xref: /linux/drivers/mmc/core/block.c (revision ae22a94997b8a03dcb3c922857c203246711f9d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 struct mmc_blk_busy_data {
100 	struct mmc_card *card;
101 	u32 status;
102 };
103 
104 /*
105  * There is one mmc_blk_data per slot.
106  */
107 struct mmc_blk_data {
108 	struct device	*parent;
109 	struct gendisk	*disk;
110 	struct mmc_queue queue;
111 	struct list_head part;
112 	struct list_head rpmbs;
113 
114 	unsigned int	flags;
115 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
117 
118 	struct kref	kref;
119 	unsigned int	read_only;
120 	unsigned int	part_type;
121 	unsigned int	reset_done;
122 #define MMC_BLK_READ		BIT(0)
123 #define MMC_BLK_WRITE		BIT(1)
124 #define MMC_BLK_DISCARD		BIT(2)
125 #define MMC_BLK_SECDISCARD	BIT(3)
126 #define MMC_BLK_CQE_RECOVERY	BIT(4)
127 #define MMC_BLK_TRIM		BIT(5)
128 
129 	/*
130 	 * Only set in main mmc_blk_data associated
131 	 * with mmc_card with dev_set_drvdata, and keeps
132 	 * track of the current selected device partition.
133 	 */
134 	unsigned int	part_curr;
135 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static const struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int recovery_mode,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183 
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 	struct mmc_blk_data *md;
187 
188 	mutex_lock(&open_lock);
189 	md = disk->private_data;
190 	if (md && !kref_get_unless_zero(&md->kref))
191 		md = NULL;
192 	mutex_unlock(&open_lock);
193 
194 	return md;
195 }
196 
197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 	int devidx = disk->first_minor / perdev_minors;
200 	return devidx;
201 }
202 
203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 	int devidx;
207 
208 	devidx = mmc_get_devidx(md->disk);
209 	ida_free(&mmc_blk_ida, devidx);
210 
211 	mutex_lock(&open_lock);
212 	md->disk->private_data = NULL;
213 	mutex_unlock(&open_lock);
214 
215 	put_disk(md->disk);
216 	kfree(md);
217 }
218 
219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 	kref_put(&md->kref, mmc_blk_kref_release);
222 }
223 
224 static ssize_t power_ro_lock_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	int ret;
228 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 	struct mmc_card *card = md->queue.card;
230 	int locked = 0;
231 
232 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 		locked = 2;
234 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 		locked = 1;
236 
237 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238 
239 	mmc_blk_put(md);
240 
241 	return ret;
242 }
243 
244 static ssize_t power_ro_lock_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t count)
246 {
247 	int ret;
248 	struct mmc_blk_data *md, *part_md;
249 	struct mmc_queue *mq;
250 	struct request *req;
251 	unsigned long set;
252 
253 	if (kstrtoul(buf, 0, &set))
254 		return -EINVAL;
255 
256 	if (set != 1)
257 		return count;
258 
259 	md = mmc_blk_get(dev_to_disk(dev));
260 	mq = &md->queue;
261 
262 	/* Dispatch locking to the block layer */
263 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 	if (IS_ERR(req)) {
265 		count = PTR_ERR(req);
266 		goto out_put;
267 	}
268 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 	blk_execute_rq(req, false);
271 	ret = req_to_mmc_queue_req(req)->drv_op_result;
272 	blk_mq_free_request(req);
273 
274 	if (!ret) {
275 		pr_info("%s: Locking boot partition ro until next power on\n",
276 			md->disk->disk_name);
277 		set_disk_ro(md->disk, 1);
278 
279 		list_for_each_entry(part_md, &md->part, part)
280 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 				set_disk_ro(part_md->disk, 1);
283 			}
284 	}
285 out_put:
286 	mmc_blk_put(md);
287 	return count;
288 }
289 
290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 		power_ro_lock_show, power_ro_lock_store);
292 
293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 			     char *buf)
295 {
296 	int ret;
297 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298 
299 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 		       get_disk_ro(dev_to_disk(dev)) ^
301 		       md->read_only);
302 	mmc_blk_put(md);
303 	return ret;
304 }
305 
306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 			      const char *buf, size_t count)
308 {
309 	int ret;
310 	char *end;
311 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 	unsigned long set = simple_strtoul(buf, &end, 0);
313 	if (end == buf) {
314 		ret = -EINVAL;
315 		goto out;
316 	}
317 
318 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 	ret = count;
320 out:
321 	mmc_blk_put(md);
322 	return ret;
323 }
324 
325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326 
327 static struct attribute *mmc_disk_attrs[] = {
328 	&dev_attr_force_ro.attr,
329 	&dev_attr_ro_lock_until_next_power_on.attr,
330 	NULL,
331 };
332 
333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 		struct attribute *a, int n)
335 {
336 	struct device *dev = kobj_to_dev(kobj);
337 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 	umode_t mode = a->mode;
339 
340 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 	    md->queue.card->ext_csd.boot_ro_lockable) {
343 		mode = S_IRUGO;
344 		if (!(md->queue.card->ext_csd.boot_ro_lock &
345 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 			mode |= S_IWUSR;
347 	}
348 
349 	mmc_blk_put(md);
350 	return mode;
351 }
352 
353 static const struct attribute_group mmc_disk_attr_group = {
354 	.is_visible	= mmc_disk_attrs_is_visible,
355 	.attrs		= mmc_disk_attrs,
356 };
357 
358 static const struct attribute_group *mmc_disk_attr_groups[] = {
359 	&mmc_disk_attr_group,
360 	NULL,
361 };
362 
363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364 {
365 	struct mmc_blk_data *md = mmc_blk_get(disk);
366 	int ret = -ENXIO;
367 
368 	mutex_lock(&block_mutex);
369 	if (md) {
370 		ret = 0;
371 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 			mmc_blk_put(md);
373 			ret = -EROFS;
374 		}
375 	}
376 	mutex_unlock(&block_mutex);
377 
378 	return ret;
379 }
380 
381 static void mmc_blk_release(struct gendisk *disk)
382 {
383 	struct mmc_blk_data *md = disk->private_data;
384 
385 	mutex_lock(&block_mutex);
386 	mmc_blk_put(md);
387 	mutex_unlock(&block_mutex);
388 }
389 
390 static int
391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 {
393 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 	geo->heads = 4;
395 	geo->sectors = 16;
396 	return 0;
397 }
398 
399 struct mmc_blk_ioc_data {
400 	struct mmc_ioc_cmd ic;
401 	unsigned char *buf;
402 	u64 buf_bytes;
403 	unsigned int flags;
404 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
405 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
406 
407 	struct mmc_rpmb_data *rpmb;
408 };
409 
410 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 	struct mmc_ioc_cmd __user *user)
412 {
413 	struct mmc_blk_ioc_data *idata;
414 	int err;
415 
416 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
417 	if (!idata) {
418 		err = -ENOMEM;
419 		goto out;
420 	}
421 
422 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 		err = -EFAULT;
424 		goto idata_err;
425 	}
426 
427 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 		err = -EOVERFLOW;
430 		goto idata_err;
431 	}
432 
433 	if (!idata->buf_bytes) {
434 		idata->buf = NULL;
435 		return idata;
436 	}
437 
438 	idata->buf = memdup_user((void __user *)(unsigned long)
439 				 idata->ic.data_ptr, idata->buf_bytes);
440 	if (IS_ERR(idata->buf)) {
441 		err = PTR_ERR(idata->buf);
442 		goto idata_err;
443 	}
444 
445 	return idata;
446 
447 idata_err:
448 	kfree(idata);
449 out:
450 	return ERR_PTR(err);
451 }
452 
453 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 				      struct mmc_blk_ioc_data *idata)
455 {
456 	struct mmc_ioc_cmd *ic = &idata->ic;
457 
458 	if (copy_to_user(&(ic_ptr->response), ic->response,
459 			 sizeof(ic->response)))
460 		return -EFAULT;
461 
462 	if (!idata->ic.write_flag) {
463 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
464 				 idata->buf, idata->buf_bytes))
465 			return -EFAULT;
466 	}
467 
468 	return 0;
469 }
470 
471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 			       struct mmc_blk_ioc_data **idatas, int i)
473 {
474 	struct mmc_command cmd = {}, sbc = {};
475 	struct mmc_data data = {};
476 	struct mmc_request mrq = {};
477 	struct scatterlist sg;
478 	bool r1b_resp;
479 	unsigned int busy_timeout_ms;
480 	int err;
481 	unsigned int target_part;
482 	struct mmc_blk_ioc_data *idata = idatas[i];
483 	struct mmc_blk_ioc_data *prev_idata = NULL;
484 
485 	if (!card || !md || !idata)
486 		return -EINVAL;
487 
488 	if (idata->flags & MMC_BLK_IOC_DROP)
489 		return 0;
490 
491 	if (idata->flags & MMC_BLK_IOC_SBC)
492 		prev_idata = idatas[i - 1];
493 
494 	/*
495 	 * The RPMB accesses comes in from the character device, so we
496 	 * need to target these explicitly. Else we just target the
497 	 * partition type for the block device the ioctl() was issued
498 	 * on.
499 	 */
500 	if (idata->rpmb) {
501 		/* Support multiple RPMB partitions */
502 		target_part = idata->rpmb->part_index;
503 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 	} else {
505 		target_part = md->part_type;
506 	}
507 
508 	cmd.opcode = idata->ic.opcode;
509 	cmd.arg = idata->ic.arg;
510 	cmd.flags = idata->ic.flags;
511 
512 	if (idata->buf_bytes) {
513 		data.sg = &sg;
514 		data.sg_len = 1;
515 		data.blksz = idata->ic.blksz;
516 		data.blocks = idata->ic.blocks;
517 
518 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519 
520 		if (idata->ic.write_flag)
521 			data.flags = MMC_DATA_WRITE;
522 		else
523 			data.flags = MMC_DATA_READ;
524 
525 		/* data.flags must already be set before doing this. */
526 		mmc_set_data_timeout(&data, card);
527 
528 		/* Allow overriding the timeout_ns for empirical tuning. */
529 		if (idata->ic.data_timeout_ns)
530 			data.timeout_ns = idata->ic.data_timeout_ns;
531 
532 		mrq.data = &data;
533 	}
534 
535 	mrq.cmd = &cmd;
536 
537 	err = mmc_blk_part_switch(card, target_part);
538 	if (err)
539 		return err;
540 
541 	if (idata->ic.is_acmd) {
542 		err = mmc_app_cmd(card->host, card);
543 		if (err)
544 			return err;
545 	}
546 
547 	if (idata->rpmb || prev_idata) {
548 		sbc.opcode = MMC_SET_BLOCK_COUNT;
549 		/*
550 		 * We don't do any blockcount validation because the max size
551 		 * may be increased by a future standard. We just copy the
552 		 * 'Reliable Write' bit here.
