xref: /linux/drivers/mmc/core/block.c (revision b0d5c81e872ed21de1e56feb0fa6e4161da7be61)
1 /*
2  * Block driver for media (i.e., flash cards)
3  *
4  * Copyright 2002 Hewlett-Packard Company
5  * Copyright 2005-2008 Pierre Ossman
6  *
7  * Use consistent with the GNU GPL is permitted,
8  * provided that this copyright notice is
9  * preserved in its entirety in all copies and derived works.
10  *
11  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13  * FITNESS FOR ANY PARTICULAR PURPOSE.
14  *
15  * Many thanks to Alessandro Rubini and Jonathan Corbet!
16  *
17  * Author:  Andrew Christian
18  *          28 May 2002
19  */
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
41 
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
47 
48 #include <linux/uaccess.h>
49 
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
59 
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
65 
66 /*
67  * Set a 10 second timeout for polling write request busy state. Note, mmc core
68  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69  * second software timer to timeout the whole request, so 10 seconds should be
70  * ample.
71  */
72 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
76 
77 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
78 				  (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 /*
100  * There is one mmc_blk_data per slot.
101  */
102 struct mmc_blk_data {
103 	spinlock_t	lock;
104 	struct device	*parent;
105 	struct gendisk	*disk;
106 	struct mmc_queue queue;
107 	struct list_head part;
108 	struct list_head rpmbs;
109 
110 	unsigned int	flags;
111 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
113 
114 	unsigned int	usage;
115 	unsigned int	read_only;
116 	unsigned int	part_type;
117 	unsigned int	reset_done;
118 #define MMC_BLK_READ		BIT(0)
119 #define MMC_BLK_WRITE		BIT(1)
120 #define MMC_BLK_DISCARD		BIT(2)
121 #define MMC_BLK_SECDISCARD	BIT(3)
122 #define MMC_BLK_CQE_RECOVERY	BIT(4)
123 
124 	/*
125 	 * Only set in main mmc_blk_data associated
126 	 * with mmc_card with dev_set_drvdata, and keeps
127 	 * track of the current selected device partition.
128 	 */
129 	unsigned int	part_curr;
130 	struct device_attribute force_ro;
131 	struct device_attribute power_ro_lock;
132 	int	area_type;
133 
134 	/* debugfs files (only in main mmc_blk_data) */
135 	struct dentry *status_dentry;
136 	struct dentry *ext_csd_dentry;
137 };
138 
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
141 
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 	.name = "mmc_rpmb",
145 };
146 
147 /**
148  * struct mmc_rpmb_data - special RPMB device type for these areas
149  * @dev: the device for the RPMB area
150  * @chrdev: character device for the RPMB area
151  * @id: unique device ID number
152  * @part_index: partition index (0 on first)
153  * @md: parent MMC block device
154  * @node: list item, so we can put this device on a list
155  */
156 struct mmc_rpmb_data {
157 	struct device dev;
158 	struct cdev chrdev;
159 	int id;
160 	unsigned int part_index;
161 	struct mmc_blk_data *md;
162 	struct list_head node;
163 };
164 
165 static DEFINE_MUTEX(open_lock);
166 
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
169 
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 				      unsigned int part_type);
172 
173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
174 {
175 	struct mmc_blk_data *md;
176 
177 	mutex_lock(&open_lock);
178 	md = disk->private_data;
179 	if (md && md->usage == 0)
180 		md = NULL;
181 	if (md)
182 		md->usage++;
183 	mutex_unlock(&open_lock);
184 
185 	return md;
186 }
187 
188 static inline int mmc_get_devidx(struct gendisk *disk)
189 {
190 	int devidx = disk->first_minor / perdev_minors;
191 	return devidx;
192 }
193 
194 static void mmc_blk_put(struct mmc_blk_data *md)
195 {
196 	mutex_lock(&open_lock);
197 	md->usage--;
198 	if (md->usage == 0) {
199 		int devidx = mmc_get_devidx(md->disk);
200 		blk_put_queue(md->queue.queue);
201 		ida_simple_remove(&mmc_blk_ida, devidx);
202 		put_disk(md->disk);
203 		kfree(md);
204 	}
205 	mutex_unlock(&open_lock);
206 }
207 
208 static ssize_t power_ro_lock_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	int ret;
212 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 	struct mmc_card *card = md->queue.card;
214 	int locked = 0;
215 
216 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 		locked = 2;
218 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 		locked = 1;
220 
221 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
222 
223 	mmc_blk_put(md);
224 
225 	return ret;
226 }
227 
228 static ssize_t power_ro_lock_store(struct device *dev,
229 		struct device_attribute *attr, const char *buf, size_t count)
230 {
231 	int ret;
232 	struct mmc_blk_data *md, *part_md;
233 	struct mmc_queue *mq;
234 	struct request *req;
235 	unsigned long set;
236 
237 	if (kstrtoul(buf, 0, &set))
238 		return -EINVAL;
239 
240 	if (set != 1)
241 		return count;
242 
243 	md = mmc_blk_get(dev_to_disk(dev));
244 	mq = &md->queue;
245 
246 	/* Dispatch locking to the block layer */
247 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
248 	if (IS_ERR(req)) {
249 		count = PTR_ERR(req);
250 		goto out_put;
251 	}
252 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 	blk_execute_rq(mq->queue, NULL, req, 0);
254 	ret = req_to_mmc_queue_req(req)->drv_op_result;
255 	blk_put_request(req);
256 
257 	if (!ret) {
258 		pr_info("%s: Locking boot partition ro until next power on\n",
259 			md->disk->disk_name);
260 		set_disk_ro(md->disk, 1);
261 
262 		list_for_each_entry(part_md, &md->part, part)
263 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 				set_disk_ro(part_md->disk, 1);
266 			}
267 	}
268 out_put:
269 	mmc_blk_put(md);
270 	return count;
271 }
272 
273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 			     char *buf)
275 {
276 	int ret;
277 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
278 
279 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 		       get_disk_ro(dev_to_disk(dev)) ^
281 		       md->read_only);
282 	mmc_blk_put(md);
283 	return ret;
284 }
285 
286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 			      const char *buf, size_t count)
288 {
289 	int ret;
290 	char *end;
291 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 	unsigned long set = simple_strtoul(buf, &end, 0);
293 	if (end == buf) {
294 		ret = -EINVAL;
295 		goto out;
296 	}
297 
298 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 	ret = count;
300 out:
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
306 {
307 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 	int ret = -ENXIO;
309 
310 	mutex_lock(&block_mutex);
311 	if (md) {
312 		if (md->usage == 2)
313 			check_disk_change(bdev);
314 		ret = 0;
315 
316 		if ((mode & FMODE_WRITE) && md->read_only) {
317 			mmc_blk_put(md);
318 			ret = -EROFS;
319 		}
320 	}
321 	mutex_unlock(&block_mutex);
322 
323 	return ret;
324 }
325 
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
327 {
328 	struct mmc_blk_data *md = disk->private_data;
329 
330 	mutex_lock(&block_mutex);
331 	mmc_blk_put(md);
332 	mutex_unlock(&block_mutex);
333 }
334 
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
337 {
338 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 	geo->heads = 4;
340 	geo->sectors = 16;
341 	return 0;
342 }
343 
344 struct mmc_blk_ioc_data {
345 	struct mmc_ioc_cmd ic;
346 	unsigned char *buf;
347 	u64 buf_bytes;
348 	struct mmc_rpmb_data *rpmb;
349 };
350 
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 	struct mmc_ioc_cmd __user *user)
353 {
354 	struct mmc_blk_ioc_data *idata;
355 	int err;
356 
357 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 	if (!idata) {
359 		err = -ENOMEM;
360 		goto out;
361 	}
362 
363 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 		err = -EFAULT;
365 		goto idata_err;
366 	}
367 
368 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 		err = -EOVERFLOW;
371 		goto idata_err;
372 	}
373 
374 	if (!idata->buf_bytes) {
375 		idata->buf = NULL;
376 		return idata;
377 	}
378 
379 	idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
380 	if (!idata->buf) {
381 		err = -ENOMEM;
382 		goto idata_err;
383 	}
384 
385 	if (copy_from_user(idata->buf, (void __user *)(unsigned long)
386 					idata->ic.data_ptr, idata->buf_bytes)) {
387 		err = -EFAULT;
388 		goto copy_err;
389 	}
390 
391 	return idata;
392 
393 copy_err:
394 	kfree(idata->buf);
395 idata_err:
396 	kfree(idata);
397 out:
398 	return ERR_PTR(err);
399 }
400 
401 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
402 				      struct mmc_blk_ioc_data *idata)
403 {
404 	struct mmc_ioc_cmd *ic = &idata->ic;
405 
406 	if (copy_to_user(&(ic_ptr->response), ic->response,
407 			 sizeof(ic->response)))
408 		return -EFAULT;
409 
410 	if (!idata->ic.write_flag) {
411 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
412 				 idata->buf, idata->buf_bytes))
413 			return -EFAULT;
414 	}
415 
416 	return 0;
417 }
418 
419 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
420 				       u32 retries_max)
421 {
422 	int err;
423 	u32 retry_count = 0;
424 
425 	if (!status || !retries_max)
426 		return -EINVAL;
427 
428 	do {
429 		err = __mmc_send_status(card, status, 5);
430 		if (err)
431 			break;
432 
433 		if (!R1_STATUS(*status) &&
434 				(R1_CURRENT_STATE(*status) != R1_STATE_PRG))
435 			break; /* RPMB programming operation complete */
436 
437 		/*
438 		 * Rechedule to give the MMC device a chance to continue
439 		 * processing the previous command without being polled too
440 		 * frequently.
441 		 */
442 		usleep_range(1000, 5000);
443 	} while (++retry_count < retries_max);
444 
445 	if (retry_count == retries_max)
446 		err = -EPERM;
447 
448 	return err;
449 }
450 
451 static int ioctl_do_sanitize(struct mmc_card *card)
452 {
453 	int err;
454 
455 	if (!mmc_can_sanitize(card)) {
456 			pr_warn("%s: %s - SANITIZE is not supported\n",
457 				mmc_hostname(card->host), __func__);
458 			err = -EOPNOTSUPP;
459 			goto out;
460 	}
461 
462 	pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
463 		mmc_hostname(card->host), __func__);
464 
465 	err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
466 					EXT_CSD_SANITIZE_START, 1,
467 					MMC_SANITIZE_REQ_TIMEOUT);
468 
469 	if (err)
470 		pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
471 		       mmc_hostname(card->host), __func__, err);
472 
473 	pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
474 					     __func__);
475 out:
476 	return err;
477 }
478 
479 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
480 			       struct mmc_blk_ioc_data *idata)
481 {
482 	struct mmc_command cmd = {};
483 	struct mmc_data data = {};
484 	struct mmc_request mrq = {};
485 	struct scatterlist sg;
486 	int err;
487 	unsigned int target_part;
488 	u32 status = 0;
489 
490 	if (!card || !md || !idata)
491 		return -EINVAL;
492 
493 	/*
494 	 * The RPMB accesses comes in from the character device, so we
495 	 * need to target these explicitly. Else we just target the
496 	 * partition type for the block device the ioctl() was issued
497 	 * on.
