xref: /linux/drivers/mmc/core/block.c (revision d9c6a72d6fa29d3a7999dda726577e5d1fccafa5)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/mutex.h>
32 #include <linux/scatterlist.h>
33 #include <linux/string_helpers.h>
34 #include <linux/delay.h>
35 #include <linux/capability.h>
36 #include <linux/compat.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/idr.h>
39 
40 #include <linux/mmc/ioctl.h>
41 #include <linux/mmc/card.h>
42 #include <linux/mmc/host.h>
43 #include <linux/mmc/mmc.h>
44 #include <linux/mmc/sd.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include "queue.h"
49 #include "block.h"
50 #include "core.h"
51 #include "card.h"
52 #include "host.h"
53 #include "bus.h"
54 #include "mmc_ops.h"
55 #include "quirks.h"
56 #include "sd_ops.h"
57 
58 MODULE_ALIAS("mmc:block");
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "mmcblk."
63 
64 #define MMC_BLK_TIMEOUT_MS  (10 * 60 * 1000)        /* 10 minute timeout */
65 #define MMC_SANITIZE_REQ_TIMEOUT 240000
66 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
67 
68 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
69 				  (rq_data_dir(req) == WRITE))
70 static DEFINE_MUTEX(block_mutex);
71 
72 /*
73  * The defaults come from config options but can be overriden by module
74  * or bootarg options.
75  */
76 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
77 
78 /*
79  * We've only got one major, so number of mmcblk devices is
80  * limited to (1 << 20) / number of minors per device.  It is also
81  * limited by the MAX_DEVICES below.
82  */
83 static int max_devices;
84 
85 #define MAX_DEVICES 256
86 
87 static DEFINE_IDA(mmc_blk_ida);
88 
89 /*
90  * There is one mmc_blk_data per slot.
91  */
92 struct mmc_blk_data {
93 	spinlock_t	lock;
94 	struct device	*parent;
95 	struct gendisk	*disk;
96 	struct mmc_queue queue;
97 	struct list_head part;
98 
99 	unsigned int	flags;
100 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
101 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
102 
103 	unsigned int	usage;
104 	unsigned int	read_only;
105 	unsigned int	part_type;
106 	unsigned int	reset_done;
107 #define MMC_BLK_READ		BIT(0)
108 #define MMC_BLK_WRITE		BIT(1)
109 #define MMC_BLK_DISCARD		BIT(2)
110 #define MMC_BLK_SECDISCARD	BIT(3)
111 
112 	/*
113 	 * Only set in main mmc_blk_data associated
114 	 * with mmc_card with dev_set_drvdata, and keeps
115 	 * track of the current selected device partition.
116 	 */
117 	unsigned int	part_curr;
118 	struct device_attribute force_ro;
119 	struct device_attribute power_ro_lock;
120 	int	area_type;
121 };
122 
123 static DEFINE_MUTEX(open_lock);
124 
125 module_param(perdev_minors, int, 0444);
126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
127 
128 static inline int mmc_blk_part_switch(struct mmc_card *card,
129 				      struct mmc_blk_data *md);
130 
131 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
132 {
133 	struct mmc_blk_data *md;
134 
135 	mutex_lock(&open_lock);
136 	md = disk->private_data;
137 	if (md && md->usage == 0)
138 		md = NULL;
139 	if (md)
140 		md->usage++;
141 	mutex_unlock(&open_lock);
142 
143 	return md;
144 }
145 
146 static inline int mmc_get_devidx(struct gendisk *disk)
147 {
148 	int devidx = disk->first_minor / perdev_minors;
149 	return devidx;
150 }
151 
152 static void mmc_blk_put(struct mmc_blk_data *md)
153 {
154 	mutex_lock(&open_lock);
155 	md->usage--;
156 	if (md->usage == 0) {
157 		int devidx = mmc_get_devidx(md->disk);
158 		blk_cleanup_queue(md->queue.queue);
159 		ida_simple_remove(&mmc_blk_ida, devidx);
160 		put_disk(md->disk);
161 		kfree(md);
162 	}
163 	mutex_unlock(&open_lock);
164 }
165 
166 static ssize_t power_ro_lock_show(struct device *dev,
167 		struct device_attribute *attr, char *buf)
168 {
169 	int ret;
170 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
171 	struct mmc_card *card = md->queue.card;
172 	int locked = 0;
173 
174 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
175 		locked = 2;
176 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
177 		locked = 1;
178 
179 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
180 
181 	mmc_blk_put(md);
182 
183 	return ret;
184 }
185 
186 static ssize_t power_ro_lock_store(struct device *dev,
187 		struct device_attribute *attr, const char *buf, size_t count)
188 {
189 	int ret;
190 	struct mmc_blk_data *md, *part_md;
191 	struct mmc_card *card;
192 	struct mmc_queue *mq;
193 	struct request *req;
194 	unsigned long set;
195 
196 	if (kstrtoul(buf, 0, &set))
197 		return -EINVAL;
198 
199 	if (set != 1)
200 		return count;
201 
202 	md = mmc_blk_get(dev_to_disk(dev));
203 	mq = &md->queue;
204 	card = md->queue.card;
205 
206 	/* Dispatch locking to the block layer */
207 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
208 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
209 	blk_execute_rq(mq->queue, NULL, req, 0);
210 	ret = req_to_mmc_queue_req(req)->drv_op_result;
211 
212 	if (!ret) {
213 		pr_info("%s: Locking boot partition ro until next power on\n",
214 			md->disk->disk_name);
215 		set_disk_ro(md->disk, 1);
216 
217 		list_for_each_entry(part_md, &md->part, part)
218 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
219 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
220 				set_disk_ro(part_md->disk, 1);
221 			}
222 	}
223 
224 	mmc_blk_put(md);
225 	return count;
226 }
227 
228 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
229 			     char *buf)
230 {
231 	int ret;
232 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
233 
234 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
235 		       get_disk_ro(dev_to_disk(dev)) ^
236 		       md->read_only);
237 	mmc_blk_put(md);
238 	return ret;
239 }
240 
241 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
242 			      const char *buf, size_t count)
243 {
244 	int ret;
245 	char *end;
246 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
247 	unsigned long set = simple_strtoul(buf, &end, 0);
248 	if (end == buf) {
249 		ret = -EINVAL;
250 		goto out;
251 	}
252 
253 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
254 	ret = count;
255 out:
256 	mmc_blk_put(md);
257 	return ret;
258 }
259 
260 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
261 {
262 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
263 	int ret = -ENXIO;
264 
265 	mutex_lock(&block_mutex);
266 	if (md) {
267 		if (md->usage == 2)
268 			check_disk_change(bdev);
269 		ret = 0;
270 
271 		if ((mode & FMODE_WRITE) && md->read_only) {
272 			mmc_blk_put(md);
273 			ret = -EROFS;
274 		}
275 	}
276 	mutex_unlock(&block_mutex);
277 
278 	return ret;
279 }
280 
281 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
282 {
283 	struct mmc_blk_data *md = disk->private_data;
284 
285 	mutex_lock(&block_mutex);
286 	mmc_blk_put(md);
287 	mutex_unlock(&block_mutex);
288 }
289 
290 static int
291 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
292 {
293 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
294 	geo->heads = 4;
295 	geo->sectors = 16;
296 	return 0;
297 }
298 
299 struct mmc_blk_ioc_data {
300 	struct mmc_ioc_cmd ic;
301 	unsigned char *buf;
302 	u64 buf_bytes;
303 };
304 
305 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
306 	struct mmc_ioc_cmd __user *user)
307 {
308 	struct mmc_blk_ioc_data *idata;
309 	int err;
310 
311 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
312 	if (!idata) {
313 		err = -ENOMEM;
314 		goto out;
315 	}
316 
317 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
318 		err = -EFAULT;
319 		goto idata_err;
320 	}
321 
322 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
323 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
324 		err = -EOVERFLOW;
325 		goto idata_err;
326 	}
327 
328 	if (!idata->buf_bytes) {
329 		idata->buf = NULL;
330 		return idata;
331 	}
332 
333 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
334 	if (!idata->buf) {
335 		err = -ENOMEM;
336 		goto idata_err;
337 	}
338 
339 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
340 					idata->ic.data_ptr, idata->buf_bytes)) {
341 		err = -EFAULT;
342 		goto copy_err;
343 	}
344 
345 	return idata;
346 
347 copy_err:
348 	kfree(idata->buf);
349 idata_err:
350 	kfree(idata);
351 out:
352 	return ERR_PTR(err);
353 }
354 
355 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
356 				      struct mmc_blk_ioc_data *idata)
357 {
358 	struct mmc_ioc_cmd *ic = &idata->ic;
359 
360 	if (copy_to_user(&(ic_ptr->response), ic->response,
361 			 sizeof(ic->response)))
362 		return -EFAULT;
363 
364 	if (!idata->ic.write_flag) {
365 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
366 				 idata->buf, idata->buf_bytes))
367 			return -EFAULT;
368 	}
369 
370 	return 0;
371 }
372 
373 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
374 				       u32 retries_max)
375 {
376 	int err;
377 	u32 retry_count = 0;
378 
379 	if (!status || !retries_max)
380 		return -EINVAL;
381 
382 	do {
383 		err = __mmc_send_status(card, status, 5);
384 		if (err)
385 			break;
386 
387 		if (!R1_STATUS(*status) &&
388 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
389 			break; /* RPMB programming operation complete */
390 
391 		/*
392 		 * Rechedule to give the MMC device a chance to continue
393 		 * processing the previous command without being polled too
394 		 * frequently.
