_rw_recovery(mq, req);
1986 	} else {
1987 		mmc_blk_rw_reset_success(mq, req);
1988 		mmc_retune_release(host);
1989 	}
1990 
1991 	mmc_blk_urgent_bkops(mq, mqrq);
1992 }
1993 
1994 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1995 {
1996 	struct request_queue *q = req->q;
1997 	unsigned long flags;
1998 	bool put_card;
1999 
2000 	spin_lock_irqsave(q->queue_lock, flags);
2001 
2002 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2003 
2004 	put_card = (mmc_tot_in_flight(mq) == 0);
2005 
2006 	spin_unlock_irqrestore(q->queue_lock, flags);
2007 
2008 	if (put_card)
2009 		mmc_put_card(mq->card, &mq->ctx);
2010 }
2011 
2012 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2013 {
2014 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2015 	struct mmc_request *mrq = &mqrq->brq.mrq;
2016 	struct mmc_host *host = mq->card->host;
2017 
2018 	mmc_post_req(host, mrq, 0);
2019 
2020 	/*
2021 	 * Block layer timeouts race with completions which means the normal
2022 	 * completion path cannot be used during recovery.
2023 	 */
2024 	if (mq->in_recovery)
2025 		mmc_blk_mq_complete_rq(mq, req);
2026 	else
2027 		blk_mq_complete_request(req);
2028 
2029 	mmc_blk_mq_dec_in_flight(mq, req);
2030 }
2031 
2032 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2033 {
2034 	struct request *req = mq->recovery_req;
2035 	struct mmc_host *host = mq->card->host;
2036 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2037 
2038 	mq->recovery_req = NULL;
2039 	mq->rw_wait = false;
2040 
2041 	if (mmc_blk_rq_error(&mqrq->brq)) {
2042 		mmc_retune_hold_now(host);
2043 		mmc_blk_mq_rw_recovery(mq, req);
2044 	}
2045 
2046 	mmc_blk_urgent_bkops(mq, mqrq);
2047 
2048 	mmc_blk_mq_post_req(mq, req);
2049 }
2050 
2051 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2052 					 struct request **prev_req)
2053 {
2054 	if (mmc_host_done_complete(mq->card->host))
2055 		return;
2056 
2057 	mutex_lock(&mq->complete_lock);
2058 
2059 	if (!mq->complete_req)
2060 		goto out_unlock;
2061 
2062 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2063 
2064 	if (prev_req)
2065 		*prev_req = mq->complete_req;
2066 	else
2067 		mmc_blk_mq_post_req(mq, mq->complete_req);
2068 
2069 	mq->complete_req = NULL;
2070 
2071 out_unlock:
2072 	mutex_unlock(&mq->complete_lock);
2073 }
2074 
2075 void mmc_blk_mq_complete_work(struct work_struct *work)
2076 {
2077 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2078 					    complete_work);
2079 
2080 	mmc_blk_mq_complete_prev_req(mq, NULL);
2081 }
2082 
2083 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2084 {
2085 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2086 						  brq.mrq);
2087 	struct request *req = mmc_queue_req_to_req(mqrq);
2088 	struct request_queue *q = req->q;
2089 	struct mmc_queue *mq = q->queuedata;
2090 	struct mmc_host *host = mq->card->host;
2091 	unsigned long flags;
2092 
2093 	if (!mmc_host_done_complete(host)) {
2094 		bool waiting;
2095 
2096 		/*
2097 		 * We cannot complete the request in this context, so record
2098 		 * that there is a request to complete, and that a following
2099 		 * request does not need to wait (although it does need to
2100 		 * complete complete_req first).
2101 		 */
2102 		spin_lock_irqsave(q->queue_lock, flags);
2103 		mq->complete_req = req;
2104 		mq->rw_wait = false;
2105 		waiting = mq->waiting;
2106 		spin_unlock_irqrestore(q->queue_lock, flags);
2107 
2108 		/*
2109 		 * If 'waiting' then the waiting task will complete this
2110 		 * request, otherwise queue a work to do it. Note that
2111 		 * complete_work may still race with the dispatch of a following
2112 		 * request.
