1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/mutex.h> 32 #include <linux/scatterlist.h> 33 #include <linux/string_helpers.h> 34 #include <linux/delay.h> 35 #include <linux/capability.h> 36 #include <linux/compat.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/idr.h> 39 40 #include <linux/mmc/ioctl.h> 41 #include <linux/mmc/card.h> 42 #include <linux/mmc/host.h> 43 #include <linux/mmc/mmc.h> 44 #include <linux/mmc/sd.h> 45 46 #include <linux/uaccess.h> 47 48 #include "queue.h" 49 #include "block.h" 50 #include "core.h" 51 #include "card.h" 52 #include "host.h" 53 #include "bus.h" 54 #include "mmc_ops.h" 55 #include "quirks.h" 56 #include "sd_ops.h" 57 58 MODULE_ALIAS("mmc:block"); 59 #ifdef MODULE_PARAM_PREFIX 60 #undef MODULE_PARAM_PREFIX 61 #endif 62 #define MODULE_PARAM_PREFIX "mmcblk." 63 64 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 65 #define MMC_SANITIZE_REQ_TIMEOUT 240000 66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 67 68 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 69 (rq_data_dir(req) == WRITE)) 70 static DEFINE_MUTEX(block_mutex); 71 72 /* 73 * The defaults come from config options but can be overriden by module 74 * or bootarg options. 75 */ 76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 77 78 /* 79 * We've only got one major, so number of mmcblk devices is 80 * limited to (1 << 20) / number of minors per device. It is also 81 * limited by the MAX_DEVICES below. 82 */ 83 static int max_devices; 84 85 #define MAX_DEVICES 256 86 87 static DEFINE_IDA(mmc_blk_ida); 88 89 /* 90 * There is one mmc_blk_data per slot. 91 */ 92 struct mmc_blk_data { 93 spinlock_t lock; 94 struct device *parent; 95 struct gendisk *disk; 96 struct mmc_queue queue; 97 struct list_head part; 98 99 unsigned int flags; 100 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 101 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 102 103 unsigned int usage; 104 unsigned int read_only; 105 unsigned int part_type; 106 unsigned int reset_done; 107 #define MMC_BLK_READ BIT(0) 108 #define MMC_BLK_WRITE BIT(1) 109 #define MMC_BLK_DISCARD BIT(2) 110 #define MMC_BLK_SECDISCARD BIT(3) 111 112 /* 113 * Only set in main mmc_blk_data associated 114 * with mmc_card with dev_set_drvdata, and keeps 115 * track of the current selected device partition. 116 */ 117 unsigned int part_curr; 118 struct device_attribute force_ro; 119 struct device_attribute power_ro_lock; 120 int area_type; 121 }; 122 123 static DEFINE_MUTEX(open_lock); 124 125 module_param(perdev_minors, int, 0444); 126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 127 128 static inline int mmc_blk_part_switch(struct mmc_card *card, 129 struct mmc_blk_data *md); 130 131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 132 { 133 struct mmc_blk_data *md; 134 135 mutex_lock(&open_lock); 136 md = disk->private_data; 137 if (md && md->usage == 0) 138 md = NULL; 139 if (md) 140 md->usage++; 141 mutex_unlock(&open_lock); 142 143 return md; 144 } 145 146 static inline int mmc_get_devidx(struct gendisk *disk) 147 { 148 int devidx = disk->first_minor / perdev_minors; 149 return devidx; 150 } 151 152 static void mmc_blk_put(struct mmc_blk_data *md) 153 { 154 mutex_lock(&open_lock); 155 md->usage--; 156 if (md->usage == 0) { 157 int devidx = mmc_get_devidx(md->disk); 158 blk_cleanup_queue(md->queue.queue); 159 ida_simple_remove(&mmc_blk_ida, devidx); 160 put_disk(md->disk); 161 kfree(md); 162 } 163 mutex_unlock(&open_lock); 164 } 165 166 static ssize_t power_ro_lock_show(struct device *dev, 167 struct device_attribute *attr, char *buf) 168 { 169 int ret; 170 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 171 struct mmc_card *card = md->queue.card; 172 int locked = 0; 173 174 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 175 locked = 2; 176 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 177 locked = 1; 178 179 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 180 181 mmc_blk_put(md); 182 183 return ret; 184 } 185 186 static ssize_t power_ro_lock_store(struct device *dev, 187 struct device_attribute *attr, const char *buf, size_t count) 188 { 189 int ret; 190 struct mmc_blk_data *md, *part_md; 191 struct mmc_card *card; 192 struct mmc_queue *mq; 193 struct request *req; 194 unsigned long set; 195 196 if (kstrtoul(buf, 0, &set)) 197 return -EINVAL; 198 199 if (set != 1) 200 return count; 201 202 md = mmc_blk_get(dev_to_disk(dev)); 203 mq = &md->queue; 204 card = md->queue.card; 205 206 /* Dispatch locking to the block layer */ 207 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM); 208 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 209 blk_execute_rq(mq->queue, NULL, req, 0); 210 ret = req_to_mmc_queue_req(req)->drv_op_result; 211 212 if (!ret) { 213 pr_info("%s: Locking boot partition ro until next power on\n", 214 md->disk->disk_name); 215 set_disk_ro(md->disk, 1); 216 217 list_for_each_entry(part_md, &md->part, part) 218 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 219 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 220 set_disk_ro(part_md->disk, 1); 221 } 222 } 223 224 mmc_blk_put(md); 225 return count; 226 } 227 228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 229 char *buf) 230 { 231 int ret; 232 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 233 234 ret = snprintf(buf, PAGE_SIZE, "%d\n", 235 get_disk_ro(dev_to_disk(dev)) ^ 236 md->read_only); 237 mmc_blk_put(md); 238 return ret; 239 } 240 241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 242 const char *buf, size_t count) 243 { 244 int ret; 245 char *end; 246 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 247 unsigned long set = simple_strtoul(buf, &end, 0); 248 if (end == buf) { 249 ret = -EINVAL; 250 goto out; 251 } 252 253 set_disk_ro(dev_to_disk(dev), set || md->read_only); 254 ret = count; 255 out: 256 mmc_blk_put(md); 257 return ret; 258 } 259 260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 261 { 262 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 263 int ret = -ENXIO; 264 265 mutex_lock(&block_mutex); 266 if (md) { 267 if (md->usage == 2) 268 check_disk_change(bdev); 269 ret = 0; 270 271 if ((mode & FMODE_WRITE) && md->read_only) { 272 mmc_blk_put(md); 273 ret = -EROFS; 274 } 275 } 276 mutex_unlock(&block_mutex); 277 278 return ret; 279 } 280 281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 282 { 283 struct mmc_blk_data *md = disk->private_data; 284 285 mutex_lock(&block_mutex); 286 mmc_blk_put(md); 287 mutex_unlock(&block_mutex); 288 } 289 290 static int 291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 292 { 293 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 294 geo->heads = 4; 295 geo->sectors = 16; 296 return 0; 297 } 298 299 struct mmc_blk_ioc_data { 300 struct mmc_ioc_cmd ic; 301 unsigned char *buf; 302 u64 buf_bytes; 303 }; 304 305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 306 struct mmc_ioc_cmd __user *user) 307 { 308 struct mmc_blk_ioc_data *idata; 309 int err; 310 311 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 312 if (!idata) { 313 err = -ENOMEM; 314 goto out; 315 } 316 317 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 318 err = -EFAULT; 319 goto idata_err; 320 } 321 322 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 323 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 324 err = -EOVERFLOW; 325 goto idata_err; 326 } 327 328 if (!idata->buf_bytes) { 329 idata->buf = NULL; 330 return idata; 331 } 332 333 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL); 334 if (!idata->buf) { 335 err = -ENOMEM; 336 goto idata_err; 337 } 338 339 if (copy_from_user(idata->buf, (void __user *)(unsigned long) 340 idata->ic.data_ptr, idata->buf_bytes)) { 341 err = -EFAULT; 342 goto copy_err; 343 } 344 345 return idata; 346 347 copy_err: 348 kfree(idata->buf); 349 idata_err: 350 kfree(idata); 351 out: 352 return ERR_PTR(err); 353 } 354 355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 356 struct mmc_blk_ioc_data *idata) 357 { 358 struct mmc_ioc_cmd *ic = &idata->ic; 359 360 if (copy_to_user(&(ic_ptr->response), ic->response, 361 sizeof(ic->response))) 362 return -EFAULT; 363 364 if (!idata->ic.write_flag) { 365 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 366 idata->buf, idata->buf_bytes)) 367 return -EFAULT; 368 } 369 370 return 0; 371 } 372 373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 374 u32 retries_max) 375 { 376 int err; 377 u32 retry_count = 0; 378 379 if (!status || !retries_max) 380 return -EINVAL; 381 382 do { 383 err = __mmc_send_status(card, status, 5); 384 if (err) 385 break; 386 387 if (!R1_STATUS(*status) && 388 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 389 break; /* RPMB programming operation complete */ 390 391 /* 392 * Rechedule to give the MMC device a chance to continue 393 * processing the previous command without being polled too 394 * frequently. 