498 	 */
499 	if (idata->rpmb) {
500 		/* Support multiple RPMB partitions */
501 		target_part = idata->rpmb->part_index;
502 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
503 	} else {
504 		target_part = md->part_type;
505 	}
506 
507 	cmd.opcode = idata->ic.opcode;
508 	cmd.arg = idata->ic.arg;
509 	cmd.flags = idata->ic.flags;
510 
511 	if (idata->buf_bytes) {
512 		data.sg = &sg;
513 		data.sg_len = 1;
514 		data.blksz = idata->ic.blksz;
515 		data.blocks = idata->ic.blocks;
516 
517 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
518 
519 		if (idata->ic.write_flag)
520 			data.flags = MMC_DATA_WRITE;
521 		else
522 			data.flags = MMC_DATA_READ;
523 
524 		/* data.flags must already be set before doing this. */
525 		mmc_set_data_timeout(&data, card);
526 
527 		/* Allow overriding the timeout_ns for empirical tuning. */
528 		if (idata->ic.data_timeout_ns)
529 			data.timeout_ns = idata->ic.data_timeout_ns;
530 
531 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
532 			/*
533 			 * Pretend this is a data transfer and rely on the
534 			 * host driver to compute timeout.  When all host
535 			 * drivers support cmd.cmd_timeout for R1B, this
536 			 * can be changed to:
537 			 *
538 			 *     mrq.data = NULL;
539 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
540 			 */
541 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
542 		}
543 
544 		mrq.data = &data;
545 	}
546 
547 	mrq.cmd = &cmd;
548 
549 	err = mmc_blk_part_switch(card, target_part);
550 	if (err)
551 		return err;
552 
553 	if (idata->ic.is_acmd) {
554 		err = mmc_app_cmd(card->host, card);
555 		if (err)
556 			return err;
557 	}
558 
559 	if (idata->rpmb) {
560 		err = mmc_set_blockcount(card, data.blocks,
561 			idata->ic.write_flag & (1 << 31));
562 		if (err)
563 			return err;
564 	}
565 
566 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
567 	    (cmd.opcode == MMC_SWITCH)) {
568 		err = ioctl_do_sanitize(card);
569 
570 		if (err)
571 			pr_err("%s: ioctl_do_sanitize() failed. err = %d",
572 			       __func__, err);
573 
574 		return err;
575 	}
576 
577 	mmc_wait_for_req(card->host, &mrq);
578 
579 	if (cmd.error) {
580 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
581 						__func__, cmd.error);
582 		return cmd.error;
583 	}
584 	if (data.error) {
585 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
586 						__func__, data.error);
587 		return data.error;
588 	}
589 
590 	/*
591 	 * Make sure the cache of the PARTITION_CONFIG register and
592 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
593 	 * changed it successfully.
594 	 */
595 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
596 	    (cmd.opcode == MMC_SWITCH)) {
597 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
598 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
599 
600 		/*
601 		 * Update cache so the next mmc_blk_part_switch call operates
602 		 * on up-to-date data.
603 		 */
604 		card->ext_csd.part_config = value;
605 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
606 	}
607 
608 	/*
609 	 * According to the SD specs, some commands require a delay after
610 	 * issuing the command.
611 	 */
612 	if (idata->ic.postsleep_min_us)
613 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
614 
615 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
616 
617 	if (idata->rpmb) {
618 		/*
619 		 * Ensure RPMB command has completed by polling CMD13
620 		 * "Send Status".
621 		 */
622 		err = ioctl_rpmb_card_status_poll(card, &status, 5);
623 		if (err)
624 			dev_err(mmc_dev(card->host),
625 					"%s: Card Status=0x%08X, error %d\n",
626 					__func__, status, err);
627 	}
628 
629 	return err;
630 }
631 
632 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
633 			     struct mmc_ioc_cmd __user *ic_ptr,
634 			     struct mmc_rpmb_data *rpmb)
635 {
636 	struct mmc_blk_ioc_data *idata;
637 	struct mmc_blk_ioc_data *idatas[1];
638 	struct mmc_queue *mq;
639 	struct mmc_card *card;
640 	int err = 0, ioc_err = 0;
641 	struct request *req;
642 
643 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
644 	if (IS_ERR(idata))
645 		return PTR_ERR(idata);
646 	/* This will be NULL on non-RPMB ioctl():s */
647 	idata->rpmb = rpmb;
648 
649 	card = md->queue.card;
650 	if (IS_ERR(card)) {
651 		err = PTR_ERR(card);
652 		goto cmd_done;
653 	}
654 
655 	/*
656 	 * Dispatch the ioctl() into the block request queue.
657 	 */
658 	mq = &md->queue;
659 	req = blk_get_request(mq->queue,
660 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
661 		__GFP_RECLAIM);
662 	if (IS_ERR(req)) {
663 		err = PTR_ERR(req);
664 		goto cmd_done;
665 	}
666 	idatas[0] = idata;
667 	req_to_mmc_queue_req(req)->drv_op =
668 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
669 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
670 	req_to_mmc_queue_req(req)->ioc_count = 1;
671 	blk_execute_rq(mq->queue, NULL, req, 0);
672 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
673 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
674 	blk_put_request(req);
675 
676 cmd_done:
677 	kfree(idata->buf);
678 	kfree(idata);
679 	return ioc_err ? ioc_err : err;
680 }
681 
682 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
683 				   struct mmc_ioc_multi_cmd __user *user,
684 				   struct mmc_rpmb_data *rpmb)
685 {
686 	struct mmc_blk_ioc_data **idata = NULL;
687 	struct mmc_ioc_cmd __user *cmds = user->cmds;
688 	struct mmc_card *card;
689 	struct mmc_queue *mq;
690 	int i, err = 0, ioc_err = 0;
691 	__u64 num_of_cmds;
692 	struct request *req;
693 
694 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
695 			   sizeof(num_of_cmds)))
696 		return -EFAULT;
697 
698 	if (!num_of_cmds)
699 		return 0;
700 
701 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
702 		return -EINVAL;
703 
704 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
705 	if (!idata)
706 		return -ENOMEM;
707 
708 	for (i = 0; i < num_of_cmds; i++) {
709 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
710 		if (IS_ERR(idata[i])) {
711 			err = PTR_ERR(idata[i]);
712 			num_of_cmds = i;
713 			goto cmd_err;
714 		}
715 		/* This will be NULL on non-RPMB ioctl():s */
716 		idata[i]->rpmb = rpmb;
717 	}
718 
719 	card = md->queue.card;
720 	if (IS_ERR(card)) {
721 		err = PTR_ERR(card);
722 		goto cmd_err;
723 	}
724 
725 
726 	/*
727 	 * Dispatch the ioctl()s into the block request queue.
728 	 */
729 	mq = &md->queue;
730 	req = blk_get_request(mq->queue,
731 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
732 		__GFP_RECLAIM);
733 	if (IS_ERR(req)) {
734 		err = PTR_ERR(req);
735 		goto cmd_err;
736 	}
737 	req_to_mmc_queue_req(req)->drv_op =
738 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
739 	req_to_mmc_queue_req(req)->drv_op_data = idata;
740 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
741 	blk_execute_rq(mq->queue, NULL, req, 0);
742 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
743 
744 	/* copy to user if data and response */
745 	for (i = 0; i < num_of_cmds && !err; i++)
746 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
747 
748 	blk_put_request(req);
749 
750 cmd_err:
751 	for (i = 0; i < num_of_cmds; i++) {
752 		kfree(idata[i]->buf);
753 		kfree(idata[i]);
754 	}
755 	kfree(idata);
756 	return ioc_err ? ioc_err : err;
757 }
758 
759 static int mmc_blk_check_blkdev(struct block_device *bdev)
760 {
761 	/*
762 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
763 	 * whole block device, not on a partition.  This prevents overspray
764 	 * between sibling partitions.
765 	 */
766 	if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
767 		return -EPERM;
768 	return 0;
769 }
770 
771 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
772 	unsigned int cmd, unsigned long arg)
773 {
774 	struct mmc_blk_data *md;
775 	int ret;
776 
777 	switch (cmd) {
778 	case MMC_IOC_CMD:
779 		ret = mmc_blk_check_blkdev(bdev);
780 		if (ret)
781 			return ret;
782 		md = mmc_blk_get(bdev->bd_disk);
783 		if (!md)
784 			return -EINVAL;
785 		ret = mmc_blk_ioctl_cmd(md,
786 					(struct mmc_ioc_cmd __user *)arg,
787 					NULL);
788 		mmc_blk_put(md);
789 		return ret;
790 	case MMC_IOC_MULTI_CMD:
791 		ret = mmc_blk_check_blkdev(bdev);
792 		if (ret)
793 			return ret;
794 		md = mmc_blk_get(bdev->bd_disk);
795 		if (!md)
796 			return -EINVAL;
797 		ret = mmc_blk_ioctl_multi_cmd(md,
798 					(struct mmc_ioc_multi_cmd __user *)arg,
799 					NULL);
800 		mmc_blk_put(md);
801 		return ret;
802 	default:
803 		return -EINVAL;
804 	}
805 }
806 
807 #ifdef CONFIG_COMPAT
808 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
809 	unsigned int cmd, unsigned long arg)
810 {
811 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
812 }
813 #endif
814 
815 static const struct block_device_operations mmc_bdops = {
816 	.open			= mmc_blk_open,
817 	.release		= mmc_blk_release,
818 	.getgeo			= mmc_blk_getgeo,
819 	.owner			= THIS_MODULE,
820 	.ioctl			= mmc_blk_ioctl,
821 #ifdef CONFIG_COMPAT
822 	.compat_ioctl		= mmc_blk_compat_ioctl,
823 #endif
824 };
825 
826 static int mmc_blk_part_switch_pre(struct mmc_card *card,
827 				   unsigned int part_type)
828 {
829 	int ret = 0;
830 
831 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
832 		if (card->ext_csd.cmdq_en) {
833 			ret = mmc_cmdq_disable(card);
834 			if (ret)
835 				return ret;
836 		}
837 		mmc_retune_pause(card->host);
838 	}
839 
840 	return ret;
841 }
842 
843 static int mmc_blk_part_switch_post(struct mmc_card *card,
844 				    unsigned int part_type)
845 {
846 	int ret = 0;
847 
848 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
849 		mmc_retune_unpause(card->host);
850 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
851 			ret = mmc_cmdq_enable(card);
852 	}
853 
854 	return ret;
855 }
856 
857 static inline int mmc_blk_part_switch(struct mmc_card *card,
858 				      unsigned int part_type)
859 {
860 	int ret = 0;
861 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
862 
863 	if (main_md->part_curr == part_type)
864 		return 0;
865 
866 	if (mmc_card_mmc(card)) {
867 		u8 part_config = card->ext_csd.part_config;
868 
869 		ret = mmc_blk_part_switch_pre(card, part_type);
870 		if (ret)
871 			return ret;
872 
873 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
874 		part_config |= part_type;
875 
876 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
877 				 EXT_CSD_PART_CONFIG, part_config,
878 				 card->ext_csd.part_time);
879 		if (ret) {
880 			mmc_blk_part_switch_post(card, part_type);
881 			return ret;
882 		}
883 
884 		card->ext_csd.part_config = part_config;
885 
886 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
887 	}
888 
889 	main_md->part_curr = part_type;
890 	return ret;
891 }
892 
893 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
894 {
895 	int err;
896 	u32 result;
897 	__be32 *blocks;
898 
899 	struct mmc_request mrq = {};
900 	struct mmc_command cmd = {};
901 	struct mmc_data data = {};
902 
903 	struct scatterlist sg;
904 
905 	cmd.opcode = MMC_APP_CMD;
906 	cmd.arg = card->rca << 16;
907 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
908 
909 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
910 	if (err)
911 		return err;
912 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
913 		return -EIO;
914 
915 	memset(&cmd, 0, sizeof(struct mmc_command));
916 
917 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
918 	cmd.arg = 0;
919 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
920 
921 	data.blksz = 4;
922 	data.blocks = 1;
923 	data.flags = MMC_DATA_READ;
924 	data.sg = &sg;
925 	data.sg_len = 1;
926 	mmc_set_data_timeout(&data, card);
927 
928 	mrq.cmd = &cmd;
929 	mrq.data = &data;
930 
931 	blocks = kmalloc(4, GFP_KERNEL);
932 	if (!blocks)
933 		return -ENOMEM;
934 
935 	sg_init_one(&sg, blocks, 4);
936 
937 	mmc_wait_for_req(card->host, &mrq);
938 
939 	result = ntohl(*blocks);
940 	kfree(blocks);
941 
942 	if (cmd.error || data.error)
943 		return -EIO;
944 
945 	*written_blocks = result;
946 
947 	return 0;
948 }
949 
950 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
951 {
952 	if (host->actual_clock)
953 		return host->actual_clock / 1000;
954 
955 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
956 	if (host->ios.clock)
957 		return host->ios.clock / 2000;
958 
959 	/* How can there be no clock */
960 	WARN_ON_ONCE(1);
961 	return 100; /* 100 kHz is minimum possible value */
962 }
963 
964 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
965 					    struct mmc_data *data)
966 {
967 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
968 	unsigned int khz;
969 
970 	if (data->timeout_clks) {
971 		khz = mmc_blk_clock_khz(host);
972 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
973 	}
974 
975 	return ms;
976 }
977 
978 static inline bool mmc_blk_in_tran_state(u32 status)
979 {
980 	/*
981 	 * Some cards mishandle the status bits, so make sure to check both the
982 	 * busy indication and the card state.
