xref: /linux/drivers/mmc/core/block.c (revision ae64438be1923e3c1102d90fd41db7afcfaf54cc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 struct mmc_blk_busy_data {
102 	struct mmc_card *card;
103 	u32 status;
104 };
105 
106 /*
107  * There is one mmc_blk_data per slot.
108  */
109 struct mmc_blk_data {
110 	struct device	*parent;
111 	struct gendisk	*disk;
112 	struct mmc_queue queue;
113 	struct list_head part;
114 	struct list_head rpmbs;
115 
116 	unsigned int	flags;
117 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
119 
120 	struct kref	kref;
121 	unsigned int	read_only;
122 	unsigned int	part_type;
123 	unsigned int	reset_done;
124 #define MMC_BLK_READ		BIT(0)
125 #define MMC_BLK_WRITE		BIT(1)
126 #define MMC_BLK_DISCARD		BIT(2)
127 #define MMC_BLK_SECDISCARD	BIT(3)
128 #define MMC_BLK_CQE_RECOVERY	BIT(4)
129 #define MMC_BLK_TRIM		BIT(5)
130 
131 	/*
132 	 * Only set in main mmc_blk_data associated
133 	 * with mmc_card with dev_set_drvdata, and keeps
134 	 * track of the current selected device partition.
135 	 */
136 	unsigned int	part_curr;
137 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
138 	int	area_type;
139 
140 	/* debugfs files (only in main mmc_blk_data) */
141 	struct dentry *status_dentry;
142 	struct dentry *ext_csd_dentry;
143 };
144 
145 /* Device type for RPMB character devices */
146 static dev_t mmc_rpmb_devt;
147 
148 /* Bus type for RPMB character devices */
149 static struct bus_type mmc_rpmb_bus_type = {
150 	.name = "mmc_rpmb",
151 };
152 
153 /**
154  * struct mmc_rpmb_data - special RPMB device type for these areas
155  * @dev: the device for the RPMB area
156  * @chrdev: character device for the RPMB area
157  * @id: unique device ID number
158  * @part_index: partition index (0 on first)
159  * @md: parent MMC block device
160  * @node: list item, so we can put this device on a list
161  */
162 struct mmc_rpmb_data {
163 	struct device dev;
164 	struct cdev chrdev;
165 	int id;
166 	unsigned int part_index;
167 	struct mmc_blk_data *md;
168 	struct list_head node;
169 };
170 
171 static DEFINE_MUTEX(open_lock);
172 
173 module_param(perdev_minors, int, 0444);
174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175 
176 static inline int mmc_blk_part_switch(struct mmc_card *card,
177 				      unsigned int part_type);
178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 			       struct mmc_card *card,
180 			       int recovery_mode,
181 			       struct mmc_queue *mq);
182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183 
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 	struct mmc_blk_data *md;
187 
188 	mutex_lock(&open_lock);
189 	md = disk->private_data;
190 	if (md && !kref_get_unless_zero(&md->kref))
191 		md = NULL;
192 	mutex_unlock(&open_lock);
193 
194 	return md;
195 }
196 
197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 	int devidx = disk->first_minor / perdev_minors;
200 	return devidx;
201 }
202 
203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 	int devidx;
207 
208 	devidx = mmc_get_devidx(md->disk);
209 	ida_simple_remove(&mmc_blk_ida, devidx);
210 
211 	mutex_lock(&open_lock);
212 	md->disk->private_data = NULL;
213 	mutex_unlock(&open_lock);
214 
215 	put_disk(md->disk);
216 	kfree(md);
217 }
218 
219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 	kref_put(&md->kref, mmc_blk_kref_release);
222 }
223 
224 static ssize_t power_ro_lock_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	int ret;
228 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 	struct mmc_card *card = md->queue.card;
230 	int locked = 0;
231 
232 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 		locked = 2;
234 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 		locked = 1;
236 
237 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238 
239 	mmc_blk_put(md);
240 
241 	return ret;
242 }
243 
244 static ssize_t power_ro_lock_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t count)
246 {
247 	int ret;
248 	struct mmc_blk_data *md, *part_md;
249 	struct mmc_queue *mq;
250 	struct request *req;
251 	unsigned long set;
252 
253 	if (kstrtoul(buf, 0, &set))
254 		return -EINVAL;
255 
256 	if (set != 1)
257 		return count;
258 
259 	md = mmc_blk_get(dev_to_disk(dev));
260 	mq = &md->queue;
261 
262 	/* Dispatch locking to the block layer */
263 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 	if (IS_ERR(req)) {
265 		count = PTR_ERR(req);
266 		goto out_put;
267 	}
268 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 	blk_execute_rq(req, false);
270 	ret = req_to_mmc_queue_req(req)->drv_op_result;
271 	blk_mq_free_request(req);
272 
273 	if (!ret) {
274 		pr_info("%s: Locking boot partition ro until next power on\n",
275 			md->disk->disk_name);
276 		set_disk_ro(md->disk, 1);
277 
278 		list_for_each_entry(part_md, &md->part, part)
279 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 				set_disk_ro(part_md->disk, 1);
282 			}
283 	}
284 out_put:
285 	mmc_blk_put(md);
286 	return count;
287 }
288 
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 		power_ro_lock_show, power_ro_lock_store);
291 
292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 			     char *buf)
294 {
295 	int ret;
296 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 
298 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 		       get_disk_ro(dev_to_disk(dev)) ^
300 		       md->read_only);
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 			      const char *buf, size_t count)
307 {
308 	int ret;
309 	char *end;
310 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 	unsigned long set = simple_strtoul(buf, &end, 0);
312 	if (end == buf) {
313 		ret = -EINVAL;
314 		goto out;
315 	}
316 
317 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 	ret = count;
319 out:
320 	mmc_blk_put(md);
321 	return ret;
322 }
323 
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325 
326 static struct attribute *mmc_disk_attrs[] = {
327 	&dev_attr_force_ro.attr,
328 	&dev_attr_ro_lock_until_next_power_on.attr,
329 	NULL,
330 };
331 
332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 		struct attribute *a, int n)
334 {
335 	struct device *dev = kobj_to_dev(kobj);
336 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 	umode_t mode = a->mode;
338 
339 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 	    md->queue.card->ext_csd.boot_ro_lockable) {
342 		mode = S_IRUGO;
343 		if (!(md->queue.card->ext_csd.boot_ro_lock &
344 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 			mode |= S_IWUSR;
346 	}
347 
348 	mmc_blk_put(md);
349 	return mode;
350 }
351 
352 static const struct attribute_group mmc_disk_attr_group = {
353 	.is_visible	= mmc_disk_attrs_is_visible,
354 	.attrs		= mmc_disk_attrs,
355 };
356 
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 	&mmc_disk_attr_group,
359 	NULL,
360 };
361 
362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
363 {
364 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
365 	int ret = -ENXIO;
366 
367 	mutex_lock(&block_mutex);
368 	if (md) {
369 		ret = 0;
370 		if ((mode & FMODE_WRITE) && md->read_only) {
371 			mmc_blk_put(md);
372 			ret = -EROFS;
373 		}
374 	}
375 	mutex_unlock(&block_mutex);
376 
377 	return ret;
378 }
379 
380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
381 {
382 	struct mmc_blk_data *md = disk->private_data;
383 
384 	mutex_lock(&block_mutex);
385 	mmc_blk_put(md);
386 	mutex_unlock(&block_mutex);
387 }
388 
389 static int
390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 	geo->heads = 4;
394 	geo->sectors = 16;
395 	return 0;
396 }
397 
398 struct mmc_blk_ioc_data {
399 	struct mmc_ioc_cmd ic;
400 	unsigned char *buf;
401 	u64 buf_bytes;
402 	struct mmc_rpmb_data *rpmb;
403 };
404 
405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 	struct mmc_ioc_cmd __user *user)
407 {
408 	struct mmc_blk_ioc_data *idata;
409 	int err;
410 
411 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 	if (!idata) {
413 		err = -ENOMEM;
414 		goto out;
415 	}
416 
417 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 		err = -EFAULT;
419 		goto idata_err;
420 	}
421 
422 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 		err = -EOVERFLOW;
425 		goto idata_err;
426 	}
427 
428 	if (!idata->buf_bytes) {
429 		idata->buf = NULL;
430 		return idata;
431 	}
432 
433 	idata->buf = memdup_user((void __user *)(unsigned long)
434 				 idata->ic.data_ptr, idata->buf_bytes);
435 	if (IS_ERR(idata->buf)) {
436 		err = PTR_ERR(idata->buf);
437 		goto idata_err;
438 	}
439 
440 	return idata;
441 
442 idata_err:
443 	kfree(idata);
444 out:
445 	return ERR_PTR(err);
446 }
447 
448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 				      struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_ioc_cmd *ic = &idata->ic;
452 
453 	if (copy_to_user(&(ic_ptr->response), ic->response,
454 			 sizeof(ic->response)))
455 		return -EFAULT;
456 
457 	if (!idata->ic.write_flag) {
458 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 				 idata->buf, idata->buf_bytes))
460 			return -EFAULT;
461 	}
462 
463 	return 0;
464 }
465 
466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 			       struct mmc_blk_ioc_data *idata)
468 {
469 	struct mmc_command cmd = {}, sbc = {};
470 	struct mmc_data data = {};
471 	struct mmc_request mrq = {};
472 	struct scatterlist sg;
473 	int err;
474 	unsigned int target_part;
475 
476 	if (!card || !md || !idata)
477 		return -EINVAL;
478 
479 	/*
480 	 * The RPMB accesses comes in from the character device, so we
481 	 * need to target these explicitly. Else we just target the
482 	 * partition type for the block device the ioctl() was issued
483 	 * on.
484 	 */
485 	if (idata->rpmb) {
486 		/* Support multiple RPMB partitions */
487 		target_part = idata->rpmb->part_index;
488 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
489 	} else {
490 		target_part = md->part_type;
491 	}
492 
493 	cmd.opcode = idata->ic.opcode;
494 	cmd.arg = idata->ic.arg;
495 	cmd.flags = idata->ic.flags;
496 
497 	if (idata->buf_bytes) {
498 		data.sg = &sg;
499 		data.sg_len = 1;
500 		data.blksz = idata->ic.blksz;
501 		data.blocks = idata->ic.blocks;
502 
503 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
504 
505 		if (idata->ic.write_flag)
506 			data.flags = MMC_DATA_WRITE;
507 		else
508 			data.flags = MMC_DATA_READ;
509 
510 		/* data.flags must already be set before doing this. */
511 		mmc_set_data_timeout(&data, card);
512 
513 		/* Allow overriding the timeout_ns for empirical tuning. */
514 		if (idata->ic.data_timeout_ns)
515 			data.timeout_ns = idata->ic.data_timeout_ns;
516 
517 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
518 			/*
519 			 * Pretend this is a data transfer and rely on the
520 			 * host driver to compute timeout.  When all host
521 			 * drivers support cmd.cmd_timeout for R1B, this
522 			 * can be changed to:
523 			 *
524 			 *     mrq.data = NULL;
525 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
526 			 */
527 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
528 		}
529 
530 		mrq.data = &data;
531 	}
532 
533 	mrq.cmd = &cmd;
534 
535 	err = mmc_blk_part_switch(card, target_part);
536 	if (err)
537 		return err;
538 
539 	if (idata->ic.is_acmd) {
540 		err = mmc_app_cmd(card->host, card);
541 		if (err)
542 			return err;
543 	}
544 
545 	if (idata->rpmb) {
546 		sbc.opcode = MMC_SET_BLOCK_COUNT;
547 		/*
548 		 * We don't do any blockcount validation because the max size
549 		 * may be increased by a future standard. We just copy the
550 		 * 'Reliable Write' bit here.