2113 		 */
2114 		if (waiting)
2115 			wake_up(&mq->wait);
2116 		else
2117 			kblockd_schedule_work(&mq->complete_work);
2118 
2119 		return;
2120 	}
2121 
2122 	/* Take the recovery path for errors or urgent background operations */
2123 	if (mmc_blk_rq_error(&mqrq->brq) ||
2124 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2125 		spin_lock_irqsave(q->queue_lock, flags);
2126 		mq->recovery_needed = true;
2127 		mq->recovery_req = req;
2128 		spin_unlock_irqrestore(q->queue_lock, flags);
2129 		wake_up(&mq->wait);
2130 		schedule_work(&mq->recovery_work);
2131 		return;
2132 	}
2133 
2134 	mmc_blk_rw_reset_success(mq, req);
2135 
2136 	mq->rw_wait = false;
2137 	wake_up(&mq->wait);
2138 
2139 	mmc_blk_mq_post_req(mq, req);
2140 }
2141 
2142 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2143 {
2144 	struct request_queue *q = mq->queue;
2145 	unsigned long flags;
2146 	bool done;
2147 
2148 	/*
2149 	 * Wait while there is another request in progress, but not if recovery
2150 	 * is needed. Also indicate whether there is a request waiting to start.
2151 	 */
2152 	spin_lock_irqsave(q->queue_lock, flags);
2153 	if (mq->recovery_needed) {
2154 		*err = -EBUSY;
2155 		done = true;
2156 	} else {
2157 		done = !mq->rw_wait;
2158 	}
2159 	mq->waiting = !done;
2160 	spin_unlock_irqrestore(q->queue_lock, flags);
2161 
2162 	return done;
2163 }
2164 
2165 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2166 {
2167 	int err = 0;
2168 
2169 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2170 
2171 	/* Always complete the previous request if there is one */
2172 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2173 
2174 	return err;
2175 }
2176 
2177 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2178 				  struct request *req)
2179 {
2180 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2181 	struct mmc_host *host = mq->card->host;
2182 	struct request *prev_req = NULL;
2183 	int err = 0;
2184 
2185 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2186 
2187 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2188 
2189 	mmc_pre_req(host, &mqrq->brq.mrq);
2190 
2191 	err = mmc_blk_rw_wait(mq, &prev_req);
2192 	if (err)
2193 		goto out_post_req;
2194 
2195 	mq->rw_wait = true;
2196 
2197 	err = mmc_start_request(host, &mqrq->brq.mrq);
2198 
2199 	if (prev_req)
2200 		mmc_blk_mq_post_req(mq, prev_req);
2201 
2202 	if (err)
2203 		mq->rw_wait = false;
2204 
2205 	/* Release re-tuning here where there is no synchronization required */
2206 	if (err || mmc_host_done_complete(host))
2207 		mmc_retune_release(host);
2208 
2209 out_post_req:
2210 	if (err)
2211 		mmc_post_req(host, &mqrq->brq.mrq, err);
2212 
2213 	return err;
2214 }
2215 
2216 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2217 {
2218 	if (mq->use_cqe)
2219 		return host->cqe_ops->cqe_wait_for_idle(host);
2220 
2221 	return mmc_blk_rw_wait(mq, NULL);
2222 }
2223 
2224 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2225 {
2226 	struct mmc_blk_data *md = mq->blkdata;
2227 	struct mmc_card *card = md->queue.card;
2228 	struct mmc_host *host = card->host;
2229 	int ret;
2230 
2231 	ret = mmc_blk_part_switch(card, md->part_type);
2232 	if (ret)
2233 		return MMC_REQ_FAILED_TO_START;
2234 
2235 	switch (mmc_issue_type(mq, req)) {
2236 	case MMC_ISSUE_SYNC:
2237 		ret = mmc_blk_wait_for_idle(mq, host);
2238 		if (ret)
2239 			return MMC_REQ_BUSY;
2240 		switch (req_op(req)) {
2241 		case REQ_OP_DRV_IN:
2242 		case REQ_OP_DRV_OUT:
2243 			mmc_blk_issue_drv_op(mq, req);
2244 			break;
2245 		case REQ_OP_DISCARD:
2246 			mmc_blk_issue_discard_rq(mq, req);
2247 			break;
2248 		case REQ_OP_SECURE_ERASE:
2249 			mmc_blk_issue_secdiscard_rq(mq, req);
2250 			break;
2251 		case REQ_OP_FLUSH:
2252 			mmc_blk_issue_flush(mq, req);
2253 			break;
2254 		default:
2255 			WARN_ON_ONCE(1);
2256 			return MMC_REQ_FAILED_TO_START;