983 	 */
984 	return status & R1_READY_FOR_DATA &&
985 	       (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
986 }
987 
988 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
989 			    struct request *req, u32 *resp_errs)
990 {
991 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
992 	int err = 0;
993 	u32 status;
994 
995 	do {
996 		bool done = time_after(jiffies, timeout);
997 
998 		err = __mmc_send_status(card, &status, 5);
999 		if (err) {
1000 			pr_err("%s: error %d requesting status\n",
1001 			       req->rq_disk->disk_name, err);
1002 			return err;
1003 		}
1004 
1005 		/* Accumulate any response error bits seen */
1006 		if (resp_errs)
1007 			*resp_errs |= status;
1008 
1009 		/*
1010 		 * Timeout if the device never becomes ready for data and never
1011 		 * leaves the program state.
1012 		 */
1013 		if (done) {
1014 			pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1015 				mmc_hostname(card->host),
1016 				req->rq_disk->disk_name, __func__, status);
1017 			return -ETIMEDOUT;
1018 		}
1019 
1020 		/*
1021 		 * Some cards mishandle the status bits,
1022 		 * so make sure to check both the busy
1023 		 * indication and the card state.
1024 		 */
1025 	} while (!mmc_blk_in_tran_state(status));
1026 
1027 	return err;
1028 }
1029 
1030 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1031 			 int type)
1032 {
1033 	int err;
1034 
1035 	if (md->reset_done & type)
1036 		return -EEXIST;
1037 
1038 	md->reset_done |= type;
1039 	err = mmc_hw_reset(host);
1040 	/* Ensure we switch back to the correct partition */
1041 	if (err != -EOPNOTSUPP) {
1042 		struct mmc_blk_data *main_md =
1043 			dev_get_drvdata(&host->card->dev);
1044 		int part_err;
1045 
1046 		main_md->part_curr = main_md->part_type;
1047 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1048 		if (part_err) {
1049 			/*
1050 			 * We have failed to get back into the correct
1051 			 * partition, so we need to abort the whole request.
1052 			 */
1053 			return -ENODEV;
1054 		}
1055 	}
1056 	return err;
1057 }
1058 
1059 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1060 {
1061 	md->reset_done &= ~type;
1062 }
1063 
1064 /*
1065  * The non-block commands come back from the block layer after it queued it and
1066  * processed it with all other requests and then they get issued in this
1067  * function.
1068  */
1069 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1070 {
1071 	struct mmc_queue_req *mq_rq;
1072 	struct mmc_card *card = mq->card;
1073 	struct mmc_blk_data *md = mq->blkdata;
1074 	struct mmc_blk_ioc_data **idata;
1075 	bool rpmb_ioctl;
1076 	u8 **ext_csd;
1077 	u32 status;
1078 	int ret;
1079 	int i;
1080 
1081 	mq_rq = req_to_mmc_queue_req(req);
1082 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1083 
1084 	switch (mq_rq->drv_op) {
1085 	case MMC_DRV_OP_IOCTL:
1086 	case MMC_DRV_OP_IOCTL_RPMB:
1087 		idata = mq_rq->drv_op_data;
1088 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1089 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1090 			if (ret)
1091 				break;
1092 		}
1093 		/* Always switch back to main area after RPMB access */
1094 		if (rpmb_ioctl)
1095 			mmc_blk_part_switch(card, 0);
1096 		break;
1097 	case MMC_DRV_OP_BOOT_WP:
1098 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1099 				 card->ext_csd.boot_ro_lock |
1100 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1101 				 card->ext_csd.part_time);
1102 		if (ret)
1103 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1104 			       md->disk->disk_name, ret);
1105 		else
1106 			card->ext_csd.boot_ro_lock |=
1107 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1108 		break;
1109 	case MMC_DRV_OP_GET_CARD_STATUS:
1110 		ret = mmc_send_status(card, &status);
1111 		if (!ret)
1112 			ret = status;
1113 		break;
1114 	case MMC_DRV_OP_GET_EXT_CSD:
1115 		ext_csd = mq_rq->drv_op_data;
1116 		ret = mmc_get_ext_csd(card, ext_csd);
1117 		break;
1118 	default:
1119 		pr_err("%s: unknown driver specific operation\n",
1120 		       md->disk->disk_name);
1121 		ret = -EINVAL;
1122 		break;
1123 	}
1124 	mq_rq->drv_op_result = ret;
1125 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1126 }
1127 
1128 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1129 {
1130 	struct mmc_blk_data *md = mq->blkdata;
1131 	struct mmc_card *card = md->queue.card;
1132 	unsigned int from, nr, arg;
1133 	int err = 0, type = MMC_BLK_DISCARD;
1134 	blk_status_t status = BLK_STS_OK;
1135 
1136 	if (!mmc_can_erase(card)) {
1137 		status = BLK_STS_NOTSUPP;
1138 		goto fail;
1139 	}
1140 
1141 	from = blk_rq_pos(req);
1142 	nr = blk_rq_sectors(req);
1143 
1144 	if (mmc_can_discard(card))
1145 		arg = MMC_DISCARD_ARG;
1146 	else if (mmc_can_trim(card))
1147 		arg = MMC_TRIM_ARG;
1148 	else
1149 		arg = MMC_ERASE_ARG;
1150 	do {
1151 		err = 0;
1152 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1153 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1154 					 INAND_CMD38_ARG_EXT_CSD,
1155 					 arg == MMC_TRIM_ARG ?
1156 					 INAND_CMD38_ARG_TRIM :
1157 					 INAND_CMD38_ARG_ERASE,
1158 					 0);
1159 		}
1160 		if (!err)
1161 			err = mmc_erase(card, from, nr, arg);
1162 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1163 	if (err)
1164 		status = BLK_STS_IOERR;
1165 	else
1166 		mmc_blk_reset_success(md, type);
1167 fail:
1168 	blk_mq_end_request(req, status);
1169 }
1170 
1171 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1172 				       struct request *req)
1173 {
1174 	struct mmc_blk_data *md = mq->blkdata;
1175 	struct mmc_card *card = md->queue.card;
1176 	unsigned int from, nr, arg;
1177 	int err = 0, type = MMC_BLK_SECDISCARD;
1178 	blk_status_t status = BLK_STS_OK;
1179 
1180 	if (!(mmc_can_secure_erase_trim(card))) {
1181 		status = BLK_STS_NOTSUPP;
1182 		goto out;
1183 	}
1184 
1185 	from = blk_rq_pos(req);
1186 	nr = blk_rq_sectors(req);
1187 
1188 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1189 		arg = MMC_SECURE_TRIM1_ARG;
1190 	else
1191 		arg = MMC_SECURE_ERASE_ARG;
1192 
1193 retry:
1194 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1195 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1196 				 INAND_CMD38_ARG_EXT_CSD,
1197 				 arg == MMC_SECURE_TRIM1_ARG ?
1198 				 INAND_CMD38_ARG_SECTRIM1 :
1199 				 INAND_CMD38_ARG_SECERASE,
1200 				 0);
1201 		if (err)
1202 			goto out_retry;
1203 	}
1204 
1205 	err = mmc_erase(card, from, nr, arg);
1206 	if (err == -EIO)
1207 		goto out_retry;
1208 	if (err) {
1209 		status = BLK_STS_IOERR;
1210 		goto out;
1211 	}
1212 
1213 	if (arg == MMC_SECURE_TRIM1_ARG) {
1214 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1215 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1216 					 INAND_CMD38_ARG_EXT_CSD,
1217 					 INAND_CMD38_ARG_SECTRIM2,
1218 					 0);
1219 			if (err)
1220 				goto out_retry;
1221 		}
1222 
1223 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1224 		if (err == -EIO)
1225 			goto out_retry;
1226 		if (err) {
1227 			status = BLK_STS_IOERR;
1228 			goto out;
1229 		}
1230 	}
1231 
1232 out_retry:
1233 	if (err && !mmc_blk_reset(md, card->host, type))
1234 		goto retry;
1235 	if (!err)
1236 		mmc_blk_reset_success(md, type);
1237 out:
1238 	blk_mq_end_request(req, status);
1239 }
1240 
1241 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1242 {
1243 	struct mmc_blk_data *md = mq->blkdata;
1244 	struct mmc_card *card = md->queue.card;
1245 	int ret = 0;
1246 
1247 	ret = mmc_flush_cache(card);
1248 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1249 }
1250 
1251 /*
1252  * Reformat current write as a reliable write, supporting
1253  * both legacy and the enhanced reliable write MMC cards.
1254  * In each transfer we'll handle only as much as a single
1255  * reliable write can handle, thus finish the request in
1256  * partial completions.