395 */ 396 usleep_range(1000, 5000); 397 } while (++retry_count < retries_max); 398 399 if (retry_count == retries_max) 400 err = -EPERM; 401 402 return err; 403 } 404 405 static int ioctl_do_sanitize(struct mmc_card *card) 406 { 407 int err; 408 409 if (!mmc_can_sanitize(card)) { 410 pr_warn("%s: %s - SANITIZE is not supported\n", 411 mmc_hostname(card->host), __func__); 412 err = -EOPNOTSUPP; 413 goto out; 414 } 415 416 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 417 mmc_hostname(card->host), __func__); 418 419 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 420 EXT_CSD_SANITIZE_START, 1, 421 MMC_SANITIZE_REQ_TIMEOUT); 422 423 if (err) 424 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 425 mmc_hostname(card->host), __func__, err); 426 427 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 428 __func__); 429 out: 430 return err; 431 } 432 433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 434 struct mmc_blk_ioc_data *idata) 435 { 436 struct mmc_command cmd = {}; 437 struct mmc_data data = {}; 438 struct mmc_request mrq = {}; 439 struct scatterlist sg; 440 int err; 441 bool is_rpmb = false; 442 u32 status = 0; 443 444 if (!card || !md || !idata) 445 return -EINVAL; 446 447 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 448 is_rpmb = true; 449 450 cmd.opcode = idata->ic.opcode; 451 cmd.arg = idata->ic.arg; 452 cmd.flags = idata->ic.flags; 453 454 if (idata->buf_bytes) { 455 data.sg = &sg; 456 data.sg_len = 1; 457 data.blksz = idata->ic.blksz; 458 data.blocks = idata->ic.blocks; 459 460 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 461 462 if (idata->ic.write_flag) 463 data.flags = MMC_DATA_WRITE; 464 else 465 data.flags = MMC_DATA_READ; 466 467 /* data.flags must already be set before doing this. */ 468 mmc_set_data_timeout(&data, card); 469 470 /* Allow overriding the timeout_ns for empirical tuning. */ 471 if (idata->ic.data_timeout_ns) 472 data.timeout_ns = idata->ic.data_timeout_ns; 473 474 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 475 /* 476 * Pretend this is a data transfer and rely on the 477 * host driver to compute timeout. When all host 478 * drivers support cmd.cmd_timeout for R1B, this 479 * can be changed to: 480 * 481 * mrq.data = NULL; 482 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 483 */ 484 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 485 } 486 487 mrq.data = &data; 488 } 489 490 mrq.cmd = &cmd; 491 492 err = mmc_blk_part_switch(card, md); 493 if (err) 494 return err; 495 496 if (idata->ic.is_acmd) { 497 err = mmc_app_cmd(card->host, card); 498 if (err) 499 return err; 500 } 501 502 if (is_rpmb) { 503 err = mmc_set_blockcount(card, data.blocks, 504 idata->ic.write_flag & (1 << 31)); 505 if (err) 506 return err; 507 } 508 509 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 510 (cmd.opcode == MMC_SWITCH)) { 511 err = ioctl_do_sanitize(card); 512 513 if (err) 514 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 515 __func__, err); 516 517 return err; 518 } 519 520 mmc_wait_for_req(card->host, &mrq); 521 522 if (cmd.error) { 523 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 524 __func__, cmd.error); 525 return cmd.error; 526 } 527 if (data.error) { 528 dev_err(mmc_dev(card->host), "%s: data error %d\n", 529 __func__, data.error); 530 return data.error; 531 } 532 533 /* 534 * According to the SD specs, some commands require a delay after 535 * issuing the command. 536 */ 537 if (idata->ic.postsleep_min_us) 538 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 539 540 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 541 542 if (is_rpmb) { 543 /* 544 * Ensure RPMB command has completed by polling CMD13 545 * "Send Status". 546 */ 547 err = ioctl_rpmb_card_status_poll(card, &status, 5); 548 if (err) 549 dev_err(mmc_dev(card->host), 550 "%s: Card Status=0x%08X, error %d\n", 551 __func__, status, err); 552 } 553 554 return err; 555 } 556 557 static int mmc_blk_ioctl_cmd(struct block_device *bdev, 558 struct mmc_ioc_cmd __user *ic_ptr) 559 { 560 struct mmc_blk_ioc_data *idata; 561 struct mmc_blk_ioc_data *idatas[1]; 562 struct mmc_blk_data *md; 563 struct mmc_queue *mq; 564 struct mmc_card *card; 565 int err = 0, ioc_err = 0; 566 struct request *req; 567 568 /* 569 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 570 * whole block device, not on a partition. This prevents overspray 571 * between sibling partitions. 572 */ 573 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 574 return -EPERM; 575 576 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 577 if (IS_ERR(idata)) 578 return PTR_ERR(idata); 579 580 md = mmc_blk_get(bdev->bd_disk); 581 if (!md) { 582 err = -EINVAL; 583 goto cmd_err; 584 } 585 586 card = md->queue.card; 587 if (IS_ERR(card)) { 588 err = PTR_ERR(card); 589 goto cmd_done; 590 } 591 592 /* 593 * Dispatch the ioctl() into the block request queue. 594 */ 595 mq = &md->queue; 596 req = blk_get_request(mq->queue, 597 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 598 __GFP_RECLAIM); 599 idatas[0] = idata; 600 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL; 601 req_to_mmc_queue_req(req)->idata = idatas; 602 req_to_mmc_queue_req(req)->ioc_count = 1; 603 blk_execute_rq(mq->queue, NULL, req, 0); 604 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 605 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 606 blk_put_request(req); 607 608 cmd_done: 609 mmc_blk_put(md); 610 cmd_err: 611 kfree(idata->buf); 612 kfree(idata); 613 return ioc_err ? ioc_err : err; 614 } 615 616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev, 617 struct mmc_ioc_multi_cmd __user *user) 618 { 619 struct mmc_blk_ioc_data **idata = NULL; 620 struct mmc_ioc_cmd __user *cmds = user->cmds; 621 struct mmc_card *card; 622 struct mmc_blk_data *md; 623 struct mmc_queue *mq; 624 int i, err = 0, ioc_err = 0; 625 __u64 num_of_cmds; 626 struct request *req; 627 628 /* 629 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 630 * whole block device, not on a partition. This prevents overspray 631 * between sibling partitions. 632 */ 633 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 634 return -EPERM; 635 636 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 637 sizeof(num_of_cmds))) 638 return -EFAULT; 639 640 if (num_of_cmds > MMC_IOC_MAX_CMDS) 641 return -EINVAL; 642 643 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 644 if (!idata) 645 return -ENOMEM; 646 647 for (i = 0; i < num_of_cmds; i++) { 648 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 649 if (IS_ERR(idata[i])) { 650 err = PTR_ERR(idata[i]); 651 num_of_cmds = i; 652 goto cmd_err; 653 } 654 } 655 656 md = mmc_blk_get(bdev->bd_disk); 657 if (!md) { 658 err = -EINVAL; 659 goto cmd_err; 660 } 661 662 card = md->queue.card; 663 if (IS_ERR(card)) { 664 err = PTR_ERR(card); 665 goto cmd_done; 666 } 667 668 669 /* 670 * Dispatch the ioctl()s into the block request queue. 