2257 		}
2258 		return MMC_REQ_FINISHED;
2259 	case MMC_ISSUE_DCMD:
2260 	case MMC_ISSUE_ASYNC:
2261 		switch (req_op(req)) {
2262 		case REQ_OP_FLUSH:
2263 			ret = mmc_blk_cqe_issue_flush(mq, req);
2264 			break;
2265 		case REQ_OP_READ:
2266 		case REQ_OP_WRITE:
2267 			if (mq->use_cqe)
2268 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2269 			else
2270 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2271 			break;
2272 		default:
2273 			WARN_ON_ONCE(1);
2274 			ret = -EINVAL;
2275 		}
2276 		if (!ret)
2277 			return MMC_REQ_STARTED;
2278 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2279 	default:
2280 		WARN_ON_ONCE(1);
2281 		return MMC_REQ_FAILED_TO_START;
2282 	}
2283 }
2284 
2285 static inline int mmc_blk_readonly(struct mmc_card *card)
2286 {
2287 	return mmc_card_readonly(card) ||
2288 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2289 }
2290 
2291 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2292 					      struct device *parent,
2293 					      sector_t size,
2294 					      bool default_ro,
2295 					      const char *subname,
2296 					      int area_type)
2297 {
2298 	struct mmc_blk_data *md;
2299 	int devidx, ret;
2300 
2301 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2302 	if (devidx < 0) {
2303 		/*
2304 		 * We get -ENOSPC because there are no more any available
2305 		 * devidx. The reason may be that, either userspace haven't yet
2306 		 * unmounted the partitions, which postpones mmc_blk_release()
2307 		 * from being called, or the device has more partitions than
2308 		 * what we support.
2309 		 */
2310 		if (devidx == -ENOSPC)
2311 			dev_err(mmc_dev(card->host),
2312 				"no more device IDs available\n");
2313 
2314 		return ERR_PTR(devidx);
2315 	}
2316 
2317 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2318 	if (!md) {
2319 		ret = -ENOMEM;
2320 		goto out;
2321 	}
2322 
2323 	md->area_type = area_type;
2324 
2325 	/*
2326 	 * Set the read-only status based on the supported commands
2327 	 * and the write protect switch.
2328 	 */
2329 	md->read_only = mmc_blk_readonly(card);
2330 
2331 	md->disk = alloc_disk(perdev_minors);
2332 	if (md->disk == NULL) {
2333 		ret = -ENOMEM;
2334 		goto err_kfree;
2335 	}
2336 
2337 	spin_lock_init(&md->lock);
2338 	INIT_LIST_HEAD(&md->part);
2339 	INIT_LIST_HEAD(&md->rpmbs);
2340 	md->usage = 1;
2341 
2342 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2343 	if (ret)
2344 		goto err_putdisk;
2345 
2346 	md->queue.blkdata = md;
2347 
2348 	/*
2349 	 * Keep an extra reference to the queue so that we can shutdown the
2350 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2351 	 * references to the 'md'. The corresponding blk_put_queue() is in
2352 	 * mmc_blk_put().
2353 	 */
2354 	if (!blk_get_queue(md->queue.queue)) {
2355 		mmc_cleanup_queue(&md->queue);
2356 		ret = -ENODEV;
2357 		goto err_putdisk;
2358 	}
2359 
2360 	md->disk->major	= MMC_BLOCK_MAJOR;
2361 	md->disk->first_minor = devidx * perdev_minors;
2362 	md->disk->fops = &mmc_bdops;
2363 	md->disk->private_data = md;
2364 	md->disk->queue = md->queue.queue;
2365 	md->parent = parent;
2366 	set_disk_ro(md->disk, md->read_only || default_ro);
2367 	md->disk->flags = GENHD_FL_EXT_DEVT;
2368 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2369 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2370 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2371 
2372 	/*
2373 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2374 	 *
2375 	 * - be set for removable media with permanent block devices
2376 	 * - be unset for removable block devices with permanent media
2377 	 *
2378 	 * Since MMC block devices clearly fall under the second
2379 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2380 	 * should use the block device creation/destruction hotplug
2381 	 * messages to tell when the card is present.