395 		 */
396 		usleep_range(1000, 5000);
397 	} while (++retry_count < retries_max);
398 
399 	if (retry_count == retries_max)
400 		err = -EPERM;
401 
402 	return err;
403 }
404 
405 static int ioctl_do_sanitize(struct mmc_card *card)
406 {
407 	int err;
408 
409 	if (!mmc_can_sanitize(card)) {
410 			pr_warn("%s: %s - SANITIZE is not supported\n",
411 				mmc_hostname(card->host), __func__);
412 			err = -EOPNOTSUPP;
413 			goto out;
414 	}
415 
416 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
417 		mmc_hostname(card->host), __func__);
418 
419 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
420 					EXT_CSD_SANITIZE_START, 1,
421 					MMC_SANITIZE_REQ_TIMEOUT);
422 
423 	if (err)
424 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
425 		       mmc_hostname(card->host), __func__, err);
426 
427 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
428 					     __func__);
429 out:
430 	return err;
431 }
432 
433 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
434 			       struct mmc_blk_ioc_data *idata)
435 {
436 	struct mmc_command cmd = {};
437 	struct mmc_data data = {};
438 	struct mmc_request mrq = {};
439 	struct scatterlist sg;
440 	int err;
441 	bool is_rpmb = false;
442 	u32 status = 0;
443 
444 	if (!card || !md || !idata)
445 		return -EINVAL;
446 
447 	if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
448 		is_rpmb = true;
449 
450 	cmd.opcode = idata->ic.opcode;
451 	cmd.arg = idata->ic.arg;
452 	cmd.flags = idata->ic.flags;
453 
454 	if (idata->buf_bytes) {
455 		data.sg = &sg;
456 		data.sg_len = 1;
457 		data.blksz = idata->ic.blksz;
458 		data.blocks = idata->ic.blocks;
459 
460 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
461 
462 		if (idata->ic.write_flag)
463 			data.flags = MMC_DATA_WRITE;
464 		else
465 			data.flags = MMC_DATA_READ;
466 
467 		/* data.flags must already be set before doing this. */
468 		mmc_set_data_timeout(&data, card);
469 
470 		/* Allow overriding the timeout_ns for empirical tuning. */
471 		if (idata->ic.data_timeout_ns)
472 			data.timeout_ns = idata->ic.data_timeout_ns;
473 
474 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
475 			/*
476 			 * Pretend this is a data transfer and rely on the
477 			 * host driver to compute timeout.  When all host
478 			 * drivers support cmd.cmd_timeout for R1B, this
479 			 * can be changed to:
480 			 *
481 			 *     mrq.data = NULL;
482 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
483 			 */
484 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
485 		}
486 
487 		mrq.data = &data;
488 	}
489 
490 	mrq.cmd = &cmd;
491 
492 	err = mmc_blk_part_switch(card, md);
493 	if (err)
494 		return err;
495 
496 	if (idata->ic.is_acmd) {
497 		err = mmc_app_cmd(card->host, card);
498 		if (err)
499 			return err;
500 	}
501 
502 	if (is_rpmb) {
503 		err = mmc_set_blockcount(card, data.blocks,
504 			idata->ic.write_flag & (1 << 31));
505 		if (err)
506 			return err;
507 	}
508 
509 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
510 	    (cmd.opcode == MMC_SWITCH)) {
511 		err = ioctl_do_sanitize(card);
512 
513 		if (err)
514 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
515 			       __func__, err);
516 
517 		return err;
518 	}
519 
520 	mmc_wait_for_req(card->host, &mrq);
521 
522 	if (cmd.error) {
523 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
524 						__func__, cmd.error);
525 		return cmd.error;
526 	}
527 	if (data.error) {
528 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
529 						__func__, data.error);
530 		return data.error;
531 	}
532 
533 	/*
534 	 * According to the SD specs, some commands require a delay after
535 	 * issuing the command.
536 	 */
537 	if (idata->ic.postsleep_min_us)
538 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
539 
540 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
541 
542 	if (is_rpmb) {
543 		/*
544 		 * Ensure RPMB command has completed by polling CMD13
545 		 * "Send Status".
546 		 */
547 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
548 		if (err)
549 			dev_err(mmc_dev(card->host),
550 					"%s: Card Status=0x%08X, error %d\n",
551 					__func__, status, err);
552 	}
553 
554 	return err;
555 }
556 
557 static int mmc_blk_ioctl_cmd(struct block_device *bdev,
558 			     struct mmc_ioc_cmd __user *ic_ptr)
559 {
560 	struct mmc_blk_ioc_data *idata;
561 	struct mmc_blk_ioc_data *idatas[1];
562 	struct mmc_blk_data *md;
563 	struct mmc_queue *mq;
564 	struct mmc_card *card;
565 	int err = 0, ioc_err = 0;
566 	struct request *req;
567 
568 	/*
569 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
570 	 * whole block device, not on a partition.  This prevents overspray
571 	 * between sibling partitions.
572 	 */
573 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
574 		return -EPERM;
575 
576 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
577 	if (IS_ERR(idata))
578 		return PTR_ERR(idata);
579 
580 	md = mmc_blk_get(bdev->bd_disk);
581 	if (!md) {
582 		err = -EINVAL;
583 		goto cmd_err;
584 	}
585 
586 	card = md->queue.card;
587 	if (IS_ERR(card)) {
588 		err = PTR_ERR(card);
589 		goto cmd_done;
590 	}
591 
592 	/*
593 	 * Dispatch the ioctl() into the block request queue.
594 	 */
595 	mq = &md->queue;
596 	req = blk_get_request(mq->queue,
597 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
598 		__GFP_RECLAIM);
599 	idatas[0] = idata;
600 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
601 	req_to_mmc_queue_req(req)->idata = idatas;
602 	req_to_mmc_queue_req(req)->ioc_count = 1;
603 	blk_execute_rq(mq->queue, NULL, req, 0);
604 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
605 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
606 	blk_put_request(req);
607 
608 cmd_done:
609 	mmc_blk_put(md);
610 cmd_err:
611 	kfree(idata->buf);
612 	kfree(idata);
613 	return ioc_err ? ioc_err : err;
614 }
615 
616 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev,
617 				   struct mmc_ioc_multi_cmd __user *user)
618 {
619 	struct mmc_blk_ioc_data **idata = NULL;
620 	struct mmc_ioc_cmd __user *cmds = user->cmds;
621 	struct mmc_card *card;
622 	struct mmc_blk_data *md;
623 	struct mmc_queue *mq;
624 	int i, err = 0, ioc_err = 0;
625 	__u64 num_of_cmds;
626 	struct request *req;
627 
628 	/*
629 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
630 	 * whole block device, not on a partition.  This prevents overspray
631 	 * between sibling partitions.
632 	 */
633 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
634 		return -EPERM;
635 
636 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
637 			   sizeof(num_of_cmds)))
638 		return -EFAULT;
639 
640 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
641 		return -EINVAL;
642 
643 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
644 	if (!idata)
645 		return -ENOMEM;
646 
647 	for (i = 0; i < num_of_cmds; i++) {
648 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
649 		if (IS_ERR(idata[i])) {
650 			err = PTR_ERR(idata[i]);
651 			num_of_cmds = i;
652 			goto cmd_err;
653 		}
654 	}
655 
656 	md = mmc_blk_get(bdev->bd_disk);
657 	if (!md) {
658 		err = -EINVAL;
659 		goto cmd_err;
660 	}
661 
662 	card = md->queue.card;
663 	if (IS_ERR(card)) {
664 		err = PTR_ERR(card);
665 		goto cmd_done;
666 	}
667 
668 
669 	/*
670 	 * Dispatch the ioctl()s into the block request queue.