551 		 */
552 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
553 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
554 		mrq.sbc = &sbc;
555 	}
556 
557 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
558 	    (cmd.opcode == MMC_SWITCH))
559 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
560 
561 	mmc_wait_for_req(card->host, &mrq);
562 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
563 
564 	if (cmd.error) {
565 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
566 						__func__, cmd.error);
567 		return cmd.error;
568 	}
569 	if (data.error) {
570 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
571 						__func__, data.error);
572 		return data.error;
573 	}
574 
575 	/*
576 	 * Make sure the cache of the PARTITION_CONFIG register and
577 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
578 	 * changed it successfully.
579 	 */
580 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
581 	    (cmd.opcode == MMC_SWITCH)) {
582 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
583 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
584 
585 		/*
586 		 * Update cache so the next mmc_blk_part_switch call operates
587 		 * on up-to-date data.
588 		 */
589 		card->ext_csd.part_config = value;
590 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
591 	}
592 
593 	/*
594 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
595 	 * will get turned back on if the card is re-initialized, e.g.
596 	 * suspend/resume or hw reset in recovery.
597 	 */
598 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
599 	    (cmd.opcode == MMC_SWITCH)) {
600 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
601 
602 		card->ext_csd.cache_ctrl = value;
603 	}
604 
605 	/*
606 	 * According to the SD specs, some commands require a delay after
607 	 * issuing the command.
608 	 */
609 	if (idata->ic.postsleep_min_us)
610 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
611 
612 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
613 		/*
614 		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
615 		 * allow to override the default timeout value if a custom timeout is specified.
616 		 */
617 		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
618 					false, MMC_BUSY_IO);
619 	}
620 
621 	return err;
622 }
623 
624 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
625 			     struct mmc_ioc_cmd __user *ic_ptr,
626 			     struct mmc_rpmb_data *rpmb)
627 {
628 	struct mmc_blk_ioc_data *idata;
629 	struct mmc_blk_ioc_data *idatas[1];
630 	struct mmc_queue *mq;
631 	struct mmc_card *card;
632 	int err = 0, ioc_err = 0;
633 	struct request *req;
634 
635 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
636 	if (IS_ERR(idata))
637 		return PTR_ERR(idata);
638 	/* This will be NULL on non-RPMB ioctl():s */
639 	idata->rpmb = rpmb;
640 
641 	card = md->queue.card;
642 	if (IS_ERR(card)) {
643 		err = PTR_ERR(card);
644 		goto cmd_done;
645 	}
646 
647 	/*
648 	 * Dispatch the ioctl() into the block request queue.
649 	 */
650 	mq = &md->queue;
651 	req = blk_mq_alloc_request(mq->queue,
652 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
653 	if (IS_ERR(req)) {
654 		err = PTR_ERR(req);
655 		goto cmd_done;
656 	}
657 	idatas[0] = idata;
658 	req_to_mmc_queue_req(req)->drv_op =
659 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
660 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
661 	req_to_mmc_queue_req(req)->ioc_count = 1;
662 	blk_execute_rq(req, false);
663 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
664 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
665 	blk_mq_free_request(req);
666 
667 cmd_done:
668 	kfree(idata->buf);
669 	kfree(idata);
670 	return ioc_err ? ioc_err : err;
671 }
672 
673 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
674 				   struct mmc_ioc_multi_cmd __user *user,
675 				   struct mmc_rpmb_data *rpmb)
676 {
677 	struct mmc_blk_ioc_data **idata = NULL;
678 	struct mmc_ioc_cmd __user *cmds = user->cmds;
679 	struct mmc_card *card;
680 	struct mmc_queue *mq;
681 	int err = 0, ioc_err = 0;
682 	__u64 num_of_cmds;
683 	unsigned int i, n;
684 	struct request *req;
685 
686 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
687 			   sizeof(num_of_cmds)))
688 		return -EFAULT;
689 
690 	if (!num_of_cmds)
691 		return 0;
692 
693 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
694 		return -EINVAL;
695 
696 	n = num_of_cmds;
697 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
698 	if (!idata)
699 		return -ENOMEM;
700 
701 	for (i = 0; i < n; i++) {
702 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
703 		if (IS_ERR(idata[i])) {
704 			err = PTR_ERR(idata[i]);
705 			n = i;
706 			goto cmd_err;
707 		}
708 		/* This will be NULL on non-RPMB ioctl():s */
709 		idata[i]->rpmb = rpmb;
710 	}
711 
712 	card = md->queue.card;
713 	if (IS_ERR(card)) {
714 		err = PTR_ERR(card);
715 		goto cmd_err;
716 	}
717 
718 
719 	/*
720 	 * Dispatch the ioctl()s into the block request queue.
721 	 */
722 	mq = &md->queue;
723 	req = blk_mq_alloc_request(mq->queue,
724 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
725 	if (IS_ERR(req)) {
726 		err = PTR_ERR(req);
727 		goto cmd_err;
728 	}
729 	req_to_mmc_queue_req(req)->drv_op =
730 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
731 	req_to_mmc_queue_req(req)->drv_op_data = idata;
732 	req_to_mmc_queue_req(req)->ioc_count = n;
733 	blk_execute_rq(req, false);
734 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
735 
736 	/* copy to user if data and response */
737 	for (i = 0; i < n && !err; i++)
738 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
739 
740 	blk_mq_free_request(req);
741 
742 cmd_err:
743 	for (i = 0; i < n; i++) {
744 		kfree(idata[i]->buf);
745 		kfree(idata[i]);
746 	}
747 	kfree(idata);
748 	return ioc_err ? ioc_err : err;
749 }
750 
751 static int mmc_blk_check_blkdev(struct block_device *bdev)
752 {
753 	/*
754 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
755 	 * whole block device, not on a partition.  This prevents overspray
756 	 * between sibling partitions.
757 	 */
758 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
759 		return -EPERM;
760 	return 0;
761 }
762 
763 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
764 	unsigned int cmd, unsigned long arg)
765 {
766 	struct mmc_blk_data *md;
767 	int ret;
768 
769 	switch (cmd) {
770 	case MMC_IOC_CMD:
771 		ret = mmc_blk_check_blkdev(bdev);
772 		if (ret)
773 			return ret;
774 		md = mmc_blk_get(bdev->bd_disk);
775 		if (!md)
776 			return -EINVAL;
777 		ret = mmc_blk_ioctl_cmd(md,
778 					(struct mmc_ioc_cmd __user *)arg,
779 					NULL);
780 		mmc_blk_put(md);
781 		return ret;
782 	case MMC_IOC_MULTI_CMD:
783 		ret = mmc_blk_check_blkdev(bdev);
784 		if (ret)
785 			return ret;
786 		md = mmc_blk_get(bdev->bd_disk);
787 		if (!md)
788 			return -EINVAL;
789 		ret = mmc_blk_ioctl_multi_cmd(md,
790 					(struct mmc_ioc_multi_cmd __user *)arg,
791 					NULL);
792 		mmc_blk_put(md);
793 		return ret;
794 	default:
795 		return -EINVAL;
796 	}
797 }
798 
799 #ifdef CONFIG_COMPAT
800 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
801 	unsigned int cmd, unsigned long arg)
802 {
803 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
804 }
805 #endif
806 
807 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
808 					  sector_t *sector)
809 {
810 	struct mmc_blk_data *md;
811 	int ret;
812 
813 	md = mmc_blk_get(disk);
814 	if (!md)
815 		return -EINVAL;
816 
817 	if (md->queue.card)
818 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
819 	else
820 		ret = -ENODEV;
821 
822 	mmc_blk_put(md);
823 
824 	return ret;
825 }
826 
827 static const struct block_device_operations mmc_bdops = {
828 	.open			= mmc_blk_open,
829 	.release		= mmc_blk_release,
830 	.getgeo			= mmc_blk_getgeo,
831 	.owner			= THIS_MODULE,
832 	.ioctl			= mmc_blk_ioctl,
833 #ifdef CONFIG_COMPAT
834 	.compat_ioctl		= mmc_blk_compat_ioctl,
835 #endif
836 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
837 };
838 
839 static int mmc_blk_part_switch_pre(struct mmc_card *card,
840 				   unsigned int part_type)
841 {
842 	int ret = 0;
843 
844 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
845 		if (card->ext_csd.cmdq_en) {
846 			ret = mmc_cmdq_disable(card);
847 			if (ret)
848 				return ret;
849 		}
850 		mmc_retune_pause(card->host);
851 	}
852 
853 	return ret;
854 }
855 
856 static int mmc_blk_part_switch_post(struct mmc_card *card,
857 				    unsigned int part_type)
858 {
859 	int ret = 0;
860 
861 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
862 		mmc_retune_unpause(card->host);
863 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
864 			ret = mmc_cmdq_enable(card);
865 	}
866 
867 	return ret;
868 }
869 
870 static inline int mmc_blk_part_switch(struct mmc_card *card,
871 				      unsigned int part_type)
872 {
873 	int ret = 0;
874 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
875 
876 	if (main_md->part_curr == part_type)
877 		return 0;
878 
879 	if (mmc_card_mmc(card)) {
880 		u8 part_config = card->ext_csd.part_config;
881 
882 		ret = mmc_blk_part_switch_pre(card, part_type);
883 		if (ret)
884 			return ret;
885 
886 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
887 		part_config |= part_type;
888 
889 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
890 				 EXT_CSD_PART_CONFIG, part_config,
891 				 card->ext_csd.part_time);
892 		if (ret) {
893 			mmc_blk_part_switch_post(card, part_type);
894 			return ret;
895 		}
896 
897 		card->ext_csd.part_config = part_config;
898 
899 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
900 	}
901 
902 	main_md->part_curr = part_type;
903 	return ret;
904 }
905 
906 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
907 {
908 	int err;
909 	u32 result;
910 	__be32 *blocks;
911 
912 	struct mmc_request mrq = {};
913 	struct mmc_command cmd = {};
914 	struct mmc_data data = {};
915 
916 	struct scatterlist sg;
917 
918 	cmd.opcode = MMC_APP_CMD;
919 	cmd.arg = card->rca << 16;
920 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
921 
922 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
923 	if (err)
924 		return err;
925 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
926 		return -EIO;
927 
928 	memset(&cmd, 0, sizeof(struct mmc_command));
929 
930 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
931 	cmd.arg = 0;
932 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
933 
934 	data.blksz = 4;
935 	data.blocks = 1;
936 	data.flags = MMC_DATA_READ;
937 	data.sg = &sg;
938 	data.sg_len = 1;
939 	mmc_set_data_timeout(&data, card);
940 
941 	mrq.cmd = &cmd;
942 	mrq.data = &data;
943 
944 	blocks = kmalloc(4, GFP_KERNEL);
945 	if (!blocks)
946 		return -ENOMEM;
947 
948 	sg_init_one(&sg, blocks, 4);
949 
950 	mmc_wait_for_req(card->host, &mrq);
951 
952 	result = ntohl(*blocks);
953 	kfree(blocks);
954 
955 	if (cmd.error || data.error)
956 		return -EIO;
957 
958 	*written_blocks = result;
959 
960 	return 0;
961 }
962 
963 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
964 {
965 	if (host->actual_clock)
966 		return host->actual_clock / 1000;
967 
968 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
969 	if (host->ios.clock)
970 		return host->ios.clock / 2000;
971 
972 	/* How can there be no clock */
973 	WARN_ON_ONCE(1);
974 	return 100; /* 100 kHz is minimum possible value */
975 }
976 
977 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
978 					    struct mmc_data *data)
979 {
980 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
981 	unsigned int khz;
982 
983 	if (data->timeout_clks) {
984 		khz = mmc_blk_clock_khz(host);
985 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
986 	}
987 
988 	return ms;
989 }
990 
991 /*
992  * Attempts to reset the card and get back to the requested partition.
