xref: /linux/drivers/mmc/core/block.c (revision acbf6de674ef7b1b5870b25e7b3c695bf84273d0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 struct mmc_blk_busy_data {
100 	struct mmc_card *card;
101 	u32 status;
102 };
103 
104 /*
105  * There is one mmc_blk_data per slot.
106  */
107 struct mmc_blk_data {
108 	struct device	*parent;
109 	struct gendisk	*disk;
110 	struct mmc_queue queue;
111 	struct list_head part;
112 	struct list_head rpmbs;
113 
114 	unsigned int	flags;
115 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
117 
118 	struct kref	kref;
119 	unsigned int	read_only;
120 	unsigned int	part_type;
121 	unsigned int	reset_done;
122 #define MMC_BLK_READ		BIT(0)
123 #define MMC_BLK_WRITE		BIT(1)
124 #define MMC_BLK_DISCARD		BIT(2)
125 #define MMC_BLK_SECDISCARD	BIT(3)
126 #define MMC_BLK_CQE_RECOVERY	BIT(4)
127 #define MMC_BLK_TRIM		BIT(5)
128 
129 	/*
130 	 * Only set in main mmc_blk_data associated
131 	 * with mmc_card with dev_set_drvdata, and keeps
132 	 * track of the current selected device partition.
133 	 */
134 	unsigned int	part_curr;
135 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int recovery_mode,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 
183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
184 {
185 	struct mmc_blk_data *md;
186 
187 	mutex_lock(&open_lock);
188 	md = disk->private_data;
189 	if (md && !kref_get_unless_zero(&md->kref))
190 		md = NULL;
191 	mutex_unlock(&open_lock);
192 
193 	return md;
194 }
195 
196 static inline int mmc_get_devidx(struct gendisk *disk)
197 {
198 	int devidx = disk->first_minor / perdev_minors;
199 	return devidx;
200 }
201 
202 static void mmc_blk_kref_release(struct kref *ref)
203 {
204 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
205 	int devidx;
206 
207 	devidx = mmc_get_devidx(md->disk);
208 	ida_simple_remove(&mmc_blk_ida, devidx);
209 
210 	mutex_lock(&open_lock);
211 	md->disk->private_data = NULL;
212 	mutex_unlock(&open_lock);
213 
214 	put_disk(md->disk);
215 	kfree(md);
216 }
217 
218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220 	kref_put(&md->kref, mmc_blk_kref_release);
221 }
222 
223 static ssize_t power_ro_lock_show(struct device *dev,
224 		struct device_attribute *attr, char *buf)
225 {
226 	int ret;
227 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 	struct mmc_card *card = md->queue.card;
229 	int locked = 0;
230 
231 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
232 		locked = 2;
233 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
234 		locked = 1;
235 
236 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
237 
238 	mmc_blk_put(md);
239 
240 	return ret;
241 }
242 
243 static ssize_t power_ro_lock_store(struct device *dev,
244 		struct device_attribute *attr, const char *buf, size_t count)
245 {
246 	int ret;
247 	struct mmc_blk_data *md, *part_md;
248 	struct mmc_queue *mq;
249 	struct request *req;
250 	unsigned long set;
251 
252 	if (kstrtoul(buf, 0, &set))
253 		return -EINVAL;
254 
255 	if (set != 1)
256 		return count;
257 
258 	md = mmc_blk_get(dev_to_disk(dev));
259 	mq = &md->queue;
260 
261 	/* Dispatch locking to the block layer */
262 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
263 	if (IS_ERR(req)) {
264 		count = PTR_ERR(req);
265 		goto out_put;
266 	}
267 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
269 	blk_execute_rq(req, false);
270 	ret = req_to_mmc_queue_req(req)->drv_op_result;
271 	blk_mq_free_request(req);
272 
273 	if (!ret) {
274 		pr_info("%s: Locking boot partition ro until next power on\n",
275 			md->disk->disk_name);
276 		set_disk_ro(md->disk, 1);
277 
278 		list_for_each_entry(part_md, &md->part, part)
279 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 				set_disk_ro(part_md->disk, 1);
282 			}
283 	}
284 out_put:
285 	mmc_blk_put(md);
286 	return count;
287 }
288 
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 		power_ro_lock_show, power_ro_lock_store);
291 
292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 			     char *buf)
294 {
295 	int ret;
296 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 
298 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 		       get_disk_ro(dev_to_disk(dev)) ^
300 		       md->read_only);
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 			      const char *buf, size_t count)