671 */ 672 mq = &md->queue; 673 req = blk_get_request(mq->queue, 674 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 675 __GFP_RECLAIM); 676 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL; 677 req_to_mmc_queue_req(req)->idata = idata; 678 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 679 blk_execute_rq(mq->queue, NULL, req, 0); 680 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 681 682 /* copy to user if data and response */ 683 for (i = 0; i < num_of_cmds && !err; i++) 684 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 685 686 blk_put_request(req); 687 688 cmd_done: 689 mmc_blk_put(md); 690 cmd_err: 691 for (i = 0; i < num_of_cmds; i++) { 692 kfree(idata[i]->buf); 693 kfree(idata[i]); 694 } 695 kfree(idata); 696 return ioc_err ? ioc_err : err; 697 } 698 699 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 700 unsigned int cmd, unsigned long arg) 701 { 702 switch (cmd) { 703 case MMC_IOC_CMD: 704 return mmc_blk_ioctl_cmd(bdev, 705 (struct mmc_ioc_cmd __user *)arg); 706 case MMC_IOC_MULTI_CMD: 707 return mmc_blk_ioctl_multi_cmd(bdev, 708 (struct mmc_ioc_multi_cmd __user *)arg); 709 default: 710 return -EINVAL; 711 } 712 } 713 714 #ifdef CONFIG_COMPAT 715 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 716 unsigned int cmd, unsigned long arg) 717 { 718 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 719 } 720 #endif 721 722 static const struct block_device_operations mmc_bdops = { 723 .open = mmc_blk_open, 724 .release = mmc_blk_release, 725 .getgeo = mmc_blk_getgeo, 726 .owner = THIS_MODULE, 727 .ioctl = mmc_blk_ioctl, 728 #ifdef CONFIG_COMPAT 729 .compat_ioctl = mmc_blk_compat_ioctl, 730 #endif 731 }; 732 733 static int mmc_blk_part_switch_pre(struct mmc_card *card, 734 unsigned int part_type) 735 { 736 int ret = 0; 737 738 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 739 if (card->ext_csd.cmdq_en) { 740 ret = mmc_cmdq_disable(card); 741 if (ret) 742 return ret; 743 } 744 mmc_retune_pause(card->host); 745 } 746 747 return ret; 748 } 749 750 static int mmc_blk_part_switch_post(struct mmc_card *card, 751 unsigned int part_type) 752 { 753 int ret = 0; 754 755 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 756 mmc_retune_unpause(card->host); 757 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 758 ret = mmc_cmdq_enable(card); 759 } 760 761 return ret; 762 } 763 764 static inline int mmc_blk_part_switch(struct mmc_card *card, 765 struct mmc_blk_data *md) 766 { 767 int ret = 0; 768 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 769 770 if (main_md->part_curr == md->part_type) 771 return 0; 772 773 if (mmc_card_mmc(card)) { 774 u8 part_config = card->ext_csd.part_config; 775 776 ret = mmc_blk_part_switch_pre(card, md->part_type); 777 if (ret) 778 return ret; 779 780 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 781 part_config |= md->part_type; 782 783 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 784 EXT_CSD_PART_CONFIG, part_config, 785 card->ext_csd.part_time); 786 if (ret) { 787 mmc_blk_part_switch_post(card, md->part_type); 788 return ret; 789 } 790 791 card->ext_csd.part_config = part_config; 792 793 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 794 } 795 796 main_md->part_curr = md->part_type; 797 return ret; 798 } 799 800 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 801 { 802 int err; 803 u32 result; 804 __be32 *blocks; 805 806 struct mmc_request mrq = {}; 807 struct mmc_command cmd = {}; 808 struct mmc_data data = {}; 809 810 struct scatterlist sg; 811 812 cmd.opcode = MMC_APP_CMD; 813 cmd.arg = card->rca << 16; 814 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 815 816 err = mmc_wait_for_cmd(card->host, &cmd, 0); 817 if (err) 818 return err; 819 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 820 return -EIO; 821 822 memset(&cmd, 0, sizeof(struct mmc_command)); 823 824 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 825 cmd.arg = 0; 826 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 827 828 data.blksz = 4; 829 data.blocks = 1; 830 data.flags = MMC_DATA_READ; 831 data.sg = &sg; 832 data.sg_len = 1; 833 mmc_set_data_timeout(&data, card); 834 835 mrq.cmd = &cmd; 836 mrq.data = &data; 837 838 blocks = kmalloc(4, GFP_KERNEL); 839 if (!blocks) 840 return -ENOMEM; 841 842 sg_init_one(&sg, blocks, 4); 843 844 mmc_wait_for_req(card->host, &mrq); 845 846 result = ntohl(*blocks); 847 kfree(blocks); 848 849 if (cmd.error || data.error) 850 return -EIO; 851 852 *written_blocks = result; 853 854 return 0; 855 } 856 857 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 858 bool hw_busy_detect, struct request *req, bool *gen_err) 859 { 860 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 861 int err = 0; 862 u32 status; 863 864 do { 865 err = __mmc_send_status(card, &status, 5); 866 if (err) { 867 pr_err("%s: error %d requesting status\n", 868 req->rq_disk->disk_name, err); 869 return err; 870 } 871 872 if (status & R1_ERROR) { 873 pr_err("%s: %s: error sending status cmd, status %#x\n", 874 req->rq_disk->disk_name, __func__, status); 875 *gen_err = true; 876 } 877 878 /* We may rely on the host hw to handle busy detection.*/ 879 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && 880 hw_busy_detect) 881 break; 882 883 /* 884 * Timeout if the device never becomes ready for data and never 885 * leaves the program state. 886 */ 887 if (time_after(jiffies, timeout)) { 888 pr_err("%s: Card stuck in programming state! %s %s\n", 889 mmc_hostname(card->host), 890 req->rq_disk->disk_name, __func__); 891 return -ETIMEDOUT; 892 } 893 894 /* 895 * Some cards mishandle the status bits, 896 * so make sure to check both the busy 897 * indication and the card state. 898 */ 899 } while (!(status & R1_READY_FOR_DATA) || 900 (R1_CURRENT_STATE(status) == R1_STATE_PRG)); 901 902 return err; 903 } 904 905 static int send_stop(struct mmc_card *card, unsigned int timeout_ms, 906 struct request *req, bool *gen_err, u32 *stop_status) 907 { 908 struct mmc_host *host = card->host; 909 struct mmc_command cmd = {}; 910 int err; 911 bool use_r1b_resp = rq_data_dir(req) == WRITE; 912 913 /* 914 * Normally we use R1B responses for WRITE, but in cases where the host 915 * has specified a max_busy_timeout we need to validate it. A failure 916 * means we need to prevent the host from doing hw busy detection, which 917 * is done by converting to a R1 response instead. 918 */ 919 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) 920 use_r1b_resp = false; 921 922 cmd.opcode = MMC_STOP_TRANSMISSION; 923 if (use_r1b_resp) { 924 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 925 cmd.busy_timeout = timeout_ms; 926 } else { 927 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 928 } 929 930 err = mmc_wait_for_cmd(host, &cmd, 5); 931 if (err) 932 return err; 933 934 *stop_status = cmd.resp[0]; 935 936 /* No need to check card status in case of READ. */ 937 if (rq_data_dir(req) == READ) 938 return 0; 939 940 if (!mmc_host_is_spi(host) && 941 (*stop_status & R1_ERROR)) { 942 pr_err("%s: %s: general error sending stop command, resp %#x\n", 943 req->rq_disk->disk_name, __func__, *stop_status); 944 *gen_err = true; 945 } 946 947 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); 948 } 949 950 #define ERR_NOMEDIUM 3 951 #define ERR_RETRY 2 952 #define ERR_ABORT 1 953 #define ERR_CONTINUE 0 954 955 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, 956 bool status_valid, u32 status) 957 { 958 switch (error) { 959 case -EILSEQ: 960 /* response crc error, retry the r/w cmd */ 961 pr_err("%s: %s sending %s command, card status %#x\n", 962 req->rq_disk->disk_name, "response CRC error", 963 name, status); 964 return ERR_RETRY; 965 966 case -ETIMEDOUT: 967 pr_err("%s: %s sending %s command, card status %#x\n", 968 req->rq_disk->disk_name, "timed out", name, status); 969 970 /* If the status cmd initially failed, retry the r/w cmd */ 971 if (!status_valid) { 972 pr_err("%s: status not valid, retrying timeout\n", 973 req->rq_disk->disk_name); 974 return ERR_RETRY; 975 } 976 977 /* 978 * If it was a r/w cmd crc error, or illegal command 979 * (eg, issued in wrong state) then retry - we should 980 * have corrected the state problem above. 981 */ 982 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { 983 pr_err("%s: command error, retrying timeout\n", 984 req->rq_disk->disk_name); 985 return ERR_RETRY; 986 } 987 988 /* Otherwise abort the command */ 989 return ERR_ABORT; 990 991 default: 992 /* We don't understand the error code the driver gave us */ 993 pr_err("%s: unknown error %d sending read/write command, card status %#x\n", 994 req->rq_disk->disk_name, error, status); 995 return ERR_ABORT; 996 } 997 } 998 999 /* 1000 * Initial r/w and stop cmd error recovery. 