993  * Therefore any error here must result in cancelling the block layer
994  * request, it must not be reattempted without going through the mmc_blk
995  * partition sanity checks.
996  */
997 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
998 			 int type)
999 {
1000 	int err;
1001 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1002 
1003 	if (md->reset_done & type)
1004 		return -EEXIST;
1005 
1006 	md->reset_done |= type;
1007 	err = mmc_hw_reset(host->card);
1008 	/*
1009 	 * A successful reset will leave the card in the main partition, but
1010 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1011 	 * in that case.
1012 	 */
1013 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1014 	if (err)
1015 		return err;
1016 	/* Ensure we switch back to the correct partition */
1017 	if (mmc_blk_part_switch(host->card, md->part_type))
1018 		/*
1019 		 * We have failed to get back into the correct
1020 		 * partition, so we need to abort the whole request.
1021 		 */
1022 		return -ENODEV;
1023 	return 0;
1024 }
1025 
1026 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1027 {
1028 	md->reset_done &= ~type;
1029 }
1030 
1031 /*
1032  * The non-block commands come back from the block layer after it queued it and
1033  * processed it with all other requests and then they get issued in this
1034  * function.
1035  */
1036 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1037 {
1038 	struct mmc_queue_req *mq_rq;
1039 	struct mmc_card *card = mq->card;
1040 	struct mmc_blk_data *md = mq->blkdata;
1041 	struct mmc_blk_ioc_data **idata;
1042 	bool rpmb_ioctl;
1043 	u8 **ext_csd;
1044 	u32 status;
1045 	int ret;
1046 	int i;
1047 
1048 	mq_rq = req_to_mmc_queue_req(req);
1049 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1050 
1051 	switch (mq_rq->drv_op) {
1052 	case MMC_DRV_OP_IOCTL:
1053 		if (card->ext_csd.cmdq_en) {
1054 			ret = mmc_cmdq_disable(card);
1055 			if (ret)
1056 				break;
1057 		}
1058 		fallthrough;
1059 	case MMC_DRV_OP_IOCTL_RPMB:
1060 		idata = mq_rq->drv_op_data;
1061 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1062 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1063 			if (ret)
1064 				break;
1065 		}
1066 		/* Always switch back to main area after RPMB access */
1067 		if (rpmb_ioctl)
1068 			mmc_blk_part_switch(card, 0);
1069 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1070 			mmc_cmdq_enable(card);
1071 		break;
1072 	case MMC_DRV_OP_BOOT_WP:
1073 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1074 				 card->ext_csd.boot_ro_lock |
1075 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1076 				 card->ext_csd.part_time);
1077 		if (ret)
1078 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1079 			       md->disk->disk_name, ret);
1080 		else
1081 			card->ext_csd.boot_ro_lock |=
1082 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1083 		break;
1084 	case MMC_DRV_OP_GET_CARD_STATUS:
1085 		ret = mmc_send_status(card, &status);
1086 		if (!ret)
1087 			ret = status;
1088 		break;
1089 	case MMC_DRV_OP_GET_EXT_CSD:
1090 		ext_csd = mq_rq->drv_op_data;
1091 		ret = mmc_get_ext_csd(card, ext_csd);
1092 		break;
1093 	default:
1094 		pr_err("%s: unknown driver specific operation\n",
1095 		       md->disk->disk_name);
1096 		ret = -EINVAL;
1097 		break;
1098 	}
1099 	mq_rq->drv_op_result = ret;
1100 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1101 }
1102 
1103 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1104 				   int type, unsigned int erase_arg)
1105 {
1106 	struct mmc_blk_data *md = mq->blkdata;
1107 	struct mmc_card *card = md->queue.card;
1108 	unsigned int from, nr;
1109 	int err = 0;
1110 	blk_status_t status = BLK_STS_OK;
1111 
1112 	if (!mmc_can_erase(card)) {
1113 		status = BLK_STS_NOTSUPP;
1114 		goto fail;
1115 	}
1116 
1117 	from = blk_rq_pos(req);
1118 	nr = blk_rq_sectors(req);
1119 
1120 	do {
1121 		err = 0;
1122 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1123 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1124 					 INAND_CMD38_ARG_EXT_CSD,
1125 					 erase_arg == MMC_TRIM_ARG ?
1126 					 INAND_CMD38_ARG_TRIM :
1127 					 INAND_CMD38_ARG_ERASE,
1128 					 card->ext_csd.generic_cmd6_time);
1129 		}
1130 		if (!err)
1131 			err = mmc_erase(card, from, nr, erase_arg);
1132 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1133 	if (err)
1134 		status = BLK_STS_IOERR;
1135 	else
1136 		mmc_blk_reset_success(md, type);
1137 fail:
1138 	blk_mq_end_request(req, status);
1139 }
1140 
1141 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1142 {
1143 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1144 }
1145 
1146 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1147 {
1148 	struct mmc_blk_data *md = mq->blkdata;
1149 	struct mmc_card *card = md->queue.card;
1150 	unsigned int arg = card->erase_arg;
1151 
1152 	if (mmc_card_broken_sd_discard(card))
1153 		arg = SD_ERASE_ARG;
1154 
1155 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1156 }
1157 
1158 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1159 				       struct request *req)
1160 {
1161 	struct mmc_blk_data *md = mq->blkdata;
1162 	struct mmc_card *card = md->queue.card;
1163 	unsigned int from, nr, arg;
1164 	int err = 0, type = MMC_BLK_SECDISCARD;
1165 	blk_status_t status = BLK_STS_OK;
1166 
1167 	if (!(mmc_can_secure_erase_trim(card))) {
1168 		status = BLK_STS_NOTSUPP;
1169 		goto out;
1170 	}
1171 
1172 	from = blk_rq_pos(req);
1173 	nr = blk_rq_sectors(req);
1174 
1175 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1176 		arg = MMC_SECURE_TRIM1_ARG;
1177 	else
1178 		arg = MMC_SECURE_ERASE_ARG;
1179 
1180 retry:
1181 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1182 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1183 				 INAND_CMD38_ARG_EXT_CSD,
1184 				 arg == MMC_SECURE_TRIM1_ARG ?
1185 				 INAND_CMD38_ARG_SECTRIM1 :
1186 				 INAND_CMD38_ARG_SECERASE,
1187 				 card->ext_csd.generic_cmd6_time);
1188 		if (err)
1189 			goto out_retry;
1190 	}
1191 
1192 	err = mmc_erase(card, from, nr, arg);
1193 	if (err == -EIO)
1194 		goto out_retry;
1195 	if (err) {
1196 		status = BLK_STS_IOERR;
1197 		goto out;
1198 	}
1199 
1200 	if (arg == MMC_SECURE_TRIM1_ARG) {
1201 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1202 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1203 					 INAND_CMD38_ARG_EXT_CSD,
1204 					 INAND_CMD38_ARG_SECTRIM2,
1205 					 card->ext_csd.generic_cmd6_time);
1206 			if (err)
1207 				goto out_retry;
1208 		}
1209 
1210 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1211 		if (err == -EIO)
1212 			goto out_retry;
1213 		if (err) {
1214 			status = BLK_STS_IOERR;
1215 			goto out;
1216 		}
1217 	}
1218 
1219 out_retry:
1220 	if (err && !mmc_blk_reset(md, card->host, type))
1221 		goto retry;
1222 	if (!err)
1223 		mmc_blk_reset_success(md, type);
1224 out:
1225 	blk_mq_end_request(req, status);
1226 }
1227 
1228 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1229 {
1230 	struct mmc_blk_data *md = mq->blkdata;
1231 	struct mmc_card *card = md->queue.card;
1232 	int ret = 0;
1233 
1234 	ret = mmc_flush_cache(card->host);
1235 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1236 }
1237 
1238 /*
1239  * Reformat current write as a reliable write, supporting
1240  * both legacy and the enhanced reliable write MMC cards.
1241  * In each transfer we'll handle only as much as a single
1242  * reliable write can handle, thus finish the request in
1243  * partial completions.
1244  */
1245 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1246 				    struct mmc_card *card,
1247 				    struct request *req)
1248 {
1249 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1250 		/* Legacy mode imposes restrictions on transfers. */
1251 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1252 			brq->data.blocks = 1;
1253 
1254 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1255 			brq->data.blocks = card->ext_csd.rel_sectors;
1256 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1257 			brq->data.blocks = 1;
1258 	}
1259 }
1260 
1261 #define CMD_ERRORS_EXCL_OOR						\
1262 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1263 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1264 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1265 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1266 	 R1_CC_ERROR |		/* Card controller error */		\
1267 	 R1_ERROR)		/* General/unknown error */
1268 
1269 #define CMD_ERRORS							\
1270 	(CMD_ERRORS_EXCL_OOR |						\
1271 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1272 
1273 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1274 {
1275 	u32 val;
1276 
1277 	/*
1278 	 * Per the SD specification(physical layer version 4.10)[1],
1279 	 * section 4.3.3, it explicitly states that "When the last
1280 	 * block of user area is read using CMD18, the host should
1281 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1282 	 * is correct". And JESD84-B51 for eMMC also has a similar
1283 	 * statement on section 6.8.3.
1284 	 *
1285 	 * Multiple block read/write could be done by either predefined
1286 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1287 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1288 	 *
1289 	 * However the spec[1] doesn't tell us whether we should also
1290 	 * ignore that for predefined method. But per the spec[1], section
1291 	 * 4.15 Set Block Count Command, it says"If illegal block count
1292 	 * is set, out of range error will be indicated during read/write
1293 	 * operation (For example, data transfer is stopped at user area
1294 	 * boundary)." In another word, we could expect a out of range error
1295 	 * in the response for the following CMD18/25. And if argument of
1296 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1297 	 * we could also expect to get a -ETIMEDOUT or any error number from
1298 	 * the host drivers due to missing data response(for write)/data(for
1299 	 * read), as the cards will stop the data transfer by itself per the
1300 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1301 	 */
1302 
1303 	if (!brq->stop.error) {
1304 		bool oor_with_open_end;
1305 		/* If there is no error yet, check R1 response */
1306 
1307 		val = brq->stop.resp[0] & CMD_ERRORS;
1308 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1309 
1310 		if (val && !oor_with_open_end)
1311 			brq->stop.error = -EIO;
1312 	}
1313 }
1314 
1315 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1316 			      int recovery_mode, bool *do_rel_wr_p,
1317 			      bool *do_data_tag_p)
1318 {
1319 	struct mmc_blk_data *md = mq->blkdata;
1320 	struct mmc_card *card = md->queue.card;
1321 	struct mmc_blk_request *brq = &mqrq->brq;
1322 	struct request *req = mmc_queue_req_to_req(mqrq);
1323 	bool do_rel_wr, do_data_tag;
1324 
1325 	/*
1326 	 * Reliable writes are used to implement Forced Unit Access and
1327 	 * are supported only on MMCs.