671 	 */
672 	mq = &md->queue;
673 	req = blk_get_request(mq->queue,
674 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
675 		__GFP_RECLAIM);
676 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_IOCTL;
677 	req_to_mmc_queue_req(req)->idata = idata;
678 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
679 	blk_execute_rq(mq->queue, NULL, req, 0);
680 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
681 
682 	/* copy to user if data and response */
683 	for (i = 0; i < num_of_cmds && !err; i++)
684 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
685 
686 	blk_put_request(req);
687 
688 cmd_done:
689 	mmc_blk_put(md);
690 cmd_err:
691 	for (i = 0; i < num_of_cmds; i++) {
692 		kfree(idata[i]->buf);
693 		kfree(idata[i]);
694 	}
695 	kfree(idata);
696 	return ioc_err ? ioc_err : err;
697 }
698 
699 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
700 	unsigned int cmd, unsigned long arg)
701 {
702 	switch (cmd) {
703 	case MMC_IOC_CMD:
704 		return mmc_blk_ioctl_cmd(bdev,
705 				(struct mmc_ioc_cmd __user *)arg);
706 	case MMC_IOC_MULTI_CMD:
707 		return mmc_blk_ioctl_multi_cmd(bdev,
708 				(struct mmc_ioc_multi_cmd __user *)arg);
709 	default:
710 		return -EINVAL;
711 	}
712 }
713 
714 #ifdef CONFIG_COMPAT
715 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
716 	unsigned int cmd, unsigned long arg)
717 {
718 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
719 }
720 #endif
721 
722 static const struct block_device_operations mmc_bdops = {
723 	.open			= mmc_blk_open,
724 	.release		= mmc_blk_release,
725 	.getgeo			= mmc_blk_getgeo,
726 	.owner			= THIS_MODULE,
727 	.ioctl			= mmc_blk_ioctl,
728 #ifdef CONFIG_COMPAT
729 	.compat_ioctl		= mmc_blk_compat_ioctl,
730 #endif
731 };
732 
733 static int mmc_blk_part_switch_pre(struct mmc_card *card,
734 				   unsigned int part_type)
735 {
736 	int ret = 0;
737 
738 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
739 		if (card->ext_csd.cmdq_en) {
740 			ret = mmc_cmdq_disable(card);
741 			if (ret)
742 				return ret;
743 		}
744 		mmc_retune_pause(card->host);
745 	}
746 
747 	return ret;
748 }
749 
750 static int mmc_blk_part_switch_post(struct mmc_card *card,
751 				    unsigned int part_type)
752 {
753 	int ret = 0;
754 
755 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
756 		mmc_retune_unpause(card->host);
757 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
758 			ret = mmc_cmdq_enable(card);
759 	}
760 
761 	return ret;
762 }
763 
764 static inline int mmc_blk_part_switch(struct mmc_card *card,
765 				      struct mmc_blk_data *md)
766 {
767 	int ret = 0;
768 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
769 
770 	if (main_md->part_curr == md->part_type)
771 		return 0;
772 
773 	if (mmc_card_mmc(card)) {
774 		u8 part_config = card->ext_csd.part_config;
775 
776 		ret = mmc_blk_part_switch_pre(card, md->part_type);
777 		if (ret)
778 			return ret;
779 
780 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
781 		part_config |= md->part_type;
782 
783 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
784 				 EXT_CSD_PART_CONFIG, part_config,
785 				 card->ext_csd.part_time);
786 		if (ret) {
787 			mmc_blk_part_switch_post(card, md->part_type);
788 			return ret;
789 		}
790 
791 		card->ext_csd.part_config = part_config;
792 
793 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
794 	}
795 
796 	main_md->part_curr = md->part_type;
797 	return ret;
798 }
799 
800 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
801 {
802 	int err;
803 	u32 result;
804 	__be32 *blocks;
805 
806 	struct mmc_request mrq = {};
807 	struct mmc_command cmd = {};
808 	struct mmc_data data = {};
809 
810 	struct scatterlist sg;
811 
812 	cmd.opcode = MMC_APP_CMD;
813 	cmd.arg = card->rca << 16;
814 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
815 
816 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
817 	if (err)
818 		return err;
819 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
820 		return -EIO;
821 
822 	memset(&cmd, 0, sizeof(struct mmc_command));
823 
824 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
825 	cmd.arg = 0;
826 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
827 
828 	data.blksz = 4;
829 	data.blocks = 1;
830 	data.flags = MMC_DATA_READ;
831 	data.sg = &sg;
832 	data.sg_len = 1;
833 	mmc_set_data_timeout(&data, card);
834 
835 	mrq.cmd = &cmd;
836 	mrq.data = &data;
837 
838 	blocks = kmalloc(4, GFP_KERNEL);
839 	if (!blocks)
840 		return -ENOMEM;
841 
842 	sg_init_one(&sg, blocks, 4);
843 
844 	mmc_wait_for_req(card->host, &mrq);
845 
846 	result = ntohl(*blocks);
847 	kfree(blocks);
848 
849 	if (cmd.error || data.error)
850 		return -EIO;
851 
852 	*written_blocks = result;
853 
854 	return 0;
855 }
856 
857 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
858 		bool hw_busy_detect, struct request *req, bool *gen_err)
859 {
860 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
861 	int err = 0;
862 	u32 status;
863 
864 	do {
865 		err = __mmc_send_status(card, &status, 5);
866 		if (err) {
867 			pr_err("%s: error %d requesting status\n",
868 			       req->rq_disk->disk_name, err);
869 			return err;
870 		}
871 
872 		if (status & R1_ERROR) {
873 			pr_err("%s: %s: error sending status cmd, status %#x\n",
874 				req->rq_disk->disk_name, __func__, status);
875 			*gen_err = true;
876 		}
877 
878 		/* We may rely on the host hw to handle busy detection.*/
879 		if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
880 			hw_busy_detect)
881 			break;
882 
883 		/*
884 		 * Timeout if the device never becomes ready for data and never
885 		 * leaves the program state.
886 		 */
887 		if (time_after(jiffies, timeout)) {
888 			pr_err("%s: Card stuck in programming state! %s %s\n",
889 				mmc_hostname(card->host),
890 				req->rq_disk->disk_name, __func__);
891 			return -ETIMEDOUT;
892 		}
893 
894 		/*
895 		 * Some cards mishandle the status bits,
896 		 * so make sure to check both the busy
897 		 * indication and the card state.
898 		 */
899 	} while (!(status & R1_READY_FOR_DATA) ||
900 		 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
901 
902 	return err;
903 }
904 
905 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
906 		struct request *req, bool *gen_err, u32 *stop_status)
907 {
908 	struct mmc_host *host = card->host;
909 	struct mmc_command cmd = {};
910 	int err;
911 	bool use_r1b_resp = rq_data_dir(req) == WRITE;
912 
913 	/*
914 	 * Normally we use R1B responses for WRITE, but in cases where the host
915 	 * has specified a max_busy_timeout we need to validate it. A failure
916 	 * means we need to prevent the host from doing hw busy detection, which
917 	 * is done by converting to a R1 response instead.
918 	 */
919 	if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
920 		use_r1b_resp = false;
921 
922 	cmd.opcode = MMC_STOP_TRANSMISSION;
923 	if (use_r1b_resp) {
924 		cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
925 		cmd.busy_timeout = timeout_ms;
926 	} else {
927 		cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
928 	}
929 
930 	err = mmc_wait_for_cmd(host, &cmd, 5);
931 	if (err)
932 		return err;
933 
934 	*stop_status = cmd.resp[0];
935 
936 	/* No need to check card status in case of READ. */
937 	if (rq_data_dir(req) == READ)
938 		return 0;
939 
940 	if (!mmc_host_is_spi(host) &&
941 		(*stop_status & R1_ERROR)) {
942 		pr_err("%s: %s: general error sending stop command, resp %#x\n",
943 			req->rq_disk->disk_name, __func__, *stop_status);
944 		*gen_err = true;
945 	}
946 
947 	return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
948 }
949 
950 #define ERR_NOMEDIUM	3
951 #define ERR_RETRY	2
952 #define ERR_ABORT	1
953 #define ERR_CONTINUE	0
954 
955 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
956 	bool status_valid, u32 status)
957 {
958 	switch (error) {
959 	case -EILSEQ:
960 		/* response crc error, retry the r/w cmd */
961 		pr_err("%s: %s sending %s command, card status %#x\n",
962 			req->rq_disk->disk_name, "response CRC error",
963 			name, status);
964 		return ERR_RETRY;
965 
966 	case -ETIMEDOUT:
967 		pr_err("%s: %s sending %s command, card status %#x\n",
968 			req->rq_disk->disk_name, "timed out", name, status);
969 
970 		/* If the status cmd initially failed, retry the r/w cmd */
971 		if (!status_valid) {
972 			pr_err("%s: status not valid, retrying timeout\n",
973 				req->rq_disk->disk_name);
974 			return ERR_RETRY;
975 		}
976 
977 		/*
978 		 * If it was a r/w cmd crc error, or illegal command
979 		 * (eg, issued in wrong state) then retry - we should
980 		 * have corrected the state problem above.
981 		 */
982 		if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
983 			pr_err("%s: command error, retrying timeout\n",
984 				req->rq_disk->disk_name);
985 			return ERR_RETRY;
986 		}
987 
988 		/* Otherwise abort the command */
989 		return ERR_ABORT;
990 
991 	default:
992 		/* We don't understand the error code the driver gave us */
993 		pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
994 		       req->rq_disk->disk_name, error, status);
995 		return ERR_ABORT;
996 	}
997 }
998 
999 /*
1000  * Initial r/w and stop cmd error recovery.
1001  * We don't know whether the card received the r/w cmd or not, so try to
1002  * restore things back to a sane state.  Essentially, we do this as follows:
1003  * - Obtain card status.  If the first attempt to obtain card status fails,
1004  *   the status word will reflect the failed status cmd, not the failed
1005  *   r/w cmd.  If we fail to obtain card status, it suggests we can no
1006  *   longer communicate with the card.
1007  * - Check the card state.  If the card received the cmd but there was a
1008  *   transient problem with the response, it might still be in a data transfer
1009  *   mode.  Try to send it a stop command.  If this fails, we can't recover.
1010  * - If the r/w cmd failed due to a response CRC error, it was probably
1011  *   transient, so retry the cmd.
1012  * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1013  * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1014  *   illegal cmd, retry.
1015  * Otherwise we don't understand what happened, so abort.