1257  */
1258 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1259 				    struct mmc_card *card,
1260 				    struct request *req)
1261 {
1262 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1263 		/* Legacy mode imposes restrictions on transfers. */
1264 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1265 			brq->data.blocks = 1;
1266 
1267 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1268 			brq->data.blocks = card->ext_csd.rel_sectors;
1269 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1270 			brq->data.blocks = 1;
1271 	}
1272 }
1273 
1274 #define CMD_ERRORS_EXCL_OOR						\
1275 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1276 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1277 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1278 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1279 	 R1_CC_ERROR |		/* Card controller error */		\
1280 	 R1_ERROR)		/* General/unknown error */
1281 
1282 #define CMD_ERRORS							\
1283 	(CMD_ERRORS_EXCL_OOR |						\
1284 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1285 
1286 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1287 {
1288 	u32 val;
1289 
1290 	/*
1291 	 * Per the SD specification(physical layer version 4.10)[1],
1292 	 * section 4.3.3, it explicitly states that "When the last
1293 	 * block of user area is read using CMD18, the host should
1294 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1295 	 * is correct". And JESD84-B51 for eMMC also has a similar
1296 	 * statement on section 6.8.3.
1297 	 *
1298 	 * Multiple block read/write could be done by either predefined
1299 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1300 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1301 	 *
1302 	 * However the spec[1] doesn't tell us whether we should also
1303 	 * ignore that for predefined method. But per the spec[1], section
1304 	 * 4.15 Set Block Count Command, it says"If illegal block count
1305 	 * is set, out of range error will be indicated during read/write
1306 	 * operation (For example, data transfer is stopped at user area
1307 	 * boundary)." In another word, we could expect a out of range error
1308 	 * in the response for the following CMD18/25. And if argument of
1309 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1310 	 * we could also expect to get a -ETIMEDOUT or any error number from
1311 	 * the host drivers due to missing data response(for write)/data(for
1312 	 * read), as the cards will stop the data transfer by itself per the
1313 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1314 	 */
1315 
1316 	if (!brq->stop.error) {
1317 		bool oor_with_open_end;
1318 		/* If there is no error yet, check R1 response */
1319 
1320 		val = brq->stop.resp[0] & CMD_ERRORS;
1321 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1322 
1323 		if (val && !oor_with_open_end)
1324 			brq->stop.error = -EIO;
1325 	}
1326 }
1327 
1328 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1329 			      int disable_multi, bool *do_rel_wr_p,
1330 			      bool *do_data_tag_p)
1331 {
1332 	struct mmc_blk_data *md = mq->blkdata;
1333 	struct mmc_card *card = md->queue.card;
1334 	struct mmc_blk_request *brq = &mqrq->brq;
1335 	struct request *req = mmc_queue_req_to_req(mqrq);
1336 	bool do_rel_wr, do_data_tag;
1337 
1338 	/*
1339 	 * Reliable writes are used to implement Forced Unit Access and
1340 	 * are supported only on MMCs.
1341 	 */
1342 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1343 		    rq_data_dir(req) == WRITE &&
1344 		    (md->flags & MMC_BLK_REL_WR);
1345 
1346 	memset(brq, 0, sizeof(struct mmc_blk_request));
1347 
1348 	brq->mrq.data = &brq->data;
1349 	brq->mrq.tag = req->tag;
1350 
1351 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1352 	brq->stop.arg = 0;
1353 
1354 	if (rq_data_dir(req) == READ) {
1355 		brq->data.flags = MMC_DATA_READ;
1356 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1357 	} else {
1358 		brq->data.flags = MMC_DATA_WRITE;
1359 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1360 	}
1361 
1362 	brq->data.blksz = 512;
1363 	brq->data.blocks = blk_rq_sectors(req);
1364 	brq->data.blk_addr = blk_rq_pos(req);
1365 
1366 	/*
1367 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1368 	 * The eMMC will give "high" priority tasks priority over "simple"
1369 	 * priority tasks. Here we always set "simple" priority by not setting
1370 	 * MMC_DATA_PRIO.
1371 	 */
1372 
1373 	/*
1374 	 * The block layer doesn't support all sector count
1375 	 * restrictions, so we need to be prepared for too big
1376 	 * requests.
1377 	 */
1378 	if (brq->data.blocks > card->host->max_blk_count)
1379 		brq->data.blocks = card->host->max_blk_count;
1380 
1381 	if (brq->data.blocks > 1) {
1382 		/*
1383 		 * After a read error, we redo the request one sector
1384 		 * at a time in order to accurately determine which
1385 		 * sectors can be read successfully.
1386 		 */
1387 		if (disable_multi)
1388 			brq->data.blocks = 1;
1389 
1390 		/*
1391 		 * Some controllers have HW issues while operating
1392 		 * in multiple I/O mode
1393 		 */
1394 		if (card->host->ops->multi_io_quirk)
1395 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1396 						(rq_data_dir(req) == READ) ?
1397 						MMC_DATA_READ : MMC_DATA_WRITE,
1398 						brq->data.blocks);
1399 	}
1400 
1401 	if (do_rel_wr) {
1402 		mmc_apply_rel_rw(brq, card, req);
1403 		brq->data.flags |= MMC_DATA_REL_WR;
1404 	}
1405 
1406 	/*
1407 	 * Data tag is used only during writing meta data to speed
1408 	 * up write and any subsequent read of this meta data
1409 	 */
1410 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1411 		      (req->cmd_flags & REQ_META) &&
1412 		      (rq_data_dir(req) == WRITE) &&
1413 		      ((brq->data.blocks * brq->data.blksz) >=
1414 		       card->ext_csd.data_tag_unit_size);
1415 
1416 	if (do_data_tag)
1417 		brq->data.flags |= MMC_DATA_DAT_TAG;
1418 
1419 	mmc_set_data_timeout(&brq->data, card);
1420 
1421 	brq->data.sg = mqrq->sg;
1422 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1423 
1424 	/*
1425 	 * Adjust the sg list so it is the same size as the
1426 	 * request.
1427 	 */
1428 	if (brq->data.blocks != blk_rq_sectors(req)) {
1429 		int i, data_size = brq->data.blocks << 9;
1430 		struct scatterlist *sg;
1431 
1432 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1433 			data_size -= sg->length;
1434 			if (data_size <= 0) {
1435 				sg->length += data_size;
1436 				i++;
1437 				break;
1438 			}
1439 		}
1440 		brq->data.sg_len = i;
1441 	}
1442 
1443 	if (do_rel_wr_p)
1444 		*do_rel_wr_p = do_rel_wr;
1445 
1446 	if (do_data_tag_p)
1447 		*do_data_tag_p = do_data_tag;
1448 }
1449 
1450 #define MMC_CQE_RETRIES 2
1451 
1452 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1453 {
1454 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1455 	struct mmc_request *mrq = &mqrq->brq.mrq;
1456 	struct request_queue *q = req->q;
1457 	struct mmc_host *host = mq->card->host;
1458 	unsigned long flags;
1459 	bool put_card;
1460 	int err;
1461 
1462 	mmc_cqe_post_req(host, mrq);
1463 
1464 	if (mrq->cmd && mrq->cmd->error)
1465 		err = mrq->cmd->error;
1466 	else if (mrq->data && mrq->data->error)
1467 		err = mrq->data->error;
1468 	else
1469 		err = 0;
1470 
1471 	if (err) {
1472 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1473 			blk_mq_requeue_request(req, true);
1474 		else
1475 			blk_mq_end_request(req, BLK_STS_IOERR);
1476 	} else if (mrq->data) {
1477 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1478 			blk_mq_requeue_request(req, true);
1479 		else
1480 			__blk_mq_end_request(req, BLK_STS_OK);
1481 	} else {
1482 		blk_mq_end_request(req, BLK_STS_OK);
1483 	}
1484 
1485 	spin_lock_irqsave(q->queue_lock, flags);
1486 
1487 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1488 
1489 	put_card = (mmc_tot_in_flight(mq) == 0);
1490 
1491 	mmc_cqe_check_busy(mq);
1492 
1493 	spin_unlock_irqrestore(q->queue_lock, flags);
1494 
1495 	if (!mq->cqe_busy)
1496 		blk_mq_run_hw_queues(q, true);
1497 
1498 	if (put_card)
1499 		mmc_put_card(mq->card, &mq->ctx);
1500 }
1501 
1502 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1503 {
1504 	struct mmc_card *card = mq->card;
1505 	struct mmc_host *host = card->host;
1506 	int err;
1507 
1508 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1509 
1510 	err = mmc_cqe_recovery(host);
1511 	if (err)
1512 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1513 	else
1514 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1515 
1516 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1517 }
1518 
1519 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1520 {
1521 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1522 						  brq.mrq);
1523 	struct request *req = mmc_queue_req_to_req(mqrq);
1524 	struct request_queue *q = req->q;
1525 	struct mmc_queue *mq = q->queuedata;
1526 
1527 	/*
1528 	 * Block layer timeouts race with completions which means the normal
1529 	 * completion path cannot be used during recovery.
1530 	 */
1531 	if (mq->in_recovery)
1532 		mmc_blk_cqe_complete_rq(mq, req);
1533 	else
1534 		blk_mq_complete_request(req);
1535 }
1536 
1537 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1538 {
1539 	mrq->done		= mmc_blk_cqe_req_done;
1540 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1541 
1542 	return mmc_cqe_start_req(host, mrq);
1543 }
1544 
1545 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1546 						 struct request *req)
1547 {
1548 	struct mmc_blk_request *brq = &mqrq->brq;
1549 
1550 	memset(brq, 0, sizeof(*brq));
1551 
1552 	brq->mrq.cmd = &brq->cmd;
1553 	brq->mrq.tag = req->tag;
1554 
1555 	return &brq->mrq;
1556 }
1557 
1558 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1559 {
1560 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1561 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1562 
1563 	mrq->cmd->opcode = MMC_SWITCH;
1564 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1565 			(EXT_CSD_FLUSH_CACHE << 16) |
1566 			(1 << 8) |
1567 			EXT_CSD_CMD_SET_NORMAL;
1568 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1569 
1570 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1571 }
1572 
1573 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1574 {
1575 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1576 
1577 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1578 
1579 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1580 }
1581 
1582 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1583 			       struct mmc_card *card,
1584 			       int disable_multi,
1585 			       struct mmc_queue *mq)
1586 {
1587 	u32 readcmd, writecmd;
1588 	struct mmc_blk_request *brq = &mqrq->brq;
1589 	struct request *req = mmc_queue_req_to_req(mqrq);
1590 	struct mmc_blk_data *md = mq->blkdata;
1591 	bool do_rel_wr, do_data_tag;
1592 
1593 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1594 
1595 	brq->mrq.cmd = &brq->cmd;
1596 
1597 	brq->cmd.arg = blk_rq_pos(req);
1598 	if (!mmc_card_blockaddr(card))
1599 		brq->cmd.arg <<= 9;
1600 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1601 
1602 	if (brq->data.blocks > 1 || do_rel_wr) {
1603 		/* SPI multiblock writes terminate using a special
1604 		 * token, not a STOP_TRANSMISSION request.
1605 		 */
1606 		if (!mmc_host_is_spi(card->host) ||
1607 		    rq_data_dir(req) == READ)
1608 			brq->mrq.stop = &brq->stop;
1609 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1610 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1611 	} else {
1612 		brq->mrq.stop = NULL;
1613 		readcmd = MMC_READ_SINGLE_BLOCK;
1614 		writecmd = MMC_WRITE_BLOCK;
1615 	}
1616 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1617 
1618 	/*
1619 	 * Pre-defined multi-block transfers are preferable to
1620 	 * open ended-ones (and necessary for reliable writes).