1328 	 */
1329 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1330 		    rq_data_dir(req) == WRITE &&
1331 		    (md->flags & MMC_BLK_REL_WR);
1332 
1333 	memset(brq, 0, sizeof(struct mmc_blk_request));
1334 
1335 	mmc_crypto_prepare_req(mqrq);
1336 
1337 	brq->mrq.data = &brq->data;
1338 	brq->mrq.tag = req->tag;
1339 
1340 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1341 	brq->stop.arg = 0;
1342 
1343 	if (rq_data_dir(req) == READ) {
1344 		brq->data.flags = MMC_DATA_READ;
1345 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1346 	} else {
1347 		brq->data.flags = MMC_DATA_WRITE;
1348 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1349 	}
1350 
1351 	brq->data.blksz = 512;
1352 	brq->data.blocks = blk_rq_sectors(req);
1353 	brq->data.blk_addr = blk_rq_pos(req);
1354 
1355 	/*
1356 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1357 	 * The eMMC will give "high" priority tasks priority over "simple"
1358 	 * priority tasks. Here we always set "simple" priority by not setting
1359 	 * MMC_DATA_PRIO.
1360 	 */
1361 
1362 	/*
1363 	 * The block layer doesn't support all sector count
1364 	 * restrictions, so we need to be prepared for too big
1365 	 * requests.
1366 	 */
1367 	if (brq->data.blocks > card->host->max_blk_count)
1368 		brq->data.blocks = card->host->max_blk_count;
1369 
1370 	if (brq->data.blocks > 1) {
1371 		/*
1372 		 * Some SD cards in SPI mode return a CRC error or even lock up
1373 		 * completely when trying to read the last block using a
1374 		 * multiblock read command.
1375 		 */
1376 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1377 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1378 		     get_capacity(md->disk)))
1379 			brq->data.blocks--;
1380 
1381 		/*
1382 		 * After a read error, we redo the request one (native) sector
1383 		 * at a time in order to accurately determine which
1384 		 * sectors can be read successfully.
1385 		 */
1386 		if (recovery_mode)
1387 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1388 
1389 		/*
1390 		 * Some controllers have HW issues while operating
1391 		 * in multiple I/O mode
1392 		 */
1393 		if (card->host->ops->multi_io_quirk)
1394 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1395 						(rq_data_dir(req) == READ) ?
1396 						MMC_DATA_READ : MMC_DATA_WRITE,
1397 						brq->data.blocks);
1398 	}
1399 
1400 	if (do_rel_wr) {
1401 		mmc_apply_rel_rw(brq, card, req);
1402 		brq->data.flags |= MMC_DATA_REL_WR;
1403 	}
1404 
1405 	/*
1406 	 * Data tag is used only during writing meta data to speed
1407 	 * up write and any subsequent read of this meta data
1408 	 */
1409 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1410 		      (req->cmd_flags & REQ_META) &&
1411 		      (rq_data_dir(req) == WRITE) &&
1412 		      ((brq->data.blocks * brq->data.blksz) >=
1413 		       card->ext_csd.data_tag_unit_size);
1414 
1415 	if (do_data_tag)
1416 		brq->data.flags |= MMC_DATA_DAT_TAG;
1417 
1418 	mmc_set_data_timeout(&brq->data, card);
1419 
1420 	brq->data.sg = mqrq->sg;
1421 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1422 
1423 	/*
1424 	 * Adjust the sg list so it is the same size as the
1425 	 * request.
1426 	 */
1427 	if (brq->data.blocks != blk_rq_sectors(req)) {
1428 		int i, data_size = brq->data.blocks << 9;
1429 		struct scatterlist *sg;
1430 
1431 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1432 			data_size -= sg->length;
1433 			if (data_size <= 0) {
1434 				sg->length += data_size;
1435 				i++;
1436 				break;
1437 			}
1438 		}
1439 		brq->data.sg_len = i;
1440 	}
1441 
1442 	if (do_rel_wr_p)
1443 		*do_rel_wr_p = do_rel_wr;
1444 
1445 	if (do_data_tag_p)
1446 		*do_data_tag_p = do_data_tag;
1447 }
1448 
1449 #define MMC_CQE_RETRIES 2
1450 
1451 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1452 {
1453 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1454 	struct mmc_request *mrq = &mqrq->brq.mrq;
1455 	struct request_queue *q = req->q;
1456 	struct mmc_host *host = mq->card->host;
1457 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1458 	unsigned long flags;
1459 	bool put_card;
1460 	int err;
1461 
1462 	mmc_cqe_post_req(host, mrq);
1463 
1464 	if (mrq->cmd && mrq->cmd->error)
1465 		err = mrq->cmd->error;
1466 	else if (mrq->data && mrq->data->error)
1467 		err = mrq->data->error;
1468 	else
1469 		err = 0;
1470 
1471 	if (err) {
1472 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1473 			blk_mq_requeue_request(req, true);
1474 		else
1475 			blk_mq_end_request(req, BLK_STS_IOERR);
1476 	} else if (mrq->data) {
1477 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1478 			blk_mq_requeue_request(req, true);
1479 		else
1480 			__blk_mq_end_request(req, BLK_STS_OK);
1481 	} else {
1482 		blk_mq_end_request(req, BLK_STS_OK);
1483 	}
1484 
1485 	spin_lock_irqsave(&mq->lock, flags);
1486 
1487 	mq->in_flight[issue_type] -= 1;
1488 
1489 	put_card = (mmc_tot_in_flight(mq) == 0);
1490 
1491 	mmc_cqe_check_busy(mq);
1492 
1493 	spin_unlock_irqrestore(&mq->lock, flags);
1494 
1495 	if (!mq->cqe_busy)
1496 		blk_mq_run_hw_queues(q, true);
1497 
1498 	if (put_card)
1499 		mmc_put_card(mq->card, &mq->ctx);
1500 }
1501 
1502 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1503 {
1504 	struct mmc_card *card = mq->card;
1505 	struct mmc_host *host = card->host;
1506 	int err;
1507 
1508 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1509 
1510 	err = mmc_cqe_recovery(host);
1511 	if (err)
1512 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1513 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1514 
1515 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1516 }
1517 
1518 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1519 {
1520 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1521 						  brq.mrq);
1522 	struct request *req = mmc_queue_req_to_req(mqrq);
1523 	struct request_queue *q = req->q;
1524 	struct mmc_queue *mq = q->queuedata;
1525 
1526 	/*
1527 	 * Block layer timeouts race with completions which means the normal
1528 	 * completion path cannot be used during recovery.
1529 	 */
1530 	if (mq->in_recovery)
1531 		mmc_blk_cqe_complete_rq(mq, req);
1532 	else if (likely(!blk_should_fake_timeout(req->q)))
1533 		blk_mq_complete_request(req);
1534 }
1535 
1536 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1537 {
1538 	mrq->done		= mmc_blk_cqe_req_done;
1539 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1540 
1541 	return mmc_cqe_start_req(host, mrq);
1542 }
1543 
1544 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1545 						 struct request *req)
1546 {
1547 	struct mmc_blk_request *brq = &mqrq->brq;
1548 
1549 	memset(brq, 0, sizeof(*brq));
1550 
1551 	brq->mrq.cmd = &brq->cmd;
1552 	brq->mrq.tag = req->tag;
1553 
1554 	return &brq->mrq;
1555 }
1556 
1557 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1558 {
1559 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1560 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1561 
1562 	mrq->cmd->opcode = MMC_SWITCH;
1563 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1564 			(EXT_CSD_FLUSH_CACHE << 16) |
1565 			(1 << 8) |
1566 			EXT_CSD_CMD_SET_NORMAL;
1567 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1568 
1569 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1570 }
1571 
1572 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1573 {
1574 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1575 	struct mmc_host *host = mq->card->host;
1576 	int err;
1577 
1578 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1579 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1580 	mmc_pre_req(host, &mqrq->brq.mrq);
1581 
1582 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1583 	if (err)
1584 		mmc_post_req(host, &mqrq->brq.mrq, err);
1585 
1586 	return err;
1587 }
1588 
1589 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1590 {
1591 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1592 	struct mmc_host *host = mq->card->host;
1593 
1594 	if (host->hsq_enabled)
1595 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1596 
1597 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1598 
1599 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1600 }
1601 
1602 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1603 			       struct mmc_card *card,
1604 			       int recovery_mode,
1605 			       struct mmc_queue *mq)
1606 {
1607 	u32 readcmd, writecmd;
1608 	struct mmc_blk_request *brq = &mqrq->brq;
1609 	struct request *req = mmc_queue_req_to_req(mqrq);
1610 	struct mmc_blk_data *md = mq->blkdata;
1611 	bool do_rel_wr, do_data_tag;
1612 
1613 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1614 
1615 	brq->mrq.cmd = &brq->cmd;
1616 
1617 	brq->cmd.arg = blk_rq_pos(req);
1618 	if (!mmc_card_blockaddr(card))
1619 		brq->cmd.arg <<= 9;
1620 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1621 
1622 	if (brq->data.blocks > 1 || do_rel_wr) {
1623 		/* SPI multiblock writes terminate using a special
1624 		 * token, not a STOP_TRANSMISSION request.
1625 		 */
1626 		if (!mmc_host_is_spi(card->host) ||
1627 		    rq_data_dir(req) == READ)
1628 			brq->mrq.stop = &brq->stop;
1629 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1630 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1631 	} else {
1632 		brq->mrq.stop = NULL;
1633 		readcmd = MMC_READ_SINGLE_BLOCK;
1634 		writecmd = MMC_WRITE_BLOCK;
1635 	}
1636 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1637 
1638 	/*
1639 	 * Pre-defined multi-block transfers are preferable to
1640 	 * open ended-ones (and necessary for reliable writes).
1641 	 * However, it is not sufficient to just send CMD23,
1642 	 * and avoid the final CMD12, as on an error condition
1643 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1644 	 * with Auto-CMD23 enhancements provided by some
1645 	 * hosts, means that the complexity of dealing
1646 	 * with this is best left to the host. If CMD23 is
1647 	 * supported by card and host, we'll fill sbc in and let
1648 	 * the host deal with handling it correctly. This means
1649 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1650 	 * change of behavior will be observed.
1651 	 *
1652 	 * N.B: Some MMC cards experience perf degradation.
1653 	 * We'll avoid using CMD23-bounded multiblock writes for
1654 	 * these, while retaining features like reliable writes.