1016  */
1017 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1018 	struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1019 {
1020 	bool prev_cmd_status_valid = true;
1021 	u32 status, stop_status = 0;
1022 	int err, retry;
1023 
1024 	if (mmc_card_removed(card))
1025 		return ERR_NOMEDIUM;
1026 
1027 	/*
1028 	 * Try to get card status which indicates both the card state
1029 	 * and why there was no response.  If the first attempt fails,
1030 	 * we can't be sure the returned status is for the r/w command.
1031 	 */
1032 	for (retry = 2; retry >= 0; retry--) {
1033 		err = __mmc_send_status(card, &status, 0);
1034 		if (!err)
1035 			break;
1036 
1037 		/* Re-tune if needed */
1038 		mmc_retune_recheck(card->host);
1039 
1040 		prev_cmd_status_valid = false;
1041 		pr_err("%s: error %d sending status command, %sing\n",
1042 		       req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1043 	}
1044 
1045 	/* We couldn't get a response from the card.  Give up. */
1046 	if (err) {
1047 		/* Check if the card is removed */
1048 		if (mmc_detect_card_removed(card->host))
1049 			return ERR_NOMEDIUM;
1050 		return ERR_ABORT;
1051 	}
1052 
1053 	/* Flag ECC errors */
1054 	if ((status & R1_CARD_ECC_FAILED) ||
1055 	    (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1056 	    (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1057 		*ecc_err = true;
1058 
1059 	/* Flag General errors */
1060 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1061 		if ((status & R1_ERROR) ||
1062 			(brq->stop.resp[0] & R1_ERROR)) {
1063 			pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1064 			       req->rq_disk->disk_name, __func__,
1065 			       brq->stop.resp[0], status);
1066 			*gen_err = true;
1067 		}
1068 
1069 	/*
1070 	 * Check the current card state.  If it is in some data transfer
1071 	 * mode, tell it to stop (and hopefully transition back to TRAN.)
1072 	 */
1073 	if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1074 	    R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1075 		err = send_stop(card,
1076 			DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1077 			req, gen_err, &stop_status);
1078 		if (err) {
1079 			pr_err("%s: error %d sending stop command\n",
1080 			       req->rq_disk->disk_name, err);
1081 			/*
1082 			 * If the stop cmd also timed out, the card is probably
1083 			 * not present, so abort. Other errors are bad news too.
1084 			 */
1085 			return ERR_ABORT;
1086 		}
1087 
1088 		if (stop_status & R1_CARD_ECC_FAILED)
1089 			*ecc_err = true;
1090 	}
1091 
1092 	/* Check for set block count errors */
1093 	if (brq->sbc.error)
1094 		return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1095 				prev_cmd_status_valid, status);
1096 
1097 	/* Check for r/w command errors */
1098 	if (brq->cmd.error)
1099 		return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1100 				prev_cmd_status_valid, status);
1101 
1102 	/* Data errors */
1103 	if (!brq->stop.error)
1104 		return ERR_CONTINUE;
1105 
1106 	/* Now for stop errors.  These aren't fatal to the transfer. */
1107 	pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1108 	       req->rq_disk->disk_name, brq->stop.error,
1109 	       brq->cmd.resp[0], status);
1110 
1111 	/*
1112 	 * Subsitute in our own stop status as this will give the error
1113 	 * state which happened during the execution of the r/w command.
1114 	 */
1115 	if (stop_status) {
1116 		brq->stop.resp[0] = stop_status;
1117 		brq->stop.error = 0;
1118 	}
1119 	return ERR_CONTINUE;
1120 }
1121 
1122 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1123 			 int type)
1124 {
1125 	int err;
1126 
1127 	if (md->reset_done & type)
1128 		return -EEXIST;
1129 
1130 	md->reset_done |= type;
1131 	err = mmc_hw_reset(host);
1132 	/* Ensure we switch back to the correct partition */
1133 	if (err != -EOPNOTSUPP) {
1134 		struct mmc_blk_data *main_md =
1135 			dev_get_drvdata(&host->card->dev);
1136 		int part_err;
1137 
1138 		main_md->part_curr = main_md->part_type;
1139 		part_err = mmc_blk_part_switch(host->card, md);
1140 		if (part_err) {
1141 			/*
1142 			 * We have failed to get back into the correct
1143 			 * partition, so we need to abort the whole request.
1144 			 */
1145 			return -ENODEV;
1146 		}
1147 	}
1148 	return err;
1149 }
1150 
1151 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1152 {
1153 	md->reset_done &= ~type;
1154 }
1155 
1156 int mmc_access_rpmb(struct mmc_queue *mq)
1157 {
1158 	struct mmc_blk_data *md = mq->blkdata;
1159 	/*
1160 	 * If this is a RPMB partition access, return ture
1161 	 */
1162 	if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB)
1163 		return true;
1164 
1165 	return false;
1166 }
1167 
1168 /*
1169  * The non-block commands come back from the block layer after it queued it and
1170  * processed it with all other requests and then they get issued in this
1171  * function.
1172  */
1173 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1174 {
1175 	struct mmc_queue_req *mq_rq;
1176 	struct mmc_card *card = mq->card;
1177 	struct mmc_blk_data *md = mq->blkdata;
1178 	int ret;
1179 	int i;
1180 
1181 	mq_rq = req_to_mmc_queue_req(req);
1182 
1183 	switch (mq_rq->drv_op) {
1184 	case MMC_DRV_OP_IOCTL:
1185 		for (i = 0; i < mq_rq->ioc_count; i++) {
1186 			ret = __mmc_blk_ioctl_cmd(card, md, mq_rq->idata[i]);
1187 			if (ret)
1188 				break;
1189 		}
1190 		/* Always switch back to main area after RPMB access */
1191 		if (md->area_type & MMC_BLK_DATA_AREA_RPMB)
1192 			mmc_blk_part_switch(card, dev_get_drvdata(&card->dev));
1193 		break;
1194 	case MMC_DRV_OP_BOOT_WP:
1195 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1196 				 card->ext_csd.boot_ro_lock |
1197 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1198 				 card->ext_csd.part_time);
1199 		if (ret)
1200 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1201 			       md->disk->disk_name, ret);
1202 		else
1203 			card->ext_csd.boot_ro_lock |=
1204 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1205 		break;
1206 	default:
1207 		pr_err("%s: unknown driver specific operation\n",
1208 		       md->disk->disk_name);
1209 		ret = -EINVAL;
1210 		break;
1211 	}
1212 	mq_rq->drv_op_result = ret;
1213 	blk_end_request_all(req, ret);
1214 }
1215 
1216 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1217 {
1218 	struct mmc_blk_data *md = mq->blkdata;
1219 	struct mmc_card *card = md->queue.card;
1220 	unsigned int from, nr, arg;
1221 	int err = 0, type = MMC_BLK_DISCARD;
1222 	blk_status_t status = BLK_STS_OK;
1223 
1224 	if (!mmc_can_erase(card)) {
1225 		status = BLK_STS_NOTSUPP;
1226 		goto fail;
1227 	}
1228 
1229 	from = blk_rq_pos(req);
1230 	nr = blk_rq_sectors(req);
1231 
1232 	if (mmc_can_discard(card))
1233 		arg = MMC_DISCARD_ARG;
1234 	else if (mmc_can_trim(card))
1235 		arg = MMC_TRIM_ARG;
1236 	else
1237 		arg = MMC_ERASE_ARG;
1238 	do {
1239 		err = 0;
1240 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1241 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1242 					 INAND_CMD38_ARG_EXT_CSD,
1243 					 arg == MMC_TRIM_ARG ?
1244 					 INAND_CMD38_ARG_TRIM :
1245 					 INAND_CMD38_ARG_ERASE,
1246 					 0);
1247 		}
1248 		if (!err)
1249 			err = mmc_erase(card, from, nr, arg);
1250 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1251 	if (err)
1252 		status = BLK_STS_IOERR;
1253 	else
1254 		mmc_blk_reset_success(md, type);
1255 fail:
1256 	blk_end_request(req, status, blk_rq_bytes(req));
1257 }
1258 
1259 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1260 				       struct request *req)
1261 {
1262 	struct mmc_blk_data *md = mq->blkdata;
1263 	struct mmc_card *card = md->queue.card;
1264 	unsigned int from, nr, arg;
1265 	int err = 0, type = MMC_BLK_SECDISCARD;
1266 	blk_status_t status = BLK_STS_OK;
1267 
1268 	if (!(mmc_can_secure_erase_trim(card))) {
1269 		status = BLK_STS_NOTSUPP;
1270 		goto out;
1271 	}
1272 
1273 	from = blk_rq_pos(req);
1274 	nr = blk_rq_sectors(req);
1275 
1276 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1277 		arg = MMC_SECURE_TRIM1_ARG;
1278 	else
1279 		arg = MMC_SECURE_ERASE_ARG;
1280 
1281 retry:
1282 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1283 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1284 				 INAND_CMD38_ARG_EXT_CSD,
1285 				 arg == MMC_SECURE_TRIM1_ARG ?