553 		 */
554 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 		if (prev_idata)
556 			sbc.arg = prev_idata->ic.arg;
557 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 		mrq.sbc = &sbc;
559 	}
560 
561 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 	    (cmd.opcode == MMC_SWITCH))
563 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
564 
565 	/* If it's an R1B response we need some more preparations. */
566 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 	if (r1b_resp)
569 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
570 
571 	mmc_wait_for_req(card->host, &mrq);
572 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573 
574 	if (prev_idata) {
575 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 		if (sbc.error) {
577 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 							__func__, sbc.error);
579 			return sbc.error;
580 		}
581 	}
582 
583 	if (cmd.error) {
584 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 						__func__, cmd.error);
586 		return cmd.error;
587 	}
588 	if (data.error) {
589 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 						__func__, data.error);
591 		return data.error;
592 	}
593 
594 	/*
595 	 * Make sure the cache of the PARTITION_CONFIG register and
596 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 	 * changed it successfully.
598 	 */
599 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 	    (cmd.opcode == MMC_SWITCH)) {
601 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
602 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603 
604 		/*
605 		 * Update cache so the next mmc_blk_part_switch call operates
606 		 * on up-to-date data.
607 		 */
608 		card->ext_csd.part_config = value;
609 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 	}
611 
612 	/*
613 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 	 * will get turned back on if the card is re-initialized, e.g.
615 	 * suspend/resume or hw reset in recovery.
616 	 */
617 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 	    (cmd.opcode == MMC_SWITCH)) {
619 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620 
621 		card->ext_csd.cache_ctrl = value;
622 	}
623 
624 	/*
625 	 * According to the SD specs, some commands require a delay after
626 	 * issuing the command.
627 	 */
628 	if (idata->ic.postsleep_min_us)
629 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630 
631 	if (mmc_host_is_spi(card->host)) {
632 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 			return mmc_spi_err_check(card);
634 		return err;
635 	}
636 
637 	/*
638 	 * Ensure RPMB, writes and R1B responses are completed by polling with
639 	 * CMD13. Note that, usually we don't need to poll when using HW busy
640 	 * detection, but here it's needed since some commands may indicate the
641 	 * error through the R1 status bits.
642 	 */
643 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 		struct mmc_blk_busy_data cb_data = {
645 			.card = card,
646 		};
647 
648 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
649 					  &mmc_blk_busy_cb, &cb_data);
650 
651 		idata->ic.response[0] = cb_data.status;
652 	}
653 
654 	return err;
655 }
656 
657 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 			     struct mmc_ioc_cmd __user *ic_ptr,
659 			     struct mmc_rpmb_data *rpmb)
660 {
661 	struct mmc_blk_ioc_data *idata;
662 	struct mmc_blk_ioc_data *idatas[1];
663 	struct mmc_queue *mq;
664 	struct mmc_card *card;
665 	int err = 0, ioc_err = 0;
666 	struct request *req;
667 
668 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
669 	if (IS_ERR(idata))
670 		return PTR_ERR(idata);
671 	/* This will be NULL on non-RPMB ioctl():s */
672 	idata->rpmb = rpmb;
673 
674 	card = md->queue.card;
675 	if (IS_ERR(card)) {
676 		err = PTR_ERR(card);
677 		goto cmd_done;
678 	}
679 
680 	/*
681 	 * Dispatch the ioctl() into the block request queue.
682 	 */
683 	mq = &md->queue;
684 	req = blk_mq_alloc_request(mq->queue,
685 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
686 	if (IS_ERR(req)) {
687 		err = PTR_ERR(req);
688 		goto cmd_done;
689 	}
690 	idatas[0] = idata;
691 	req_to_mmc_queue_req(req)->drv_op =
692 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
694 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
695 	req_to_mmc_queue_req(req)->ioc_count = 1;
696 	blk_execute_rq(req, false);
697 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
698 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 	blk_mq_free_request(req);
700 
701 cmd_done:
702 	kfree(idata->buf);
703 	kfree(idata);
704 	return ioc_err ? ioc_err : err;
705 }
706 
707 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 				   struct mmc_ioc_multi_cmd __user *user,
709 				   struct mmc_rpmb_data *rpmb)
710 {
711 	struct mmc_blk_ioc_data **idata = NULL;
712 	struct mmc_ioc_cmd __user *cmds = user->cmds;
713 	struct mmc_card *card;
714 	struct mmc_queue *mq;
715 	int err = 0, ioc_err = 0;
716 	__u64 num_of_cmds;
717 	unsigned int i, n;
718 	struct request *req;
719 
720 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
721 			   sizeof(num_of_cmds)))
722 		return -EFAULT;
723 
724 	if (!num_of_cmds)
725 		return 0;
726 
727 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 		return -EINVAL;
729 
730 	n = num_of_cmds;
731 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
732 	if (!idata)
733 		return -ENOMEM;
734 
735 	for (i = 0; i < n; i++) {
736 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
737 		if (IS_ERR(idata[i])) {
738 			err = PTR_ERR(idata[i]);
739 			n = i;
740 			goto cmd_err;
741 		}
742 		/* This will be NULL on non-RPMB ioctl():s */
743 		idata[i]->rpmb = rpmb;
744 	}
745 
746 	card = md->queue.card;
747 	if (IS_ERR(card)) {
748 		err = PTR_ERR(card);
749 		goto cmd_err;
750 	}
751 
752 
753 	/*
754 	 * Dispatch the ioctl()s into the block request queue.
755 	 */
756 	mq = &md->queue;
757 	req = blk_mq_alloc_request(mq->queue,
758 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
759 	if (IS_ERR(req)) {
760 		err = PTR_ERR(req);
761 		goto cmd_err;
762 	}
763 	req_to_mmc_queue_req(req)->drv_op =
764 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
766 	req_to_mmc_queue_req(req)->drv_op_data = idata;
767 	req_to_mmc_queue_req(req)->ioc_count = n;
768 	blk_execute_rq(req, false);
769 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
770 
771 	/* copy to user if data and response */
772 	for (i = 0; i < n && !err; i++)
773 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
774 
775 	blk_mq_free_request(req);
776 
777 cmd_err:
778 	for (i = 0; i < n; i++) {
779 		kfree(idata[i]->buf);
780 		kfree(idata[i]);
781 	}
782 	kfree(idata);
783 	return ioc_err ? ioc_err : err;
784 }
785 
786 static int mmc_blk_check_blkdev(struct block_device *bdev)
787 {
788 	/*
789 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 	 * whole block device, not on a partition.  This prevents overspray
791 	 * between sibling partitions.
792 	 */
793 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 		return -EPERM;
795 	return 0;
796 }
797 
798 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 	unsigned int cmd, unsigned long arg)
800 {
801 	struct mmc_blk_data *md;
802 	int ret;
803 
804 	switch (cmd) {
805 	case MMC_IOC_CMD:
806 		ret = mmc_blk_check_blkdev(bdev);
807 		if (ret)
808 			return ret;
809 		md = mmc_blk_get(bdev->bd_disk);
810 		if (!md)
811 			return -EINVAL;
812 		ret = mmc_blk_ioctl_cmd(md,
813 					(struct mmc_ioc_cmd __user *)arg,
814 					NULL);
815 		mmc_blk_put(md);
816 		return ret;
817 	case MMC_IOC_MULTI_CMD:
818 		ret = mmc_blk_check_blkdev(bdev);
819 		if (ret)
820 			return ret;
821 		md = mmc_blk_get(bdev->bd_disk);
822 		if (!md)
823 			return -EINVAL;
824 		ret = mmc_blk_ioctl_multi_cmd(md,
825 					(struct mmc_ioc_multi_cmd __user *)arg,
826 					NULL);
827 		mmc_blk_put(md);
828 		return ret;
829 	default:
830 		return -EINVAL;
831 	}
832 }
833 
834 #ifdef CONFIG_COMPAT
835 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 	unsigned int cmd, unsigned long arg)
837 {
838 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
839 }
840 #endif
841 
842 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 					  sector_t *sector)
844 {
845 	struct mmc_blk_data *md;
846 	int ret;
847 
848 	md = mmc_blk_get(disk);
849 	if (!md)
850 		return -EINVAL;
851 
852 	if (md->queue.card)
853 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
854 	else
855 		ret = -ENODEV;
856 
857 	mmc_blk_put(md);
858 
859 	return ret;
860 }
861 
862 static const struct block_device_operations mmc_bdops = {
863 	.open			= mmc_blk_open,
864 	.release		= mmc_blk_release,
865 	.getgeo			= mmc_blk_getgeo,
866 	.owner			= THIS_MODULE,
867 	.ioctl			= mmc_blk_ioctl,
868 #ifdef CONFIG_COMPAT
869 	.compat_ioctl		= mmc_blk_compat_ioctl,
870 #endif
871 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
872 };
873 
874 static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 				   unsigned int part_type)
876 {
877 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
878 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
879 	int ret = 0;
880 
881 	if ((part_type & mask) == rpmb) {
882 		if (card->ext_csd.cmdq_en) {
883 			ret = mmc_cmdq_disable(card);
884 			if (ret)
885 				return ret;
886 		}
887 		mmc_retune_pause(card->host);
888 	}
889 
890 	return ret;
891 }
892 
893 static int mmc_blk_part_switch_post(struct mmc_card *card,
894 				    unsigned int part_type)
895 {
896 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
897 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
898 	int ret = 0;
899 
900 	if ((part_type & mask) == rpmb) {
901 		mmc_retune_unpause(card->host);
902 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
903 			ret = mmc_cmdq_enable(card);
904 	}
905 
906 	return ret;
907 }
908 
909 static inline int mmc_blk_part_switch(struct mmc_card *card,
910 				      unsigned int part_type)
911 {
912 	int ret = 0;
913 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
914 
915 	if (main_md->part_curr == part_type)
916 		return 0;
917 
918 	if (mmc_card_mmc(card)) {
919 		u8 part_config = card->ext_csd.part_config;
920 
921 		ret = mmc_blk_part_switch_pre(card, part_type);
922 		if (ret)
923 			return ret;
924 
925 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
926 		part_config |= part_type;
927 
928 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
929 				 EXT_CSD_PART_CONFIG, part_config,
930 				 card->ext_csd.part_time);
931 		if (ret) {
932 			mmc_blk_part_switch_post(card, part_type);
933 			return ret;
934 		}
935 
936 		card->ext_csd.part_config = part_config;
937 
938 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
939 	}
940 
941 	main_md->part_curr = part_type;
942 	return ret;
943 }
944 
945 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
946 {
947 	int err;
948 	u32 result;
949 	__be32 *blocks;
950 
951 	struct mmc_request mrq = {};
952 	struct mmc_command cmd = {};
953 	struct mmc_data data = {};
954 
955 	struct scatterlist sg;
956 
957 	err = mmc_app_cmd(card->host, card);
958 	if (err)
959 		return err;
960 
961 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
962 	cmd.arg = 0;
963 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
964 
965 	data.blksz = 4;
966 	data.blocks = 1;
967 	data.flags = MMC_DATA_READ;
968 	data.sg = &sg;
969 	data.sg_len = 1;
970 	mmc_set_data_timeout(&data, card);
971 
972 	mrq.cmd = &cmd;
973 	mrq.data = &data;
974 
975 	blocks = kmalloc(4, GFP_KERNEL);
976 	if (!blocks)
977 		return -ENOMEM;
978 
979 	sg_init_one(&sg, blocks, 4);
980 
981 	mmc_wait_for_req(card->host, &mrq);
982 
983 	result = ntohl(*blocks);
984 	kfree(blocks);
985 
986 	if (cmd.error || data.error)
987 		return -EIO;
988 
989 	*written_blocks = result;
990 
991 	return 0;
992 }
993 
994 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
995 {
996 	if (host->actual_clock)
997 		return host->actual_clock / 1000;
998 
999 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1000 	if (host->ios.clock)
1001 		return host->ios.clock / 2000;
1002 
1003 	/* How can there be no clock */
1004 	WARN_ON_ONCE(1);
1005 	return 100; /* 100 kHz is minimum possible value */
1006 }
1007 
1008 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1009 					    struct mmc_data *data)
1010 {
1011 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1012 	unsigned int khz;
1013 
1014 	if (data->timeout_clks) {
1015 		khz = mmc_blk_clock_khz(host);
1016 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1017 	}
1018 
1019 	return ms;
1020 }
1021 
1022 /*
1023  * Attempts to reset the card and get back to the requested partition.