1655 	 */
1656 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1657 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1658 	     do_data_tag)) {
1659 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1660 		brq->sbc.arg = brq->data.blocks |
1661 			(do_rel_wr ? (1 << 31) : 0) |
1662 			(do_data_tag ? (1 << 29) : 0);
1663 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1664 		brq->mrq.sbc = &brq->sbc;
1665 	}
1666 }
1667 
1668 #define MMC_MAX_RETRIES		5
1669 #define MMC_DATA_RETRIES	2
1670 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1671 
1672 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1673 {
1674 	struct mmc_command cmd = {
1675 		.opcode = MMC_STOP_TRANSMISSION,
1676 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1677 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1678 		.busy_timeout = timeout,
1679 	};
1680 
1681 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1682 }
1683 
1684 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1685 {
1686 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1687 	struct mmc_blk_request *brq = &mqrq->brq;
1688 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1689 	int err;
1690 
1691 	mmc_retune_hold_now(card->host);
1692 
1693 	mmc_blk_send_stop(card, timeout);
1694 
1695 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1696 
1697 	mmc_retune_release(card->host);
1698 
1699 	return err;
1700 }
1701 
1702 #define MMC_READ_SINGLE_RETRIES	2
1703 
1704 /* Single (native) sector read during recovery */
1705 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1706 {
1707 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1708 	struct mmc_request *mrq = &mqrq->brq.mrq;
1709 	struct mmc_card *card = mq->card;
1710 	struct mmc_host *host = card->host;
1711 	blk_status_t error = BLK_STS_OK;
1712 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1713 
1714 	do {
1715 		u32 status;
1716 		int err;
1717 		int retries = 0;
1718 
1719 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1720 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1721 
1722 			mmc_wait_for_req(host, mrq);
1723 
1724 			err = mmc_send_status(card, &status);
1725 			if (err)
1726 				goto error_exit;
1727 
1728 			if (!mmc_host_is_spi(host) &&
1729 			    !mmc_ready_for_data(status)) {
1730 				err = mmc_blk_fix_state(card, req);
1731 				if (err)
1732 					goto error_exit;
1733 			}
1734 
1735 			if (!mrq->cmd->error)
1736 				break;
1737 		}
1738 
1739 		if (mrq->cmd->error ||
1740 		    mrq->data->error ||
1741 		    (!mmc_host_is_spi(host) &&
1742 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1743 			error = BLK_STS_IOERR;
1744 		else
1745 			error = BLK_STS_OK;
1746 
1747 	} while (blk_update_request(req, error, bytes_per_read));
1748 
1749 	return;
1750 
1751 error_exit:
1752 	mrq->data->bytes_xfered = 0;
1753 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1754 	/* Let it try the remaining request again */
1755 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1756 		mqrq->retries = MMC_MAX_RETRIES - 1;
1757 }
1758 
1759 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1760 {
1761 	return !!brq->mrq.sbc;
1762 }
1763 
1764 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1765 {
1766 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1767 }
1768 
1769 /*
1770  * Check for errors the host controller driver might not have seen such as
1771  * response mode errors or invalid card state.
1772  */
1773 static bool mmc_blk_status_error(struct request *req, u32 status)
1774 {
1775 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1776 	struct mmc_blk_request *brq = &mqrq->brq;
1777 	struct mmc_queue *mq = req->q->queuedata;
1778 	u32 stop_err_bits;
1779 
1780 	if (mmc_host_is_spi(mq->card->host))
1781 		return false;
1782 
1783 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1784 
1785 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1786 	       brq->stop.resp[0] & stop_err_bits ||
1787 	       status            & stop_err_bits ||
1788 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1789 }
1790 
1791 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1792 {
1793 	return !brq->sbc.error && !brq->cmd.error &&
1794 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1795 }
1796 
1797 /*
1798  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1799  * policy:
1800  * 1. A request that has transferred at least some data is considered
1801  * successful and will be requeued if there is remaining data to
1802  * transfer.
1803  * 2. Otherwise the number of retries is incremented and the request
1804  * will be requeued if there are remaining retries.
1805  * 3. Otherwise the request will be errored out.
1806  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1807  * mqrq->retries. So there are only 4 possible actions here:
1808  *	1. do not accept the bytes_xfered value i.e. set it to zero
1809  *	2. change mqrq->retries to determine the number of retries
1810  *	3. try to reset the card
1811  *	4. read one sector at a time
1812  */
1813 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1814 {
1815 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1816 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1817 	struct mmc_blk_request *brq = &mqrq->brq;
1818 	struct mmc_blk_data *md = mq->blkdata;
1819 	struct mmc_card *card = mq->card;
1820 	u32 status;
1821 	u32 blocks;
1822 	int err;
1823 
1824 	/*
1825 	 * Some errors the host driver might not have seen. Set the number of
1826 	 * bytes transferred to zero in that case.
1827 	 */
1828 	err = __mmc_send_status(card, &status, 0);
1829 	if (err || mmc_blk_status_error(req, status))
1830 		brq->data.bytes_xfered = 0;
1831 
1832 	mmc_retune_release(card->host);
1833 
1834 	/*
1835 	 * Try again to get the status. This also provides an opportunity for
1836 	 * re-tuning.
1837 	 */
1838 	if (err)
1839 		err = __mmc_send_status(card, &status, 0);
1840 
1841 	/*
1842 	 * Nothing more to do after the number of bytes transferred has been
1843 	 * updated and there is no card.
1844 	 */
1845 	if (err && mmc_detect_card_removed(card->host))
1846 		return;
1847 
1848 	/* Try to get back to "tran" state */
1849 	if (!mmc_host_is_spi(mq->card->host) &&
1850 	    (err || !mmc_ready_for_data(status)))
1851 		err = mmc_blk_fix_state(mq->card, req);
1852 
1853 	/*
1854 	 * Special case for SD cards where the card might record the number of
1855 	 * blocks written.
1856 	 */
1857 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1858 	    rq_data_dir(req) == WRITE) {
1859 		if (mmc_sd_num_wr_blocks(card, &blocks))
1860 			brq->data.bytes_xfered = 0;
1861 		else
1862 			brq->data.bytes_xfered = blocks << 9;
1863 	}
1864 
1865 	/* Reset if the card is in a bad state */
1866 	if (!mmc_host_is_spi(mq->card->host) &&
1867 	    err && mmc_blk_reset(md, card->host, type)) {
1868 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1869 		mqrq->retries = MMC_NO_RETRIES;
1870 		return;
1871 	}
1872 
1873 	/*
1874 	 * If anything was done, just return and if there is anything remaining
1875 	 * on the request it will get requeued.
1876 	 */
1877 	if (brq->data.bytes_xfered)
1878 		return;
1879 
1880 	/* Reset before last retry */
1881 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1882 	    mmc_blk_reset(md, card->host, type))
1883 		return;
1884 
1885 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1886 	if (brq->sbc.error || brq->cmd.error)
1887 		return;
1888 
1889 	/* Reduce the remaining retries for data errors */
1890 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1891 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1892 		return;
1893 	}
1894 
1895 	if (rq_data_dir(req) == READ && brq->data.blocks >
1896 			queue_physical_block_size(mq->queue) >> 9) {
1897 		/* Read one (native) sector at a time */
1898 		mmc_blk_read_single(mq, req);
1899 		return;
1900 	}
1901 }
1902 
1903 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1904 {
1905 	mmc_blk_eval_resp_error(brq);
1906 
1907 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1908 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1909 }
1910 
1911 static int mmc_spi_err_check(struct mmc_card *card)
1912 {
1913 	u32 status = 0;
1914 	int err;
1915 
1916 	/*
1917 	 * SPI does not have a TRAN state we have to wait on, instead the
1918 	 * card is ready again when it no longer holds the line LOW.
1919 	 * We still have to ensure two things here before we know the write
1920 	 * was successful:
1921 	 * 1. The card has not disconnected during busy and we actually read our
1922 	 * own pull-up, thinking it was still connected, so ensure it
1923 	 * still responds.
1924 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1925 	 * just reconnected card after being disconnected during busy.
1926 	 */
1927 	err = __mmc_send_status(card, &status, 0);
1928 	if (err)
1929 		return err;
1930 	/* All R1 and R2 bits of SPI are errors in our case */
1931 	if (status)
1932 		return -EIO;
1933 	return 0;
1934 }
1935 
1936 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1937 {
1938 	struct mmc_blk_busy_data *data = cb_data;
1939 	u32 status = 0;
1940 	int err;
1941 
1942 	err = mmc_send_status(data->card, &status);
1943 	if (err)
1944 		return err;
1945 
1946 	/* Accumulate response error bits. */
1947 	data->status |= status;
1948 
1949 	*busy = !mmc_ready_for_data(status);
1950 	return 0;
1951 }
1952 
1953 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1954 {
1955 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1956 	struct mmc_blk_busy_data cb_data;
1957 	int err;
1958 
1959 	if (rq_data_dir(req) == READ)
1960 		return 0;
1961 
1962 	if (mmc_host_is_spi(card->host)) {
1963 		err = mmc_spi_err_check(card);
1964 		if (err)
1965 			mqrq->brq.data.bytes_xfered = 0;
1966 		return err;
1967 	}
1968 
1969 	cb_data.card = card;
1970 	cb_data.status = 0;
1971 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1972 				  &mmc_blk_busy_cb, &cb_data);
1973 
1974 	/*
1975 	 * Do not assume data transferred correctly if there are any error bits
1976 	 * set.
1977 	 */
1978 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1979 		mqrq->brq.data.bytes_xfered = 0;
1980 		err = err ? err : -EIO;
1981 	}
1982 
1983 	/* Copy the exception bit so it will be seen later on */
1984 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1985 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1986 
1987 	return err;
1988 }
1989 
1990 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1991 					    struct request *req)
1992 {
1993 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1994 
1995 	mmc_blk_reset_success(mq->blkdata, type);
1996 }
1997 
1998 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1999 {
2000 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2001 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2002 
2003 	if (nr_bytes) {
2004 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2005 			blk_mq_requeue_request(req, true);
2006 		else
2007 			__blk_mq_end_request(req, BLK_STS_OK);
2008 	} else if (!blk_rq_bytes(req)) {
2009 		__blk_mq_end_request(req, BLK_STS_IOERR);
2010 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2011 		blk_mq_requeue_request(req, true);
2012 	} else {
2013 		if (mmc_card_removed(mq->card))
2014 			req->rq_flags |= RQF_QUIET;
2015 		blk_mq_end_request(req, BLK_STS_IOERR);
2016 	}
2017 }
2018 
2019 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2020 					struct mmc_queue_req *mqrq)
2021 {
2022 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2023 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2024 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2025 }
2026 
2027 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2028 				 struct mmc_queue_req *mqrq)
2029 {
2030 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2031 		mmc_run_bkops(mq->card);
2032 }
2033 
2034 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2035 {
2036 	struct mmc_queue_req *mqrq =
2037 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2038 	struct request *req = mmc_queue_req_to_req(mqrq);
2039 	struct request_queue *q = req->q;
2040 	struct mmc_queue *mq = q->queuedata;
2041 	struct mmc_host *host = mq->card->host;
2042 	unsigned long flags;
2043 
2044 	if (mmc_blk_rq_error(&mqrq->brq) ||
2045 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2046 		spin_lock_irqsave(&mq->lock, flags);
2047 		mq->recovery_needed = true;
2048 		mq->recovery_req = req;
2049 		spin_unlock_irqrestore(&mq->lock, flags);
2050 
2051 		host->cqe_ops->cqe_recovery_start(host);
2052 
2053 		schedule_work(&mq->recovery_work);
2054 		return;
2055 	}
2056 
2057 	mmc_blk_rw_reset_success(mq, req);
2058 
2059 	/*
2060 	 * Block layer timeouts race with completions which means the normal
2061 	 * completion path cannot be used during recovery.