1621 	 * However, it is not sufficient to just send CMD23,
1622 	 * and avoid the final CMD12, as on an error condition
1623 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1624 	 * with Auto-CMD23 enhancements provided by some
1625 	 * hosts, means that the complexity of dealing
1626 	 * with this is best left to the host. If CMD23 is
1627 	 * supported by card and host, we'll fill sbc in and let
1628 	 * the host deal with handling it correctly. This means
1629 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1630 	 * change of behavior will be observed.
1631 	 *
1632 	 * N.B: Some MMC cards experience perf degradation.
1633 	 * We'll avoid using CMD23-bounded multiblock writes for
1634 	 * these, while retaining features like reliable writes.
1635 	 */
1636 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1637 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1638 	     do_data_tag)) {
1639 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1640 		brq->sbc.arg = brq->data.blocks |
1641 			(do_rel_wr ? (1 << 31) : 0) |
1642 			(do_data_tag ? (1 << 29) : 0);
1643 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1644 		brq->mrq.sbc = &brq->sbc;
1645 	}
1646 }
1647 
1648 #define MMC_MAX_RETRIES		5
1649 #define MMC_DATA_RETRIES	2
1650 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1651 
1652 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1653 {
1654 	struct mmc_command cmd = {
1655 		.opcode = MMC_STOP_TRANSMISSION,
1656 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1657 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1658 		.busy_timeout = timeout,
1659 	};
1660 
1661 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1662 }
1663 
1664 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1665 {
1666 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1667 	struct mmc_blk_request *brq = &mqrq->brq;
1668 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1669 	int err;
1670 
1671 	mmc_retune_hold_now(card->host);
1672 
1673 	mmc_blk_send_stop(card, timeout);
1674 
1675 	err = card_busy_detect(card, timeout, req, NULL);
1676 
1677 	mmc_retune_release(card->host);
1678 
1679 	return err;
1680 }
1681 
1682 #define MMC_READ_SINGLE_RETRIES	2
1683 
1684 /* Single sector read during recovery */
1685 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1686 {
1687 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1688 	struct mmc_request *mrq = &mqrq->brq.mrq;
1689 	struct mmc_card *card = mq->card;
1690 	struct mmc_host *host = card->host;
1691 	blk_status_t error = BLK_STS_OK;
1692 	int retries = 0;
1693 
1694 	do {
1695 		u32 status;
1696 		int err;
1697 
1698 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1699 
1700 		mmc_wait_for_req(host, mrq);
1701 
1702 		err = mmc_send_status(card, &status);
1703 		if (err)
1704 			goto error_exit;
1705 
1706 		if (!mmc_host_is_spi(host) &&
1707 		    !mmc_blk_in_tran_state(status)) {
1708 			err = mmc_blk_fix_state(card, req);
1709 			if (err)
1710 				goto error_exit;
1711 		}
1712 
1713 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1714 			continue;
1715 
1716 		retries = 0;
1717 
1718 		if (mrq->cmd->error ||
1719 		    mrq->data->error ||
1720 		    (!mmc_host_is_spi(host) &&
1721 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1722 			error = BLK_STS_IOERR;
1723 		else
1724 			error = BLK_STS_OK;
1725 
1726 	} while (blk_update_request(req, error, 512));
1727 
1728 	return;
1729 
1730 error_exit:
1731 	mrq->data->bytes_xfered = 0;
1732 	blk_update_request(req, BLK_STS_IOERR, 512);
1733 	/* Let it try the remaining request again */
1734 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1735 		mqrq->retries = MMC_MAX_RETRIES - 1;
1736 }
1737 
1738 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1739 {
1740 	return !!brq->mrq.sbc;
1741 }
1742 
1743 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1744 {
1745 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1746 }
1747 
1748 /*
1749  * Check for errors the host controller driver might not have seen such as
1750  * response mode errors or invalid card state.
1751  */
1752 static bool mmc_blk_status_error(struct request *req, u32 status)
1753 {
1754 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1755 	struct mmc_blk_request *brq = &mqrq->brq;
1756 	struct mmc_queue *mq = req->q->queuedata;
1757 	u32 stop_err_bits;
1758 
1759 	if (mmc_host_is_spi(mq->card->host))
1760 		return false;
1761 
1762 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1763 
1764 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1765 	       brq->stop.resp[0] & stop_err_bits ||
1766 	       status            & stop_err_bits ||
1767 	       (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1768 }
1769 
1770 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1771 {
1772 	return !brq->sbc.error && !brq->cmd.error &&
1773 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1774 }
1775 
1776 /*
1777  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1778  * policy:
1779  * 1. A request that has transferred at least some data is considered
1780  * successful and will be requeued if there is remaining data to
1781  * transfer.
1782  * 2. Otherwise the number of retries is incremented and the request
1783  * will be requeued if there are remaining retries.
1784  * 3. Otherwise the request will be errored out.
1785  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1786  * mqrq->retries. So there are only 4 possible actions here:
1787  *	1. do not accept the bytes_xfered value i.e. set it to zero
1788  *	2. change mqrq->retries to determine the number of retries
1789  *	3. try to reset the card
1790  *	4. read one sector at a time
1791  */
1792 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1793 {
1794 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1795 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1796 	struct mmc_blk_request *brq = &mqrq->brq;
1797 	struct mmc_blk_data *md = mq->blkdata;
1798 	struct mmc_card *card = mq->card;
1799 	u32 status;
1800 	u32 blocks;
1801 	int err;
1802 
1803 	/*
1804 	 * Some errors the host driver might not have seen. Set the number of
1805 	 * bytes transferred to zero in that case.
1806 	 */
1807 	err = __mmc_send_status(card, &status, 0);
1808 	if (err || mmc_blk_status_error(req, status))
1809 		brq->data.bytes_xfered = 0;
1810 
1811 	mmc_retune_release(card->host);
1812 
1813 	/*
1814 	 * Try again to get the status. This also provides an opportunity for
1815 	 * re-tuning.
1816 	 */
1817 	if (err)
1818 		err = __mmc_send_status(card, &status, 0);
1819 
1820 	/*
1821 	 * Nothing more to do after the number of bytes transferred has been
1822 	 * updated and there is no card.
1823 	 */
1824 	if (err && mmc_detect_card_removed(card->host))
1825 		return;
1826 
1827 	/* Try to get back to "tran" state */
1828 	if (!mmc_host_is_spi(mq->card->host) &&
1829 	    (err || !mmc_blk_in_tran_state(status)))
1830 		err = mmc_blk_fix_state(mq->card, req);
1831 
1832 	/*
1833 	 * Special case for SD cards where the card might record the number of
1834 	 * blocks written.
1835 	 */
1836 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1837 	    rq_data_dir(req) == WRITE) {
1838 		if (mmc_sd_num_wr_blocks(card, &blocks))
1839 			brq->data.bytes_xfered = 0;
1840 		else
1841 			brq->data.bytes_xfered = blocks << 9;
1842 	}
1843 
1844 	/* Reset if the card is in a bad state */
1845 	if (!mmc_host_is_spi(mq->card->host) &&
1846 	    err && mmc_blk_reset(md, card->host, type)) {
1847 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1848 		mqrq->retries = MMC_NO_RETRIES;
1849 		return;
1850 	}
1851 
1852 	/*
1853 	 * If anything was done, just return and if there is anything remaining
1854 	 * on the request it will get requeued.
1855 	 */
1856 	if (brq->data.bytes_xfered)
1857 		return;
1858 
1859 	/* Reset before last retry */
1860 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1861 		mmc_blk_reset(md, card->host, type);
1862 
1863 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1864 	if (brq->sbc.error || brq->cmd.error)
1865 		return;
1866 
1867 	/* Reduce the remaining retries for data errors */
1868 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1869 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1870 		return;
1871 	}
1872 
1873 	/* FIXME: Missing single sector read for large sector size */
1874 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1875 	    brq->data.blocks > 1) {
1876 		/* Read one sector at a time */
1877 		mmc_blk_read_single(mq, req);
1878 		return;
1879 	}
1880 }
1881 
1882 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1883 {
1884 	mmc_blk_eval_resp_error(brq);
1885 
1886 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1887 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1888 }
1889 
1890 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1891 {
1892 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1893 	u32 status = 0;
1894 	int err;
1895 
1896 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1897 		return 0;
1898 
1899 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1900 
1901 	/*
1902 	 * Do not assume data transferred correctly if there are any error bits
1903 	 * set.
1904 	 */
1905 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1906 		mqrq->brq.data.bytes_xfered = 0;
1907 		err = err ? err : -EIO;
1908 	}
1909 
1910 	/* Copy the exception bit so it will be seen later on */
1911 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1912 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1913 
1914 	return err;
1915 }
1916 
1917 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1918 					    struct request *req)
1919 {
1920 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1921 
1922 	mmc_blk_reset_success(mq->blkdata, type);
1923 }
1924 
1925 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1926 {
1927 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1928 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1929 
1930 	if (nr_bytes) {
1931 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1932 			blk_mq_requeue_request(req, true);
1933 		else
1934 			__blk_mq_end_request(req, BLK_STS_OK);
1935 	} else if (!blk_rq_bytes(req)) {
1936 		__blk_mq_end_request(req, BLK_STS_IOERR);
1937 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1938 		blk_mq_requeue_request(req, true);
1939 	} else {
1940 		if (mmc_card_removed(mq->card))
1941 			req->rq_flags |= RQF_QUIET;
1942 		blk_mq_end_request(req, BLK_STS_IOERR);
1943 	}
1944 }
1945 
1946 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1947 					struct mmc_queue_req *mqrq)
1948 {
1949 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1950 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1951 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1952 }
1953 
1954 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1955 				 struct mmc_queue_req *mqrq)
1956 {
1957 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1958 		mmc_start_bkops(mq->card, true);
1959 }
1960 
1961 void mmc_blk_mq_complete(struct request *req)
1962 {
1963 	struct mmc_queue *mq = req->q->queuedata;
1964 
1965 	if (mq->use_cqe)
1966 		mmc_blk_cqe_complete_rq(mq, req);
1967 	else
1968 		mmc_blk_mq_complete_rq(mq, req);
1969 }
1970 
1971 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1972 				       struct request *req)
1973 {
1974 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1975 	struct mmc_host *host = mq->card->host;
1976 
1977 	if (mmc_blk_rq_error(&mqrq->brq) ||
1978 	    mmc_blk_card_busy(mq->card, req)) {
1979 		mmc_blk_mq_rw_recovery(mq, req);
1980 	} else {
1981 		mmc_blk_rw_reset_success(mq, req);
1982 		mmc_retune_release(host);
1983 	}
1984 
1985 	mmc_blk_urgent_bkops(mq, mqrq);
1986 }
1987 
1988 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1989 {
1990 	struct request_queue *q = req->q;
1991 	unsigned long flags;
1992 	bool put_card;
1993 
1994 	spin_lock_irqsave(q->queue_lock, flags);
1995 
1996 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1997 
1998 	put_card = (mmc_tot_in_flight(mq) == 0);
1999 
2000 	spin_unlock_irqrestore(q->queue_lock, flags);
2001 
2002 	if (put_card)
2003 		mmc_put_card(mq->card, &mq->ctx);
2004 }
2005 
2006 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2007 {
2008 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2009 	struct mmc_request *mrq = &mqrq->brq.mrq;
2010 	struct mmc_host *host = mq->card->host;
2011 
2012 	mmc_post_req(host, mrq, 0);
2013 
2014 	/*
2015 	 * Block layer timeouts race with completions which means the normal
2016 	 * completion path cannot be used during recovery.