1024  * Therefore any error here must result in cancelling the block layer
1025  * request, it must not be reattempted without going through the mmc_blk
1026  * partition sanity checks.
1027  */
1028 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1029 			 int type)
1030 {
1031 	int err;
1032 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1033 
1034 	if (md->reset_done & type)
1035 		return -EEXIST;
1036 
1037 	md->reset_done |= type;
1038 	err = mmc_hw_reset(host->card);
1039 	/*
1040 	 * A successful reset will leave the card in the main partition, but
1041 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1042 	 * in that case.
1043 	 */
1044 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1045 	if (err)
1046 		return err;
1047 	/* Ensure we switch back to the correct partition */
1048 	if (mmc_blk_part_switch(host->card, md->part_type))
1049 		/*
1050 		 * We have failed to get back into the correct
1051 		 * partition, so we need to abort the whole request.
1052 		 */
1053 		return -ENODEV;
1054 	return 0;
1055 }
1056 
1057 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1058 {
1059 	md->reset_done &= ~type;
1060 }
1061 
1062 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1063 {
1064 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1065 	int i;
1066 
1067 	for (i = 1; i < mq_rq->ioc_count; i++) {
1068 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1069 		    mmc_op_multi(idata[i]->ic.opcode)) {
1070 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1071 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1072 		}
1073 	}
1074 }
1075 
1076 /*
1077  * The non-block commands come back from the block layer after it queued it and
1078  * processed it with all other requests and then they get issued in this
1079  * function.
1080  */
1081 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1082 {
1083 	struct mmc_queue_req *mq_rq;
1084 	struct mmc_card *card = mq->card;
1085 	struct mmc_blk_data *md = mq->blkdata;
1086 	struct mmc_blk_ioc_data **idata;
1087 	bool rpmb_ioctl;
1088 	u8 **ext_csd;
1089 	u32 status;
1090 	int ret;
1091 	int i;
1092 
1093 	mq_rq = req_to_mmc_queue_req(req);
1094 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1095 
1096 	switch (mq_rq->drv_op) {
1097 	case MMC_DRV_OP_IOCTL:
1098 		if (card->ext_csd.cmdq_en) {
1099 			ret = mmc_cmdq_disable(card);
1100 			if (ret)
1101 				break;
1102 		}
1103 
1104 		mmc_blk_check_sbc(mq_rq);
1105 
1106 		fallthrough;
1107 	case MMC_DRV_OP_IOCTL_RPMB:
1108 		idata = mq_rq->drv_op_data;
1109 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1110 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1111 			if (ret)
1112 				break;
1113 		}
1114 		/* Always switch back to main area after RPMB access */
1115 		if (rpmb_ioctl)
1116 			mmc_blk_part_switch(card, 0);
1117 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1118 			mmc_cmdq_enable(card);
1119 		break;
1120 	case MMC_DRV_OP_BOOT_WP:
1121 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1122 				 card->ext_csd.boot_ro_lock |
1123 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1124 				 card->ext_csd.part_time);
1125 		if (ret)
1126 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1127 			       md->disk->disk_name, ret);
1128 		else
1129 			card->ext_csd.boot_ro_lock |=
1130 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1131 		break;
1132 	case MMC_DRV_OP_GET_CARD_STATUS:
1133 		ret = mmc_send_status(card, &status);
1134 		if (!ret)
1135 			ret = status;
1136 		break;
1137 	case MMC_DRV_OP_GET_EXT_CSD:
1138 		ext_csd = mq_rq->drv_op_data;
1139 		ret = mmc_get_ext_csd(card, ext_csd);
1140 		break;
1141 	default:
1142 		pr_err("%s: unknown driver specific operation\n",
1143 		       md->disk->disk_name);
1144 		ret = -EINVAL;
1145 		break;
1146 	}
1147 	mq_rq->drv_op_result = ret;
1148 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1149 }
1150 
1151 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1152 				   int type, unsigned int erase_arg)
1153 {
1154 	struct mmc_blk_data *md = mq->blkdata;
1155 	struct mmc_card *card = md->queue.card;
1156 	unsigned int from, nr;
1157 	int err = 0;
1158 	blk_status_t status = BLK_STS_OK;
1159 
1160 	if (!mmc_can_erase(card)) {
1161 		status = BLK_STS_NOTSUPP;
1162 		goto fail;
1163 	}
1164 
1165 	from = blk_rq_pos(req);
1166 	nr = blk_rq_sectors(req);
1167 
1168 	do {
1169 		err = 0;
1170 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 					 INAND_CMD38_ARG_EXT_CSD,
1173 					 erase_arg == MMC_TRIM_ARG ?
1174 					 INAND_CMD38_ARG_TRIM :
1175 					 INAND_CMD38_ARG_ERASE,
1176 					 card->ext_csd.generic_cmd6_time);
1177 		}
1178 		if (!err)
1179 			err = mmc_erase(card, from, nr, erase_arg);
1180 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1181 	if (err)
1182 		status = BLK_STS_IOERR;
1183 	else
1184 		mmc_blk_reset_success(md, type);
1185 fail:
1186 	blk_mq_end_request(req, status);
1187 }
1188 
1189 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1190 {
1191 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1192 }
1193 
1194 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1195 {
1196 	struct mmc_blk_data *md = mq->blkdata;
1197 	struct mmc_card *card = md->queue.card;
1198 	unsigned int arg = card->erase_arg;
1199 
1200 	if (mmc_card_broken_sd_discard(card))
1201 		arg = SD_ERASE_ARG;
1202 
1203 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1204 }
1205 
1206 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1207 				       struct request *req)
1208 {
1209 	struct mmc_blk_data *md = mq->blkdata;
1210 	struct mmc_card *card = md->queue.card;
1211 	unsigned int from, nr, arg;
1212 	int err = 0, type = MMC_BLK_SECDISCARD;
1213 	blk_status_t status = BLK_STS_OK;
1214 
1215 	if (!(mmc_can_secure_erase_trim(card))) {
1216 		status = BLK_STS_NOTSUPP;
1217 		goto out;
1218 	}
1219 
1220 	from = blk_rq_pos(req);
1221 	nr = blk_rq_sectors(req);
1222 
1223 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1224 		arg = MMC_SECURE_TRIM1_ARG;
1225 	else
1226 		arg = MMC_SECURE_ERASE_ARG;
1227 
1228 retry:
1229 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1230 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1231 				 INAND_CMD38_ARG_EXT_CSD,
1232 				 arg == MMC_SECURE_TRIM1_ARG ?
1233 				 INAND_CMD38_ARG_SECTRIM1 :
1234 				 INAND_CMD38_ARG_SECERASE,
1235 				 card->ext_csd.generic_cmd6_time);
1236 		if (err)
1237 			goto out_retry;
1238 	}
1239 
1240 	err = mmc_erase(card, from, nr, arg);
1241 	if (err == -EIO)
1242 		goto out_retry;
1243 	if (err) {
1244 		status = BLK_STS_IOERR;
1245 		goto out;
1246 	}
1247 
1248 	if (arg == MMC_SECURE_TRIM1_ARG) {
1249 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1250 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1251 					 INAND_CMD38_ARG_EXT_CSD,
1252 					 INAND_CMD38_ARG_SECTRIM2,
1253 					 card->ext_csd.generic_cmd6_time);
1254 			if (err)
1255 				goto out_retry;
1256 		}
1257 
1258 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1259 		if (err == -EIO)
1260 			goto out_retry;
1261 		if (err) {
1262 			status = BLK_STS_IOERR;
1263 			goto out;
1264 		}
1265 	}
1266 
1267 out_retry:
1268 	if (err && !mmc_blk_reset(md, card->host, type))
1269 		goto retry;
1270 	if (!err)
1271 		mmc_blk_reset_success(md, type);
1272 out:
1273 	blk_mq_end_request(req, status);
1274 }
1275 
1276 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1277 {
1278 	struct mmc_blk_data *md = mq->blkdata;
1279 	struct mmc_card *card = md->queue.card;
1280 	int ret = 0;
1281 
1282 	ret = mmc_flush_cache(card->host);
1283 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1284 }
1285 
1286 /*
1287  * Reformat current write as a reliable write, supporting
1288  * both legacy and the enhanced reliable write MMC cards.
1289  * In each transfer we'll handle only as much as a single
1290  * reliable write can handle, thus finish the request in
1291  * partial completions.
1292  */
1293 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1294 				    struct mmc_card *card,
1295 				    struct request *req)
1296 {
1297 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1298 		/* Legacy mode imposes restrictions on transfers. */
1299 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1300 			brq->data.blocks = 1;
1301 
1302 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1303 			brq->data.blocks = card->ext_csd.rel_sectors;
1304 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1305 			brq->data.blocks = 1;
1306 	}
1307 }
1308 
1309 #define CMD_ERRORS_EXCL_OOR						\
1310 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1311 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1312 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1313 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1314 	 R1_CC_ERROR |		/* Card controller error */		\
1315 	 R1_ERROR)		/* General/unknown error */
1316 
1317 #define CMD_ERRORS							\
1318 	(CMD_ERRORS_EXCL_OOR |						\
1319 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1320 
1321 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1322 {
1323 	u32 val;
1324 
1325 	/*
1326 	 * Per the SD specification(physical layer version 4.10)[1],
1327 	 * section 4.3.3, it explicitly states that "When the last
1328 	 * block of user area is read using CMD18, the host should
1329 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1330 	 * is correct". And JESD84-B51 for eMMC also has a similar
1331 	 * statement on section 6.8.3.
1332 	 *
1333 	 * Multiple block read/write could be done by either predefined
1334 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1335 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1336 	 *
1337 	 * However the spec[1] doesn't tell us whether we should also
1338 	 * ignore that for predefined method. But per the spec[1], section
1339 	 * 4.15 Set Block Count Command, it says"If illegal block count
1340 	 * is set, out of range error will be indicated during read/write
1341 	 * operation (For example, data transfer is stopped at user area
1342 	 * boundary)." In another word, we could expect a out of range error
1343 	 * in the response for the following CMD18/25. And if argument of
1344 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1345 	 * we could also expect to get a -ETIMEDOUT or any error number from
1346 	 * the host drivers due to missing data response(for write)/data(for
1347 	 * read), as the cards will stop the data transfer by itself per the
1348 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1349 	 */
1350 
1351 	if (!brq->stop.error) {
1352 		bool oor_with_open_end;
1353 		/* If there is no error yet, check R1 response */
1354 
1355 		val = brq->stop.resp[0] & CMD_ERRORS;
1356 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1357 
1358 		if (val && !oor_with_open_end)
1359 			brq->stop.error = -EIO;
1360 	}
1361 }
1362 
1363 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1364 			      int recovery_mode, bool *do_rel_wr_p,
1365 			      bool *do_data_tag_p)
1366 {
1367 	struct mmc_blk_data *md = mq->blkdata;
1368 	struct mmc_card *card = md->queue.card;
1369 	struct mmc_blk_request *brq = &mqrq->brq;
1370 	struct request *req = mmc_queue_req_to_req(mqrq);
1371 	bool do_rel_wr, do_data_tag;
1372 
1373 	/*
1374 	 * Reliable writes are used to implement Forced Unit Access and
1375 	 * are supported only on MMCs.