1001 * We don't know whether the card received the r/w cmd or not, so try to 1002 * restore things back to a sane state. Essentially, we do this as follows: 1003 * - Obtain card status. If the first attempt to obtain card status fails, 1004 * the status word will reflect the failed status cmd, not the failed 1005 * r/w cmd. If we fail to obtain card status, it suggests we can no 1006 * longer communicate with the card. 1007 * - Check the card state. If the card received the cmd but there was a 1008 * transient problem with the response, it might still be in a data transfer 1009 * mode. Try to send it a stop command. If this fails, we can't recover. 1010 * - If the r/w cmd failed due to a response CRC error, it was probably 1011 * transient, so retry the cmd. 1012 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. 1013 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or 1014 * illegal cmd, retry. 1015 * Otherwise we don't understand what happened, so abort. 1016 */ 1017 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, 1018 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err) 1019 { 1020 bool prev_cmd_status_valid = true; 1021 u32 status, stop_status = 0; 1022 int err, retry; 1023 1024 if (mmc_card_removed(card)) 1025 return ERR_NOMEDIUM; 1026 1027 /* 1028 * Try to get card status which indicates both the card state 1029 * and why there was no response. If the first attempt fails, 1030 * we can't be sure the returned status is for the r/w command. 1031 */ 1032 for (retry = 2; retry >= 0; retry--) { 1033 err = __mmc_send_status(card, &status, 0); 1034 if (!err) 1035 break; 1036 1037 /* Re-tune if needed */ 1038 mmc_retune_recheck(card->host); 1039 1040 prev_cmd_status_valid = false; 1041 pr_err("%s: error %d sending status command, %sing\n", 1042 req->rq_disk->disk_name, err, retry ? "retry" : "abort"); 1043 } 1044 1045 /* We couldn't get a response from the card. Give up. */ 1046 if (err) { 1047 /* Check if the card is removed */ 1048 if (mmc_detect_card_removed(card->host)) 1049 return ERR_NOMEDIUM; 1050 return ERR_ABORT; 1051 } 1052 1053 /* Flag ECC errors */ 1054 if ((status & R1_CARD_ECC_FAILED) || 1055 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || 1056 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) 1057 *ecc_err = true; 1058 1059 /* Flag General errors */ 1060 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) 1061 if ((status & R1_ERROR) || 1062 (brq->stop.resp[0] & R1_ERROR)) { 1063 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", 1064 req->rq_disk->disk_name, __func__, 1065 brq->stop.resp[0], status); 1066 *gen_err = true; 1067 } 1068 1069 /* 1070 * Check the current card state. If it is in some data transfer 1071 * mode, tell it to stop (and hopefully transition back to TRAN.) 1072 */ 1073 if (R1_CURRENT_STATE(status) == R1_STATE_DATA || 1074 R1_CURRENT_STATE(status) == R1_STATE_RCV) { 1075 err = send_stop(card, 1076 DIV_ROUND_UP(brq->data.timeout_ns, 1000000), 1077 req, gen_err, &stop_status); 1078 if (err) { 1079 pr_err("%s: error %d sending stop command\n", 1080 req->rq_disk->disk_name, err); 1081 /* 1082 * If the stop cmd also timed out, the card is probably 1083 * not present, so abort. Other errors are bad news too. 1084 */ 1085 return ERR_ABORT; 1086 } 1087 1088 if (stop_status & R1_CARD_ECC_FAILED) 1089 *ecc_err = true; 1090 } 1091 1092 /* Check for set block count errors */ 1093 if (brq->sbc.error) 1094 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, 1095 prev_cmd_status_valid, status); 1096 1097 /* Check for r/w command errors */ 1098 if (brq->cmd.error) 1099 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, 1100 prev_cmd_status_valid, status); 1101 1102 /* Data errors */ 1103 if (!brq->stop.error) 1104 return ERR_CONTINUE; 1105 1106 /* Now for stop errors. These aren't fatal to the transfer. */ 1107 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", 1108 req->rq_disk->disk_name, brq->stop.error, 1109 brq->cmd.resp[0], status); 1110 1111 /* 1112 * Subsitute in our own stop status as this will give the error 1113 * state which happened during the execution of the r/w command. 1114 */ 1115 if (stop_status) { 1116 brq->stop.resp[0] = stop_status; 1117 brq->stop.error = 0; 1118 } 1119 return ERR_CONTINUE; 1120 } 1121 1122 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1123 int type) 1124 { 1125 int err; 1126 1127 if (md->reset_done & type) 1128 return -EEXIST; 1129 1130 md->reset_done |= type; 1131 err = mmc_hw_reset(host); 1132 /* Ensure we switch back to the correct partition */ 1133 if (err != -EOPNOTSUPP) { 1134 struct mmc_blk_data *main_md = 1135 dev_get_drvdata(&host->card->dev); 1136 int part_err; 1137 1138 main_md->part_curr = main_md->part_type; 1139 part_err = mmc_blk_part_switch(host->card, md); 1140 if (part_err) { 1141 /* 1142 * We have failed to get back into the correct 1143 * partition, so we need to abort the whole request. 1144 */ 1145 return -ENODEV; 1146 } 1147 } 1148 return err; 1149 } 1150 1151 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1152 { 1153 md->reset_done &= ~type; 1154 } 1155 1156 int mmc_access_rpmb(struct mmc_queue *mq) 1157 { 1158 struct mmc_blk_data *md = mq->blkdata; 1159 /* 1160 * If this is a RPMB partition access, return ture 1161 */ 1162 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) 1163 return true; 1164 1165 return false; 1166 } 1167 1168 /* 1169 * The non-block commands come back from the block layer after it queued it and 1170 * processed it with all other requests and then they get issued in this 1171 * function. 1172 */ 1173 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1174 { 1175 struct mmc_queue_req *mq_rq; 1176 struct mmc_card *card = mq->card; 1177 struct mmc_blk_data *md = mq->blkdata; 1178 int ret; 1179 int i; 1180 1181 mq_rq = req_to_mmc_queue_req(req); 1182 1183 switch (mq_rq->drv_op) { 1184 case MMC_DRV_OP_IOCTL: 1185 for (i = 0; i < mq_rq->ioc_count; i++) { 1186 ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]); 1187 if (ret) 1188 break; 1189 } 1190 /* Always switch back to main area after RPMB access */ 1191 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 1192 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev)); 1193 break; 1194 case MMC_DRV_OP_BOOT_WP: 1195 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1196 card->ext_csd.boot_ro_lock | 1197 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1198 card->ext_csd.part_time); 1199 if (ret) 1200 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1201 md->disk->disk_name, ret); 1202 else 1203 card->ext_csd.boot_ro_lock |= 1204 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1205 break; 1206 default: 1207 pr_err("%s: unknown driver specific operation\n", 1208 md->disk->disk_name); 1209 ret = -EINVAL; 1210 break; 1211 } 1212 mq_rq->drv_op_result = ret; 1213 blk_end_request_all(req, ret); 1214 } 1215 1216 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1217 { 1218 struct mmc_blk_data *md = mq->blkdata; 1219 struct mmc_card *card = md->queue.card; 1220 unsigned int from, nr, arg; 1221 int err = 0, type = MMC_BLK_DISCARD; 1222 blk_status_t status = BLK_STS_OK; 1223 1224 if (!mmc_can_erase(card)) { 1225 status = BLK_STS_NOTSUPP; 1226 goto fail; 1227 } 1228 1229 from = blk_rq_pos(req); 1230 nr = blk_rq_sectors(req); 1231 1232 if (mmc_can_discard(card)) 1233 arg = MMC_DISCARD_ARG; 1234 else if (mmc_can_trim(card)) 1235 arg = MMC_TRIM_ARG; 1236 else 1237 arg = MMC_ERASE_ARG; 1238 do { 1239 err = 0; 1240 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1241 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1242 INAND_CMD38_ARG_EXT_CSD, 1243 arg == MMC_TRIM_ARG ? 1244 INAND_CMD38_ARG_TRIM : 1245 INAND_CMD38_ARG_ERASE, 1246 0); 1247 } 1248 if (!err) 1249 err = mmc_erase(card, from, nr, arg); 1250 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1251 if (err) 1252 status = BLK_STS_IOERR; 1253 else 1254 mmc_blk_reset_success(md, type); 1255 fail: 1256 blk_end_request(req, status, blk_rq_bytes(req)); 1257 } 1258 1259 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1260 struct request *req) 1261 { 1262 struct mmc_blk_data *md = mq->blkdata; 1263 struct mmc_card *card = md->queue.card; 1264 unsigned int from, nr, arg; 1265 int err = 0, type = MMC_BLK_SECDISCARD; 1266 blk_status_t status = BLK_STS_OK; 1267 1268 if (!