2382 	 */
2383 
2384 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2385 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2386 
2387 	if (mmc_card_mmc(card))
2388 		blk_queue_logical_block_size(md->queue.queue,
2389 					     card->ext_csd.data_sector_size);
2390 	else
2391 		blk_queue_logical_block_size(md->queue.queue, 512);
2392 
2393 	set_capacity(md->disk, size);
2394 
2395 	if (mmc_host_cmd23(card->host)) {
2396 		if ((mmc_card_mmc(card) &&
2397 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2398 		    (mmc_card_sd(card) &&
2399 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2400 			md->flags |= MMC_BLK_CMD23;
2401 	}
2402 
2403 	if (mmc_card_mmc(card) &&
2404 	    md->flags & MMC_BLK_CMD23 &&
2405 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2406 	     card->ext_csd.rel_sectors)) {
2407 		md->flags |= MMC_BLK_REL_WR;
2408 		blk_queue_write_cache(md->queue.queue, true, true);
2409 	}
2410 
2411 	return md;
2412 
2413  err_putdisk:
2414 	put_disk(md->disk);
2415  err_kfree:
2416 	kfree(md);
2417  out:
2418 	ida_simple_remove(&mmc_blk_ida, devidx);
2419 	return ERR_PTR(ret);
2420 }
2421 
2422 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2423 {
2424 	sector_t size;
2425 
2426 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2427 		/*
2428 		 * The EXT_CSD sector count is in number or 512 byte
2429 		 * sectors.
2430 		 */
2431 		size = card->ext_csd.sectors;
2432 	} else {
2433 		/*
2434 		 * The CSD capacity field is in units of read_blkbits.
2435 		 * set_capacity takes units of 512 bytes.
2436 		 */
2437 		size = (typeof(sector_t))card->csd.capacity
2438 			<< (card->csd.read_blkbits - 9);
2439 	}
2440 
2441 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2442 					MMC_BLK_DATA_AREA_MAIN);
2443 }
2444 
2445 static int mmc_blk_alloc_part(struct mmc_card *card,
2446 			      struct mmc_blk_data *md,
2447 			      unsigned int part_type,
2448 			      sector_t size,
2449 			      bool default_ro,
2450 			      const char *subname,
2451 			      int area_type)
2452 {
2453 	char cap_str[10];
2454 	struct mmc_blk_data *part_md;
2455 
2456 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2457 				    subname, area_type);
2458 	if (IS_ERR(part_md))
2459 		return PTR_ERR(part_md);
2460 	part_md->part_type = part_type;
2461 	list_add(&part_md->part, &md->part);
2462 
2463 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2464 			cap_str, sizeof(cap_str));
2465 	pr_info("%s: %s %s partition %u %s\n",
2466 	       part_md->disk->disk_name, mmc_card_id(card),
2467 	       mmc_card_name(card), part_md->part_type, cap_str);
2468 	return 0;
2469 }
2470 
2471 /**
2472  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2473  * @filp: the character device file
2474  * @cmd: the ioctl() command
2475  * @arg: the argument from userspace
2476  *
2477  * This will essentially just redirect the ioctl()s coming in over to
2478  * the main block device spawning the RPMB character device.
2479  */
2480 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2481 			   unsigned long arg)
2482 {
2483 	struct mmc_rpmb_data *rpmb = filp->private_data;
2484 	int ret;
2485 
2486 	switch (cmd) {
2487 	case MMC_IOC_CMD:
2488 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2489 					(struct mmc_ioc_cmd __user *)arg,
2490 					rpmb);
2491 		break;
2492 	case MMC_IOC_MULTI_CMD:
2493 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2494 					(struct mmc_ioc_multi_cmd __user *)arg,
2495 					rpmb);
2496 		break;
2497 	default:
2498 		ret = -EINVAL;
2499 		break;
2500 	}
2501 
2502 	return ret;
2503 }
2504 
2505 #ifdef CONFIG_COMPAT
2506 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2507 			      unsigned long arg)
2508 {
2509 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2510 }
2511 #endif
2512 
2513 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2514 {
2515 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2516 						  struct mmc_rpmb_data, chrdev);
2517 
2518 	get_device(&rpmb->dev);
2519 	filp->private_data = rpmb;
2520 	mmc_blk_get(rpmb->md->disk);
2521 
2522 	return nonseekable_open(inode, filp);
2523 }
2524 
2525 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2526 {
2527 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2528 						  struct mmc_rpmb_data, chrdev);