2017 	 */
2018 	if (mq->in_recovery)
2019 		mmc_blk_mq_complete_rq(mq, req);
2020 	else
2021 		blk_mq_complete_request(req);
2022 
2023 	mmc_blk_mq_dec_in_flight(mq, req);
2024 }
2025 
2026 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2027 {
2028 	struct request *req = mq->recovery_req;
2029 	struct mmc_host *host = mq->card->host;
2030 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2031 
2032 	mq->recovery_req = NULL;
2033 	mq->rw_wait = false;
2034 
2035 	if (mmc_blk_rq_error(&mqrq->brq)) {
2036 		mmc_retune_hold_now(host);
2037 		mmc_blk_mq_rw_recovery(mq, req);
2038 	}
2039 
2040 	mmc_blk_urgent_bkops(mq, mqrq);
2041 
2042 	mmc_blk_mq_post_req(mq, req);
2043 }
2044 
2045 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2046 					 struct request **prev_req)
2047 {
2048 	if (mmc_host_done_complete(mq->card->host))
2049 		return;
2050 
2051 	mutex_lock(&mq->complete_lock);
2052 
2053 	if (!mq->complete_req)
2054 		goto out_unlock;
2055 
2056 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2057 
2058 	if (prev_req)
2059 		*prev_req = mq->complete_req;
2060 	else
2061 		mmc_blk_mq_post_req(mq, mq->complete_req);
2062 
2063 	mq->complete_req = NULL;
2064 
2065 out_unlock:
2066 	mutex_unlock(&mq->complete_lock);
2067 }
2068 
2069 void mmc_blk_mq_complete_work(struct work_struct *work)
2070 {
2071 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2072 					    complete_work);
2073 
2074 	mmc_blk_mq_complete_prev_req(mq, NULL);
2075 }
2076 
2077 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2078 {
2079 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2080 						  brq.mrq);
2081 	struct request *req = mmc_queue_req_to_req(mqrq);
2082 	struct request_queue *q = req->q;
2083 	struct mmc_queue *mq = q->queuedata;
2084 	struct mmc_host *host = mq->card->host;
2085 	unsigned long flags;
2086 
2087 	if (!mmc_host_done_complete(host)) {
2088 		bool waiting;
2089 
2090 		/*
2091 		 * We cannot complete the request in this context, so record
2092 		 * that there is a request to complete, and that a following
2093 		 * request does not need to wait (although it does need to
2094 		 * complete complete_req first).
2095 		 */
2096 		spin_lock_irqsave(q->queue_lock, flags);
2097 		mq->complete_req = req;
2098 		mq->rw_wait = false;
2099 		waiting = mq->waiting;
2100 		spin_unlock_irqrestore(q->queue_lock, flags);
2101 
2102 		/*
2103 		 * If 'waiting' then the waiting task will complete this
2104 		 * request, otherwise queue a work to do it. Note that
2105 		 * complete_work may still race with the dispatch of a following
2106 		 * request.
2107 		 */
2108 		if (waiting)
2109 			wake_up(&mq->wait);
2110 		else
2111 			kblockd_schedule_work(&mq->complete_work);
2112 
2113 		return;
2114 	}
2115 
2116 	/* Take the recovery path for errors or urgent background operations */
2117 	if (mmc_blk_rq_error(&mqrq->brq) ||
2118 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2119 		spin_lock_irqsave(q->queue_lock, flags);
2120 		mq->recovery_needed = true;
2121 		mq->recovery_req = req;
2122 		spin_unlock_irqrestore(q->queue_lock, flags);
2123 		wake_up(&mq->wait);
2124 		schedule_work(&mq->recovery_work);
2125 		return;
2126 	}
2127 
2128 	mmc_blk_rw_reset_success(mq, req);
2129 
2130 	mq->rw_wait = false;
2131 	wake_up(&mq->wait);
2132 
2133 	mmc_blk_mq_post_req(mq, req);
2134 }
2135 
2136 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2137 {
2138 	struct request_queue *q = mq->queue;
2139 	unsigned long flags;
2140 	bool done;
2141 
2142 	/*
2143 	 * Wait while there is another request in progress, but not if recovery
2144 	 * is needed. Also indicate whether there is a request waiting to start.
2145 	 */
2146 	spin_lock_irqsave(q->queue_lock, flags);
2147 	if (mq->recovery_needed) {
2148 		*err = -EBUSY;
2149 		done = true;
2150 	} else {
2151 		done = !mq->rw_wait;
2152 	}
2153 	mq->waiting = !done;
2154 	spin_unlock_irqrestore(q->queue_lock, flags);
2155 
2156 	return done;
2157 }
2158 
2159 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2160 {
2161 	int err = 0;
2162 
2163 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2164 
2165 	/* Always complete the previous request if there is one */
2166 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2167 
2168 	return err;
2169 }
2170 
2171 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2172 				  struct request *req)
2173 {
2174 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2175 	struct mmc_host *host = mq->card->host;
2176 	struct request *prev_req = NULL;
2177 	int err = 0;
2178 
2179 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2180 
2181 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2182 
2183 	mmc_pre_req(host, &mqrq->brq.mrq);
2184 
2185 	err = mmc_blk_rw_wait(mq, &prev_req);
2186 	if (err)
2187 		goto out_post_req;
2188 
2189 	mq->rw_wait = true;
2190 
2191 	err = mmc_start_request(host, &mqrq->brq.mrq);
2192 
2193 	if (prev_req)
2194 		mmc_blk_mq_post_req(mq, prev_req);
2195 
2196 	if (err)
2197 		mq->rw_wait = false;
2198 
2199 	/* Release re-tuning here where there is no synchronization required */
2200 	if (err || mmc_host_done_complete(host))
2201 		mmc_retune_release(host);
2202 
2203 out_post_req:
2204 	if (err)
2205 		mmc_post_req(host, &mqrq->brq.mrq, err);
2206 
2207 	return err;
2208 }
2209 
2210 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2211 {
2212 	if (mq->use_cqe)
2213 		return host->cqe_ops->cqe_wait_for_idle(host);
2214 
2215 	return mmc_blk_rw_wait(mq, NULL);
2216 }
2217 
2218 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2219 {
2220 	struct mmc_blk_data *md = mq->blkdata;
2221 	struct mmc_card *card = md->queue.card;
2222 	struct mmc_host *host = card->host;
2223 	int ret;
2224 
2225 	ret = mmc_blk_part_switch(card, md->part_type);
2226 	if (ret)
2227 		return MMC_REQ_FAILED_TO_START;
2228 
2229 	switch (mmc_issue_type(mq, req)) {
2230 	case MMC_ISSUE_SYNC:
2231 		ret = mmc_blk_wait_for_idle(mq, host);
2232 		if (ret)
2233 			return MMC_REQ_BUSY;
2234 		switch (req_op(req)) {
2235 		case REQ_OP_DRV_IN:
2236 		case REQ_OP_DRV_OUT:
2237 			mmc_blk_issue_drv_op(mq, req);
2238 			break;
2239 		case REQ_OP_DISCARD:
2240 			mmc_blk_issue_discard_rq(mq, req);
2241 			break;
2242 		case REQ_OP_SECURE_ERASE:
2243 			mmc_blk_issue_secdiscard_rq(mq, req);
2244 			break;
2245 		case REQ_OP_FLUSH:
2246 			mmc_blk_issue_flush(mq, req);
2247 			break;
2248 		default:
2249 			WARN_ON_ONCE(1);
2250 			return MMC_REQ_FAILED_TO_START;
2251 		}
2252 		return MMC_REQ_FINISHED;
2253 	case MMC_ISSUE_DCMD:
2254 	case MMC_ISSUE_ASYNC:
2255 		switch (req_op(req)) {
2256 		case REQ_OP_FLUSH:
2257 			ret = mmc_blk_cqe_issue_flush(mq, req);
2258 			break;
2259 		case REQ_OP_READ:
2260 		case REQ_OP_WRITE:
2261 			if (mq->use_cqe)
2262 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2263 			else
2264 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2265 			break;
2266 		default:
2267 			WARN_ON_ONCE(1);
2268 			ret = -EINVAL;
2269 		}
2270 		if (!ret)
2271 			return MMC_REQ_STARTED;
2272 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2273 	default:
2274 		WARN_ON_ONCE(1);
2275 		return MMC_REQ_FAILED_TO_START;
2276 	}
2277 }
2278 
2279 static inline int mmc_blk_readonly(struct mmc_card *card)
2280 {
2281 	return mmc_card_readonly(card) ||
2282 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2283 }
2284 
2285 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2286 					      struct device *parent,
2287 					      sector_t size,
2288 					      bool default_ro,
2289 					      const char *subname,
2290 					      int area_type)
2291 {
2292 	struct mmc_blk_data *md;
2293 	int devidx, ret;
2294 
2295 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2296 	if (devidx < 0) {
2297 		/*
2298 		 * We get -ENOSPC because there are no more any available
2299 		 * devidx. The reason may be that, either userspace haven't yet
2300 		 * unmounted the partitions, which postpones mmc_blk_release()
2301 		 * from being called, or the device has more partitions than
2302 		 * what we support.
2303 		 */
2304 		if (devidx == -ENOSPC)
2305 			dev_err(mmc_dev(card->host),
2306 				"no more device IDs available\n");
2307 
2308 		return ERR_PTR(devidx);
2309 	}
2310 
2311 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2312 	if (!md) {
2313 		ret = -ENOMEM;
2314 		goto out;
2315 	}
2316 
2317 	md->area_type = area_type;
2318 
2319 	/*
2320 	 * Set the read-only status based on the supported commands
2321 	 * and the write protect switch.
2322 	 */
2323 	md->read_only = mmc_blk_readonly(card);
2324 
2325 	md->disk = alloc_disk(perdev_minors);
2326 	if (md->disk == NULL) {
2327 		ret = -ENOMEM;
2328 		goto err_kfree;
2329 	}
2330 
2331 	spin_lock_init(&md->lock);
2332 	INIT_LIST_HEAD(&md->part);
2333 	INIT_LIST_HEAD(&md->rpmbs);
2334 	md->usage = 1;
2335 
2336 	ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2337 	if (ret)
2338 		goto err_putdisk;
2339 
2340 	md->queue.blkdata = md;
2341 
2342 	/*
2343 	 * Keep an extra reference to the queue so that we can shutdown the
2344 	 * queue (i.e. call blk_cleanup_queue()) while there are still
2345 	 * references to the 'md'. The corresponding blk_put_queue() is in
2346 	 * mmc_blk_put().