(mmc_can_secure_erase_trim(card))) { 1269 status = BLK_STS_NOTSUPP; 1270 goto out; 1271 } 1272 1273 from = blk_rq_pos(req); 1274 nr = blk_rq_sectors(req); 1275 1276 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1277 arg = MMC_SECURE_TRIM1_ARG; 1278 else 1279 arg = MMC_SECURE_ERASE_ARG; 1280 1281 retry: 1282 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1283 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1284 INAND_CMD38_ARG_EXT_CSD, 1285 arg == MMC_SECURE_TRIM1_ARG ? 1286 INAND_CMD38_ARG_SECTRIM1 : 1287 INAND_CMD38_ARG_SECERASE, 1288 0); 1289 if (err) 1290 goto out_retry; 1291 } 1292 1293 err = mmc_erase(card, from, nr, arg); 1294 if (err == -EIO) 1295 goto out_retry; 1296 if (err) { 1297 status = BLK_STS_IOERR; 1298 goto out; 1299 } 1300 1301 if (arg == MMC_SECURE_TRIM1_ARG) { 1302 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1303 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1304 INAND_CMD38_ARG_EXT_CSD, 1305 INAND_CMD38_ARG_SECTRIM2, 1306 0); 1307 if (err) 1308 goto out_retry; 1309 } 1310 1311 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1312 if (err == -EIO) 1313 goto out_retry; 1314 if (err) { 1315 status = BLK_STS_IOERR; 1316 goto out; 1317 } 1318 } 1319 1320 out_retry: 1321 if (err && !mmc_blk_reset(md, card->host, type)) 1322 goto retry; 1323 if (!err) 1324 mmc_blk_reset_success(md, type); 1325 out: 1326 blk_end_request(req, status, blk_rq_bytes(req)); 1327 } 1328 1329 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1330 { 1331 struct mmc_blk_data *md = mq->blkdata; 1332 struct mmc_card *card = md->queue.card; 1333 int ret = 0; 1334 1335 ret = mmc_flush_cache(card); 1336 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1337 } 1338 1339 /* 1340 * Reformat current write as a reliable write, supporting 1341 * both legacy and the enhanced reliable write MMC cards. 1342 * In each transfer we'll handle only as much as a single 1343 * reliable write can handle, thus finish the request in 1344 * partial completions. 1345 */ 1346 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1347 struct mmc_card *card, 1348 struct request *req) 1349 { 1350 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1351 /* Legacy mode imposes restrictions on transfers. */ 1352 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1353 brq->data.blocks = 1; 1354 1355 if (brq->data.blocks > card->ext_csd.rel_sectors) 1356 brq->data.blocks = card->ext_csd.rel_sectors; 1357 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1358 brq->data.blocks = 1; 1359 } 1360 } 1361 1362 #define CMD_ERRORS \ 1363 (R1_OUT_OF_RANGE | /* Command argument out of range */ \ 1364 R1_ADDRESS_ERROR | /* Misaligned address */ \ 1365 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1366 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1367 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1368 R1_CC_ERROR | /* Card controller error */ \ 1369 R1_ERROR) /* General/unknown error */ 1370 1371 static bool mmc_blk_has_cmd_err(struct mmc_command *cmd) 1372 { 1373 if (!cmd->error && cmd->resp[0] & CMD_ERRORS) 1374 cmd->error = -EIO; 1375 1376 return cmd->error; 1377 } 1378 1379 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card, 1380 struct mmc_async_req *areq) 1381 { 1382 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, 1383 areq); 1384 struct mmc_blk_request *brq = &mq_mrq->brq; 1385 struct request *req = mmc_queue_req_to_req(mq_mrq); 1386 int need_retune = card->host->need_retune; 1387 bool ecc_err = false; 1388 bool gen_err = false; 1389 1390 /* 1391 * sbc.error indicates a problem with the set block count 1392 * command. No data will have been transferred. 1393 * 1394 * cmd.error indicates a problem with the r/w command. No 1395 * data will have been transferred. 1396 * 1397 * stop.error indicates a problem with the stop command. Data 1398 * may have been transferred, or may still be transferring. 1399 */ 1400 if (brq->sbc.error || brq->cmd.error || mmc_blk_has_cmd_err(&brq->stop) || 1401 brq->data.error) { 1402 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { 1403 case ERR_RETRY: 1404 return MMC_BLK_RETRY; 1405 case ERR_ABORT: 1406 return MMC_BLK_ABORT; 1407 case ERR_NOMEDIUM: 1408 return MMC_BLK_NOMEDIUM; 1409 case ERR_CONTINUE: 1410 break; 1411 } 1412 } 1413 1414 /* 1415 * Check for errors relating to the execution of the 1416 * initial command - such as address errors. No data 1417 * has been transferred. 1418 */ 1419 if (brq->cmd.resp[0] & CMD_ERRORS) { 1420 pr_err("%s: r/w command failed, status = %#x\n", 1421 req->rq_disk->disk_name, brq->cmd.resp[0]); 1422 return MMC_BLK_ABORT; 1423 } 1424 1425 /* 1426 * Everything else is either success, or a data error of some 1427 * kind. If it was a write, we may have transitioned to 1428 * program mode, which we have to wait for it to complete. 1429 */ 1430 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { 1431 int err; 1432 1433 /* Check stop command response */ 1434 if (brq->stop.resp[0] & R1_ERROR) { 1435 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", 1436 req->rq_disk->disk_name, __func__, 1437 brq->stop.resp[0]); 1438 gen_err = true; 1439 } 1440 1441 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, 1442 &gen_err); 1443 if (err) 1444 return MMC_BLK_CMD_ERR; 1445 } 1446 1447 /* if general error occurs, retry the write operation. */ 1448 if (gen_err) { 1449 pr_warn("%s: retrying write for general error\n", 1450 req->rq_disk->disk_name); 1451 return MMC_BLK_RETRY; 1452 } 1453 1454 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */ 1455 if (brq->data.error || brq->stop.error) { 1456 if (need_retune && !brq->retune_retry_done) { 1457 pr_debug("%s: retrying because a re-tune was needed\n", 1458 req->rq_disk->disk_name); 1459 brq->retune_retry_done = 1; 1460 return MMC_BLK_RETRY; 1461 } 1462 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", 1463 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error, 1464 (unsigned)blk_rq_pos(req), 1465 (unsigned)blk_rq_sectors(req), 1466 brq->cmd.resp[0], brq->stop.resp[0]); 1467 1468 if (rq_data_dir(req) == READ) { 1469 if (ecc_err) 1470 return MMC_BLK_ECC_ERR; 1471 return MMC_BLK_DATA_ERR; 1472 } else { 1473 return MMC_BLK_CMD_ERR; 1474 } 1475 } 1476 1477 if (!brq->data.bytes_xfered) 1478 return MMC_BLK_RETRY; 1479 1480 if (blk_rq_bytes(req) != brq->data.bytes_xfered) 1481 return MMC_BLK_PARTIAL; 1482 1483 return MMC_BLK_SUCCESS; 1484 } 1485 1486 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1487 int disable_multi, bool *do_rel_wr, 1488 bool *do_data_tag) 1489 { 1490 struct mmc_blk_data *md = mq->blkdata; 1491 struct mmc_card *card = md->queue.card; 1492 struct mmc_blk_request *brq = &mqrq->brq; 1493 struct request *req = mmc_queue_req_to_req(mqrq); 1494 1495 /* 1496 * Reliable writes are used to implement Forced Unit Access and 1497 * are supported only on MMCs. 1498 */ 1499 *do_rel_wr = (req->cmd_flags & REQ_FUA) && 1500 rq_data_dir(req) == WRITE && 1501 (md->flags & MMC_BLK_REL_WR); 1502 1503 memset(brq, 0, sizeof(struct mmc_blk_request)); 1504 1505 brq->mrq.data = &brq->data; 1506 1507 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1508 brq->stop.arg = 0; 1509 1510 if (rq_data_dir(req) == READ) { 1511 brq->data.flags = MMC_DATA_READ; 1512 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1513 } else { 1514 brq->data.flags = MMC_DATA_WRITE; 1515 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1516 } 1517 1518 brq->data.blksz = 512; 1519 brq->data.blocks = blk_rq_sectors(req); 1520 1521 /* 1522 * The block layer doesn't support all sector count 1523 * restrictions, so we need to be prepared for too big 1524 * requests. 1525 */ 1526 if (brq->data.blocks > card->host->max_blk_count) 1527 brq->data.blocks = card->host->max_blk_count; 1528 1529 if (brq->data.blocks > 1) { 1530 /* 1531 * After a read error, we redo the request one sector 1532 * at a time in order to accurately determine which 1533 * sectors can be read successfully. 