2529 
2530 	put_device(&rpmb->dev);
2531 	mmc_blk_put(rpmb->md);
2532 
2533 	return 0;
2534 }
2535 
2536 static const struct file_operations mmc_rpmb_fileops = {
2537 	.release = mmc_rpmb_chrdev_release,
2538 	.open = mmc_rpmb_chrdev_open,
2539 	.owner = THIS_MODULE,
2540 	.llseek = no_llseek,
2541 	.unlocked_ioctl = mmc_rpmb_ioctl,
2542 #ifdef CONFIG_COMPAT
2543 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2544 #endif
2545 };
2546 
2547 static void mmc_blk_rpmb_device_release(struct device *dev)
2548 {
2549 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2550 
2551 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2552 	kfree(rpmb);
2553 }
2554 
2555 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2556 				   struct mmc_blk_data *md,
2557 				   unsigned int part_index,
2558 				   sector_t size,
2559 				   const char *subname)
2560 {
2561 	int devidx, ret;
2562 	char rpmb_name[DISK_NAME_LEN];
2563 	char cap_str[10];
2564 	struct mmc_rpmb_data *rpmb;
2565 
2566 	/* This creates the minor number for the RPMB char device */
2567 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2568 	if (devidx < 0)
2569 		return devidx;
2570 
2571 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2572 	if (!rpmb) {
2573 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2574 		return -ENOMEM;
2575 	}
2576 
2577 	snprintf(rpmb_name, sizeof(rpmb_name),
2578 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2579 
2580 	rpmb->id = devidx;
2581 	rpmb->part_index = part_index;
2582 	rpmb->dev.init_name = rpmb_name;
2583 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2584 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2585 	rpmb->dev.parent = &card->dev;
2586 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2587 	device_initialize(&rpmb->dev);
2588 	dev_set_drvdata(&rpmb->dev, rpmb);
2589 	rpmb->md = md;
2590 
2591 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2592 	rpmb->chrdev.owner = THIS_MODULE;
2593 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2594 	if (ret) {
2595 		pr_err("%s: could not add character device\n", rpmb_name);
2596 		goto out_put_device;
2597 	}
2598 
2599 	list_add(&rpmb->node, &md->rpmbs);
2600 
2601 	string_get_size((u64)size, 512, STRING_UNITS_2,
2602 			cap_str, sizeof(cap_str));
2603 
2604 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2605 		rpmb_name, mmc_card_id(card),
2606 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2607 		MAJOR(mmc_rpmb_devt), rpmb->id);
2608 
2609 	return 0;
2610 
2611 out_put_device:
2612 	put_device(&rpmb->dev);
2613 	return ret;
2614 }
2615 
2616 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2617 
2618 {
2619 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2620 	put_device(&rpmb->dev);
2621 }
2622 
2623 /* MMC Physical partitions consist of two boot partitions and
2624  * up to four general purpose partitions.
2625  * For each partition enabled in EXT_CSD a block device will be allocatedi
2626  * to provide access to the partition.
2627  */
2628 
2629 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2630 {
2631 	int idx, ret;
2632 
2633 	if (!mmc_card_mmc(card))
2634 		return 0;
2635 
2636 	for (idx = 0; idx < card->nr_parts; idx++) {
2637 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2638 			/*
2639 			 * RPMB partitions does not provide block access, they
2640 			 * are only accessed using ioctl():s. Thus create
2641 			 * special RPMB block devices that do not have a
2642 			 * backing block queue for these.
2643 			 */
2644 			ret = mmc_blk_alloc_rpmb_part(card, md,
2645 				card->part[idx].part_cfg,
2646 				card->part[idx].size >> 9,
2647 				card->part[idx].name);
2648 			if (ret)
2649 				return ret;
2650 		} else if (card->part[idx].size) {
2651 			ret = mmc_blk_alloc_part(card, md,
2652 				card->part[idx].part_cfg,
2653 				card->part[idx].size >> 9,
2654 				card->part[idx].force_ro,
2655 				card->part[idx].name,
2656 				card->part[idx].area_type);
2657 			if (ret)
2658 				return ret;
2659 		}
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2666 {
2667 	struct mmc_card *card;
2668 
2669 	if (md) {
2670 		/*
2671 		 * Flush remaining requests and free queues. It
2672 		 * is freeing the queue that stops new requests
2673 		 * from being accepted.