1286 				 INAND_CMD38_ARG_SECTRIM1 :
1287 				 INAND_CMD38_ARG_SECERASE,
1288 				 0);
1289 		if (err)
1290 			goto out_retry;
1291 	}
1292 
1293 	err = mmc_erase(card, from, nr, arg);
1294 	if (err == -EIO)
1295 		goto out_retry;
1296 	if (err) {
1297 		status = BLK_STS_IOERR;
1298 		goto out;
1299 	}
1300 
1301 	if (arg == MMC_SECURE_TRIM1_ARG) {
1302 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1303 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1304 					 INAND_CMD38_ARG_EXT_CSD,
1305 					 INAND_CMD38_ARG_SECTRIM2,
1306 					 0);
1307 			if (err)
1308 				goto out_retry;
1309 		}
1310 
1311 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1312 		if (err == -EIO)
1313 			goto out_retry;
1314 		if (err) {
1315 			status = BLK_STS_IOERR;
1316 			goto out;
1317 		}
1318 	}
1319 
1320 out_retry:
1321 	if (err && !mmc_blk_reset(md, card->host, type))
1322 		goto retry;
1323 	if (!err)
1324 		mmc_blk_reset_success(md, type);
1325 out:
1326 	blk_end_request(req, status, blk_rq_bytes(req));
1327 }
1328 
1329 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1330 {
1331 	struct mmc_blk_data *md = mq->blkdata;
1332 	struct mmc_card *card = md->queue.card;
1333 	int ret = 0;
1334 
1335 	ret = mmc_flush_cache(card);
1336 	blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1337 }
1338 
1339 /*
1340  * Reformat current write as a reliable write, supporting
1341  * both legacy and the enhanced reliable write MMC cards.
1342  * In each transfer we'll handle only as much as a single
1343  * reliable write can handle, thus finish the request in
1344  * partial completions.
1345  */
1346 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1347 				    struct mmc_card *card,
1348 				    struct request *req)
1349 {
1350 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1351 		/* Legacy mode imposes restrictions on transfers. */
1352 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1353 			brq->data.blocks = 1;
1354 
1355 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1356 			brq->data.blocks = card->ext_csd.rel_sectors;
1357 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1358 			brq->data.blocks = 1;
1359 	}
1360 }
1361 
1362 #define CMD_ERRORS							\
1363 	(R1_OUT_OF_RANGE |	/* Command argument out of range */	\
1364 	 R1_ADDRESS_ERROR |	/* Misaligned address */		\
1365 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1366 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1367 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1368 	 R1_CC_ERROR |		/* Card controller error */		\
1369 	 R1_ERROR)		/* General/unknown error */
1370 
1371 static bool mmc_blk_has_cmd_err(struct mmc_command *cmd)
1372 {
1373 	if (!cmd->error && cmd->resp[0] & CMD_ERRORS)
1374 		cmd->error = -EIO;
1375 
1376 	return cmd->error;
1377 }
1378 
1379 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1380 					     struct mmc_async_req *areq)
1381 {
1382 	struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1383 						    areq);
1384 	struct mmc_blk_request *brq = &mq_mrq->brq;
1385 	struct request *req = mmc_queue_req_to_req(mq_mrq);
1386 	int need_retune = card->host->need_retune;
1387 	bool ecc_err = false;
1388 	bool gen_err = false;
1389 
1390 	/*
1391 	 * sbc.error indicates a problem with the set block count
1392 	 * command.  No data will have been transferred.
1393 	 *
1394 	 * cmd.error indicates a problem with the r/w command.  No
1395 	 * data will have been transferred.
1396 	 *
1397 	 * stop.error indicates a problem with the stop command.  Data
1398 	 * may have been transferred, or may still be transferring.
1399 	 */
1400 	if (brq->sbc.error || brq->cmd.error || mmc_blk_has_cmd_err(&brq->stop) ||
1401 	    brq->data.error) {
1402 		switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1403 		case ERR_RETRY:
1404 			return MMC_BLK_RETRY;
1405 		case ERR_ABORT:
1406 			return MMC_BLK_ABORT;
1407 		case ERR_NOMEDIUM:
1408 			return MMC_BLK_NOMEDIUM;
1409 		case ERR_CONTINUE:
1410 			break;
1411 		}
1412 	}
1413 
1414 	/*
1415 	 * Check for errors relating to the execution of the
1416 	 * initial command - such as address errors.  No data
1417 	 * has been transferred.
1418 	 */
1419 	if (brq->cmd.resp[0] & CMD_ERRORS) {
1420 		pr_err("%s: r/w command failed, status = %#x\n",
1421 		       req->rq_disk->disk_name, brq->cmd.resp[0]);
1422 		return MMC_BLK_ABORT;
1423 	}
1424 
1425 	/*
1426 	 * Everything else is either success, or a data error of some
1427 	 * kind.  If it was a write, we may have transitioned to
1428 	 * program mode, which we have to wait for it to complete.
1429 	 */
1430 	if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1431 		int err;
1432 
1433 		/* Check stop command response */
1434 		if (brq->stop.resp[0] & R1_ERROR) {
1435 			pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1436 			       req->rq_disk->disk_name, __func__,
1437 			       brq->stop.resp[0]);
1438 			gen_err = true;
1439 		}
1440 
1441 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1442 					&gen_err);
1443 		if (err)
1444 			return MMC_BLK_CMD_ERR;
1445 	}
1446 
1447 	/* if general error occurs, retry the write operation. */
1448 	if (gen_err) {
1449 		pr_warn("%s: retrying write for general error\n",
1450 				req->rq_disk->disk_name);
1451 		return MMC_BLK_RETRY;
1452 	}
1453 
1454 	/* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1455 	if (brq->data.error || brq->stop.error) {
1456 		if (need_retune && !brq->retune_retry_done) {
1457 			pr_debug("%s: retrying because a re-tune was needed\n",
1458 				 req->rq_disk->disk_name);
1459 			brq->retune_retry_done = 1;
1460 			return MMC_BLK_RETRY;
1461 		}
1462 		pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1463 		       req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1464 		       (unsigned)blk_rq_pos(req),
1465 		       (unsigned)blk_rq_sectors(req),
1466 		       brq->cmd.resp[0], brq->stop.resp[0]);
1467 
1468 		if (rq_data_dir(req) == READ) {
1469 			if (ecc_err)
1470 				return MMC_BLK_ECC_ERR;
1471 			return MMC_BLK_DATA_ERR;
1472 		} else {
1473 			return MMC_BLK_CMD_ERR;
1474 		}
1475 	}
1476 
1477 	if (!brq->data.bytes_xfered)
1478 		return MMC_BLK_RETRY;
1479 
1480 	if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1481 		return MMC_BLK_PARTIAL;
1482 
1483 	return MMC_BLK_SUCCESS;
1484 }
1485 
1486 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1487 			      int disable_multi, bool *do_rel_wr,
1488 			      bool *do_data_tag)
1489 {
1490 	struct mmc_blk_data *md = mq->blkdata;
1491 	struct mmc_card *card = md->queue.card;
1492 	struct mmc_blk_request *brq = &mqrq->brq;
1493 	struct request *req = mmc_queue_req_to_req(mqrq);
1494 
1495 	/*
1496 	 * Reliable writes are used to implement Forced Unit Access and
1497 	 * are supported only on MMCs.
1498 	 */
1499 	*do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1500 		     rq_data_dir(req) == WRITE &&
1501 		     (md->flags & MMC_BLK_REL_WR);
1502 
1503 	memset(brq, 0, sizeof(struct mmc_blk_request));
1504 
1505 	brq->mrq.data = &brq->data;
1506 
1507 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1508 	brq->stop.arg = 0;
1509 
1510 	if (rq_data_dir(req) == READ) {
1511 		brq->data.flags = MMC_DATA_READ;
1512 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1513 	} else {
1514 		brq->data.flags = MMC_DATA_WRITE;
1515 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1516 	}
1517 
1518 	brq->data.blksz = 512;
1519 	brq->data.blocks = blk_rq_sectors(req);
1520 
1521 	/*
1522 	 * The block layer doesn't support all sector count
1523 	 * restrictions, so we need to be prepared for too big
1524 	 * requests.
1525 	 */
1526 	if (brq->data.blocks > card->host->max_blk_count)
1527 		brq->data.blocks = card->host->max_blk_count;
1528 
1529 	if (brq->data.blocks > 1) {
1530 		/*
1531 		 * After a read error, we redo the request one sector
1532 		 * at a time in order to accurately determine which
1533 		 * sectors can be read successfully.
1534 		 */
1535 		if (disable_multi)
1536 			brq->data.blocks = 1;
1537 
1538 		/*
1539 		 * Some controllers have HW issues while operating
1540 		 * in multiple I/O mode
1541 		 */
1542 		if (card->host->ops->multi_io_quirk)
1543 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1544 						(rq_data_dir(req) == READ) ?
1545 						MMC_DATA_READ : MMC_DATA_WRITE,
1546 						brq->data.blocks);
1547 	}
1548 
1549 	if (*do_rel_wr)
1550 		mmc_apply_rel_rw(brq, card, req);
1551 
1552 	/*
1553 	 * Data tag is used only during writing meta data to speed
1554 	 * up write and any subsequent read of this meta data
1555 	 */
1556 	*do_data_tag = card->ext_csd.data_tag_unit_size &&
1557 		       (req->cmd_flags & REQ_META) &&
1558 		       (rq_data_dir(req) == WRITE) &&
1559 		       ((brq->data.blocks * brq->data.blksz) >=
1560 			card->ext_csd.data_tag_unit_size);
1561 
1562 	mmc_set_data_timeout(&brq->data, card);
1563 
1564 	brq->data.sg = mqrq->sg;
1565 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1566 
1567 	/*
1568 	 * Adjust the sg list so it is the same size as the
1569 	 * request.