1534 */ 1535 if (disable_multi) 1536 brq->data.blocks = 1; 1537 1538 /* 1539 * Some controllers have HW issues while operating 1540 * in multiple I/O mode 1541 */ 1542 if (card->host->ops->multi_io_quirk) 1543 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1544 (rq_data_dir(req) == READ) ? 1545 MMC_DATA_READ : MMC_DATA_WRITE, 1546 brq->data.blocks); 1547 } 1548 1549 if (*do_rel_wr) 1550 mmc_apply_rel_rw(brq, card, req); 1551 1552 /* 1553 * Data tag is used only during writing meta data to speed 1554 * up write and any subsequent read of this meta data 1555 */ 1556 *do_data_tag = card->ext_csd.data_tag_unit_size && 1557 (req->cmd_flags & REQ_META) && 1558 (rq_data_dir(req) == WRITE) && 1559 ((brq->data.blocks * brq->data.blksz) >= 1560 card->ext_csd.data_tag_unit_size); 1561 1562 mmc_set_data_timeout(&brq->data, card); 1563 1564 brq->data.sg = mqrq->sg; 1565 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1566 1567 /* 1568 * Adjust the sg list so it is the same size as the 1569 * request. 1570 */ 1571 if (brq->data.blocks != blk_rq_sectors(req)) { 1572 int i, data_size = brq->data.blocks << 9; 1573 struct scatterlist *sg; 1574 1575 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1576 data_size -= sg->length; 1577 if (data_size <= 0) { 1578 sg->length += data_size; 1579 i++; 1580 break; 1581 } 1582 } 1583 brq->data.sg_len = i; 1584 } 1585 1586 mqrq->areq.mrq = &brq->mrq; 1587 1588 mmc_queue_bounce_pre(mqrq); 1589 } 1590 1591 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1592 struct mmc_card *card, 1593 int disable_multi, 1594 struct mmc_queue *mq) 1595 { 1596 u32 readcmd, writecmd; 1597 struct mmc_blk_request *brq = &mqrq->brq; 1598 struct request *req = mmc_queue_req_to_req(mqrq); 1599 struct mmc_blk_data *md = mq->blkdata; 1600 bool do_rel_wr, do_data_tag; 1601 1602 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1603 1604 brq->mrq.cmd = &brq->cmd; 1605 1606 brq->cmd.arg = blk_rq_pos(req); 1607 if (!mmc_card_blockaddr(card)) 1608 brq->cmd.arg <<= 9; 1609 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1610 1611 if (brq->data.blocks > 1 || do_rel_wr) { 1612 /* SPI multiblock writes terminate using a special 1613 * token, not a STOP_TRANSMISSION request. 1614 */ 1615 if (!mmc_host_is_spi(card->host) || 1616 rq_data_dir(req) == READ) 1617 brq->mrq.stop = &brq->stop; 1618 readcmd = MMC_READ_MULTIPLE_BLOCK; 1619 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1620 } else { 1621 brq->mrq.stop = NULL; 1622 readcmd = MMC_READ_SINGLE_BLOCK; 1623 writecmd = MMC_WRITE_BLOCK; 1624 } 1625 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1626 1627 /* 1628 * Pre-defined multi-block transfers are preferable to 1629 * open ended-ones (and necessary for reliable writes). 1630 * However, it is not sufficient to just send CMD23, 1631 * and avoid the final CMD12, as on an error condition 1632 * CMD12 (stop) needs to be sent anyway. This, coupled 1633 * with Auto-CMD23 enhancements provided by some 1634 * hosts, means that the complexity of dealing 1635 * with this is best left to the host. If CMD23 is 1636 * supported by card and host, we'll fill sbc in and let 1637 * the host deal with handling it correctly. This means 1638 * that for hosts that don't expose MMC_CAP_CMD23, no 1639 * change of behavior will be observed. 1640 * 1641 * N.B: Some MMC cards experience perf degradation. 1642 * We'll avoid using CMD23-bounded multiblock writes for 1643 * these, while retaining features like reliable writes. 1644 */ 1645 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1646 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1647 do_data_tag)) { 1648 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1649 brq->sbc.arg = brq->data.blocks | 1650 (do_rel_wr ? (1 << 31) : 0) | 1651 (do_data_tag ? (1 << 29) : 0); 1652 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1653 brq->mrq.sbc = &brq->sbc; 1654 } 1655 1656 mqrq->areq.err_check = mmc_blk_err_check; 1657 } 1658 1659 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, 1660 struct mmc_blk_request *brq, struct request *req, 1661 bool old_req_pending) 1662 { 1663 bool req_pending; 1664 1665 /* 1666 * If this is an SD card and we're writing, we can first 1667 * mark the known good sectors as ok. 1668 * 1669 * If the card is not SD, we can still ok written sectors 1670 * as reported by the controller (which might be less than 1671 * the real number of written sectors, but never more). 1672 */ 1673 if (mmc_card_sd(card)) { 1674 u32 blocks; 1675 int err; 1676 1677 err = mmc_sd_num_wr_blocks(card, &blocks); 1678 if (err) 1679 req_pending = old_req_pending; 1680 else 1681 req_pending = blk_end_request(req, 0, blocks << 9); 1682 } else { 1683 req_pending = blk_end_request(req, 0, brq->data.bytes_xfered); 1684 } 1685 return req_pending; 1686 } 1687 1688 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card, 1689 struct request *req, 1690 struct mmc_queue_req *mqrq) 1691 { 1692 if (mmc_card_removed(card)) 1693 req->rq_flags |= RQF_QUIET; 1694 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req))); 1695 mq->qcnt--; 1696 } 1697 1698 /** 1699 * mmc_blk_rw_try_restart() - tries to restart the current async request 1700 * @mq: the queue with the card and host to restart 1701 * @req: a new request that want to be started after the current one 1702 */ 1703 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req, 1704 struct mmc_queue_req *mqrq) 1705 { 1706 if (!req) 1707 return; 1708 1709 /* 1710 * If the card was removed, just cancel everything and return. 1711 */ 1712 if (mmc_card_removed(mq->card)) { 1713 req->rq_flags |= RQF_QUIET; 1714 blk_end_request_all(req, BLK_STS_IOERR); 1715 mq->qcnt--; /* FIXME: just set to 0? */ 1716 return; 1717 } 1718 /* Else proceed and try to restart the current async request */ 1719 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1720 mmc_start_areq(mq->card->host, &mqrq->areq, NULL); 1721 } 1722 1723 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req) 1724 { 1725 struct mmc_blk_data *md = mq->blkdata; 1726 struct mmc_card *card = md->queue.card; 1727 struct mmc_blk_request *brq; 1728 int disable_multi = 0, retry = 0, type, retune_retry_done = 0; 1729 enum mmc_blk_status status; 1730 struct mmc_queue_req *mqrq_cur = NULL; 1731 struct mmc_queue_req *mq_rq; 1732 struct request *old_req; 1733 struct mmc_async_req *new_areq; 1734 struct mmc_async_req *old_areq; 1735 bool req_pending = true; 1736 1737 if (new_req) { 1738 mqrq_cur = req_to_mmc_queue_req(new_req); 1739 mq->qcnt++; 1740 } 1741 1742 if (!mq->qcnt) 1743 return; 1744 1745 do { 1746 if (new_req) { 1747 /* 1748 * When 4KB native sector is enabled, only 8 blocks 1749 * multiple read or write is allowed 1750 */ 1751 if (mmc_large_sector(card) && 1752 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) { 1753 pr_err("%s: Transfer size is not 4KB sector size aligned\n", 1754 new_req->rq_disk->disk_name); 1755 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur); 1756 return; 1757 } 1758 1759 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq); 1760 new_areq = &mqrq_cur->areq; 1761 } else 1762 new_areq = NULL; 1763 1764 old_areq = mmc_start_areq(card->host, new_areq, &status); 1765 if (!old_areq) { 1766 /* 1767 * We have just put the first request into the pipeline 1768 * and there is nothing more to do until it is 1769 * complete. 1770 */ 1771 return; 1772 } 1773 1774 /* 1775 * An asynchronous request has been completed and we proceed 1776 * to handle the result of it. 1777 */ 1778 mq_rq = container_of(old_areq, struct mmc_queue_req, areq); 1779 brq = &mq_rq->brq; 1780 old_req = mmc_queue_req_to_req(mq_rq); 1781 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1782 mmc_queue_bounce_post(mq_rq); 1783 1784 switch (status) { 1785 case MMC_BLK_SUCCESS: 1786 case MMC_BLK_PARTIAL: 1787 /* 1788 * A block was successfully transferred. 