2347 	 */
2348 	if (!blk_get_queue(md->queue.queue)) {
2349 		mmc_cleanup_queue(&md->queue);
2350 		ret = -ENODEV;
2351 		goto err_putdisk;
2352 	}
2353 
2354 	md->disk->major	= MMC_BLOCK_MAJOR;
2355 	md->disk->first_minor = devidx * perdev_minors;
2356 	md->disk->fops = &mmc_bdops;
2357 	md->disk->private_data = md;
2358 	md->disk->queue = md->queue.queue;
2359 	md->parent = parent;
2360 	set_disk_ro(md->disk, md->read_only || default_ro);
2361 	md->disk->flags = GENHD_FL_EXT_DEVT;
2362 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2363 		md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2364 
2365 	/*
2366 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2367 	 *
2368 	 * - be set for removable media with permanent block devices
2369 	 * - be unset for removable block devices with permanent media
2370 	 *
2371 	 * Since MMC block devices clearly fall under the second
2372 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2373 	 * should use the block device creation/destruction hotplug
2374 	 * messages to tell when the card is present.
2375 	 */
2376 
2377 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2378 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2379 
2380 	if (mmc_card_mmc(card))
2381 		blk_queue_logical_block_size(md->queue.queue,
2382 					     card->ext_csd.data_sector_size);
2383 	else
2384 		blk_queue_logical_block_size(md->queue.queue, 512);
2385 
2386 	set_capacity(md->disk, size);
2387 
2388 	if (mmc_host_cmd23(card->host)) {
2389 		if ((mmc_card_mmc(card) &&
2390 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2391 		    (mmc_card_sd(card) &&
2392 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2393 			md->flags |= MMC_BLK_CMD23;
2394 	}
2395 
2396 	if (mmc_card_mmc(card) &&
2397 	    md->flags & MMC_BLK_CMD23 &&
2398 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2399 	     card->ext_csd.rel_sectors)) {
2400 		md->flags |= MMC_BLK_REL_WR;
2401 		blk_queue_write_cache(md->queue.queue, true, true);
2402 	}
2403 
2404 	return md;
2405 
2406  err_putdisk:
2407 	put_disk(md->disk);
2408  err_kfree:
2409 	kfree(md);
2410  out:
2411 	ida_simple_remove(&mmc_blk_ida, devidx);
2412 	return ERR_PTR(ret);
2413 }
2414 
2415 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2416 {
2417 	sector_t size;
2418 
2419 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2420 		/*
2421 		 * The EXT_CSD sector count is in number or 512 byte
2422 		 * sectors.
2423 		 */
2424 		size = card->ext_csd.sectors;
2425 	} else {
2426 		/*
2427 		 * The CSD capacity field is in units of read_blkbits.
2428 		 * set_capacity takes units of 512 bytes.
2429 		 */
2430 		size = (typeof(sector_t))card->csd.capacity
2431 			<< (card->csd.read_blkbits - 9);
2432 	}
2433 
2434 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2435 					MMC_BLK_DATA_AREA_MAIN);
2436 }
2437 
2438 static int mmc_blk_alloc_part(struct mmc_card *card,
2439 			      struct mmc_blk_data *md,
2440 			      unsigned int part_type,
2441 			      sector_t size,
2442 			      bool default_ro,
2443 			      const char *subname,
2444 			      int area_type)
2445 {
2446 	char cap_str[10];
2447 	struct mmc_blk_data *part_md;
2448 
2449 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2450 				    subname, area_type);
2451 	if (IS_ERR(part_md))
2452 		return PTR_ERR(part_md);
2453 	part_md->part_type = part_type;
2454 	list_add(&part_md->part, &md->part);
2455 
2456 	string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2457 			cap_str, sizeof(cap_str));
2458 	pr_info("%s: %s %s partition %u %s\n",
2459 	       part_md->disk->disk_name, mmc_card_id(card),
2460 	       mmc_card_name(card), part_md->part_type, cap_str);
2461 	return 0;
2462 }
2463 
2464 /**
2465  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2466  * @filp: the character device file
2467  * @cmd: the ioctl() command
2468  * @arg: the argument from userspace
2469  *
2470  * This will essentially just redirect the ioctl()s coming in over to
2471  * the main block device spawning the RPMB character device.
2472  */
2473 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2474 			   unsigned long arg)
2475 {
2476 	struct mmc_rpmb_data *rpmb = filp->private_data;
2477 	int ret;
2478 
2479 	switch (cmd) {
2480 	case MMC_IOC_CMD:
2481 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2482 					(struct mmc_ioc_cmd __user *)arg,
2483 					rpmb);
2484 		break;
2485 	case MMC_IOC_MULTI_CMD:
2486 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2487 					(struct mmc_ioc_multi_cmd __user *)arg,
2488 					rpmb);
2489 		break;
2490 	default:
2491 		ret = -EINVAL;
2492 		break;
2493 	}
2494 
2495 	return 0;
2496 }
2497 
2498 #ifdef CONFIG_COMPAT
2499 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2500 			      unsigned long arg)
2501 {
2502 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2503 }
2504 #endif
2505 
2506 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2507 {
2508 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2509 						  struct mmc_rpmb_data, chrdev);
2510 
2511 	get_device(&rpmb->dev);
2512 	filp->private_data = rpmb;
2513 	mmc_blk_get(rpmb->md->disk);
2514 
2515 	return nonseekable_open(inode, filp);
2516 }
2517 
2518 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2519 {
2520 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2521 						  struct mmc_rpmb_data, chrdev);
2522 
2523 	put_device(&rpmb->dev);
2524 	mmc_blk_put(rpmb->md);
2525 
2526 	return 0;
2527 }
2528 
2529 static const struct file_operations mmc_rpmb_fileops = {
2530 	.release = mmc_rpmb_chrdev_release,
2531 	.open = mmc_rpmb_chrdev_open,
2532 	.owner = THIS_MODULE,
2533 	.llseek = no_llseek,
2534 	.unlocked_ioctl = mmc_rpmb_ioctl,
2535 #ifdef CONFIG_COMPAT
2536 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2537 #endif
2538 };
2539 
2540 static void mmc_blk_rpmb_device_release(struct device *dev)
2541 {
2542 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2543 
2544 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2545 	kfree(rpmb);
2546 }
2547 
2548 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2549 				   struct mmc_blk_data *md,
2550 				   unsigned int part_index,
2551 				   sector_t size,
2552 				   const char *subname)
2553 {
2554 	int devidx, ret;
2555 	char rpmb_name[DISK_NAME_LEN];
2556 	char cap_str[10];
2557 	struct mmc_rpmb_data *rpmb;
2558 
2559 	/* This creates the minor number for the RPMB char device */
2560 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2561 	if (devidx < 0)
2562 		return devidx;
2563 
2564 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2565 	if (!rpmb) {
2566 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2567 		return -ENOMEM;
2568 	}
2569 
2570 	snprintf(rpmb_name, sizeof(rpmb_name),
2571 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2572 
2573 	rpmb->id = devidx;
2574 	rpmb->part_index = part_index;
2575 	rpmb->dev.init_name = rpmb_name;
2576 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2577 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2578 	rpmb->dev.parent = &card->dev;
2579 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2580 	device_initialize(&rpmb->dev);
2581 	dev_set_drvdata(&rpmb->dev, rpmb);
2582 	rpmb->md = md;
2583 
2584 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2585 	rpmb->chrdev.owner = THIS_MODULE;
2586 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2587 	if (ret) {
2588 		pr_err("%s: could not add character device\n", rpmb_name);
2589 		goto out_put_device;
2590 	}
2591 
2592 	list_add(&rpmb->node, &md->rpmbs);
2593 
2594 	string_get_size((u64)size, 512, STRING_UNITS_2,
2595 			cap_str, sizeof(cap_str));
2596 
2597 	pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2598 		rpmb_name, mmc_card_id(card),
2599 		mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2600 		MAJOR(mmc_rpmb_devt), rpmb->id);
2601 
2602 	return 0;
2603 
2604 out_put_device:
2605 	put_device(&rpmb->dev);
2606 	return ret;
2607 }
2608 
2609 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2610 
2611 {
2612 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2613 	put_device(&rpmb->dev);
2614 }
2615 
2616 /* MMC Physical partitions consist of two boot partitions and
2617  * up to four general purpose partitions.
2618  * For each partition enabled in EXT_CSD a block device will be allocatedi
2619  * to provide access to the partition.
2620  */
2621 
2622 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2623 {
2624 	int idx, ret;
2625 
2626 	if (!mmc_card_mmc(card))
2627 		return 0;
2628 
2629 	for (idx = 0; idx < card->nr_parts; idx++) {
2630 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2631 			/*
2632 			 * RPMB partitions does not provide block access, they
2633 			 * are only accessed using ioctl():s. Thus create
2634 			 * special RPMB block devices that do not have a
2635 			 * backing block queue for these.
2636 			 */
2637 			ret = mmc_blk_alloc_rpmb_part(card, md,
2638 				card->part[idx].part_cfg,
2639 				card->part[idx].size >> 9,
2640 				card->part[idx].name);
2641 			if (ret)
2642 				return ret;
2643 		} else if (card->part[idx].size) {
2644 			ret = mmc_blk_alloc_part(card, md,
2645 				card->part[idx].part_cfg,
2646 				card->part[idx].size >> 9,
2647 				card->part[idx].force_ro,
2648 				card->part[idx].name,
2649 				card->part[idx].area_type);
2650 			if (ret)
2651 				return ret;
2652 		}
2653 	}
2654 
2655 	return 0;
2656 }
2657 
2658 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2659 {
2660 	struct mmc_card *card;
2661 
2662 	if (md) {
2663 		/*
2664 		 * Flush remaining requests and free queues. It
2665 		 * is freeing the queue that stops new requests
2666 		 * from being accepted.