1376 	 */
1377 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1378 		    rq_data_dir(req) == WRITE &&
1379 		    (md->flags & MMC_BLK_REL_WR);
1380 
1381 	memset(brq, 0, sizeof(struct mmc_blk_request));
1382 
1383 	mmc_crypto_prepare_req(mqrq);
1384 
1385 	brq->mrq.data = &brq->data;
1386 	brq->mrq.tag = req->tag;
1387 
1388 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1389 	brq->stop.arg = 0;
1390 
1391 	if (rq_data_dir(req) == READ) {
1392 		brq->data.flags = MMC_DATA_READ;
1393 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1394 	} else {
1395 		brq->data.flags = MMC_DATA_WRITE;
1396 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1397 	}
1398 
1399 	brq->data.blksz = 512;
1400 	brq->data.blocks = blk_rq_sectors(req);
1401 	brq->data.blk_addr = blk_rq_pos(req);
1402 
1403 	/*
1404 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1405 	 * The eMMC will give "high" priority tasks priority over "simple"
1406 	 * priority tasks. Here we always set "simple" priority by not setting
1407 	 * MMC_DATA_PRIO.
1408 	 */
1409 
1410 	/*
1411 	 * The block layer doesn't support all sector count
1412 	 * restrictions, so we need to be prepared for too big
1413 	 * requests.
1414 	 */
1415 	if (brq->data.blocks > card->host->max_blk_count)
1416 		brq->data.blocks = card->host->max_blk_count;
1417 
1418 	if (brq->data.blocks > 1) {
1419 		/*
1420 		 * Some SD cards in SPI mode return a CRC error or even lock up
1421 		 * completely when trying to read the last block using a
1422 		 * multiblock read command.
1423 		 */
1424 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1425 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1426 		     get_capacity(md->disk)))
1427 			brq->data.blocks--;
1428 
1429 		/*
1430 		 * After a read error, we redo the request one (native) sector
1431 		 * at a time in order to accurately determine which
1432 		 * sectors can be read successfully.
1433 		 */
1434 		if (recovery_mode)
1435 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1436 
1437 		/*
1438 		 * Some controllers have HW issues while operating
1439 		 * in multiple I/O mode
1440 		 */
1441 		if (card->host->ops->multi_io_quirk)
1442 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1443 						(rq_data_dir(req) == READ) ?
1444 						MMC_DATA_READ : MMC_DATA_WRITE,
1445 						brq->data.blocks);
1446 	}
1447 
1448 	if (do_rel_wr) {
1449 		mmc_apply_rel_rw(brq, card, req);
1450 		brq->data.flags |= MMC_DATA_REL_WR;
1451 	}
1452 
1453 	/*
1454 	 * Data tag is used only during writing meta data to speed
1455 	 * up write and any subsequent read of this meta data
1456 	 */
1457 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1458 		      (req->cmd_flags & REQ_META) &&
1459 		      (rq_data_dir(req) == WRITE) &&
1460 		      ((brq->data.blocks * brq->data.blksz) >=
1461 		       card->ext_csd.data_tag_unit_size);
1462 
1463 	if (do_data_tag)
1464 		brq->data.flags |= MMC_DATA_DAT_TAG;
1465 
1466 	mmc_set_data_timeout(&brq->data, card);
1467 
1468 	brq->data.sg = mqrq->sg;
1469 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1470 
1471 	/*
1472 	 * Adjust the sg list so it is the same size as the
1473 	 * request.
1474 	 */
1475 	if (brq->data.blocks != blk_rq_sectors(req)) {
1476 		int i, data_size = brq->data.blocks << 9;
1477 		struct scatterlist *sg;
1478 
1479 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1480 			data_size -= sg->length;
1481 			if (data_size <= 0) {
1482 				sg->length += data_size;
1483 				i++;
1484 				break;
1485 			}
1486 		}
1487 		brq->data.sg_len = i;
1488 	}
1489 
1490 	if (do_rel_wr_p)
1491 		*do_rel_wr_p = do_rel_wr;
1492 
1493 	if (do_data_tag_p)
1494 		*do_data_tag_p = do_data_tag;
1495 }
1496 
1497 #define MMC_CQE_RETRIES 2
1498 
1499 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1500 {
1501 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1502 	struct mmc_request *mrq = &mqrq->brq.mrq;
1503 	struct request_queue *q = req->q;
1504 	struct mmc_host *host = mq->card->host;
1505 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1506 	unsigned long flags;
1507 	bool put_card;
1508 	int err;
1509 
1510 	mmc_cqe_post_req(host, mrq);
1511 
1512 	if (mrq->cmd && mrq->cmd->error)
1513 		err = mrq->cmd->error;
1514 	else if (mrq->data && mrq->data->error)
1515 		err = mrq->data->error;
1516 	else
1517 		err = 0;
1518 
1519 	if (err) {
1520 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1521 			blk_mq_requeue_request(req, true);
1522 		else
1523 			blk_mq_end_request(req, BLK_STS_IOERR);
1524 	} else if (mrq->data) {
1525 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1526 			blk_mq_requeue_request(req, true);
1527 		else
1528 			__blk_mq_end_request(req, BLK_STS_OK);
1529 	} else if (mq->in_recovery) {
1530 		blk_mq_requeue_request(req, true);
1531 	} else {
1532 		blk_mq_end_request(req, BLK_STS_OK);
1533 	}
1534 
1535 	spin_lock_irqsave(&mq->lock, flags);
1536 
1537 	mq->in_flight[issue_type] -= 1;
1538 
1539 	put_card = (mmc_tot_in_flight(mq) == 0);
1540 
1541 	mmc_cqe_check_busy(mq);
1542 
1543 	spin_unlock_irqrestore(&mq->lock, flags);
1544 
1545 	if (!mq->cqe_busy)
1546 		blk_mq_run_hw_queues(q, true);
1547 
1548 	if (put_card)
1549 		mmc_put_card(mq->card, &mq->ctx);
1550 }
1551 
1552 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1553 {
1554 	struct mmc_card *card = mq->card;
1555 	struct mmc_host *host = card->host;
1556 	int err;
1557 
1558 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1559 
1560 	err = mmc_cqe_recovery(host);
1561 	if (err)
1562 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1563 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1564 
1565 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1566 }
1567 
1568 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1569 {
1570 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1571 						  brq.mrq);
1572 	struct request *req = mmc_queue_req_to_req(mqrq);
1573 	struct request_queue *q = req->q;
1574 	struct mmc_queue *mq = q->queuedata;
1575 
1576 	/*
1577 	 * Block layer timeouts race with completions which means the normal
1578 	 * completion path cannot be used during recovery.
1579 	 */
1580 	if (mq->in_recovery)
1581 		mmc_blk_cqe_complete_rq(mq, req);
1582 	else if (likely(!blk_should_fake_timeout(req->q)))
1583 		blk_mq_complete_request(req);
1584 }
1585 
1586 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1587 {
1588 	mrq->done		= mmc_blk_cqe_req_done;
1589 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1590 
1591 	return mmc_cqe_start_req(host, mrq);
1592 }
1593 
1594 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1595 						 struct request *req)
1596 {
1597 	struct mmc_blk_request *brq = &mqrq->brq;
1598 
1599 	memset(brq, 0, sizeof(*brq));
1600 
1601 	brq->mrq.cmd = &brq->cmd;
1602 	brq->mrq.tag = req->tag;
1603 
1604 	return &brq->mrq;
1605 }
1606 
1607 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1608 {
1609 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1610 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1611 
1612 	mrq->cmd->opcode = MMC_SWITCH;
1613 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1614 			(EXT_CSD_FLUSH_CACHE << 16) |
1615 			(1 << 8) |
1616 			EXT_CSD_CMD_SET_NORMAL;
1617 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1618 
1619 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1620 }
1621 
1622 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1623 {
1624 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1625 	struct mmc_host *host = mq->card->host;
1626 	int err;
1627 
1628 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1629 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1630 	mmc_pre_req(host, &mqrq->brq.mrq);
1631 
1632 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1633 	if (err)
1634 		mmc_post_req(host, &mqrq->brq.mrq, err);
1635 
1636 	return err;
1637 }
1638 
1639 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1640 {
1641 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1642 	struct mmc_host *host = mq->card->host;
1643 
1644 	if (host->hsq_enabled)
1645 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1646 
1647 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1648 
1649 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1650 }
1651 
1652 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1653 			       struct mmc_card *card,
1654 			       int recovery_mode,
1655 			       struct mmc_queue *mq)
1656 {
1657 	u32 readcmd, writecmd;
1658 	struct mmc_blk_request *brq = &mqrq->brq;
1659 	struct request *req = mmc_queue_req_to_req(mqrq);
1660 	struct mmc_blk_data *md = mq->blkdata;
1661 	bool do_rel_wr, do_data_tag;
1662 
1663 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1664 
1665 	brq->mrq.cmd = &brq->cmd;
1666 
1667 	brq->cmd.arg = blk_rq_pos(req);
1668 	if (!mmc_card_blockaddr(card))
1669 		brq->cmd.arg <<= 9;
1670 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1671 
1672 	if (brq->data.blocks > 1 || do_rel_wr) {
1673 		/* SPI multiblock writes terminate using a special
1674 		 * token, not a STOP_TRANSMISSION request.
1675 		 */
1676 		if (!mmc_host_is_spi(card->host) ||
1677 		    rq_data_dir(req) == READ)
1678 			brq->mrq.stop = &brq->stop;
1679 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1680 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1681 	} else {
1682 		brq->mrq.stop = NULL;
1683 		readcmd = MMC_READ_SINGLE_BLOCK;
1684 		writecmd = MMC_WRITE_BLOCK;
1685 	}
1686 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1687 
1688 	/*
1689 	 * Pre-defined multi-block transfers are preferable to
1690 	 * open ended-ones (and necessary for reliable writes).
1691 	 * However, it is not sufficient to just send CMD23,
1692 	 * and avoid the final CMD12, as on an error condition
1693 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1694 	 * with Auto-CMD23 enhancements provided by some
1695 	 * hosts, means that the complexity of dealing
1696 	 * with this is best left to the host. If CMD23 is
1697 	 * supported by card and host, we'll fill sbc in and let
1698 	 * the host deal with handling it correctly. This means
1699 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1700 	 * change of behavior will be observed.
1701 	 *
1702 	 * N.B: Some MMC cards experience perf degradation.
1703 	 * We'll avoid using CMD23-bounded multiblock writes for
1704 	 * these, while retaining features like reliable writes.