1570 	 */
1571 	if (brq->data.blocks != blk_rq_sectors(req)) {
1572 		int i, data_size = brq->data.blocks << 9;
1573 		struct scatterlist *sg;
1574 
1575 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1576 			data_size -= sg->length;
1577 			if (data_size <= 0) {
1578 				sg->length += data_size;
1579 				i++;
1580 				break;
1581 			}
1582 		}
1583 		brq->data.sg_len = i;
1584 	}
1585 
1586 	mqrq->areq.mrq = &brq->mrq;
1587 
1588 	mmc_queue_bounce_pre(mqrq);
1589 }
1590 
1591 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1592 			       struct mmc_card *card,
1593 			       int disable_multi,
1594 			       struct mmc_queue *mq)
1595 {
1596 	u32 readcmd, writecmd;
1597 	struct mmc_blk_request *brq = &mqrq->brq;
1598 	struct request *req = mmc_queue_req_to_req(mqrq);
1599 	struct mmc_blk_data *md = mq->blkdata;
1600 	bool do_rel_wr, do_data_tag;
1601 
1602 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1603 
1604 	brq->mrq.cmd = &brq->cmd;
1605 
1606 	brq->cmd.arg = blk_rq_pos(req);
1607 	if (!mmc_card_blockaddr(card))
1608 		brq->cmd.arg <<= 9;
1609 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1610 
1611 	if (brq->data.blocks > 1 || do_rel_wr) {
1612 		/* SPI multiblock writes terminate using a special
1613 		 * token, not a STOP_TRANSMISSION request.
1614 		 */
1615 		if (!mmc_host_is_spi(card->host) ||
1616 		    rq_data_dir(req) == READ)
1617 			brq->mrq.stop = &brq->stop;
1618 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1619 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1620 	} else {
1621 		brq->mrq.stop = NULL;
1622 		readcmd = MMC_READ_SINGLE_BLOCK;
1623 		writecmd = MMC_WRITE_BLOCK;
1624 	}
1625 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1626 
1627 	/*
1628 	 * Pre-defined multi-block transfers are preferable to
1629 	 * open ended-ones (and necessary for reliable writes).
1630 	 * However, it is not sufficient to just send CMD23,
1631 	 * and avoid the final CMD12, as on an error condition
1632 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1633 	 * with Auto-CMD23 enhancements provided by some
1634 	 * hosts, means that the complexity of dealing
1635 	 * with this is best left to the host. If CMD23 is
1636 	 * supported by card and host, we'll fill sbc in and let
1637 	 * the host deal with handling it correctly. This means
1638 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1639 	 * change of behavior will be observed.
1640 	 *
1641 	 * N.B: Some MMC cards experience perf degradation.
1642 	 * We'll avoid using CMD23-bounded multiblock writes for
1643 	 * these, while retaining features like reliable writes.
1644 	 */
1645 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1646 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1647 	     do_data_tag)) {
1648 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1649 		brq->sbc.arg = brq->data.blocks |
1650 			(do_rel_wr ? (1 << 31) : 0) |
1651 			(do_data_tag ? (1 << 29) : 0);
1652 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1653 		brq->mrq.sbc = &brq->sbc;
1654 	}
1655 
1656 	mqrq->areq.err_check = mmc_blk_err_check;
1657 }
1658 
1659 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1660 			       struct mmc_blk_request *brq, struct request *req,
1661 			       bool old_req_pending)
1662 {
1663 	bool req_pending;
1664 
1665 	/*
1666 	 * If this is an SD card and we're writing, we can first
1667 	 * mark the known good sectors as ok.
1668 	 *
1669 	 * If the card is not SD, we can still ok written sectors
1670 	 * as reported by the controller (which might be less than
1671 	 * the real number of written sectors, but never more).
1672 	 */
1673 	if (mmc_card_sd(card)) {
1674 		u32 blocks;
1675 		int err;
1676 
1677 		err = mmc_sd_num_wr_blocks(card, &blocks);
1678 		if (err)
1679 			req_pending = old_req_pending;
1680 		else
1681 			req_pending = blk_end_request(req, 0, blocks << 9);
1682 	} else {
1683 		req_pending = blk_end_request(req, 0, brq->data.bytes_xfered);
1684 	}
1685 	return req_pending;
1686 }
1687 
1688 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1689 				 struct request *req,
1690 				 struct mmc_queue_req *mqrq)
1691 {
1692 	if (mmc_card_removed(card))
1693 		req->rq_flags |= RQF_QUIET;
1694 	while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1695 	mq->qcnt--;
1696 }
1697 
1698 /**
1699  * mmc_blk_rw_try_restart() - tries to restart the current async request
1700  * @mq: the queue with the card and host to restart
1701  * @req: a new request that want to be started after the current one
1702  */
1703 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1704 				   struct mmc_queue_req *mqrq)
1705 {
1706 	if (!req)
1707 		return;
1708 
1709 	/*
1710 	 * If the card was removed, just cancel everything and return.
1711 	 */
1712 	if (mmc_card_removed(mq->card)) {
1713 		req->rq_flags |= RQF_QUIET;
1714 		blk_end_request_all(req, BLK_STS_IOERR);
1715 		mq->qcnt--; /* FIXME: just set to 0? */
1716 		return;
1717 	}
1718 	/* Else proceed and try to restart the current async request */
1719 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1720 	mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1721 }
1722 
1723 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1724 {
1725 	struct mmc_blk_data *md = mq->blkdata;
1726 	struct mmc_card *card = md->queue.card;
1727 	struct mmc_blk_request *brq;
1728 	int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1729 	enum mmc_blk_status status;
1730 	struct mmc_queue_req *mqrq_cur = NULL;
1731 	struct mmc_queue_req *mq_rq;
1732 	struct request *old_req;
1733 	struct mmc_async_req *new_areq;
1734 	struct mmc_async_req *old_areq;
1735 	bool req_pending = true;
1736 
1737 	if (new_req) {
1738 		mqrq_cur = req_to_mmc_queue_req(new_req);
1739 		mq->qcnt++;
1740 	}
1741 
1742 	if (!mq->qcnt)
1743 		return;
1744 
1745 	do {
1746 		if (new_req) {
1747 			/*
1748 			 * When 4KB native sector is enabled, only 8 blocks
1749 			 * multiple read or write is allowed
1750 			 */
1751 			if (mmc_large_sector(card) &&
1752 				!IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1753 				pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1754 					new_req->rq_disk->disk_name);
1755 				mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1756 				return;
1757 			}
1758 
1759 			mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1760 			new_areq = &mqrq_cur->areq;
1761 		} else
1762 			new_areq = NULL;
1763 
1764 		old_areq = mmc_start_areq(card->host, new_areq, &status);
1765 		if (!old_areq) {
1766 			/*
1767 			 * We have just put the first request into the pipeline
1768 			 * and there is nothing more to do until it is
1769 			 * complete.
1770 			 */
1771 			return;
1772 		}
1773 
1774 		/*
1775 		 * An asynchronous request has been completed and we proceed
1776 		 * to handle the result of it.
1777 		 */
1778 		mq_rq =	container_of(old_areq, struct mmc_queue_req, areq);
1779 		brq = &mq_rq->brq;
1780 		old_req = mmc_queue_req_to_req(mq_rq);
1781 		type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1782 		mmc_queue_bounce_post(mq_rq);
1783 
1784 		switch (status) {
1785 		case MMC_BLK_SUCCESS:
1786 		case MMC_BLK_PARTIAL:
1787 			/*
1788 			 * A block was successfully transferred.
1789 			 */
1790 			mmc_blk_reset_success(md, type);
1791 
1792 			req_pending = blk_end_request(old_req, BLK_STS_OK,
1793 						      brq->data.bytes_xfered);
1794 			/*
1795 			 * If the blk_end_request function returns non-zero even
1796 			 * though all data has been transferred and no errors
1797 			 * were returned by the host controller, it's a bug.