1789 */ 1790 mmc_blk_reset_success(md, type); 1791 1792 req_pending = blk_end_request(old_req, BLK_STS_OK, 1793 brq->data.bytes_xfered); 1794 /* 1795 * If the blk_end_request function returns non-zero even 1796 * though all data has been transferred and no errors 1797 * were returned by the host controller, it's a bug. 1798 */ 1799 if (status == MMC_BLK_SUCCESS && req_pending) { 1800 pr_err("%s BUG rq_tot %d d_xfer %d\n", 1801 __func__, blk_rq_bytes(old_req), 1802 brq->data.bytes_xfered); 1803 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1804 return; 1805 } 1806 break; 1807 case MMC_BLK_CMD_ERR: 1808 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending); 1809 if (mmc_blk_reset(md, card->host, type)) { 1810 if (req_pending) 1811 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1812 else 1813 mq->qcnt--; 1814 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1815 return; 1816 } 1817 if (!req_pending) { 1818 mq->qcnt--; 1819 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1820 return; 1821 } 1822 break; 1823 case MMC_BLK_RETRY: 1824 retune_retry_done = brq->retune_retry_done; 1825 if (retry++ < 5) 1826 break; 1827 /* Fall through */ 1828 case MMC_BLK_ABORT: 1829 if (!mmc_blk_reset(md, card->host, type)) 1830 break; 1831 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1832 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1833 return; 1834 case MMC_BLK_DATA_ERR: { 1835 int err; 1836 1837 err = mmc_blk_reset(md, card->host, type); 1838 if (!err) 1839 break; 1840 if (err == -ENODEV) { 1841 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1842 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1843 return; 1844 } 1845 /* Fall through */ 1846 } 1847 case MMC_BLK_ECC_ERR: 1848 if (brq->data.blocks > 1) { 1849 /* Redo read one sector at a time */ 1850 pr_warn("%s: retrying using single block read\n", 1851 old_req->rq_disk->disk_name); 1852 disable_multi = 1; 1853 break; 1854 } 1855 /* 1856 * After an error, we redo I/O one sector at a 1857 * time, so we only reach here after trying to 1858 * read a single sector. 1859 */ 1860 req_pending = blk_end_request(old_req, BLK_STS_IOERR, 1861 brq->data.blksz); 1862 if (!req_pending) { 1863 mq->qcnt--; 1864 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1865 return; 1866 } 1867 break; 1868 case MMC_BLK_NOMEDIUM: 1869 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1870 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1871 return; 1872 default: 1873 pr_err("%s: Unhandled return value (%d)", 1874 old_req->rq_disk->disk_name, status); 1875 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq); 1876 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur); 1877 return; 1878 } 1879 1880 if (req_pending) { 1881 /* 1882 * In case of a incomplete request 1883 * prepare it again and resend. 1884 */ 1885 mmc_blk_rw_rq_prep(mq_rq, card, 1886 disable_multi, mq); 1887 mmc_start_areq(card->host, 1888 &mq_rq->areq, NULL); 1889 mq_rq->brq.retune_retry_done = retune_retry_done; 1890 } 1891 } while (req_pending); 1892 1893 mq->qcnt--; 1894 } 1895 1896 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) 1897 { 1898 int ret; 1899 struct mmc_blk_data *md = mq->blkdata; 1900 struct mmc_card *card = md->queue.card; 1901 1902 if (req && !mq->qcnt) 1903 /* claim host only for the first request */ 1904 mmc_get_card(card); 1905 1906 ret = mmc_blk_part_switch(card, md); 1907 if (ret) { 1908 if (req) { 1909 blk_end_request_all(req, BLK_STS_IOERR); 1910 } 1911 goto out; 1912 } 1913 1914 if (req) { 1915 switch (req_op(req)) { 1916 case REQ_OP_DRV_IN: 1917 case REQ_OP_DRV_OUT: 1918 /* 1919 * Complete ongoing async transfer before issuing 1920 * ioctl()s 1921 */ 1922 if (mq->qcnt) 1923 mmc_blk_issue_rw_rq(mq, NULL); 1924 mmc_blk_issue_drv_op(mq, req); 1925 break; 1926 case REQ_OP_DISCARD: 1927 /* 1928 * Complete ongoing async transfer before issuing 1929 * discard. 1930 */ 1931 if (mq->qcnt) 1932 mmc_blk_issue_rw_rq(mq, NULL); 1933 mmc_blk_issue_discard_rq(mq, req); 1934 break; 1935 case REQ_OP_SECURE_ERASE: 1936 /* 1937 * Complete ongoing async transfer before issuing 1938 * secure erase. 1939 */ 1940 if (mq->qcnt) 1941 mmc_blk_issue_rw_rq(mq, NULL); 1942 mmc_blk_issue_secdiscard_rq(mq, req); 1943 break; 1944 case REQ_OP_FLUSH: 1945 /* 1946 * Complete ongoing async transfer before issuing 1947 * flush. 1948 */ 1949 if (mq->qcnt) 1950 mmc_blk_issue_rw_rq(mq, NULL); 1951 mmc_blk_issue_flush(mq, req); 1952 break; 1953 default: 1954 /* Normal request, just issue it */ 1955 mmc_blk_issue_rw_rq(mq, req); 1956 card->host->context_info.is_waiting_last_req = false; 1957 break; 1958 } 1959 } else { 1960 /* No request, flushing the pipeline with NULL */ 1961 mmc_blk_issue_rw_rq(mq, NULL); 1962 card->host->context_info.is_waiting_last_req = false; 1963 } 1964 1965 out: 1966 if (!mq->qcnt) 1967 mmc_put_card(card); 1968 } 1969 1970 static inline int mmc_blk_readonly(struct mmc_card *card) 1971 { 1972 return mmc_card_readonly(card) || 1973 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 1974 } 1975 1976 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 1977 struct device *parent, 1978 sector_t size, 1979 bool default_ro, 1980 const char *subname, 1981 int area_type) 1982 { 1983 struct mmc_blk_data *md; 1984 int devidx, ret; 1985 1986 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 1987 if (devidx < 0) 1988 return ERR_PTR(devidx); 1989 1990 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 1991 if (!md) { 1992 ret = -ENOMEM; 1993 goto out; 1994 } 1995 1996 md->area_type = area_type; 1997 1998 /* 1999 * Set the read-only status based on the supported commands 2000 * and the write protect switch. 2001 */ 2002 md->read_only = mmc_blk_readonly(card); 2003 2004 md->disk = alloc_disk(perdev_minors); 2005 if (md->disk == NULL) { 2006 ret = -ENOMEM; 2007 goto err_kfree; 2008 } 2009 2010 spin_lock_init(&md->lock); 2011 INIT_LIST_HEAD(&md->part); 2012 md->usage = 1; 2013 2014 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 2015 if (ret) 2016 goto err_putdisk; 2017 2018 md->queue.blkdata = md; 2019 2020 md->disk->major = MMC_BLOCK_MAJOR; 2021 md->disk->first_minor = devidx * perdev_minors; 2022 md->disk->fops = &mmc_bdops; 2023 md->disk->private_data = md; 2024 md->disk->queue = md->queue.queue; 2025 md->parent = parent; 2026 set_disk_ro(md->disk, md->read_only || default_ro); 2027 md->disk->flags = GENHD_FL_EXT_DEVT; 2028 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2029 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 2030 2031 /* 2032 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2033 * 2034 * - be set for removable media with permanent block devices 2035 * - be unset for removable block devices with permanent media 2036 * 2037 * Since MMC block devices clearly fall under the second 2038 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2039 * should use the block device creation/destruction hotplug 2040 * messages to tell when the card is present. 2041 */ 2042 2043 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2044 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2045 2046 if (mmc_card_mmc(card)) 2047 blk_queue_logical_block_size(md->queue.queue, 2048 card->ext_csd.data_sector_size); 2049 else 2050 blk_queue_logical_block_size(md->queue.queue, 512); 2051 2052 set_capacity(md->disk, size); 2053 2054 if (mmc_host_cmd23(card->host)) { 2055 if ((mmc_card_mmc(card) && 2056 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2057 (mmc_card_sd(card) && 2058 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2059 md->flags |= MMC_BLK_CMD23; 2060 } 2061 2062 if (mmc_card_mmc(card) && 2063 md->flags & MMC_BLK_CMD23 && 2064 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2065 card->ext_csd.rel_sectors)) { 2066 md->flags |= MMC_BLK_REL_WR; 2067 blk_queue_write_cache(md->queue.queue, true, true); 2068 } 2069 2070 return md; 2071 2072 err_putdisk: 2073 put_disk(md->disk); 2074 err_kfree: 2075 kfree(md); 2076 out: 2077 ida_simple_remove(&mmc_blk_ida, devidx); 2078 return ERR_PTR(ret); 2079 } 2080 2081 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2082 { 2083 sector_t size; 2084 2085 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2086 /* 2087 * The EXT_CSD sector count is in number or 512 byte 2088 * sectors. 2089 */ 2090 size = card->ext_csd.sectors; 2091 } else { 2092 /* 2093 * The CSD capacity field is in units of read_blkbits. 2094 * set_capacity takes units of 512 bytes. 