1705 	 */
1706 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1707 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1708 	     do_data_tag)) {
1709 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1710 		brq->sbc.arg = brq->data.blocks |
1711 			(do_rel_wr ? (1 << 31) : 0) |
1712 			(do_data_tag ? (1 << 29) : 0);
1713 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1714 		brq->mrq.sbc = &brq->sbc;
1715 	}
1716 }
1717 
1718 #define MMC_MAX_RETRIES		5
1719 #define MMC_DATA_RETRIES	2
1720 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1721 
1722 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1723 {
1724 	struct mmc_command cmd = {
1725 		.opcode = MMC_STOP_TRANSMISSION,
1726 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1727 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1728 		.busy_timeout = timeout,
1729 	};
1730 
1731 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1732 }
1733 
1734 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1735 {
1736 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1737 	struct mmc_blk_request *brq = &mqrq->brq;
1738 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1739 	int err;
1740 
1741 	mmc_retune_hold_now(card->host);
1742 
1743 	mmc_blk_send_stop(card, timeout);
1744 
1745 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1746 
1747 	mmc_retune_release(card->host);
1748 
1749 	return err;
1750 }
1751 
1752 #define MMC_READ_SINGLE_RETRIES	2
1753 
1754 /* Single (native) sector read during recovery */
1755 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1756 {
1757 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1758 	struct mmc_request *mrq = &mqrq->brq.mrq;
1759 	struct mmc_card *card = mq->card;
1760 	struct mmc_host *host = card->host;
1761 	blk_status_t error = BLK_STS_OK;
1762 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1763 
1764 	do {
1765 		u32 status;
1766 		int err;
1767 		int retries = 0;
1768 
1769 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1770 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1771 
1772 			mmc_wait_for_req(host, mrq);
1773 
1774 			err = mmc_send_status(card, &status);
1775 			if (err)
1776 				goto error_exit;
1777 
1778 			if (!mmc_host_is_spi(host) &&
1779 			    !mmc_ready_for_data(status)) {
1780 				err = mmc_blk_fix_state(card, req);
1781 				if (err)
1782 					goto error_exit;
1783 			}
1784 
1785 			if (!mrq->cmd->error)
1786 				break;
1787 		}
1788 
1789 		if (mrq->cmd->error ||
1790 		    mrq->data->error ||
1791 		    (!mmc_host_is_spi(host) &&
1792 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1793 			error = BLK_STS_IOERR;
1794 		else
1795 			error = BLK_STS_OK;
1796 
1797 	} while (blk_update_request(req, error, bytes_per_read));
1798 
1799 	return;
1800 
1801 error_exit:
1802 	mrq->data->bytes_xfered = 0;
1803 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1804 	/* Let it try the remaining request again */
1805 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1806 		mqrq->retries = MMC_MAX_RETRIES - 1;
1807 }
1808 
1809 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1810 {
1811 	return !!brq->mrq.sbc;
1812 }
1813 
1814 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1815 {
1816 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1817 }
1818 
1819 /*
1820  * Check for errors the host controller driver might not have seen such as
1821  * response mode errors or invalid card state.
1822  */
1823 static bool mmc_blk_status_error(struct request *req, u32 status)
1824 {
1825 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1826 	struct mmc_blk_request *brq = &mqrq->brq;
1827 	struct mmc_queue *mq = req->q->queuedata;
1828 	u32 stop_err_bits;
1829 
1830 	if (mmc_host_is_spi(mq->card->host))
1831 		return false;
1832 
1833 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1834 
1835 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1836 	       brq->stop.resp[0] & stop_err_bits ||
1837 	       status            & stop_err_bits ||
1838 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1839 }
1840 
1841 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1842 {
1843 	return !brq->sbc.error && !brq->cmd.error &&
1844 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1845 }
1846 
1847 /*
1848  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1849  * policy:
1850  * 1. A request that has transferred at least some data is considered
1851  * successful and will be requeued if there is remaining data to
1852  * transfer.
1853  * 2. Otherwise the number of retries is incremented and the request
1854  * will be requeued if there are remaining retries.
1855  * 3. Otherwise the request will be errored out.
1856  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1857  * mqrq->retries. So there are only 4 possible actions here:
1858  *	1. do not accept the bytes_xfered value i.e. set it to zero
1859  *	2. change mqrq->retries to determine the number of retries
1860  *	3. try to reset the card
1861  *	4. read one sector at a time
1862  */
1863 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1864 {
1865 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1866 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1867 	struct mmc_blk_request *brq = &mqrq->brq;
1868 	struct mmc_blk_data *md = mq->blkdata;
1869 	struct mmc_card *card = mq->card;
1870 	u32 status;
1871 	u32 blocks;
1872 	int err;
1873 
1874 	/*
1875 	 * Some errors the host driver might not have seen. Set the number of
1876 	 * bytes transferred to zero in that case.
1877 	 */
1878 	err = __mmc_send_status(card, &status, 0);
1879 	if (err || mmc_blk_status_error(req, status))
1880 		brq->data.bytes_xfered = 0;
1881 
1882 	mmc_retune_release(card->host);
1883 
1884 	/*
1885 	 * Try again to get the status. This also provides an opportunity for
1886 	 * re-tuning.
1887 	 */
1888 	if (err)
1889 		err = __mmc_send_status(card, &status, 0);
1890 
1891 	/*
1892 	 * Nothing more to do after the number of bytes transferred has been
1893 	 * updated and there is no card.
1894 	 */
1895 	if (err && mmc_detect_card_removed(card->host))
1896 		return;
1897 
1898 	/* Try to get back to "tran" state */
1899 	if (!mmc_host_is_spi(mq->card->host) &&
1900 	    (err || !mmc_ready_for_data(status)))
1901 		err = mmc_blk_fix_state(mq->card, req);
1902 
1903 	/*
1904 	 * Special case for SD cards where the card might record the number of
1905 	 * blocks written.
1906 	 */
1907 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1908 	    rq_data_dir(req) == WRITE) {
1909 		if (mmc_sd_num_wr_blocks(card, &blocks))
1910 			brq->data.bytes_xfered = 0;
1911 		else
1912 			brq->data.bytes_xfered = blocks << 9;
1913 	}
1914 
1915 	/* Reset if the card is in a bad state */
1916 	if (!mmc_host_is_spi(mq->card->host) &&
1917 	    err && mmc_blk_reset(md, card->host, type)) {
1918 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1919 		mqrq->retries = MMC_NO_RETRIES;
1920 		return;
1921 	}
1922 
1923 	/*
1924 	 * If anything was done, just return and if there is anything remaining
1925 	 * on the request it will get requeued.
1926 	 */
1927 	if (brq->data.bytes_xfered)
1928 		return;
1929 
1930 	/* Reset before last retry */
1931 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1932 	    mmc_blk_reset(md, card->host, type))
1933 		return;
1934 
1935 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1936 	if (brq->sbc.error || brq->cmd.error)
1937 		return;
1938 
1939 	/* Reduce the remaining retries for data errors */
1940 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1941 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1942 		return;
1943 	}
1944 
1945 	if (rq_data_dir(req) == READ && brq->data.blocks >
1946 			queue_physical_block_size(mq->queue) >> 9) {
1947 		/* Read one (native) sector at a time */
1948 		mmc_blk_read_single(mq, req);
1949 		return;
1950 	}
1951 }
1952 
1953 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1954 {
1955 	mmc_blk_eval_resp_error(brq);
1956 
1957 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1958 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1959 }
1960 
1961 static int mmc_spi_err_check(struct mmc_card *card)
1962 {
1963 	u32 status = 0;
1964 	int err;
1965 
1966 	/*
1967 	 * SPI does not have a TRAN state we have to wait on, instead the
1968 	 * card is ready again when it no longer holds the line LOW.
1969 	 * We still have to ensure two things here before we know the write
1970 	 * was successful:
1971 	 * 1. The card has not disconnected during busy and we actually read our
1972 	 * own pull-up, thinking it was still connected, so ensure it
1973 	 * still responds.
1974 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1975 	 * just reconnected card after being disconnected during busy.
1976 	 */
1977 	err = __mmc_send_status(card, &status, 0);
1978 	if (err)
1979 		return err;
1980 	/* All R1 and R2 bits of SPI are errors in our case */
1981 	if (status)
1982 		return -EIO;
1983 	return 0;
1984 }
1985 
1986 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1987 {
1988 	struct mmc_blk_busy_data *data = cb_data;
1989 	u32 status = 0;
1990 	int err;
1991 
1992 	err = mmc_send_status(data->card, &status);
1993 	if (err)
1994 		return err;
1995 
1996 	/* Accumulate response error bits. */
1997 	data->status |= status;
1998 
1999 	*busy = !mmc_ready_for_data(status);
2000 	return 0;
2001 }
2002 
2003 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2004 {
2005 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2006 	struct mmc_blk_busy_data cb_data;
2007 	int err;
2008 
2009 	if (rq_data_dir(req) == READ)
2010 		return 0;
2011 
2012 	if (mmc_host_is_spi(card->host)) {
2013 		err = mmc_spi_err_check(card);
2014 		if (err)
2015 			mqrq->brq.data.bytes_xfered = 0;
2016 		return err;
2017 	}
2018 
2019 	cb_data.card = card;
2020 	cb_data.status = 0;
2021 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2022 				  &mmc_blk_busy_cb, &cb_data);
2023 
2024 	/*
2025 	 * Do not assume data transferred correctly if there are any error bits
2026 	 * set.
2027 	 */
2028 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2029 		mqrq->brq.data.bytes_xfered = 0;
2030 		err = err ? err : -EIO;
2031 	}
2032 
2033 	/* Copy the exception bit so it will be seen later on */
2034 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2035 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2036 
2037 	return err;
2038 }
2039 
2040 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2041 					    struct request *req)
2042 {
2043 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2044 
2045 	mmc_blk_reset_success(mq->blkdata, type);
2046 }
2047 
2048 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2049 {
2050 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2051 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2052 
2053 	if (nr_bytes) {
2054 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2055 			blk_mq_requeue_request(req, true);
2056 		else
2057 			__blk_mq_end_request(req, BLK_STS_OK);
2058 	} else if (!blk_rq_bytes(req)) {
2059 		__blk_mq_end_request(req, BLK_STS_IOERR);
2060 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2061 		blk_mq_requeue_request(req, true);
2062 	} else {
2063 		if (mmc_card_removed(mq->card))
2064 			req->rq_flags |= RQF_QUIET;
2065 		blk_mq_end_request(req, BLK_STS_IOERR);
2066 	}
2067 }
2068 
2069 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2070 					struct mmc_queue_req *mqrq)
2071 {
2072 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2073 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2074 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2075 }
2076 
2077 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2078 				 struct mmc_queue_req *mqrq)
2079 {
2080 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2081 		mmc_run_bkops(mq->card);
2082 }
2083 
2084 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2085 {
2086 	struct mmc_queue_req *mqrq =
2087 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2088 	struct request *req = mmc_queue_req_to_req(mqrq);
2089 	struct request_queue *q = req->q;
2090 	struct mmc_queue *mq = q->queuedata;
2091 	struct mmc_host *host = mq->card->host;
2092 	unsigned long flags;
2093 
2094 	if (mmc_blk_rq_error(&mqrq->brq) ||
2095 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2096 		spin_lock_irqsave(&mq->lock, flags);
2097 		mq->recovery_needed = true;
2098 		mq->recovery_req = req;
2099 		spin_unlock_irqrestore(&mq->lock, flags);
2100 
2101 		host->cqe_ops->cqe_recovery_start(host);
2102 
2103 		schedule_work(&mq->recovery_work);
2104 		return;
2105 	}
2106 
2107 	mmc_blk_rw_reset_success(mq, req);
2108 
2109 	/*
2110 	 * Block layer timeouts race with completions which means the normal
2111 	 * completion path cannot be used during recovery.