2062 	 */
2063 	if (mq->in_recovery)
2064 		mmc_blk_cqe_complete_rq(mq, req);
2065 	else if (likely(!blk_should_fake_timeout(req->q)))
2066 		blk_mq_complete_request(req);
2067 }
2068 
2069 void mmc_blk_mq_complete(struct request *req)
2070 {
2071 	struct mmc_queue *mq = req->q->queuedata;
2072 	struct mmc_host *host = mq->card->host;
2073 
2074 	if (host->cqe_enabled)
2075 		mmc_blk_cqe_complete_rq(mq, req);
2076 	else if (likely(!blk_should_fake_timeout(req->q)))
2077 		mmc_blk_mq_complete_rq(mq, req);
2078 }
2079 
2080 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2081 				       struct request *req)
2082 {
2083 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2084 	struct mmc_host *host = mq->card->host;
2085 
2086 	if (mmc_blk_rq_error(&mqrq->brq) ||
2087 	    mmc_blk_card_busy(mq->card, req)) {
2088 		mmc_blk_mq_rw_recovery(mq, req);
2089 	} else {
2090 		mmc_blk_rw_reset_success(mq, req);
2091 		mmc_retune_release(host);
2092 	}
2093 
2094 	mmc_blk_urgent_bkops(mq, mqrq);
2095 }
2096 
2097 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2098 {
2099 	unsigned long flags;
2100 	bool put_card;
2101 
2102 	spin_lock_irqsave(&mq->lock, flags);
2103 
2104 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2105 
2106 	put_card = (mmc_tot_in_flight(mq) == 0);
2107 
2108 	spin_unlock_irqrestore(&mq->lock, flags);
2109 
2110 	if (put_card)
2111 		mmc_put_card(mq->card, &mq->ctx);
2112 }
2113 
2114 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2115 				bool can_sleep)
2116 {
2117 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2118 	struct mmc_request *mrq = &mqrq->brq.mrq;
2119 	struct mmc_host *host = mq->card->host;
2120 
2121 	mmc_post_req(host, mrq, 0);
2122 
2123 	/*
2124 	 * Block layer timeouts race with completions which means the normal
2125 	 * completion path cannot be used during recovery.
2126 	 */
2127 	if (mq->in_recovery) {
2128 		mmc_blk_mq_complete_rq(mq, req);
2129 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2130 		if (can_sleep)
2131 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2132 		else
2133 			blk_mq_complete_request(req);
2134 	}
2135 
2136 	mmc_blk_mq_dec_in_flight(mq, req);
2137 }
2138 
2139 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2140 {
2141 	struct request *req = mq->recovery_req;
2142 	struct mmc_host *host = mq->card->host;
2143 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2144 
2145 	mq->recovery_req = NULL;
2146 	mq->rw_wait = false;
2147 
2148 	if (mmc_blk_rq_error(&mqrq->brq)) {
2149 		mmc_retune_hold_now(host);
2150 		mmc_blk_mq_rw_recovery(mq, req);
2151 	}
2152 
2153 	mmc_blk_urgent_bkops(mq, mqrq);
2154 
2155 	mmc_blk_mq_post_req(mq, req, true);
2156 }
2157 
2158 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2159 					 struct request **prev_req)
2160 {
2161 	if (mmc_host_done_complete(mq->card->host))
2162 		return;
2163 
2164 	mutex_lock(&mq->complete_lock);
2165 
2166 	if (!mq->complete_req)
2167 		goto out_unlock;
2168 
2169 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2170 
2171 	if (prev_req)
2172 		*prev_req = mq->complete_req;
2173 	else
2174 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2175 
2176 	mq->complete_req = NULL;
2177 
2178 out_unlock:
2179 	mutex_unlock(&mq->complete_lock);
2180 }
2181 
2182 void mmc_blk_mq_complete_work(struct work_struct *work)
2183 {
2184 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2185 					    complete_work);
2186 
2187 	mmc_blk_mq_complete_prev_req(mq, NULL);
2188 }
2189 
2190 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2191 {
2192 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2193 						  brq.mrq);
2194 	struct request *req = mmc_queue_req_to_req(mqrq);
2195 	struct request_queue *q = req->q;
2196 	struct mmc_queue *mq = q->queuedata;
2197 	struct mmc_host *host = mq->card->host;
2198 	unsigned long flags;
2199 
2200 	if (!mmc_host_done_complete(host)) {
2201 		bool waiting;
2202 
2203 		/*
2204 		 * We cannot complete the request in this context, so record
2205 		 * that there is a request to complete, and that a following
2206 		 * request does not need to wait (although it does need to
2207 		 * complete complete_req first).
2208 		 */
2209 		spin_lock_irqsave(&mq->lock, flags);
2210 		mq->complete_req = req;
2211 		mq->rw_wait = false;
2212 		waiting = mq->waiting;
2213 		spin_unlock_irqrestore(&mq->lock, flags);
2214 
2215 		/*
2216 		 * If 'waiting' then the waiting task will complete this
2217 		 * request, otherwise queue a work to do it. Note that
2218 		 * complete_work may still race with the dispatch of a following
2219 		 * request.
2220 		 */
2221 		if (waiting)
2222 			wake_up(&mq->wait);
2223 		else
2224 			queue_work(mq->card->complete_wq, &mq->complete_work);
2225 
2226 		return;
2227 	}
2228 
2229 	/* Take the recovery path for errors or urgent background operations */
2230 	if (mmc_blk_rq_error(&mqrq->brq) ||
2231 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2232 		spin_lock_irqsave(&mq->lock, flags);
2233 		mq->recovery_needed = true;
2234 		mq->recovery_req = req;
2235 		spin_unlock_irqrestore(&mq->lock, flags);
2236 		wake_up(&mq->wait);
2237 		schedule_work(&mq->recovery_work);
2238 		return;
2239 	}
2240 
2241 	mmc_blk_rw_reset_success(mq, req);
2242 
2243 	mq->rw_wait = false;
2244 	wake_up(&mq->wait);
2245 
2246 	/* context unknown */
2247 	mmc_blk_mq_post_req(mq, req, false);
2248 }
2249 
2250 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2251 {
2252 	unsigned long flags;
2253 	bool done;
2254 
2255 	/*
2256 	 * Wait while there is another request in progress, but not if recovery
2257 	 * is needed. Also indicate whether there is a request waiting to start.
2258 	 */
2259 	spin_lock_irqsave(&mq->lock, flags);
2260 	if (mq->recovery_needed) {
2261 		*err = -EBUSY;
2262 		done = true;
2263 	} else {
2264 		done = !mq->rw_wait;
2265 	}
2266 	mq->waiting = !done;
2267 	spin_unlock_irqrestore(&mq->lock, flags);
2268 
2269 	return done;
2270 }
2271 
2272 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2273 {
2274 	int err = 0;
2275 
2276 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2277 
2278 	/* Always complete the previous request if there is one */
2279 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2280 
2281 	return err;
2282 }
2283 
2284 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2285 				  struct request *req)
2286 {
2287 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2288 	struct mmc_host *host = mq->card->host;
2289 	struct request *prev_req = NULL;
2290 	int err = 0;
2291 
2292 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2293 
2294 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2295 
2296 	mmc_pre_req(host, &mqrq->brq.mrq);
2297 
2298 	err = mmc_blk_rw_wait(mq, &prev_req);
2299 	if (err)
2300 		goto out_post_req;
2301 
2302 	mq->rw_wait = true;
2303 
2304 	err = mmc_start_request(host, &mqrq->brq.mrq);
2305 
2306 	if (prev_req)
2307 		mmc_blk_mq_post_req(mq, prev_req, true);
2308 
2309 	if (err)
2310 		mq->rw_wait = false;
2311 
2312 	/* Release re-tuning here where there is no synchronization required */
2313 	if (err || mmc_host_done_complete(host))
2314 		mmc_retune_release(host);
2315 
2316 out_post_req:
2317 	if (err)
2318 		mmc_post_req(host, &mqrq->brq.mrq, err);
2319 
2320 	return err;
2321 }
2322 
2323 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2324 {
2325 	if (host->cqe_enabled)
2326 		return host->cqe_ops->cqe_wait_for_idle(host);
2327 
2328 	return mmc_blk_rw_wait(mq, NULL);
2329 }
2330 
2331 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2332 {
2333 	struct mmc_blk_data *md = mq->blkdata;
2334 	struct mmc_card *card = md->queue.card;
2335 	struct mmc_host *host = card->host;
2336 	int ret;
2337 
2338 	ret = mmc_blk_part_switch(card, md->part_type);
2339 	if (ret)
2340 		return MMC_REQ_FAILED_TO_START;
2341 
2342 	switch (mmc_issue_type(mq, req)) {
2343 	case MMC_ISSUE_SYNC:
2344 		ret = mmc_blk_wait_for_idle(mq, host);
2345 		if (ret)
2346 			return MMC_REQ_BUSY;
2347 		switch (req_op(req)) {
2348 		case REQ_OP_DRV_IN:
2349 		case REQ_OP_DRV_OUT:
2350 			mmc_blk_issue_drv_op(mq, req);
2351 			break;
2352 		case REQ_OP_DISCARD:
2353 			mmc_blk_issue_discard_rq(mq, req);
2354 			break;
2355 		case REQ_OP_SECURE_ERASE:
2356 			mmc_blk_issue_secdiscard_rq(mq, req);
2357 			break;
2358 		case REQ_OP_WRITE_ZEROES:
2359 			mmc_blk_issue_trim_rq(mq, req);
2360 			break;
2361 		case REQ_OP_FLUSH:
2362 			mmc_blk_issue_flush(mq, req);
2363 			break;
2364 		default:
2365 			WARN_ON_ONCE(1);
2366 			return MMC_REQ_FAILED_TO_START;
2367 		}
2368 		return MMC_REQ_FINISHED;
2369 	case MMC_ISSUE_DCMD:
2370 	case MMC_ISSUE_ASYNC:
2371 		switch (req_op(req)) {
2372 		case REQ_OP_FLUSH:
2373 			if (!mmc_cache_enabled(host)) {
2374 				blk_mq_end_request(req, BLK_STS_OK);
2375 				return MMC_REQ_FINISHED;
2376 			}
2377 			ret = mmc_blk_cqe_issue_flush(mq, req);
2378 			break;
2379 		case REQ_OP_READ:
2380 		case REQ_OP_WRITE:
2381 			if (host->cqe_enabled)
2382 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2383 			else
2384 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2385 			break;
2386 		default:
2387 			WARN_ON_ONCE(1);
2388 			ret = -EINVAL;
2389 		}
2390 		if (!ret)
2391 			return MMC_REQ_STARTED;
2392 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2393 	default:
2394 		WARN_ON_ONCE(1);
2395 		return MMC_REQ_FAILED_TO_START;
2396 	}
2397 }
2398 
2399 static inline int mmc_blk_readonly(struct mmc_card *card)
2400 {
2401 	return mmc_card_readonly(card) ||
2402 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2403 }
2404 
2405 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2406 					      struct device *parent,
2407 					      sector_t size,
2408 					      bool default_ro,
2409 					      const char *subname,
2410 					      int area_type,
2411 					      unsigned int part_type)
2412 {
2413 	struct mmc_blk_data *md;
2414 	int devidx, ret;
2415 	char cap_str[10];
2416 	bool cache_enabled = false;
2417 	bool fua_enabled = false;
2418 
2419 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2420 	if (devidx < 0) {
2421 		/*
2422 		 * We get -ENOSPC because there are no more any available
2423 		 * devidx. The reason may be that, either userspace haven't yet
2424 		 * unmounted the partitions, which postpones mmc_blk_release()
2425 		 * from being called, or the device has more partitions than
2426 		 * what we support.