2095 */ 2096 size = (typeof(sector_t))card->csd.capacity 2097 << (card->csd.read_blkbits - 9); 2098 } 2099 2100 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2101 MMC_BLK_DATA_AREA_MAIN); 2102 } 2103 2104 static int mmc_blk_alloc_part(struct mmc_card *card, 2105 struct mmc_blk_data *md, 2106 unsigned int part_type, 2107 sector_t size, 2108 bool default_ro, 2109 const char *subname, 2110 int area_type) 2111 { 2112 char cap_str[10]; 2113 struct mmc_blk_data *part_md; 2114 2115 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2116 subname, area_type); 2117 if (IS_ERR(part_md)) 2118 return PTR_ERR(part_md); 2119 part_md->part_type = part_type; 2120 list_add(&part_md->part, &md->part); 2121 2122 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2123 cap_str, sizeof(cap_str)); 2124 pr_info("%s: %s %s partition %u %s\n", 2125 part_md->disk->disk_name, mmc_card_id(card), 2126 mmc_card_name(card), part_md->part_type, cap_str); 2127 return 0; 2128 } 2129 2130 /* MMC Physical partitions consist of two boot partitions and 2131 * up to four general purpose partitions. 2132 * For each partition enabled in EXT_CSD a block device will be allocatedi 2133 * to provide access to the partition. 2134 */ 2135 2136 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2137 { 2138 int idx, ret = 0; 2139 2140 if (!mmc_card_mmc(card)) 2141 return 0; 2142 2143 for (idx = 0; idx < card->nr_parts; idx++) { 2144 if (card->part[idx].size) { 2145 ret = mmc_blk_alloc_part(card, md, 2146 card->part[idx].part_cfg, 2147 card->part[idx].size >> 9, 2148 card->part[idx].force_ro, 2149 card->part[idx].name, 2150 card->part[idx].area_type); 2151 if (ret) 2152 return ret; 2153 } 2154 } 2155 2156 return ret; 2157 } 2158 2159 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2160 { 2161 struct mmc_card *card; 2162 2163 if (md) { 2164 /* 2165 * Flush remaining requests and free queues. It 2166 * is freeing the queue that stops new requests 2167 * from being accepted. 2168 */ 2169 card = md->queue.card; 2170 mmc_cleanup_queue(&md->queue); 2171 if (md->disk->flags & GENHD_FL_UP) { 2172 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2173 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2174 card->ext_csd.boot_ro_lockable) 2175 device_remove_file(disk_to_dev(md->disk), 2176 &md->power_ro_lock); 2177 2178 del_gendisk(md->disk); 2179 } 2180 mmc_blk_put(md); 2181 } 2182 } 2183 2184 static void mmc_blk_remove_parts(struct mmc_card *card, 2185 struct mmc_blk_data *md) 2186 { 2187 struct list_head *pos, *q; 2188 struct mmc_blk_data *part_md; 2189 2190 list_for_each_safe(pos, q, &md->part) { 2191 part_md = list_entry(pos, struct mmc_blk_data, part); 2192 list_del(pos); 2193 mmc_blk_remove_req(part_md); 2194 } 2195 } 2196 2197 static int mmc_add_disk(struct mmc_blk_data *md) 2198 { 2199 int ret; 2200 struct mmc_card *card = md->queue.card; 2201 2202 device_add_disk(md->parent, md->disk); 2203 md->force_ro.show = force_ro_show; 2204 md->force_ro.store = force_ro_store; 2205 sysfs_attr_init(&md->force_ro.attr); 2206 md->force_ro.attr.name = "force_ro"; 2207 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2208 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2209 if (ret) 2210 goto force_ro_fail; 2211 2212 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2213 card->ext_csd.boot_ro_lockable) { 2214 umode_t mode; 2215 2216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2217 mode = S_IRUGO; 2218 else 2219 mode = S_IRUGO | S_IWUSR; 2220 2221 md->power_ro_lock.show = power_ro_lock_show; 2222 md->power_ro_lock.store = power_ro_lock_store; 2223 sysfs_attr_init(&md->power_ro_lock.attr); 2224 md->power_ro_lock.attr.mode = mode; 2225 md->power_ro_lock.attr.name = 2226 "ro_lock_until_next_power_on"; 2227 ret = device_create_file(disk_to_dev(md->disk), 2228 &md->power_ro_lock); 2229 if (ret) 2230 goto power_ro_lock_fail; 2231 } 2232 return ret; 2233 2234 power_ro_lock_fail: 2235 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2236 force_ro_fail: 2237 del_gendisk(md->disk); 2238 2239 return ret; 2240 } 2241 2242 static int mmc_blk_probe(struct mmc_card *card) 2243 { 2244 struct mmc_blk_data *md, *part_md; 2245 char cap_str[10]; 2246 2247 /* 2248 * Check that the card supports the command class(es) we need. 2249 */ 2250 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2251 return -ENODEV; 2252 2253 mmc_fixup_device(card, mmc_blk_fixups); 2254 2255 md = mmc_blk_alloc(card); 2256 if (IS_ERR(md)) 2257 return PTR_ERR(md); 2258 2259 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2260 cap_str, sizeof(cap_str)); 2261 pr_info("%s: %s %s %s %s\n", 2262 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2263 cap_str, md->read_only ? "(ro)" : ""); 2264 2265 if (mmc_blk_alloc_parts(card, md)) 2266 goto out; 2267 2268 dev_set_drvdata(&card->dev, md); 2269 2270 if (mmc_add_disk(md)) 2271 goto out; 2272 2273 list_for_each_entry(part_md, &md->part, part) { 2274 if (mmc_add_disk(part_md)) 2275 goto out; 2276 } 2277 2278 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2279 pm_runtime_use_autosuspend(&card->dev); 2280 2281 /* 2282 * Don't enable runtime PM for SD-combo cards here. Leave that 2283 * decision to be taken during the SDIO init sequence instead. 2284 */ 2285 if (card->type != MMC_TYPE_SD_COMBO) { 2286 pm_runtime_set_active(&card->dev); 2287 pm_runtime_enable(&card->dev); 2288 } 2289 2290 return 0; 2291 2292 out: 2293 mmc_blk_remove_parts(card, md); 2294 mmc_blk_remove_req(md); 2295 return 0; 2296 } 2297 2298 static void mmc_blk_remove(struct mmc_card *card) 2299 { 2300 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2301 2302 mmc_blk_remove_parts(card, md); 2303 pm_runtime_get_sync(&card->dev); 2304 mmc_claim_host(card->host); 2305 mmc_blk_part_switch(card, md); 2306 mmc_release_host(card->host); 2307 if (card->type != MMC_TYPE_SD_COMBO) 2308 pm_runtime_disable(&card->dev); 2309 pm_runtime_put_noidle(&card->dev); 2310 mmc_blk_remove_req(md); 2311 dev_set_drvdata(&card->dev, NULL); 2312 } 2313 2314 static int _mmc_blk_suspend(struct mmc_card *card) 2315 { 2316 struct mmc_blk_data *part_md; 2317 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2318 2319 if (md) { 2320 mmc_queue_suspend(&md->queue); 2321 list_for_each_entry(part_md, &md->part, part) { 2322 mmc_queue_suspend(&part_md->queue); 2323 } 2324 } 2325 return 0; 2326 } 2327 2328 static void mmc_blk_shutdown(struct mmc_card *card) 2329 { 2330 _mmc_blk_suspend(card); 2331 } 2332 2333 #ifdef CONFIG_PM_SLEEP 2334 static int mmc_blk_suspend(struct device *dev) 2335 { 2336 struct mmc_card *card = mmc_dev_to_card(dev); 2337 2338 return _mmc_blk_suspend(card); 2339 } 2340 2341 static int mmc_blk_resume(struct device *dev) 2342 { 2343 struct mmc_blk_data *part_md; 2344 struct mmc_blk_data *md = dev_get_drvdata(dev); 2345 2346 if (md) { 2347 /* 2348 * Resume involves the card going into idle state, 2349 * so current partition is always the main one. 2350 */ 2351 md->part_curr = md->part_type; 2352 mmc_queue_resume(&md->queue); 2353 list_for_each_entry(part_md, &md->part, part) { 2354 mmc_queue_resume(&part_md->queue); 2355 } 2356 } 2357 return 0; 2358 } 2359 #endif 2360 2361 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 2362 2363 static struct mmc_driver mmc_driver = { 2364 .drv = { 2365 .name = "mmcblk", 2366 .pm = &mmc_blk_pm_ops, 2367 }, 2368 .probe = mmc_blk_probe, 2369 .remove = mmc_blk_remove, 2370 .shutdown = mmc_blk_shutdown, 2371 }; 2372 2373 static int __init mmc_blk_init(void) 2374 { 2375 int res; 2376 2377 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 2378 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 2379 2380 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 2381 2382 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2383 if (res) 2384 goto out; 2385 2386 res = mmc_register_driver(&mmc_driver); 2387 if (res) 2388 goto out2; 2389 2390 return 0; 2391 out2: 2392 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2393 out: 2394 return res; 2395 } 2396 2397 static void __exit mmc_blk_exit(void) 2398 { 2399 mmc_unregister_driver(&mmc_driver); 2400 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2401 } 2402 2403 module_init(mmc_blk_init); 2404 module_exit(mmc_blk_exit); 2405 2406 MODULE_LICENSE("GPL"); 2407 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 2408 2409