2112 	 */
2113 	if (mq->in_recovery)
2114 		mmc_blk_cqe_complete_rq(mq, req);
2115 	else if (likely(!blk_should_fake_timeout(req->q)))
2116 		blk_mq_complete_request(req);
2117 }
2118 
2119 void mmc_blk_mq_complete(struct request *req)
2120 {
2121 	struct mmc_queue *mq = req->q->queuedata;
2122 	struct mmc_host *host = mq->card->host;
2123 
2124 	if (host->cqe_enabled)
2125 		mmc_blk_cqe_complete_rq(mq, req);
2126 	else if (likely(!blk_should_fake_timeout(req->q)))
2127 		mmc_blk_mq_complete_rq(mq, req);
2128 }
2129 
2130 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2131 				       struct request *req)
2132 {
2133 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2134 	struct mmc_host *host = mq->card->host;
2135 
2136 	if (mmc_blk_rq_error(&mqrq->brq) ||
2137 	    mmc_blk_card_busy(mq->card, req)) {
2138 		mmc_blk_mq_rw_recovery(mq, req);
2139 	} else {
2140 		mmc_blk_rw_reset_success(mq, req);
2141 		mmc_retune_release(host);
2142 	}
2143 
2144 	mmc_blk_urgent_bkops(mq, mqrq);
2145 }
2146 
2147 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2148 {
2149 	unsigned long flags;
2150 	bool put_card;
2151 
2152 	spin_lock_irqsave(&mq->lock, flags);
2153 
2154 	mq->in_flight[issue_type] -= 1;
2155 
2156 	put_card = (mmc_tot_in_flight(mq) == 0);
2157 
2158 	spin_unlock_irqrestore(&mq->lock, flags);
2159 
2160 	if (put_card)
2161 		mmc_put_card(mq->card, &mq->ctx);
2162 }
2163 
2164 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2165 				bool can_sleep)
2166 {
2167 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2168 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2169 	struct mmc_request *mrq = &mqrq->brq.mrq;
2170 	struct mmc_host *host = mq->card->host;
2171 
2172 	mmc_post_req(host, mrq, 0);
2173 
2174 	/*
2175 	 * Block layer timeouts race with completions which means the normal
2176 	 * completion path cannot be used during recovery.
2177 	 */
2178 	if (mq->in_recovery) {
2179 		mmc_blk_mq_complete_rq(mq, req);
2180 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2181 		if (can_sleep)
2182 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2183 		else
2184 			blk_mq_complete_request(req);
2185 	}
2186 
2187 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2188 }
2189 
2190 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2191 {
2192 	struct request *req = mq->recovery_req;
2193 	struct mmc_host *host = mq->card->host;
2194 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2195 
2196 	mq->recovery_req = NULL;
2197 	mq->rw_wait = false;
2198 
2199 	if (mmc_blk_rq_error(&mqrq->brq)) {
2200 		mmc_retune_hold_now(host);
2201 		mmc_blk_mq_rw_recovery(mq, req);
2202 	}
2203 
2204 	mmc_blk_urgent_bkops(mq, mqrq);
2205 
2206 	mmc_blk_mq_post_req(mq, req, true);
2207 }
2208 
2209 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2210 					 struct request **prev_req)
2211 {
2212 	if (mmc_host_done_complete(mq->card->host))
2213 		return;
2214 
2215 	mutex_lock(&mq->complete_lock);
2216 
2217 	if (!mq->complete_req)
2218 		goto out_unlock;
2219 
2220 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2221 
2222 	if (prev_req)
2223 		*prev_req = mq->complete_req;
2224 	else
2225 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2226 
2227 	mq->complete_req = NULL;
2228 
2229 out_unlock:
2230 	mutex_unlock(&mq->complete_lock);
2231 }
2232 
2233 void mmc_blk_mq_complete_work(struct work_struct *work)
2234 {
2235 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2236 					    complete_work);
2237 
2238 	mmc_blk_mq_complete_prev_req(mq, NULL);
2239 }
2240 
2241 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2242 {
2243 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2244 						  brq.mrq);
2245 	struct request *req = mmc_queue_req_to_req(mqrq);
2246 	struct request_queue *q = req->q;
2247 	struct mmc_queue *mq = q->queuedata;
2248 	struct mmc_host *host = mq->card->host;
2249 	unsigned long flags;
2250 
2251 	if (!mmc_host_done_complete(host)) {
2252 		bool waiting;
2253 
2254 		/*
2255 		 * We cannot complete the request in this context, so record
2256 		 * that there is a request to complete, and that a following
2257 		 * request does not need to wait (although it does need to
2258 		 * complete complete_req first).
2259 		 */
2260 		spin_lock_irqsave(&mq->lock, flags);
2261 		mq->complete_req = req;
2262 		mq->rw_wait = false;
2263 		waiting = mq->waiting;
2264 		spin_unlock_irqrestore(&mq->lock, flags);
2265 
2266 		/*
2267 		 * If 'waiting' then the waiting task will complete this
2268 		 * request, otherwise queue a work to do it. Note that
2269 		 * complete_work may still race with the dispatch of a following
2270 		 * request.
2271 		 */
2272 		if (waiting)
2273 			wake_up(&mq->wait);
2274 		else
2275 			queue_work(mq->card->complete_wq, &mq->complete_work);
2276 
2277 		return;
2278 	}
2279 
2280 	/* Take the recovery path for errors or urgent background operations */
2281 	if (mmc_blk_rq_error(&mqrq->brq) ||
2282 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2283 		spin_lock_irqsave(&mq->lock, flags);
2284 		mq->recovery_needed = true;
2285 		mq->recovery_req = req;
2286 		spin_unlock_irqrestore(&mq->lock, flags);
2287 		wake_up(&mq->wait);
2288 		schedule_work(&mq->recovery_work);
2289 		return;
2290 	}
2291 
2292 	mmc_blk_rw_reset_success(mq, req);
2293 
2294 	mq->rw_wait = false;
2295 	wake_up(&mq->wait);
2296 
2297 	/* context unknown */
2298 	mmc_blk_mq_post_req(mq, req, false);
2299 }
2300 
2301 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2302 {
2303 	unsigned long flags;
2304 	bool done;
2305 
2306 	/*
2307 	 * Wait while there is another request in progress, but not if recovery
2308 	 * is needed. Also indicate whether there is a request waiting to start.
2309 	 */
2310 	spin_lock_irqsave(&mq->lock, flags);
2311 	if (mq->recovery_needed) {
2312 		*err = -EBUSY;
2313 		done = true;
2314 	} else {
2315 		done = !mq->rw_wait;
2316 	}
2317 	mq->waiting = !done;
2318 	spin_unlock_irqrestore(&mq->lock, flags);
2319 
2320 	return done;
2321 }
2322 
2323 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2324 {
2325 	int err = 0;
2326 
2327 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2328 
2329 	/* Always complete the previous request if there is one */
2330 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2331 
2332 	return err;
2333 }
2334 
2335 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2336 				  struct request *req)
2337 {
2338 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2339 	struct mmc_host *host = mq->card->host;
2340 	struct request *prev_req = NULL;
2341 	int err = 0;
2342 
2343 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2344 
2345 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2346 
2347 	mmc_pre_req(host, &mqrq->brq.mrq);
2348 
2349 	err = mmc_blk_rw_wait(mq, &prev_req);
2350 	if (err)
2351 		goto out_post_req;
2352 
2353 	mq->rw_wait = true;
2354 
2355 	err = mmc_start_request(host, &mqrq->brq.mrq);
2356 
2357 	if (prev_req)
2358 		mmc_blk_mq_post_req(mq, prev_req, true);
2359 
2360 	if (err)
2361 		mq->rw_wait = false;
2362 
2363 	/* Release re-tuning here where there is no synchronization required */
2364 	if (err || mmc_host_done_complete(host))
2365 		mmc_retune_release(host);
2366 
2367 out_post_req:
2368 	if (err)
2369 		mmc_post_req(host, &mqrq->brq.mrq, err);
2370 
2371 	return err;
2372 }
2373 
2374 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2375 {
2376 	if (host->cqe_enabled)
2377 		return host->cqe_ops->cqe_wait_for_idle(host);
2378 
2379 	return mmc_blk_rw_wait(mq, NULL);
2380 }
2381 
2382 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2383 {
2384 	struct mmc_blk_data *md = mq->blkdata;
2385 	struct mmc_card *card = md->queue.card;
2386 	struct mmc_host *host = card->host;
2387 	int ret;
2388 
2389 	ret = mmc_blk_part_switch(card, md->part_type);
2390 	if (ret)
2391 		return MMC_REQ_FAILED_TO_START;
2392 
2393 	switch (mmc_issue_type(mq, req)) {
2394 	case MMC_ISSUE_SYNC:
2395 		ret = mmc_blk_wait_for_idle(mq, host);
2396 		if (ret)
2397 			return MMC_REQ_BUSY;
2398 		switch (req_op(req)) {
2399 		case REQ_OP_DRV_IN:
2400 		case REQ_OP_DRV_OUT:
2401 			mmc_blk_issue_drv_op(mq, req);
2402 			break;
2403 		case REQ_OP_DISCARD:
2404 			mmc_blk_issue_discard_rq(mq, req);
2405 			break;
2406 		case REQ_OP_SECURE_ERASE:
2407 			mmc_blk_issue_secdiscard_rq(mq, req);
2408 			break;
2409 		case REQ_OP_WRITE_ZEROES:
2410 			mmc_blk_issue_trim_rq(mq, req);
2411 			break;
2412 		case REQ_OP_FLUSH:
2413 			mmc_blk_issue_flush(mq, req);
2414 			break;
2415 		default:
2416 			WARN_ON_ONCE(1);
2417 			return MMC_REQ_FAILED_TO_START;
2418 		}
2419 		return MMC_REQ_FINISHED;
2420 	case MMC_ISSUE_DCMD:
2421 	case MMC_ISSUE_ASYNC:
2422 		switch (req_op(req)) {
2423 		case REQ_OP_FLUSH:
2424 			if (!mmc_cache_enabled(host)) {
2425 				blk_mq_end_request(req, BLK_STS_OK);
2426 				return MMC_REQ_FINISHED;
2427 			}
2428 			ret = mmc_blk_cqe_issue_flush(mq, req);
2429 			break;
2430 		case REQ_OP_WRITE:
2431 			card->written_flag = true;
2432 			fallthrough;
2433 		case REQ_OP_READ:
2434 			if (host->cqe_enabled)
2435 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2436 			else
2437 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2438 			break;
2439 		default:
2440 			WARN_ON_ONCE(1);
2441 			ret = -EINVAL;
2442 		}
2443 		if (!ret)
2444 			return MMC_REQ_STARTED;
2445 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2446 	default:
2447 		WARN_ON_ONCE(1);
2448 		return MMC_REQ_FAILED_TO_START;
2449 	}
2450 }
2451 
2452 static inline int mmc_blk_readonly(struct mmc_card *card)
2453 {
2454 	return mmc_card_readonly(card) ||
2455 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2456 }
2457 
2458 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2459 					      struct device *parent,
2460 					      sector_t size,
2461 					      bool default_ro,
2462 					      const char *subname,
2463 					      int area_type,
2464 					      unsigned int part_type)
2465 {
2466 	struct mmc_blk_data *md;
2467 	int devidx, ret;
2468 	char cap_str[10];
2469 	bool cache_enabled = false;
2470 	bool fua_enabled = false;
2471 
2472 	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2473 	if (devidx < 0) {
2474 		/*
2475 		 * We get -ENOSPC because there are no more any available
2476 		 * devidx. The reason may be that, either userspace haven't yet
2477 		 * unmounted the partitions, which postpones mmc_blk_release()
2478 		 * from being called, or the device has more partitions than
2479 		 * what we support.