1798 			 */
1799 			if (status == MMC_BLK_SUCCESS && req_pending) {
1800 				pr_err("%s BUG rq_tot %d d_xfer %d\n",
1801 				       __func__, blk_rq_bytes(old_req),
1802 				       brq->data.bytes_xfered);
1803 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1804 				return;
1805 			}
1806 			break;
1807 		case MMC_BLK_CMD_ERR:
1808 			req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1809 			if (mmc_blk_reset(md, card->host, type)) {
1810 				if (req_pending)
1811 					mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1812 				else
1813 					mq->qcnt--;
1814 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1815 				return;
1816 			}
1817 			if (!req_pending) {
1818 				mq->qcnt--;
1819 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1820 				return;
1821 			}
1822 			break;
1823 		case MMC_BLK_RETRY:
1824 			retune_retry_done = brq->retune_retry_done;
1825 			if (retry++ < 5)
1826 				break;
1827 			/* Fall through */
1828 		case MMC_BLK_ABORT:
1829 			if (!mmc_blk_reset(md, card->host, type))
1830 				break;
1831 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1832 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1833 			return;
1834 		case MMC_BLK_DATA_ERR: {
1835 			int err;
1836 
1837 			err = mmc_blk_reset(md, card->host, type);
1838 			if (!err)
1839 				break;
1840 			if (err == -ENODEV) {
1841 				mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1842 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1843 				return;
1844 			}
1845 			/* Fall through */
1846 		}
1847 		case MMC_BLK_ECC_ERR:
1848 			if (brq->data.blocks > 1) {
1849 				/* Redo read one sector at a time */
1850 				pr_warn("%s: retrying using single block read\n",
1851 					old_req->rq_disk->disk_name);
1852 				disable_multi = 1;
1853 				break;
1854 			}
1855 			/*
1856 			 * After an error, we redo I/O one sector at a
1857 			 * time, so we only reach here after trying to
1858 			 * read a single sector.
1859 			 */
1860 			req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1861 						      brq->data.blksz);
1862 			if (!req_pending) {
1863 				mq->qcnt--;
1864 				mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1865 				return;
1866 			}
1867 			break;
1868 		case MMC_BLK_NOMEDIUM:
1869 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1870 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1871 			return;
1872 		default:
1873 			pr_err("%s: Unhandled return value (%d)",
1874 					old_req->rq_disk->disk_name, status);
1875 			mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1876 			mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1877 			return;
1878 		}
1879 
1880 		if (req_pending) {
1881 			/*
1882 			 * In case of a incomplete request
1883 			 * prepare it again and resend.
1884 			 */
1885 			mmc_blk_rw_rq_prep(mq_rq, card,
1886 					disable_multi, mq);
1887 			mmc_start_areq(card->host,
1888 					&mq_rq->areq, NULL);
1889 			mq_rq->brq.retune_retry_done = retune_retry_done;
1890 		}
1891 	} while (req_pending);
1892 
1893 	mq->qcnt--;
1894 }
1895 
1896 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
1897 {
1898 	int ret;
1899 	struct mmc_blk_data *md = mq->blkdata;
1900 	struct mmc_card *card = md->queue.card;
1901 
1902 	if (req && !mq->qcnt)
1903 		/* claim host only for the first request */
1904 		mmc_get_card(card);
1905 
1906 	ret = mmc_blk_part_switch(card, md);
1907 	if (ret) {
1908 		if (req) {
1909 			blk_end_request_all(req, BLK_STS_IOERR);
1910 		}
1911 		goto out;
1912 	}
1913 
1914 	if (req) {
1915 		switch (req_op(req)) {
1916 		case REQ_OP_DRV_IN:
1917 		case REQ_OP_DRV_OUT:
1918 			/*
1919 			 * Complete ongoing async transfer before issuing
1920 			 * ioctl()s
1921 			 */
1922 			if (mq->qcnt)
1923 				mmc_blk_issue_rw_rq(mq, NULL);
1924 			mmc_blk_issue_drv_op(mq, req);
1925 			break;
1926 		case REQ_OP_DISCARD:
1927 			/*
1928 			 * Complete ongoing async transfer before issuing
1929 			 * discard.
1930 			 */
1931 			if (mq->qcnt)
1932 				mmc_blk_issue_rw_rq(mq, NULL);
1933 			mmc_blk_issue_discard_rq(mq, req);
1934 			break;
1935 		case REQ_OP_SECURE_ERASE:
1936 			/*
1937 			 * Complete ongoing async transfer before issuing
1938 			 * secure erase.
1939 			 */
1940 			if (mq->qcnt)
1941 				mmc_blk_issue_rw_rq(mq, NULL);
1942 			mmc_blk_issue_secdiscard_rq(mq, req);
1943 			break;
1944 		case REQ_OP_FLUSH:
1945 			/*
1946 			 * Complete ongoing async transfer before issuing
1947 			 * flush.
1948 			 */
1949 			if (mq->qcnt)
1950 				mmc_blk_issue_rw_rq(mq, NULL);
1951 			mmc_blk_issue_flush(mq, req);
1952 			break;
1953 		default:
1954 			/* Normal request, just issue it */
1955 			mmc_blk_issue_rw_rq(mq, req);
1956 			card->host->context_info.is_waiting_last_req = false;
1957 			break;
1958 		}
1959 	} else {
1960 		/* No request, flushing the pipeline with NULL */
1961 		mmc_blk_issue_rw_rq(mq, NULL);
1962 		card->host->context_info.is_waiting_last_req = false;
1963 	}
1964 
1965 out:
1966 	if (!mq->qcnt)
1967 		mmc_put_card(card);
1968 }
1969 
1970 static inline int mmc_blk_readonly(struct mmc_card *card)
1971 {
1972 	return mmc_card_readonly(card) ||
1973 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
1974 }
1975 
1976 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
1977 					      struct device *parent,
1978 					      sector_t size,
1979 					      bool default_ro,
1980 					      const char *subname,
1981 					      int area_type)
1982 {
1983 	struct mmc_blk_data *md;
1984 	int devidx, ret;
1985 
1986 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
1987 	if (devidx < 0)
1988 		return ERR_PTR(devidx);
1989 
1990 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
1991 	if (!md) {
1992 		ret = -ENOMEM;
1993 		goto out;
1994 	}
1995 
1996 	md->area_type = area_type;
1997 
1998 	/*
1999 	 * Set the read-only status based on the supported commands
2000 	 * and the write protect switch.
2001 	 */
2002 	md->read_only = mmc_blk_readonly(card);
2003 
2004 	md->disk = alloc_disk(perdev_minors);
2005 	if (md->disk == NULL) {
2006 		ret = -ENOMEM;
2007 		goto err_kfree;
2008 	}
2009 
2010 	spin_lock_init(&md->lock);
2011 	INIT_LIST_HEAD(&md->part);
2012 	md->usage = 1;
2013 
2014 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2015 	if (ret)
2016 		goto err_putdisk;
2017 
2018 	md->queue.blkdata = md;
2019 
2020 	md->disk->major	= MMC_BLOCK_MAJOR;
2021 	md->disk->first_minor = devidx * perdev_minors;
2022 	md->disk->fops = &mmc_bdops;
2023 	md->disk->private_data = md;
2024 	md->disk->queue = md->queue.queue;
2025 	md->parent = parent;
2026 	set_disk_ro(md->disk, md->read_only || default_ro);
2027 	md->disk->flags = GENHD_FL_EXT_DEVT;
2028 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2029 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2030 
2031 	/*
2032 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2033 	 *
2034 	 * - be set for removable media with permanent block devices
2035 	 * - be unset for removable block devices with permanent media
2036 	 *
2037 	 * Since MMC block devices clearly fall under the second
2038 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2039 	 * should use the block device creation/destruction hotplug
2040 	 * messages to tell when the card is present.
2041 	 */
2042 
2043 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2044 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2045 
2046 	if (mmc_card_mmc(card))
2047 		blk_queue_logical_block_size(md->queue.queue,
2048 					     card->ext_csd.data_sector_size);
2049 	else
2050 		blk_queue_logical_block_size(md->queue.queue, 512);
2051 
2052 	set_capacity(md->disk, size);
2053 
2054 	if (mmc_host_cmd23(card->host)) {
2055 		if ((mmc_card_mmc(card) &&
2056 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2057 		    (mmc_card_sd(card) &&
2058 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2059 			md->flags |= MMC_BLK_CMD23;
2060 	}
2061 
2062 	if (mmc_card_mmc(card) &&
2063 	    md->flags & MMC_BLK_CMD23 &&
2064 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2065 	     card->ext_csd.rel_sectors)) {
2066 		md->flags |= MMC_BLK_REL_WR;
2067 		blk_queue_write_cache(md->queue.queue, true, true);
2068 	}
2069 
2070 	return md;
2071 
2072  err_putdisk:
2073 	put_disk(md->disk);
2074  err_kfree:
2075 	kfree(md);
2076  out:
2077 	ida_simple_remove(&mmc_blk_ida, devidx);
2078 	return ERR_PTR(ret);
2079 }
2080 
2081 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2082 {
2083 	sector_t size;
2084 
2085 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2086 		/*
2087 		 * The EXT_CSD sector count is in number or 512 byte
2088 		 * sectors.
2089 		 */
2090 		size = card->ext_csd.sectors;
2091 	} else {
2092 		/*
2093 		 * The CSD capacity field is in units of read_blkbits.
2094 		 * set_capacity takes units of 512 bytes.
2095 		 */
2096 		size = (typeof(sector_t))card->csd.capacity
2097 			<< (card->csd.read_blkbits - 9);
2098 	}
2099 
2100 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2101 					MMC_BLK_DATA_AREA_MAIN);
2102 }
2103 
2104 static int mmc_blk_alloc_part(struct mmc_card *card,
2105 			      struct mmc_blk_data *md,
2106 			      unsigned int part_type,
2107 			      sector_t size,
2108 			      bool default_ro,
2109 			      const char *subname,
2110 			      int area_type)
2111 {
2112 	char cap_str[10];
2113 	struct mmc_blk_data *part_md;
2114 
2115 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2116 				    subname, area_type);
2117 	if (IS_ERR(part_md))
2118 		return PTR_ERR(part_md);
2119 	part_md->part_type = part_type;
2120 	list_add(&part_md->part, &md->part);
2121 
2122 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2123 			cap_str, sizeof(cap_str));
2124 	pr_info("%s: %s %s partition %u %s\n",
2125 	       part_md->disk->disk_name, mmc_card_id(card),
2126 	       mmc_card_name(card), part_md->part_type, cap_str);
2127 	return 0;
2128 }
2129 
2130 /* MMC Physical partitions consist of two boot partitions and
2131  * up to four general purpose partitions.