307 {
308 	int ret;
309 	char *end;
310 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 	unsigned long set = simple_strtoul(buf, &end, 0);
312 	if (end == buf) {
313 		ret = -EINVAL;
314 		goto out;
315 	}
316 
317 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 	ret = count;
319 out:
320 	mmc_blk_put(md);
321 	return ret;
322 }
323 
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325 
326 static struct attribute *mmc_disk_attrs[] = {
327 	&dev_attr_force_ro.attr,
328 	&dev_attr_ro_lock_until_next_power_on.attr,
329 	NULL,
330 };
331 
332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 		struct attribute *a, int n)
334 {
335 	struct device *dev = kobj_to_dev(kobj);
336 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 	umode_t mode = a->mode;
338 
339 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 	    md->queue.card->ext_csd.boot_ro_lockable) {
342 		mode = S_IRUGO;
343 		if (!(md->queue.card->ext_csd.boot_ro_lock &
344 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 			mode |= S_IWUSR;
346 	}
347 
348 	mmc_blk_put(md);
349 	return mode;
350 }
351 
352 static const struct attribute_group mmc_disk_attr_group = {
353 	.is_visible	= mmc_disk_attrs_is_visible,
354 	.attrs		= mmc_disk_attrs,
355 };
356 
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 	&mmc_disk_attr_group,
359 	NULL,
360 };
361 
362 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
363 {
364 	struct mmc_blk_data *md = mmc_blk_get(disk);
365 	int ret = -ENXIO;
366 
367 	mutex_lock(&block_mutex);
368 	if (md) {
369 		ret = 0;
370 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
371 			mmc_blk_put(md);
372 			ret = -EROFS;
373 		}
374 	}
375 	mutex_unlock(&block_mutex);
376 
377 	return ret;
378 }
379 
380 static void mmc_blk_release(struct gendisk *disk)
381 {
382 	struct mmc_blk_data *md = disk->private_data;
383 
384 	mutex_lock(&block_mutex);
385 	mmc_blk_put(md);
386 	mutex_unlock(&block_mutex);
387 }
388 
389 static int
390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 	geo->heads = 4;
394 	geo->sectors = 16;
395 	return 0;
396 }
397 
398 struct mmc_blk_ioc_data {
399 	struct mmc_ioc_cmd ic;
400 	unsigned char *buf;
401 	u64 buf_bytes;
402 	struct mmc_rpmb_data *rpmb;
403 };
404 
405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 	struct mmc_ioc_cmd __user *user)
407 {
408 	struct mmc_blk_ioc_data *idata;
409 	int err;
410 
411 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 	if (!idata) {
413 		err = -ENOMEM;
414 		goto out;
415 	}
416 
417 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 		err = -EFAULT;
419 		goto idata_err;
420 	}
421 
422 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 		err = -EOVERFLOW;
425 		goto idata_err;
426 	}
427 
428 	if (!idata->buf_bytes) {
429 		idata->buf = NULL;
430 		return idata;
431 	}
432 
433 	idata->buf = memdup_user((void __user *)(unsigned long)
434 				 idata->ic.data_ptr, idata->buf_bytes);
435 	if (IS_ERR(idata->buf)) {
436 		err = PTR_ERR(idata->buf);
437 		goto idata_err;
438 	}
439 
440 	return idata;
441 
442 idata_err:
443 	kfree(idata);
444 out:
445 	return ERR_PTR(err);
446 }
447 
448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 				      struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_ioc_cmd *ic = &idata->ic;
452 
453 	if (copy_to_user(&(ic_ptr->response), ic->response,
454 			 sizeof(ic->response)))
455 		return -EFAULT;
456 
457 	if (!idata->ic.write_flag) {
458 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 				 idata->buf, idata->buf_bytes))
460 			return -EFAULT;
461 	}
462 
463 	return 0;
464 }
465 
466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 			       struct mmc_blk_ioc_data *idata)
468 {
469 	struct mmc_command cmd = {}, sbc = {};
470 	struct mmc_data data = {};
471 	struct mmc_request mrq = {};
472 	struct scatterlist sg;
473 	bool r1b_resp, use_r1b_resp = false;
474 	unsigned int busy_timeout_ms;
475 	int err;
476 	unsigned int target_part;
477 
478 	if (!card || !md || !idata)
479 		return -EINVAL;
480 
481 	/*
482 	 * The RPMB accesses comes in from the character device, so we
483 	 * need to target these explicitly. Else we just target the
484 	 * partition type for the block device the ioctl() was issued
485 	 * on.