2480 		 */
2481 		if (devidx == -ENOSPC)
2482 			dev_err(mmc_dev(card->host),
2483 				"no more device IDs available\n");
2484 
2485 		return ERR_PTR(devidx);
2486 	}
2487 
2488 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2489 	if (!md) {
2490 		ret = -ENOMEM;
2491 		goto out;
2492 	}
2493 
2494 	md->area_type = area_type;
2495 
2496 	/*
2497 	 * Set the read-only status based on the supported commands
2498 	 * and the write protect switch.
2499 	 */
2500 	md->read_only = mmc_blk_readonly(card);
2501 
2502 	md->disk = mmc_init_queue(&md->queue, card);
2503 	if (IS_ERR(md->disk)) {
2504 		ret = PTR_ERR(md->disk);
2505 		goto err_kfree;
2506 	}
2507 
2508 	INIT_LIST_HEAD(&md->part);
2509 	INIT_LIST_HEAD(&md->rpmbs);
2510 	kref_init(&md->kref);
2511 
2512 	md->queue.blkdata = md;
2513 	md->part_type = part_type;
2514 
2515 	md->disk->major	= MMC_BLOCK_MAJOR;
2516 	md->disk->minors = perdev_minors;
2517 	md->disk->first_minor = devidx * perdev_minors;
2518 	md->disk->fops = &mmc_bdops;
2519 	md->disk->private_data = md;
2520 	md->parent = parent;
2521 	set_disk_ro(md->disk, md->read_only || default_ro);
2522 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2523 		md->disk->flags |= GENHD_FL_NO_PART;
2524 
2525 	/*
2526 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2527 	 *
2528 	 * - be set for removable media with permanent block devices
2529 	 * - be unset for removable block devices with permanent media
2530 	 *
2531 	 * Since MMC block devices clearly fall under the second
2532 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2533 	 * should use the block device creation/destruction hotplug
2534 	 * messages to tell when the card is present.
2535 	 */
2536 
2537 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2538 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2539 
2540 	set_capacity(md->disk, size);
2541 
2542 	if (mmc_host_cmd23(card->host)) {
2543 		if ((mmc_card_mmc(card) &&
2544 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2545 		    (mmc_card_sd(card) &&
2546 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2547 			md->flags |= MMC_BLK_CMD23;
2548 	}
2549 
2550 	if (md->flags & MMC_BLK_CMD23 &&
2551 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2552 	     card->ext_csd.rel_sectors)) {
2553 		md->flags |= MMC_BLK_REL_WR;
2554 		fua_enabled = true;
2555 		cache_enabled = true;
2556 	}
2557 	if (mmc_cache_enabled(card->host))
2558 		cache_enabled  = true;
2559 
2560 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2561 
2562 	string_get_size((u64)size, 512, STRING_UNITS_2,
2563 			cap_str, sizeof(cap_str));
2564 	pr_info("%s: %s %s %s%s\n",
2565 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2566 		cap_str, md->read_only ? " (ro)" : "");
2567 
2568 	/* used in ->open, must be set before add_disk: */
2569 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2570 		dev_set_drvdata(&card->dev, md);
2571 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2572 	if (ret)
2573 		goto err_put_disk;
2574 	return md;
2575 
2576  err_put_disk:
2577 	put_disk(md->disk);
2578 	blk_mq_free_tag_set(&md->queue.tag_set);
2579  err_kfree:
2580 	kfree(md);
2581  out:
2582 	ida_free(&mmc_blk_ida, devidx);
2583 	return ERR_PTR(ret);
2584 }
2585 
2586 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2587 {
2588 	sector_t size;
2589 
2590 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2591 		/*
2592 		 * The EXT_CSD sector count is in number or 512 byte
2593 		 * sectors.
2594 		 */
2595 		size = card->ext_csd.sectors;
2596 	} else {
2597 		/*
2598 		 * The CSD capacity field is in units of read_blkbits.
2599 		 * set_capacity takes units of 512 bytes.
2600 		 */
2601 		size = (typeof(sector_t))card->csd.capacity
2602 			<< (card->csd.read_blkbits - 9);
2603 	}
2604 
2605 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2606 					MMC_BLK_DATA_AREA_MAIN, 0);
2607 }
2608 
2609 static int mmc_blk_alloc_part(struct mmc_card *card,
2610 			      struct mmc_blk_data *md,
2611 			      unsigned int part_type,
2612 			      sector_t size,
2613 			      bool default_ro,
2614 			      const char *subname,
2615 			      int area_type)
2616 {
2617 	struct mmc_blk_data *part_md;
2618 
2619 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2620 				    subname, area_type, part_type);
2621 	if (IS_ERR(part_md))
2622 		return PTR_ERR(part_md);
2623 	list_add(&part_md->part, &md->part);
2624 
2625 	return 0;
2626 }
2627 
2628 /**
2629  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2630  * @filp: the character device file
2631  * @cmd: the ioctl() command
2632  * @arg: the argument from userspace
2633  *
2634  * This will essentially just redirect the ioctl()s coming in over to
2635  * the main block device spawning the RPMB character device.
2636  */
2637 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2638 			   unsigned long arg)
2639 {
2640 	struct mmc_rpmb_data *rpmb = filp->private_data;
2641 	int ret;
2642 
2643 	switch (cmd) {
2644 	case MMC_IOC_CMD:
2645 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2646 					(struct mmc_ioc_cmd __user *)arg,
2647 					rpmb);
2648 		break;
2649 	case MMC_IOC_MULTI_CMD:
2650 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2651 					(struct mmc_ioc_multi_cmd __user *)arg,
2652 					rpmb);
2653 		break;
2654 	default:
2655 		ret = -EINVAL;
2656 		break;
2657 	}
2658 
2659 	return ret;
2660 }
2661 
2662 #ifdef CONFIG_COMPAT
2663 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2664 			      unsigned long arg)
2665 {
2666 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2667 }
2668 #endif
2669 
2670 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2671 {
2672 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2673 						  struct mmc_rpmb_data, chrdev);
2674 
2675 	get_device(&rpmb->dev);
2676 	filp->private_data = rpmb;
2677 	mmc_blk_get(rpmb->md->disk);
2678 
2679 	return nonseekable_open(inode, filp);
2680 }
2681 
2682 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2683 {
2684 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2685 						  struct mmc_rpmb_data, chrdev);
2686 
2687 	mmc_blk_put(rpmb->md);
2688 	put_device(&rpmb->dev);
2689 
2690 	return 0;
2691 }
2692 
2693 static const struct file_operations mmc_rpmb_fileops = {
2694 	.release = mmc_rpmb_chrdev_release,
2695 	.open = mmc_rpmb_chrdev_open,
2696 	.owner = THIS_MODULE,
2697 	.llseek = no_llseek,
2698 	.unlocked_ioctl = mmc_rpmb_ioctl,
2699 #ifdef CONFIG_COMPAT
2700 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2701 #endif
2702 };
2703 
2704 static void mmc_blk_rpmb_device_release(struct device *dev)
2705 {
2706 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2707 
2708 	ida_free(&mmc_rpmb_ida, rpmb->id);
2709 	kfree(rpmb);
2710 }
2711 
2712 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2713 				   struct mmc_blk_data *md,
2714 				   unsigned int part_index,
2715 				   sector_t size,
2716 				   const char *subname)
2717 {
2718 	int devidx, ret;
2719 	char rpmb_name[DISK_NAME_LEN];
2720 	char cap_str[10];
2721 	struct mmc_rpmb_data *rpmb;
2722 
2723 	/* This creates the minor number for the RPMB char device */
2724 	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2725 	if (devidx < 0)
2726 		return devidx;
2727 
2728 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2729 	if (!rpmb) {
2730 		ida_free(&mmc_rpmb_ida, devidx);
2731 		return -ENOMEM;
2732 	}
2733 
2734 	snprintf(rpmb_name, sizeof(rpmb_name),
2735 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2736 
2737 	rpmb->id = devidx;
2738 	rpmb->part_index = part_index;
2739 	rpmb->dev.init_name = rpmb_name;
2740 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2741 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2742 	rpmb->dev.parent = &card->dev;
2743 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2744 	device_initialize(&rpmb->dev);
2745 	dev_set_drvdata(&rpmb->dev, rpmb);
2746 	rpmb->md = md;
2747 
2748 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2749 	rpmb->chrdev.owner = THIS_MODULE;
2750 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2751 	if (ret) {
2752 		pr_err("%s: could not add character device\n", rpmb_name);
2753 		goto out_put_device;
2754 	}
2755 
2756 	list_add(&rpmb->node, &md->rpmbs);
2757 
2758 	string_get_size((u64)size, 512, STRING_UNITS_2,
2759 			cap_str, sizeof(cap_str));
2760 
2761 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2762 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2763 		MAJOR(mmc_rpmb_devt), rpmb->id);
2764 
2765 	return 0;
2766 
2767 out_put_device:
2768 	put_device(&rpmb->dev);
2769 	return ret;
2770 }
2771 
2772 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2773 
2774 {
2775 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2776 	put_device(&rpmb->dev);
2777 }
2778 
2779 /* MMC Physical partitions consist of two boot partitions and
2780  * up to four general purpose partitions.
2781  * For each partition enabled in EXT_CSD a block device will be allocatedi
2782  * to provide access to the partition.
2783  */
2784 
2785 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2786 {
2787 	int idx, ret;
2788 
2789 	if (!mmc_card_mmc(card))
2790 		return 0;
2791 
2792 	for (idx = 0; idx < card->nr_parts; idx++) {
2793 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2794 			/*
2795 			 * RPMB partitions does not provide block access, they
2796 			 * are only accessed using ioctl():s. Thus create
2797 			 * special RPMB block devices that do not have a
2798 			 * backing block queue for these.