2674 		 */
2675 		card = md->queue.card;
2676 		if (md->disk->flags & GENHD_FL_UP) {
2677 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2678 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2679 					card->ext_csd.boot_ro_lockable)
2680 				device_remove_file(disk_to_dev(md->disk),
2681 					&md->power_ro_lock);
2682 
2683 			del_gendisk(md->disk);
2684 		}
2685 		mmc_cleanup_queue(&md->queue);
2686 		mmc_blk_put(md);
2687 	}
2688 }
2689 
2690 static void mmc_blk_remove_parts(struct mmc_card *card,
2691 				 struct mmc_blk_data *md)
2692 {
2693 	struct list_head *pos, *q;
2694 	struct mmc_blk_data *part_md;
2695 	struct mmc_rpmb_data *rpmb;
2696 
2697 	/* Remove RPMB partitions */
2698 	list_for_each_safe(pos, q, &md->rpmbs) {
2699 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2700 		list_del(pos);
2701 		mmc_blk_remove_rpmb_part(rpmb);
2702 	}
2703 	/* Remove block partitions */
2704 	list_for_each_safe(pos, q, &md->part) {
2705 		part_md = list_entry(pos, struct mmc_blk_data, part);
2706 		list_del(pos);
2707 		mmc_blk_remove_req(part_md);
2708 	}
2709 }
2710 
2711 static int mmc_add_disk(struct mmc_blk_data *md)
2712 {
2713 	int ret;
2714 	struct mmc_card *card = md->queue.card;
2715 
2716 	device_add_disk(md->parent, md->disk, NULL);
2717 	md->force_ro.show = force_ro_show;
2718 	md->force_ro.store = force_ro_store;
2719 	sysfs_attr_init(&md->force_ro.attr);
2720 	md->force_ro.attr.name = "force_ro";
2721 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2722 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2723 	if (ret)
2724 		goto force_ro_fail;
2725 
2726 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2727 	     card->ext_csd.boot_ro_lockable) {
2728 		umode_t mode;
2729 
2730 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2731 			mode = S_IRUGO;
2732 		else
2733 			mode = S_IRUGO | S_IWUSR;
2734 
2735 		md->power_ro_lock.show = power_ro_lock_show;
2736 		md->power_ro_lock.store = power_ro_lock_store;
2737 		sysfs_attr_init(&md->power_ro_lock.attr);
2738 		md->power_ro_lock.attr.mode = mode;
2739 		md->power_ro_lock.attr.name =
2740 					"ro_lock_until_next_power_on";
2741 		ret = device_create_file(disk_to_dev(md->disk),
2742 				&md->power_ro_lock);
2743 		if (ret)
2744 			goto power_ro_lock_fail;
2745 	}
2746 	return ret;
2747 
2748 power_ro_lock_fail:
2749 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2750 force_ro_fail:
2751 	del_gendisk(md->disk);
2752 
2753 	return ret;
2754 }
2755 
2756 #ifdef CONFIG_DEBUG_FS
2757 
2758 static int mmc_dbg_card_status_get(void *data, u64 *val)
2759 {
2760 	struct mmc_card *card = data;
2761 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2762 	struct mmc_queue *mq = &md->queue;
2763 	struct request *req;
2764 	int ret;
2765 
2766 	/* Ask the block layer about the card status */
2767 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2768 	if (IS_ERR(req))
2769 		return PTR_ERR(req);
2770 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2771 	blk_execute_rq(mq->queue, NULL, req, 0);
2772 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2773 	if (ret >= 0) {
2774 		*val = ret;
2775 		ret = 0;
2776 	}
2777 	blk_put_request(req);
2778 
2779 	return ret;
2780 }
2781 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2782 		NULL, "%08llx\n");
2783 
2784 /* That is two digits * 512 + 1 for newline */
2785 #define EXT_CSD_STR_LEN 1025
2786 
2787 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2788 {
2789 	struct mmc_card *card = inode->i_private;
2790 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2791 	struct mmc_queue *mq = &md->queue;
2792 	struct request *req;
2793 	char *buf;
2794 	ssize_t n = 0;
2795 	u8 *ext_csd;
2796 	int err, i;
2797 
2798 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2799 	if (!buf)
2800 		return -ENOMEM;
2801 
2802 	/* Ask the block layer for the EXT CSD */
2803 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2804 	if (IS_ERR(req)) {
2805 		err = PTR_ERR(req);
2806 		goto out_free;
2807 	}