2667 		 */
2668 		card = md->queue.card;
2669 		mmc_cleanup_queue(&md->queue);
2670 		if (md->disk->flags & GENHD_FL_UP) {
2671 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2672 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2673 					card->ext_csd.boot_ro_lockable)
2674 				device_remove_file(disk_to_dev(md->disk),
2675 					&md->power_ro_lock);
2676 
2677 			del_gendisk(md->disk);
2678 		}
2679 		mmc_blk_put(md);
2680 	}
2681 }
2682 
2683 static void mmc_blk_remove_parts(struct mmc_card *card,
2684 				 struct mmc_blk_data *md)
2685 {
2686 	struct list_head *pos, *q;
2687 	struct mmc_blk_data *part_md;
2688 	struct mmc_rpmb_data *rpmb;
2689 
2690 	/* Remove RPMB partitions */
2691 	list_for_each_safe(pos, q, &md->rpmbs) {
2692 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2693 		list_del(pos);
2694 		mmc_blk_remove_rpmb_part(rpmb);
2695 	}
2696 	/* Remove block partitions */
2697 	list_for_each_safe(pos, q, &md->part) {
2698 		part_md = list_entry(pos, struct mmc_blk_data, part);
2699 		list_del(pos);
2700 		mmc_blk_remove_req(part_md);
2701 	}
2702 }
2703 
2704 static int mmc_add_disk(struct mmc_blk_data *md)
2705 {
2706 	int ret;
2707 	struct mmc_card *card = md->queue.card;
2708 
2709 	device_add_disk(md->parent, md->disk);
2710 	md->force_ro.show = force_ro_show;
2711 	md->force_ro.store = force_ro_store;
2712 	sysfs_attr_init(&md->force_ro.attr);
2713 	md->force_ro.attr.name = "force_ro";
2714 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2715 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2716 	if (ret)
2717 		goto force_ro_fail;
2718 
2719 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2720 	     card->ext_csd.boot_ro_lockable) {
2721 		umode_t mode;
2722 
2723 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2724 			mode = S_IRUGO;
2725 		else
2726 			mode = S_IRUGO | S_IWUSR;
2727 
2728 		md->power_ro_lock.show = power_ro_lock_show;
2729 		md->power_ro_lock.store = power_ro_lock_store;
2730 		sysfs_attr_init(&md->power_ro_lock.attr);
2731 		md->power_ro_lock.attr.mode = mode;
2732 		md->power_ro_lock.attr.name =
2733 					"ro_lock_until_next_power_on";
2734 		ret = device_create_file(disk_to_dev(md->disk),
2735 				&md->power_ro_lock);
2736 		if (ret)
2737 			goto power_ro_lock_fail;
2738 	}
2739 	return ret;
2740 
2741 power_ro_lock_fail:
2742 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2743 force_ro_fail:
2744 	del_gendisk(md->disk);
2745 
2746 	return ret;
2747 }
2748 
2749 #ifdef CONFIG_DEBUG_FS
2750 
2751 static int mmc_dbg_card_status_get(void *data, u64 *val)
2752 {
2753 	struct mmc_card *card = data;
2754 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2755 	struct mmc_queue *mq = &md->queue;
2756 	struct request *req;
2757 	int ret;
2758 
2759 	/* Ask the block layer about the card status */
2760 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2761 	if (IS_ERR(req))
2762 		return PTR_ERR(req);
2763 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2764 	blk_execute_rq(mq->queue, NULL, req, 0);
2765 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2766 	if (ret >= 0) {
2767 		*val = ret;
2768 		ret = 0;
2769 	}
2770 	blk_put_request(req);
2771 
2772 	return ret;
2773 }
2774 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2775 		NULL, "%08llx\n");
2776 
2777 /* That is two digits * 512 + 1 for newline */
2778 #define EXT_CSD_STR_LEN 1025
2779 
2780 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2781 {
2782 	struct mmc_card *card = inode->i_private;
2783 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2784 	struct mmc_queue *mq = &md->queue;
2785 	struct request *req;
2786 	char *buf;
2787 	ssize_t n = 0;
2788 	u8 *ext_csd;
2789 	int err, i;
2790 
2791 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2792 	if (!buf)
2793 		return -ENOMEM;
2794 
2795 	/* Ask the block layer for the EXT CSD */
2796 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2797 	if (IS_ERR(req)) {
2798 		err = PTR_ERR(req);
2799 		goto out_free;
2800 	}
2801 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2802 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2803 	blk_execute_rq(mq->queue, NULL, req, 0);
2804 	err = req_to_mmc_queue_req(req)->drv_op_result;
2805 	blk_put_request(req);
2806 	if (err) {
2807 		pr_err("FAILED %d\n", err);
2808 		goto out_free;
2809 	}
2810 
2811 	for (i = 0; i < 512; i++)
2812 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2813 	n += sprintf(buf + n, "\n");
2814 
2815 	if (n != EXT_CSD_STR_LEN) {
2816 		err = -EINVAL;
2817 		kfree(ext_csd);
2818 		goto out_free;
2819 	}
2820 
2821 	filp->private_data = buf;
2822 	kfree(ext_csd);
2823 	return 0;
2824 
2825 out_free:
2826 	kfree(buf);
2827 	return err;
2828 }
2829 
2830 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2831 				size_t cnt, loff_t *ppos)
2832 {
2833 	char *buf = filp->private_data;
2834 
2835 	return simple_read_from_buffer(ubuf, cnt, ppos,
2836 				       buf, EXT_CSD_STR_LEN);
2837 }
2838 
2839 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2840 {
2841 	kfree(file->private_data);
2842 	return 0;
2843 }
2844 
2845 static const struct file_operations mmc_dbg_ext_csd_fops = {
2846 	.open		= mmc_ext_csd_open,
2847 	.read		= mmc_ext_csd_read,
2848 	.release	= mmc_ext_csd_release,
2849 	.llseek		= default_llseek,
2850 };
2851 
2852 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2853 {
2854 	struct dentry *root;
2855 
2856 	if (!card->debugfs_root)
2857 		return 0;
2858 
2859 	root = card->debugfs_root;
2860 
2861 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2862 		md->status_dentry =
2863 			debugfs_create_file("status", S_IRUSR, root, card,
2864 					    &mmc_dbg_card_status_fops);
2865 		if (!md->status_dentry)
2866 			return -EIO;
2867 	}
2868 
2869 	if (mmc_card_mmc(card)) {
2870 		md->ext_csd_dentry =
2871 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2872 					    &mmc_dbg_ext_csd_fops);
2873 		if (!md->ext_csd_dentry)
2874 			return -EIO;
2875 	}
2876 
2877 	return 0;
2878 }
2879 
2880 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2881 				   struct mmc_blk_data *md)
2882 {
2883 	if (!card->debugfs_root)
2884 		return;
2885 
2886 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2887 		debugfs_remove(md->status_dentry);
2888 		md->status_dentry = NULL;
2889 	}
2890 
2891 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2892 		debugfs_remove(md->ext_csd_dentry);
2893 		md->ext_csd_dentry = NULL;
2894 	}
2895 }
2896 
2897 #else
2898 
2899 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2900 {
2901 	return 0;
2902 }
2903 
2904 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2905 				   struct mmc_blk_data *md)
2906 {
2907 }
2908 
2909 #endif /* CONFIG_DEBUG_FS */
2910 
2911 static int mmc_blk_probe(struct mmc_card *card)
2912 {
2913 	struct mmc_blk_data *md, *part_md;
2914 	char cap_str[10];
2915 
2916 	/*
2917 	 * Check that the card supports the command class(es) we need.
2918 	 */
2919 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2920 		return -ENODEV;
2921 
2922 	mmc_fixup_device(card, mmc_blk_fixups);
2923 
2924 	md = mmc_blk_alloc(card);
2925 	if (IS_ERR(md))
2926 		return PTR_ERR(md);
2927 
2928 	string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2929 			cap_str, sizeof(cap_str));
2930 	pr_info("%s: %s %s %s %s\n",
2931 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2932 		cap_str, md->read_only ? "(ro)" : "");
2933 
2934 	if (mmc_blk_alloc_parts(card, md))
2935 		goto out;
2936 
2937 	dev_set_drvdata(&card->dev, md);
2938 
2939 	if (mmc_add_disk(md))
2940 		goto out;
2941 
2942 	list_for_each_entry(part_md, &md->part, part) {
2943 		if (mmc_add_disk(part_md))
2944 			goto out;
2945 	}
2946 
2947 	/* Add two debugfs entries */
2948 	mmc_blk_add_debugfs(card, md);
2949 
2950 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2951 	pm_runtime_use_autosuspend(&card->dev);
2952 
2953 	/*
2954 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2955 	 * decision to be taken during the SDIO init sequence instead.
2956 	 */
2957 	if (card->type != MMC_TYPE_SD_COMBO) {
2958 		pm_runtime_set_active(&card->dev);
2959 		pm_runtime_enable(&card->dev);
2960 	}
2961 
2962 	return 0;
2963 
2964  out:
2965 	mmc_blk_remove_parts(card, md);
2966 	mmc_blk_remove_req(md);
2967 	return 0;
2968 }
2969 
2970 static void mmc_blk_remove(struct mmc_card *card)
2971 {
2972 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2973 
2974 	mmc_blk_remove_debugfs(card, md);
2975 	mmc_blk_remove_parts(card, md);
2976 	pm_runtime_get_sync(&card->dev);
2977 	mmc_claim_host(card->host);
2978 	mmc_blk_part_switch(card, md->part_type);
2979 	mmc_release_host(card->host);
2980 	if (card->type != MMC_TYPE_SD_COMBO)
2981 		pm_runtime_disable(&card->dev);
2982 	pm_runtime_put_noidle(&card->dev);
2983 	mmc_blk_remove_req(md);
2984 	dev_set_drvdata(&card->dev, NULL);
2985 }
2986 
2987 static int _mmc_blk_suspend(struct mmc_card *card)
2988 {
2989 	struct mmc_blk_data *part_md;
2990 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2991 
2992 	if (md) {
2993 		mmc_queue_suspend(&md->queue);
2994 		list_for_each_entry(part_md, &md->part, part) {
2995 			mmc_queue_suspend(&part_md->queue);
2996 		}
2997 	}
2998 	return 0;
2999 }
3000 
3001 static void mmc_blk_shutdown(struct mmc_card *card)
3002 {
3003 	_mmc_blk_suspend(card);
3004 }
3005 
3006 #ifdef CONFIG_PM_SLEEP
3007 static int mmc_blk_suspend(struct device *dev)
3008 {
3009 	struct mmc_card *card = mmc_dev_to_card(dev);
3010 
3011 	return _mmc_blk_suspend(card);
3012 }
3013 
3014 static int mmc_blk_resume(struct device *dev)
3015 {
3016 	struct mmc_blk_data *part_md;
3017 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3018 
3019 	if (md) {
3020 		/*
3021 		 * Resume involves the card going into idle state,
3022 		 * so current partition is always the main one.
3023 		 */
3024 		md->part_curr = md->part_type;
3025 		mmc_queue_resume(&md->queue);
3026 		list_for_each_entry(part_md, &md->part, part) {
3027 			mmc_queue_resume(&part_md->queue);
3028 		}
3029 	}
3030 	return 0;
3031 }
3032 #endif
3033 
3034 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3035 
3036 static struct mmc_driver mmc_driver = {
3037 	.drv		= {
3038 		.name	= "mmcblk",
3039 		.pm	= &mmc_blk_pm_ops,
3040 	},
3041 	.probe		= mmc_blk_probe,
3042 	.remove		= mmc_blk_remove,
3043 	.shutdown	= mmc_blk_shutdown,
3044 };
3045 
3046 static int __init mmc_blk_init(void)
3047 {
3048 	int res;
3049 
3050 	res  = bus_register(&mmc_rpmb_bus_type);
3051 	if (res < 0) {
3052 		pr_err("mmcblk: could not register RPMB bus type\n");
3053 		return res;
3054 	}
3055 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3056 	if (res < 0) {
3057 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3058 		goto out_bus_unreg;
3059 	}
3060 
3061 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3062 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3063 
3064 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3065 
3066 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3067 	if (res)
3068 		goto out_chrdev_unreg;
3069 
3070 	res = mmc_register_driver(&mmc_driver);
3071 	if (res)
3072 		goto out_blkdev_unreg;
3073 
3074 	return 0;
3075 
3076 out_blkdev_unreg:
3077 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3078 out_chrdev_unreg:
3079 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3080 out_bus_unreg:
3081 	bus_unregister(&mmc_rpmb_bus_type);
3082 	return res;
3083 }
3084 
3085 static void __exit mmc_blk_exit(void)
3086 {
3087 	mmc_unregister_driver(&mmc_driver);
3088 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3089 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3090 }
3091 
3092 module_init(mmc_blk_init);
3093 module_exit(mmc_blk_exit);
3094 
3095 MODULE_LICENSE("GPL");
3096 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3097 
3098