2799 			 */
2800 			ret = mmc_blk_alloc_rpmb_part(card, md,
2801 				card->part[idx].part_cfg,
2802 				card->part[idx].size >> 9,
2803 				card->part[idx].name);
2804 			if (ret)
2805 				return ret;
2806 		} else if (card->part[idx].size) {
2807 			ret = mmc_blk_alloc_part(card, md,
2808 				card->part[idx].part_cfg,
2809 				card->part[idx].size >> 9,
2810 				card->part[idx].force_ro,
2811 				card->part[idx].name,
2812 				card->part[idx].area_type);
2813 			if (ret)
2814 				return ret;
2815 		}
2816 	}
2817 
2818 	return 0;
2819 }
2820 
2821 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2822 {
2823 	/*
2824 	 * Flush remaining requests and free queues. It is freeing the queue
2825 	 * that stops new requests from being accepted.
2826 	 */
2827 	del_gendisk(md->disk);
2828 	mmc_cleanup_queue(&md->queue);
2829 	mmc_blk_put(md);
2830 }
2831 
2832 static void mmc_blk_remove_parts(struct mmc_card *card,
2833 				 struct mmc_blk_data *md)
2834 {
2835 	struct list_head *pos, *q;
2836 	struct mmc_blk_data *part_md;
2837 	struct mmc_rpmb_data *rpmb;
2838 
2839 	/* Remove RPMB partitions */
2840 	list_for_each_safe(pos, q, &md->rpmbs) {
2841 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2842 		list_del(pos);
2843 		mmc_blk_remove_rpmb_part(rpmb);
2844 	}
2845 	/* Remove block partitions */
2846 	list_for_each_safe(pos, q, &md->part) {
2847 		part_md = list_entry(pos, struct mmc_blk_data, part);
2848 		list_del(pos);
2849 		mmc_blk_remove_req(part_md);
2850 	}
2851 }
2852 
2853 #ifdef CONFIG_DEBUG_FS
2854 
2855 static int mmc_dbg_card_status_get(void *data, u64 *val)
2856 {
2857 	struct mmc_card *card = data;
2858 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2859 	struct mmc_queue *mq = &md->queue;
2860 	struct request *req;
2861 	int ret;
2862 
2863 	/* Ask the block layer about the card status */
2864 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2865 	if (IS_ERR(req))
2866 		return PTR_ERR(req);
2867 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2868 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2869 	blk_execute_rq(req, false);
2870 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2871 	if (ret >= 0) {
2872 		*val = ret;
2873 		ret = 0;
2874 	}
2875 	blk_mq_free_request(req);
2876 
2877 	return ret;
2878 }
2879 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2880 			 NULL, "%08llx\n");
2881 
2882 /* That is two digits * 512 + 1 for newline */
2883 #define EXT_CSD_STR_LEN 1025
2884 
2885 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2886 {
2887 	struct mmc_card *card = inode->i_private;
2888 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2889 	struct mmc_queue *mq = &md->queue;
2890 	struct request *req;
2891 	char *buf;
2892 	ssize_t n = 0;
2893 	u8 *ext_csd;
2894 	int err, i;
2895 
2896 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2897 	if (!buf)
2898 		return -ENOMEM;
2899 
2900 	/* Ask the block layer for the EXT CSD */
2901 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2902 	if (IS_ERR(req)) {
2903 		err = PTR_ERR(req);
2904 		goto out_free;
2905 	}
2906 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2907 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2908 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2909 	blk_execute_rq(req, false);
2910 	err = req_to_mmc_queue_req(req)->drv_op_result;
2911 	blk_mq_free_request(req);
2912 	if (err) {
2913 		pr_err("FAILED %d\n", err);
2914 		goto out_free;
2915 	}
2916 
2917 	for (i = 0; i < 512; i++)
2918 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2919 	n += sprintf(buf + n, "\n");
2920 
2921 	if (n != EXT_CSD_STR_LEN) {
2922 		err = -EINVAL;
2923 		kfree(ext_csd);
2924 		goto out_free;
2925 	}
2926 
2927 	filp->private_data = buf;
2928 	kfree(ext_csd);
2929 	return 0;
2930 
2931 out_free:
2932 	kfree(buf);
2933 	return err;
2934 }
2935 
2936 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2937 				size_t cnt, loff_t *ppos)
2938 {
2939 	char *buf = filp->private_data;
2940 
2941 	return simple_read_from_buffer(ubuf, cnt, ppos,
2942 				       buf, EXT_CSD_STR_LEN);
2943 }
2944 
2945 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2946 {
2947 	kfree(file->private_data);
2948 	return 0;
2949 }
2950 
2951 static const struct file_operations mmc_dbg_ext_csd_fops = {
2952 	.open		= mmc_ext_csd_open,
2953 	.read		= mmc_ext_csd_read,
2954 	.release	= mmc_ext_csd_release,
2955 	.llseek		= default_llseek,
2956 };
2957 
2958 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2959 {
2960 	struct dentry *root;
2961 
2962 	if (!card->debugfs_root)
2963 		return;
2964 
2965 	root = card->debugfs_root;
2966 
2967 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2968 		md->status_dentry =
2969 			debugfs_create_file_unsafe("status", 0400, root,
2970 						   card,
2971 						   &mmc_dbg_card_status_fops);
2972 	}
2973 
2974 	if (mmc_card_mmc(card)) {
2975 		md->ext_csd_dentry =
2976 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2977 					    &mmc_dbg_ext_csd_fops);
2978 	}
2979 }
2980 
2981 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2982 				   struct mmc_blk_data *md)
2983 {
2984 	if (!card->debugfs_root)
2985 		return;
2986 
2987 	debugfs_remove(md->status_dentry);
2988 	md->status_dentry = NULL;
2989 
2990 	debugfs_remove(md->ext_csd_dentry);
2991 	md->ext_csd_dentry = NULL;
2992 }
2993 
2994 #else
2995 
2996 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2997 {
2998 }
2999 
3000 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3001 				   struct mmc_blk_data *md)
3002 {
3003 }
3004 
3005 #endif /* CONFIG_DEBUG_FS */
3006 
3007 static int mmc_blk_probe(struct mmc_card *card)
3008 {
3009 	struct mmc_blk_data *md;
3010 	int ret = 0;
3011 
3012 	/*
3013 	 * Check that the card supports the command class(es) we need.
3014 	 */
3015 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3016 		return -ENODEV;
3017 
3018 	mmc_fixup_device(card, mmc_blk_fixups);
3019 
3020 	card->complete_wq = alloc_workqueue("mmc_complete",
3021 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3022 	if (!card->complete_wq) {
3023 		pr_err("Failed to create mmc completion workqueue");
3024 		return -ENOMEM;
3025 	}
3026 
3027 	md = mmc_blk_alloc(card);
3028 	if (IS_ERR(md)) {
3029 		ret = PTR_ERR(md);
3030 		goto out_free;
3031 	}
3032 
3033 	ret = mmc_blk_alloc_parts(card, md);
3034 	if (ret)
3035 		goto out;
3036 
3037 	/* Add two debugfs entries */
3038 	mmc_blk_add_debugfs(card, md);
3039 
3040 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3041 	pm_runtime_use_autosuspend(&card->dev);
3042 
3043 	/*
3044 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3045 	 * decision to be taken during the SDIO init sequence instead.
3046 	 */
3047 	if (!mmc_card_sd_combo(card)) {
3048 		pm_runtime_set_active(&card->dev);
3049 		pm_runtime_enable(&card->dev);
3050 	}
3051 
3052 	return 0;
3053 
3054 out:
3055 	mmc_blk_remove_parts(card, md);
3056 	mmc_blk_remove_req(md);
3057 out_free:
3058 	destroy_workqueue(card->complete_wq);
3059 	return ret;
3060 }
3061 
3062 static void mmc_blk_remove(struct mmc_card *card)
3063 {
3064 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3065 
3066 	mmc_blk_remove_debugfs(card, md);
3067 	mmc_blk_remove_parts(card, md);
3068 	pm_runtime_get_sync(&card->dev);
3069 	if (md->part_curr != md->part_type) {
3070 		mmc_claim_host(card->host);
3071 		mmc_blk_part_switch(card, md->part_type);
3072 		mmc_release_host(card->host);
3073 	}
3074 	if (!mmc_card_sd_combo(card))
3075 		pm_runtime_disable(&card->dev);
3076 	pm_runtime_put_noidle(&card->dev);
3077 	mmc_blk_remove_req(md);
3078 	destroy_workqueue(card->complete_wq);
3079 }
3080 
3081 static int _mmc_blk_suspend(struct mmc_card *card)
3082 {
3083 	struct mmc_blk_data *part_md;
3084 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3085 
3086 	if (md) {
3087 		mmc_queue_suspend(&md->queue);
3088 		list_for_each_entry(part_md, &md->part, part) {
3089 			mmc_queue_suspend(&part_md->queue);
3090 		}
3091 	}
3092 	return 0;
3093 }
3094 
3095 static void mmc_blk_shutdown(struct mmc_card *card)
3096 {
3097 	_mmc_blk_suspend(card);
3098 }
3099 
3100 #ifdef CONFIG_PM_SLEEP
3101 static int mmc_blk_suspend(struct device *dev)
3102 {
3103 	struct mmc_card *card = mmc_dev_to_card(dev);
3104 
3105 	return _mmc_blk_suspend(card);
3106 }
3107 
3108 static int mmc_blk_resume(struct device *dev)
3109 {
3110 	struct mmc_blk_data *part_md;
3111 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3112 
3113 	if (md) {
3114 		/*
3115 		 * Resume involves the card going into idle state,
3116 		 * so current partition is always the main one.
3117 		 */
3118 		md->part_curr = md->part_type;
3119 		mmc_queue_resume(&md->queue);
3120 		list_for_each_entry(part_md, &md->part, part) {
3121 			mmc_queue_resume(&part_md->queue);
3122 		}
3123 	}
3124 	return 0;
3125 }
3126 #endif
3127 
3128 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3129 
3130 static struct mmc_driver mmc_driver = {
3131 	.drv		= {
3132 		.name	= "mmcblk",
3133 		.pm	= &mmc_blk_pm_ops,
3134 	},
3135 	.probe		= mmc_blk_probe,
3136 	.remove		= mmc_blk_remove,
3137 	.shutdown	= mmc_blk_shutdown,
3138 };
3139 
3140 static int __init mmc_blk_init(void)
3141 {
3142 	int res;
3143 
3144 	res  = bus_register(&mmc_rpmb_bus_type);
3145 	if (res < 0) {
3146 		pr_err("mmcblk: could not register RPMB bus type\n");
3147 		return res;
3148 	}
3149 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3150 	if (res < 0) {
3151 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3152 		goto out_bus_unreg;
3153 	}
3154 
3155 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3156 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3157 
3158 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3159 
3160 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3161 	if (res)
3162 		goto out_chrdev_unreg;
3163 
3164 	res = mmc_register_driver(&mmc_driver);
3165 	if (res)
3166 		goto out_blkdev_unreg;
3167 
3168 	return 0;
3169 
3170 out_blkdev_unreg:
3171 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3172 out_chrdev_unreg:
3173 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3174 out_bus_unreg:
3175 	bus_unregister(&mmc_rpmb_bus_type);
3176 	return res;
3177 }
3178 
3179 static void __exit mmc_blk_exit(void)
3180 {
3181 	mmc_unregister_driver(&mmc_driver);
3182 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3183 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3184 	bus_unregister(&mmc_rpmb_bus_type);
3185 }
3186 
3187 module_init(mmc_blk_init);
3188 module_exit(mmc_blk_exit);
3189 
3190 MODULE_LICENSE("GPL");
3191 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3192