2808 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2809 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2810 	blk_execute_rq(mq->queue, NULL, req, 0);
2811 	err = req_to_mmc_queue_req(req)->drv_op_result;
2812 	blk_put_request(req);
2813 	if (err) {
2814 		pr_err("FAILED %d\n", err);
2815 		goto out_free;
2816 	}
2817 
2818 	for (i = 0; i < 512; i++)
2819 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2820 	n += sprintf(buf + n, "\n");
2821 
2822 	if (n != EXT_CSD_STR_LEN) {
2823 		err = -EINVAL;
2824 		kfree(ext_csd);
2825 		goto out_free;
2826 	}
2827 
2828 	filp->private_data = buf;
2829 	kfree(ext_csd);
2830 	return 0;
2831 
2832 out_free:
2833 	kfree(buf);
2834 	return err;
2835 }
2836 
2837 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2838 				size_t cnt, loff_t *ppos)
2839 {
2840 	char *buf = filp->private_data;
2841 
2842 	return simple_read_from_buffer(ubuf, cnt, ppos,
2843 				       buf, EXT_CSD_STR_LEN);
2844 }
2845 
2846 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2847 {
2848 	kfree(file->private_data);
2849 	return 0;
2850 }
2851 
2852 static const struct file_operations mmc_dbg_ext_csd_fops = {
2853 	.open		= mmc_ext_csd_open,
2854 	.read		= mmc_ext_csd_read,
2855 	.release	= mmc_ext_csd_release,
2856 	.llseek		= default_llseek,
2857 };
2858 
2859 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2860 {
2861 	struct dentry *root;
2862 
2863 	if (!card->debugfs_root)
2864 		return 0;
2865 
2866 	root = card->debugfs_root;
2867 
2868 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2869 		md->status_dentry =
2870 			debugfs_create_file("status", S_IRUSR, root, card,
2871 					    &mmc_dbg_card_status_fops);
2872 		if (!md->status_dentry)
2873 			return -EIO;
2874 	}
2875 
2876 	if (mmc_card_mmc(card)) {
2877 		md->ext_csd_dentry =
2878 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2879 					    &mmc_dbg_ext_csd_fops);
2880 		if (!md->ext_csd_dentry)
2881 			return -EIO;
2882 	}
2883 
2884 	return 0;
2885 }
2886 
2887 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2888 				   struct mmc_blk_data *md)
2889 {
2890 	if (!card->debugfs_root)
2891 		return;
2892 
2893 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2894 		debugfs_remove(md->status_dentry);
2895 		md->status_dentry = NULL;
2896 	}
2897 
2898 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2899 		debugfs_remove(md->ext_csd_dentry);
2900 		md->ext_csd_dentry = NULL;
2901 	}
2902 }
2903 
2904 #else
2905 
2906 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2907 {
2908 	return 0;
2909 }
2910 
2911 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2912 				   struct mmc_blk_data *md)
2913 {
2914 }
2915 
2916 #endif /* CONFIG_DEBUG_FS */
2917 
2918 static int mmc_blk_probe(struct mmc_card *card)
2919 {
2920 	struct mmc_blk_data *md, *part_md;
2921 	char cap_str[10];
2922 
2923 	/*
2924 	 * Check that the card supports the command class(es) we need.
2925 	 */
2926 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2927 		return -ENODEV;
2928 
2929 	mmc_fixup_device(card, mmc_blk_fixups);
2930 
2931 	md = mmc_blk_alloc(card);
2932 	if (IS_ERR(md))
2933 		return PTR_ERR(md);
2934 
2935 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2936 			cap_str, sizeof(cap_str));
2937 	pr_info("%s: %s %s %s %s\n",
2938 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2939 		cap_str, md->read_only ? "(ro)" : "");
2940 
2941 	if (mmc_blk_alloc_parts(card, md))
2942 		goto out;
2943 
2944 	dev_set_drvdata(&card->dev, md);
2945 
2946 	if (mmc_add_disk(md))
2947 		goto out;
2948 
2949 	list_for_each_entry(part_md, &md->part, part) {
2950 		if (mmc_add_disk(part_md))
2951 			goto out;
2952 	}
2953 
2954 	/* Add two debugfs entries */
2955 	mmc_blk_add_debugfs(card, md);
2956 
2957 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2958 	pm_runtime_use_autosuspend(&card->dev);
2959 
2960 	/*
2961 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2962 	 * decision to be taken during the SDIO init sequence instead.