2132  * For each partition enabled in EXT_CSD a block device will be allocatedi
2133  * to provide access to the partition.
2134  */
2135 
2136 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2137 {
2138 	int idx, ret = 0;
2139 
2140 	if (!mmc_card_mmc(card))
2141 		return 0;
2142 
2143 	for (idx = 0; idx < card->nr_parts; idx++) {
2144 		if (card->part[idx].size) {
2145 			ret = mmc_blk_alloc_part(card, md,
2146 				card->part[idx].part_cfg,
2147 				card->part[idx].size >> 9,
2148 				card->part[idx].force_ro,
2149 				card->part[idx].name,
2150 				card->part[idx].area_type);
2151 			if (ret)
2152 				return ret;
2153 		}
2154 	}
2155 
2156 	return ret;
2157 }
2158 
2159 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2160 {
2161 	struct mmc_card *card;
2162 
2163 	if (md) {
2164 		/*
2165 		 * Flush remaining requests and free queues. It
2166 		 * is freeing the queue that stops new requests
2167 		 * from being accepted.
2168 		 */
2169 		card = md->queue.card;
2170 		mmc_cleanup_queue(&md->queue);
2171 		if (md->disk->flags & GENHD_FL_UP) {
2172 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2173 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2174 					card->ext_csd.boot_ro_lockable)
2175 				device_remove_file(disk_to_dev(md->disk),
2176 					&md->power_ro_lock);
2177 
2178 			del_gendisk(md->disk);
2179 		}
2180 		mmc_blk_put(md);
2181 	}
2182 }
2183 
2184 static void mmc_blk_remove_parts(struct mmc_card *card,
2185 				 struct mmc_blk_data *md)
2186 {
2187 	struct list_head *pos, *q;
2188 	struct mmc_blk_data *part_md;
2189 
2190 	list_for_each_safe(pos, q, &md->part) {
2191 		part_md = list_entry(pos, struct mmc_blk_data, part);
2192 		list_del(pos);
2193 		mmc_blk_remove_req(part_md);
2194 	}
2195 }
2196 
2197 static int mmc_add_disk(struct mmc_blk_data *md)
2198 {
2199 	int ret;
2200 	struct mmc_card *card = md->queue.card;
2201 
2202 	device_add_disk(md->parent, md->disk);
2203 	md->force_ro.show = force_ro_show;
2204 	md->force_ro.store = force_ro_store;
2205 	sysfs_attr_init(&md->force_ro.attr);
2206 	md->force_ro.attr.name = "force_ro";
2207 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2208 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2209 	if (ret)
2210 		goto force_ro_fail;
2211 
2212 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2213 	     card->ext_csd.boot_ro_lockable) {
2214 		umode_t mode;
2215 
2216 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2217 			mode = S_IRUGO;
2218 		else
2219 			mode = S_IRUGO | S_IWUSR;
2220 
2221 		md->power_ro_lock.show = power_ro_lock_show;
2222 		md->power_ro_lock.store = power_ro_lock_store;
2223 		sysfs_attr_init(&md->power_ro_lock.attr);
2224 		md->power_ro_lock.attr.mode = mode;
2225 		md->power_ro_lock.attr.name =
2226 					"ro_lock_until_next_power_on";
2227 		ret = device_create_file(disk_to_dev(md->disk),
2228 				&md->power_ro_lock);
2229 		if (ret)
2230 			goto power_ro_lock_fail;
2231 	}
2232 	return ret;
2233 
2234 power_ro_lock_fail:
2235 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2236 force_ro_fail:
2237 	del_gendisk(md->disk);
2238 
2239 	return ret;
2240 }
2241 
2242 static int mmc_blk_probe(struct mmc_card *card)
2243 {
2244 	struct mmc_blk_data *md, *part_md;
2245 	char cap_str[10];
2246 
2247 	/*
2248 	 * Check that the card supports the command class(es) we need.
2249 	 */
2250 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2251 		return -ENODEV;
2252 
2253 	mmc_fixup_device(card, mmc_blk_fixups);
2254 
2255 	md = mmc_blk_alloc(card);
2256 	if (IS_ERR(md))
2257 		return PTR_ERR(md);
2258 
2259 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2260 			cap_str, sizeof(cap_str));
2261 	pr_info("%s: %s %s %s %s\n",
2262 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2263 		cap_str, md->read_only ? "(ro)" : "");
2264 
2265 	if (mmc_blk_alloc_parts(card, md))
2266 		goto out;
2267 
2268 	dev_set_drvdata(&card->dev, md);
2269 
2270 	if (mmc_add_disk(md))
2271 		goto out;
2272 
2273 	list_for_each_entry(part_md, &md->part, part) {
2274 		if (mmc_add_disk(part_md))
2275 			goto out;
2276 	}
2277 
2278 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2279 	pm_runtime_use_autosuspend(&card->dev);
2280 
2281 	/*
2282 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2283 	 * decision to be taken during the SDIO init sequence instead.
2284 	 */
2285 	if (card->type != MMC_TYPE_SD_COMBO) {
2286 		pm_runtime_set_active(&card->dev);
2287 		pm_runtime_enable(&card->dev);
2288 	}
2289 
2290 	return 0;
2291 
2292  out:
2293 	mmc_blk_remove_parts(card, md);
2294 	mmc_blk_remove_req(md);
2295 	return 0;
2296 }
2297 
2298 static void mmc_blk_remove(struct mmc_card *card)
2299 {
2300 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2301 
2302 	mmc_blk_remove_parts(card, md);
2303 	pm_runtime_get_sync(&card->dev);
2304 	mmc_claim_host(card->host);
2305 	mmc_blk_part_switch(card, md);
2306 	mmc_release_host(card->host);
2307 	if (card->type != MMC_TYPE_SD_COMBO)
2308 		pm_runtime_disable(&card->dev);
2309 	pm_runtime_put_noidle(&card->dev);
2310 	mmc_blk_remove_req(md);
2311 	dev_set_drvdata(&card->dev, NULL);
2312 }
2313 
2314 static int _mmc_blk_suspend(struct mmc_card *card)
2315 {
2316 	struct mmc_blk_data *part_md;
2317 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2318 
2319 	if (md) {
2320 		mmc_queue_suspend(&md->queue);
2321 		list_for_each_entry(part_md, &md->part, part) {
2322 			mmc_queue_suspend(&part_md->queue);
2323 		}
2324 	}
2325 	return 0;
2326 }
2327 
2328 static void mmc_blk_shutdown(struct mmc_card *card)
2329 {
2330 	_mmc_blk_suspend(card);
2331 }
2332 
2333 #ifdef CONFIG_PM_SLEEP
2334 static int mmc_blk_suspend(struct device *dev)
2335 {
2336 	struct mmc_card *card = mmc_dev_to_card(dev);
2337 
2338 	return _mmc_blk_suspend(card);
2339 }
2340 
2341 static int mmc_blk_resume(struct device *dev)
2342 {
2343 	struct mmc_blk_data *part_md;
2344 	struct mmc_blk_data *md = dev_get_drvdata(dev);
2345 
2346 	if (md) {
2347 		/*
2348 		 * Resume involves the card going into idle state,
2349 		 * so current partition is always the main one.
2350 		 */
2351 		md->part_curr = md->part_type;
2352 		mmc_queue_resume(&md->queue);
2353 		list_for_each_entry(part_md, &md->part, part) {
2354 			mmc_queue_resume(&part_md->queue);
2355 		}
2356 	}
2357 	return 0;
2358 }
2359 #endif
2360 
2361 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2362 
2363 static struct mmc_driver mmc_driver = {
2364 	.drv		= {
2365 		.name	= "mmcblk",
2366 		.pm	= &mmc_blk_pm_ops,
2367 	},
2368 	.probe		= mmc_blk_probe,
2369 	.remove		= mmc_blk_remove,
2370 	.shutdown	= mmc_blk_shutdown,
2371 };
2372 
2373 static int __init mmc_blk_init(void)
2374 {
2375 	int res;
2376 
2377 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2378 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2379 
2380 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2381 
2382 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2383 	if (res)
2384 		goto out;
2385 
2386 	res = mmc_register_driver(&mmc_driver);
2387 	if (res)
2388 		goto out2;
2389 
2390 	return 0;
2391  out2:
2392 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2393  out:
2394 	return res;
2395 }
2396 
2397 static void __exit mmc_blk_exit(void)
2398 {
2399 	mmc_unregister_driver(&mmc_driver);
2400 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2401 }
2402 
2403 module_init(mmc_blk_init);
2404 module_exit(mmc_blk_exit);
2405 
2406 MODULE_LICENSE("GPL");
2407 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
2408 
2409