2427 		 */
2428 		if (devidx == -ENOSPC)
2429 			dev_err(mmc_dev(card->host),
2430 				"no more device IDs available\n");
2431 
2432 		return ERR_PTR(devidx);
2433 	}
2434 
2435 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2436 	if (!md) {
2437 		ret = -ENOMEM;
2438 		goto out;
2439 	}
2440 
2441 	md->area_type = area_type;
2442 
2443 	/*
2444 	 * Set the read-only status based on the supported commands
2445 	 * and the write protect switch.
2446 	 */
2447 	md->read_only = mmc_blk_readonly(card);
2448 
2449 	md->disk = mmc_init_queue(&md->queue, card);
2450 	if (IS_ERR(md->disk)) {
2451 		ret = PTR_ERR(md->disk);
2452 		goto err_kfree;
2453 	}
2454 
2455 	INIT_LIST_HEAD(&md->part);
2456 	INIT_LIST_HEAD(&md->rpmbs);
2457 	kref_init(&md->kref);
2458 
2459 	md->queue.blkdata = md;
2460 	md->part_type = part_type;
2461 
2462 	md->disk->major	= MMC_BLOCK_MAJOR;
2463 	md->disk->minors = perdev_minors;
2464 	md->disk->first_minor = devidx * perdev_minors;
2465 	md->disk->fops = &mmc_bdops;
2466 	md->disk->private_data = md;
2467 	md->parent = parent;
2468 	set_disk_ro(md->disk, md->read_only || default_ro);
2469 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2470 		md->disk->flags |= GENHD_FL_NO_PART;
2471 
2472 	/*
2473 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2474 	 *
2475 	 * - be set for removable media with permanent block devices
2476 	 * - be unset for removable block devices with permanent media
2477 	 *
2478 	 * Since MMC block devices clearly fall under the second
2479 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2480 	 * should use the block device creation/destruction hotplug
2481 	 * messages to tell when the card is present.
2482 	 */
2483 
2484 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2485 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2486 
2487 	set_capacity(md->disk, size);
2488 
2489 	if (mmc_host_cmd23(card->host)) {
2490 		if ((mmc_card_mmc(card) &&
2491 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2492 		    (mmc_card_sd(card) &&
2493 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2494 			md->flags |= MMC_BLK_CMD23;
2495 	}
2496 
2497 	if (md->flags & MMC_BLK_CMD23 &&
2498 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2499 	     card->ext_csd.rel_sectors)) {
2500 		md->flags |= MMC_BLK_REL_WR;
2501 		fua_enabled = true;
2502 		cache_enabled = true;
2503 	}
2504 	if (mmc_cache_enabled(card->host))
2505 		cache_enabled  = true;
2506 
2507 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2508 
2509 	string_get_size((u64)size, 512, STRING_UNITS_2,
2510 			cap_str, sizeof(cap_str));
2511 	pr_info("%s: %s %s %s %s\n",
2512 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2513 		cap_str, md->read_only ? "(ro)" : "");
2514 
2515 	/* used in ->open, must be set before add_disk: */
2516 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2517 		dev_set_drvdata(&card->dev, md);
2518 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2519 	if (ret)
2520 		goto err_put_disk;
2521 	return md;
2522 
2523  err_put_disk:
2524 	put_disk(md->disk);
2525 	blk_mq_free_tag_set(&md->queue.tag_set);
2526  err_kfree:
2527 	kfree(md);
2528  out:
2529 	ida_simple_remove(&mmc_blk_ida, devidx);
2530 	return ERR_PTR(ret);
2531 }
2532 
2533 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2534 {
2535 	sector_t size;
2536 
2537 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2538 		/*
2539 		 * The EXT_CSD sector count is in number or 512 byte
2540 		 * sectors.
2541 		 */
2542 		size = card->ext_csd.sectors;
2543 	} else {
2544 		/*
2545 		 * The CSD capacity field is in units of read_blkbits.
2546 		 * set_capacity takes units of 512 bytes.
2547 		 */
2548 		size = (typeof(sector_t))card->csd.capacity
2549 			<< (card->csd.read_blkbits - 9);
2550 	}
2551 
2552 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2553 					MMC_BLK_DATA_AREA_MAIN, 0);
2554 }
2555 
2556 static int mmc_blk_alloc_part(struct mmc_card *card,
2557 			      struct mmc_blk_data *md,
2558 			      unsigned int part_type,
2559 			      sector_t size,
2560 			      bool default_ro,
2561 			      const char *subname,
2562 			      int area_type)
2563 {
2564 	struct mmc_blk_data *part_md;
2565 
2566 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2567 				    subname, area_type, part_type);
2568 	if (IS_ERR(part_md))
2569 		return PTR_ERR(part_md);
2570 	list_add(&part_md->part, &md->part);
2571 
2572 	return 0;
2573 }
2574 
2575 /**
2576  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2577  * @filp: the character device file
2578  * @cmd: the ioctl() command
2579  * @arg: the argument from userspace
2580  *
2581  * This will essentially just redirect the ioctl()s coming in over to
2582  * the main block device spawning the RPMB character device.
2583  */
2584 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2585 			   unsigned long arg)
2586 {
2587 	struct mmc_rpmb_data *rpmb = filp->private_data;
2588 	int ret;
2589 
2590 	switch (cmd) {
2591 	case MMC_IOC_CMD:
2592 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2593 					(struct mmc_ioc_cmd __user *)arg,
2594 					rpmb);
2595 		break;
2596 	case MMC_IOC_MULTI_CMD:
2597 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2598 					(struct mmc_ioc_multi_cmd __user *)arg,
2599 					rpmb);
2600 		break;
2601 	default:
2602 		ret = -EINVAL;
2603 		break;
2604 	}
2605 
2606 	return ret;
2607 }
2608 
2609 #ifdef CONFIG_COMPAT
2610 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2611 			      unsigned long arg)
2612 {
2613 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2614 }
2615 #endif
2616 
2617 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2618 {
2619 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2620 						  struct mmc_rpmb_data, chrdev);
2621 
2622 	get_device(&rpmb->dev);
2623 	filp->private_data = rpmb;
2624 	mmc_blk_get(rpmb->md->disk);
2625 
2626 	return nonseekable_open(inode, filp);
2627 }
2628 
2629 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2630 {
2631 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2632 						  struct mmc_rpmb_data, chrdev);
2633 
2634 	mmc_blk_put(rpmb->md);
2635 	put_device(&rpmb->dev);
2636 
2637 	return 0;
2638 }
2639 
2640 static const struct file_operations mmc_rpmb_fileops = {
2641 	.release = mmc_rpmb_chrdev_release,
2642 	.open = mmc_rpmb_chrdev_open,
2643 	.owner = THIS_MODULE,
2644 	.llseek = no_llseek,
2645 	.unlocked_ioctl = mmc_rpmb_ioctl,
2646 #ifdef CONFIG_COMPAT
2647 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2648 #endif
2649 };
2650 
2651 static void mmc_blk_rpmb_device_release(struct device *dev)
2652 {
2653 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2654 
2655 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2656 	kfree(rpmb);
2657 }
2658 
2659 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2660 				   struct mmc_blk_data *md,
2661 				   unsigned int part_index,
2662 				   sector_t size,
2663 				   const char *subname)
2664 {
2665 	int devidx, ret;
2666 	char rpmb_name[DISK_NAME_LEN];
2667 	char cap_str[10];
2668 	struct mmc_rpmb_data *rpmb;
2669 
2670 	/* This creates the minor number for the RPMB char device */
2671 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2672 	if (devidx < 0)
2673 		return devidx;
2674 
2675 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2676 	if (!rpmb) {
2677 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2678 		return -ENOMEM;
2679 	}
2680 
2681 	snprintf(rpmb_name, sizeof(rpmb_name),
2682 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2683 
2684 	rpmb->id = devidx;
2685 	rpmb->part_index = part_index;
2686 	rpmb->dev.init_name = rpmb_name;
2687 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2688 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2689 	rpmb->dev.parent = &card->dev;
2690 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2691 	device_initialize(&rpmb->dev);
2692 	dev_set_drvdata(&rpmb->dev, rpmb);
2693 	rpmb->md = md;
2694 
2695 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2696 	rpmb->chrdev.owner = THIS_MODULE;
2697 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2698 	if (ret) {
2699 		pr_err("%s: could not add character device\n", rpmb_name);
2700 		goto out_put_device;
2701 	}
2702 
2703 	list_add(&rpmb->node, &md->rpmbs);
2704 
2705 	string_get_size((u64)size, 512, STRING_UNITS_2,
2706 			cap_str, sizeof(cap_str));
2707 
2708 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2709 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2710 		MAJOR(mmc_rpmb_devt), rpmb->id);
2711 
2712 	return 0;
2713 
2714 out_put_device:
2715 	put_device(&rpmb->dev);
2716 	return ret;
2717 }
2718 
2719 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2720 
2721 {
2722 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2723 	put_device(&rpmb->dev);
2724 }
2725 
2726 /* MMC Physical partitions consist of two boot partitions and
2727  * up to four general purpose partitions.
2728  * For each partition enabled in EXT_CSD a block device will be allocatedi
2729  * to provide access to the partition.
2730  */
2731 
2732 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2733 {
2734 	int idx, ret;
2735 
2736 	if (!mmc_card_mmc(card))
2737 		return 0;
2738 
2739 	for (idx = 0; idx < card->nr_parts; idx++) {
2740 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2741 			/*
2742 			 * RPMB partitions does not provide block access, they
2743 			 * are only accessed using ioctl():s. Thus create
2744 			 * special RPMB block devices that do not have a
2745 			 * backing block queue for these.
2746 			 */
2747 			ret = mmc_blk_alloc_rpmb_part(card, md,
2748 				card->part[idx].part_cfg,
2749 				card->part[idx].size >> 9,
2750 				card->part[idx].name);
2751 			if (ret)
2752 				return ret;
2753 		} else if (card->part[idx].size) {
2754 			ret = mmc_blk_alloc_part(card, md,
2755 				card->part[idx].part_cfg,
2756 				card->part[idx].size >> 9,
2757 				card->part[idx].force_ro,
2758 				card->part[idx].name,
2759 				card->part[idx].area_type);
2760 			if (ret)
2761 				return ret;
2762 		}
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2769 {
2770 	/*
2771 	 * Flush remaining requests and free queues. It is freeing the queue
2772 	 * that stops new requests from being accepted.