2963 	 */
2964 	if (card->type != MMC_TYPE_SD_COMBO) {
2965 		pm_runtime_set_active(&card->dev);
2966 		pm_runtime_enable(&card->dev);
2967 	}
2968 
2969 	return 0;
2970 
2971  out:
2972 	mmc_blk_remove_parts(card, md);
2973 	mmc_blk_remove_req(md);
2974 	return 0;
2975 }
2976 
2977 static void mmc_blk_remove(struct mmc_card *card)
2978 {
2979 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2980 
2981 	mmc_blk_remove_debugfs(card, md);
2982 	mmc_blk_remove_parts(card, md);
2983 	pm_runtime_get_sync(&card->dev);
2984 	if (md->part_curr != md->part_type) {
2985 		mmc_claim_host(card->host);
2986 		mmc_blk_part_switch(card, md->part_type);
2987 		mmc_release_host(card->host);
2988 	}
2989 	if (card->type != MMC_TYPE_SD_COMBO)
2990 		pm_runtime_disable(&card->dev);
2991 	pm_runtime_put_noidle(&card->dev);
2992 	mmc_blk_remove_req(md);
2993 	dev_set_drvdata(&card->dev, NULL);
2994 }
2995 
2996 static int _mmc_blk_suspend(struct mmc_card *card)
2997 {
2998 	struct mmc_blk_data *part_md;
2999 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3000 
3001 	if (md) {
3002 		mmc_queue_suspend(&md->queue);
3003 		list_for_each_entry(part_md, &md->part, part) {
3004 			mmc_queue_suspend(&part_md->queue);
3005 		}
3006 	}
3007 	return 0;
3008 }
3009 
3010 static void mmc_blk_shutdown(struct mmc_card *card)
3011 {
3012 	_mmc_blk_suspend(card);
3013 }
3014 
3015 #ifdef CONFIG_PM_SLEEP
3016 static int mmc_blk_suspend(struct device *dev)
3017 {
3018 	struct mmc_card *card = mmc_dev_to_card(dev);
3019 
3020 	return _mmc_blk_suspend(card);
3021 }
3022 
3023 static int mmc_blk_resume(struct device *dev)
3024 {
3025 	struct mmc_blk_data *part_md;
3026 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3027 
3028 	if (md) {
3029 		/*
3030 		 * Resume involves the card going into idle state,
3031 		 * so current partition is always the main one.
3032 		 */
3033 		md->part_curr = md->part_type;
3034 		mmc_queue_resume(&md->queue);
3035 		list_for_each_entry(part_md, &md->part, part) {
3036 			mmc_queue_resume(&part_md->queue);
3037 		}
3038 	}
3039 	return 0;
3040 }
3041 #endif
3042 
3043 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3044 
3045 static struct mmc_driver mmc_driver = {
3046 	.drv		= {
3047 		.name	= "mmcblk",
3048 		.pm	= &mmc_blk_pm_ops,
3049 	},
3050 	.probe		= mmc_blk_probe,
3051 	.remove		= mmc_blk_remove,
3052 	.shutdown	= mmc_blk_shutdown,
3053 };
3054 
3055 static int __init mmc_blk_init(void)
3056 {
3057 	int res;
3058 
3059 	res  = bus_register(&mmc_rpmb_bus_type);
3060 	if (res < 0) {
3061 		pr_err("mmcblk: could not register RPMB bus type\n");
3062 		return res;
3063 	}
3064 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3065 	if (res < 0) {
3066 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3067 		goto out_bus_unreg;
3068 	}
3069 
3070 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3071 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3072 
3073 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3074 
3075 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3076 	if (res)
3077 		goto out_chrdev_unreg;
3078 
3079 	res = mmc_register_driver(&mmc_driver);
3080 	if (res)
3081 		goto out_blkdev_unreg;
3082 
3083 	return 0;
3084 
3085 out_blkdev_unreg:
3086 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3087 out_chrdev_unreg:
3088 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3089 out_bus_unreg:
3090 	bus_unregister(&mmc_rpmb_bus_type);
3091 	return res;
3092 }
3093 
3094 static void __exit mmc_blk_exit(void)
3095 {
3096 	mmc_unregister_driver(&mmc_driver);
3097 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3098 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3099 	bus_unregister(&mmc_rpmb_bus_type);
3100 }
3101 
3102 module_init(mmc_blk_init);
3103 module_exit(mmc_blk_exit);
3104 
3105 MODULE_LICENSE("GPL");
3106 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3107 
3108