2773 	 */
2774 	del_gendisk(md->disk);
2775 	mmc_cleanup_queue(&md->queue);
2776 	mmc_blk_put(md);
2777 }
2778 
2779 static void mmc_blk_remove_parts(struct mmc_card *card,
2780 				 struct mmc_blk_data *md)
2781 {
2782 	struct list_head *pos, *q;
2783 	struct mmc_blk_data *part_md;
2784 	struct mmc_rpmb_data *rpmb;
2785 
2786 	/* Remove RPMB partitions */
2787 	list_for_each_safe(pos, q, &md->rpmbs) {
2788 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2789 		list_del(pos);
2790 		mmc_blk_remove_rpmb_part(rpmb);
2791 	}
2792 	/* Remove block partitions */
2793 	list_for_each_safe(pos, q, &md->part) {
2794 		part_md = list_entry(pos, struct mmc_blk_data, part);
2795 		list_del(pos);
2796 		mmc_blk_remove_req(part_md);
2797 	}
2798 }
2799 
2800 #ifdef CONFIG_DEBUG_FS
2801 
2802 static int mmc_dbg_card_status_get(void *data, u64 *val)
2803 {
2804 	struct mmc_card *card = data;
2805 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2806 	struct mmc_queue *mq = &md->queue;
2807 	struct request *req;
2808 	int ret;
2809 
2810 	/* Ask the block layer about the card status */
2811 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2812 	if (IS_ERR(req))
2813 		return PTR_ERR(req);
2814 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2815 	blk_execute_rq(req, false);
2816 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2817 	if (ret >= 0) {
2818 		*val = ret;
2819 		ret = 0;
2820 	}
2821 	blk_mq_free_request(req);
2822 
2823 	return ret;
2824 }
2825 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2826 			 NULL, "%08llx\n");
2827 
2828 /* That is two digits * 512 + 1 for newline */
2829 #define EXT_CSD_STR_LEN 1025
2830 
2831 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2832 {
2833 	struct mmc_card *card = inode->i_private;
2834 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2835 	struct mmc_queue *mq = &md->queue;
2836 	struct request *req;
2837 	char *buf;
2838 	ssize_t n = 0;
2839 	u8 *ext_csd;
2840 	int err, i;
2841 
2842 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2843 	if (!buf)
2844 		return -ENOMEM;
2845 
2846 	/* Ask the block layer for the EXT CSD */
2847 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2848 	if (IS_ERR(req)) {
2849 		err = PTR_ERR(req);
2850 		goto out_free;
2851 	}
2852 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2853 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2854 	blk_execute_rq(req, false);
2855 	err = req_to_mmc_queue_req(req)->drv_op_result;
2856 	blk_mq_free_request(req);
2857 	if (err) {
2858 		pr_err("FAILED %d\n", err);
2859 		goto out_free;
2860 	}
2861 
2862 	for (i = 0; i < 512; i++)
2863 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2864 	n += sprintf(buf + n, "\n");
2865 
2866 	if (n != EXT_CSD_STR_LEN) {
2867 		err = -EINVAL;
2868 		kfree(ext_csd);
2869 		goto out_free;
2870 	}
2871 
2872 	filp->private_data = buf;
2873 	kfree(ext_csd);
2874 	return 0;
2875 
2876 out_free:
2877 	kfree(buf);
2878 	return err;
2879 }
2880 
2881 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2882 				size_t cnt, loff_t *ppos)
2883 {
2884 	char *buf = filp->private_data;
2885 
2886 	return simple_read_from_buffer(ubuf, cnt, ppos,
2887 				       buf, EXT_CSD_STR_LEN);
2888 }
2889 
2890 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2891 {
2892 	kfree(file->private_data);
2893 	return 0;
2894 }
2895 
2896 static const struct file_operations mmc_dbg_ext_csd_fops = {
2897 	.open		= mmc_ext_csd_open,
2898 	.read		= mmc_ext_csd_read,
2899 	.release	= mmc_ext_csd_release,
2900 	.llseek		= default_llseek,
2901 };
2902 
2903 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2904 {
2905 	struct dentry *root;
2906 
2907 	if (!card->debugfs_root)
2908 		return 0;
2909 
2910 	root = card->debugfs_root;
2911 
2912 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2913 		md->status_dentry =
2914 			debugfs_create_file_unsafe("status", 0400, root,
2915 						   card,
2916 						   &mmc_dbg_card_status_fops);
2917 		if (!md->status_dentry)
2918 			return -EIO;
2919 	}
2920 
2921 	if (mmc_card_mmc(card)) {
2922 		md->ext_csd_dentry =
2923 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2924 					    &mmc_dbg_ext_csd_fops);
2925 		if (!md->ext_csd_dentry)
2926 			return -EIO;
2927 	}
2928 
2929 	return 0;
2930 }
2931 
2932 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2933 				   struct mmc_blk_data *md)
2934 {
2935 	if (!card->debugfs_root)
2936 		return;
2937 
2938 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2939 		debugfs_remove(md->status_dentry);
2940 		md->status_dentry = NULL;
2941 	}
2942 
2943 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2944 		debugfs_remove(md->ext_csd_dentry);
2945 		md->ext_csd_dentry = NULL;
2946 	}
2947 }
2948 
2949 #else
2950 
2951 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2952 {
2953 	return 0;
2954 }
2955 
2956 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2957 				   struct mmc_blk_data *md)
2958 {
2959 }
2960 
2961 #endif /* CONFIG_DEBUG_FS */
2962 
2963 static int mmc_blk_probe(struct mmc_card *card)
2964 {
2965 	struct mmc_blk_data *md;
2966 	int ret = 0;
2967 
2968 	/*
2969 	 * Check that the card supports the command class(es) we need.
2970 	 */
2971 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2972 		return -ENODEV;
2973 
2974 	mmc_fixup_device(card, mmc_blk_fixups);
2975 
2976 	card->complete_wq = alloc_workqueue("mmc_complete",
2977 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2978 	if (!card->complete_wq) {
2979 		pr_err("Failed to create mmc completion workqueue");
2980 		return -ENOMEM;
2981 	}
2982 
2983 	md = mmc_blk_alloc(card);
2984 	if (IS_ERR(md)) {
2985 		ret = PTR_ERR(md);
2986 		goto out_free;
2987 	}
2988 
2989 	ret = mmc_blk_alloc_parts(card, md);
2990 	if (ret)
2991 		goto out;
2992 
2993 	/* Add two debugfs entries */
2994 	mmc_blk_add_debugfs(card, md);
2995 
2996 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2997 	pm_runtime_use_autosuspend(&card->dev);
2998 
2999 	/*
3000 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3001 	 * decision to be taken during the SDIO init sequence instead.
3002 	 */
3003 	if (!mmc_card_sd_combo(card)) {
3004 		pm_runtime_set_active(&card->dev);
3005 		pm_runtime_enable(&card->dev);
3006 	}
3007 
3008 	return 0;
3009 
3010 out:
3011 	mmc_blk_remove_parts(card, md);
3012 	mmc_blk_remove_req(md);
3013 out_free:
3014 	destroy_workqueue(card->complete_wq);
3015 	return ret;
3016 }
3017 
3018 static void mmc_blk_remove(struct mmc_card *card)
3019 {
3020 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3021 
3022 	mmc_blk_remove_debugfs(card, md);
3023 	mmc_blk_remove_parts(card, md);
3024 	pm_runtime_get_sync(&card->dev);
3025 	if (md->part_curr != md->part_type) {
3026 		mmc_claim_host(card->host);
3027 		mmc_blk_part_switch(card, md->part_type);
3028 		mmc_release_host(card->host);
3029 	}
3030 	if (!mmc_card_sd_combo(card))
3031 		pm_runtime_disable(&card->dev);
3032 	pm_runtime_put_noidle(&card->dev);
3033 	mmc_blk_remove_req(md);
3034 	dev_set_drvdata(&card->dev, NULL);
3035 	destroy_workqueue(card->complete_wq);
3036 }
3037 
3038 static int _mmc_blk_suspend(struct mmc_card *card)
3039 {
3040 	struct mmc_blk_data *part_md;
3041 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3042 
3043 	if (md) {
3044 		mmc_queue_suspend(&md->queue);
3045 		list_for_each_entry(part_md, &md->part, part) {
3046 			mmc_queue_suspend(&part_md->queue);
3047 		}
3048 	}
3049 	return 0;
3050 }
3051 
3052 static void mmc_blk_shutdown(struct mmc_card *card)
3053 {
3054 	_mmc_blk_suspend(card);
3055 }
3056 
3057 #ifdef CONFIG_PM_SLEEP
3058 static int mmc_blk_suspend(struct device *dev)
3059 {
3060 	struct mmc_card *card = mmc_dev_to_card(dev);
3061 
3062 	return _mmc_blk_suspend(card);
3063 }
3064 
3065 static int mmc_blk_resume(struct device *dev)
3066 {
3067 	struct mmc_blk_data *part_md;
3068 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3069 
3070 	if (md) {
3071 		/*
3072 		 * Resume involves the card going into idle state,
3073 		 * so current partition is always the main one.
3074 		 */
3075 		md->part_curr = md->part_type;
3076 		mmc_queue_resume(&md->queue);
3077 		list_for_each_entry(part_md, &md->part, part) {
3078 			mmc_queue_resume(&part_md->queue);
3079 		}
3080 	}
3081 	return 0;
3082 }
3083 #endif
3084 
3085 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3086 
3087 static struct mmc_driver mmc_driver = {
3088 	.drv		= {
3089 		.name	= "mmcblk",
3090 		.pm	= &mmc_blk_pm_ops,
3091 	},
3092 	.probe		= mmc_blk_probe,
3093 	.remove		= mmc_blk_remove,
3094 	.shutdown	= mmc_blk_shutdown,
3095 };
3096 
3097 static int __init mmc_blk_init(void)
3098 {
3099 	int res;
3100 
3101 	res  = bus_register(&mmc_rpmb_bus_type);
3102 	if (res < 0) {
3103 		pr_err("mmcblk: could not register RPMB bus type\n");
3104 		return res;
3105 	}
3106 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3107 	if (res < 0) {
3108 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3109 		goto out_bus_unreg;
3110 	}
3111 
3112 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3113 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3114 
3115 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3116 
3117 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3118 	if (res)
3119 		goto out_chrdev_unreg;
3120 
3121 	res = mmc_register_driver(&mmc_driver);
3122 	if (res)
3123 		goto out_blkdev_unreg;
3124 
3125 	return 0;
3126 
3127 out_blkdev_unreg:
3128 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3129 out_chrdev_unreg:
3130 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3131 out_bus_unreg:
3132 	bus_unregister(&mmc_rpmb_bus_type);
3133 	return res;
3134 }
3135 
3136 static void __exit mmc_blk_exit(void)
3137 {
3138 	mmc_unregister_driver(&mmc_driver);
3139 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3140 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3141 	bus_unregister(&mmc_rpmb_bus_type);
3142 }
3143 
3144 module_init(mmc_blk_init);
3145 module_exit(mmc_blk_exit);
3146 
3147 MODULE_LICENSE("GPL");
3148 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3149 
3150