486 	 */
487 	if (idata->rpmb) {
488 		/* Support multiple RPMB partitions */
489 		target_part = idata->rpmb->part_index;
490 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
491 	} else {
492 		target_part = md->part_type;
493 	}
494 
495 	cmd.opcode = idata->ic.opcode;
496 	cmd.arg = idata->ic.arg;
497 	cmd.flags = idata->ic.flags;
498 
499 	if (idata->buf_bytes) {
500 		data.sg = &sg;
501 		data.sg_len = 1;
502 		data.blksz = idata->ic.blksz;
503 		data.blocks = idata->ic.blocks;
504 
505 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
506 
507 		if (idata->ic.write_flag)
508 			data.flags = MMC_DATA_WRITE;
509 		else
510 			data.flags = MMC_DATA_READ;
511 
512 		/* data.flags must already be set before doing this. */
513 		mmc_set_data_timeout(&data, card);
514 
515 		/* Allow overriding the timeout_ns for empirical tuning. */
516 		if (idata->ic.data_timeout_ns)
517 			data.timeout_ns = idata->ic.data_timeout_ns;
518 
519 		mrq.data = &data;
520 	}
521 
522 	mrq.cmd = &cmd;
523 
524 	err = mmc_blk_part_switch(card, target_part);
525 	if (err)
526 		return err;
527 
528 	if (idata->ic.is_acmd) {
529 		err = mmc_app_cmd(card->host, card);
530 		if (err)
531 			return err;
532 	}
533 
534 	if (idata->rpmb) {
535 		sbc.opcode = MMC_SET_BLOCK_COUNT;
536 		/*
537 		 * We don't do any blockcount validation because the max size
538 		 * may be increased by a future standard. We just copy the
539 		 * 'Reliable Write' bit here.
540 		 */
541 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
542 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
543 		mrq.sbc = &sbc;
544 	}
545 
546 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
547 	    (cmd.opcode == MMC_SWITCH))
548 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
549 
550 	/* If it's an R1B response we need some more preparations. */
551 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
552 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
553 	if (r1b_resp)
554 		use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd,
555 						    busy_timeout_ms);
556 
557 	mmc_wait_for_req(card->host, &mrq);
558 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
559 
560 	if (cmd.error) {
561 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 						__func__, cmd.error);
563 		return cmd.error;
564 	}
565 	if (data.error) {
566 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
567 						__func__, data.error);
568 		return data.error;
569 	}
570 
571 	/*
572 	 * Make sure the cache of the PARTITION_CONFIG register and
573 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
574 	 * changed it successfully.
575 	 */
576 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
577 	    (cmd.opcode == MMC_SWITCH)) {
578 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
579 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
580 
581 		/*
582 		 * Update cache so the next mmc_blk_part_switch call operates
583 		 * on up-to-date data.
584 		 */
585 		card->ext_csd.part_config = value;
586 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
587 	}
588 
589 	/*
590 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
591 	 * will get turned back on if the card is re-initialized, e.g.
592 	 * suspend/resume or hw reset in recovery.
593 	 */
594 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
595 	    (cmd.opcode == MMC_SWITCH)) {
596 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
597 
598 		card->ext_csd.cache_ctrl = value;
599 	}
600 
601 	/*
602 	 * According to the SD specs, some commands require a delay after
603 	 * issuing the command.
604 	 */
605 	if (idata->ic.postsleep_min_us)
606 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607 
608 	/* No need to poll when using HW busy detection. */
609 	if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
610 		return 0;
611 
612 	if (mmc_host_is_spi(card->host)) {
613 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
614 			return mmc_spi_err_check(card);
615 		return err;
616 	}
617 	/* Ensure RPMB/R1B command has completed by polling with CMD13. */
618 	if (idata->rpmb || r1b_resp)
619 		err = mmc_poll_for_busy(card, busy_timeout_ms, false,
620 					MMC_BUSY_IO);
621 
622 	return err;
623 }
624 
625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
626 			     struct mmc_ioc_cmd __user *ic_ptr,
627 			     struct mmc_rpmb_data *rpmb)
628 {
629 	struct mmc_blk_ioc_data *idata;
630 	struct mmc_blk_ioc_data *idatas[1];
631 	struct mmc_queue *mq;
632 	struct mmc_card *card;
633 	int err = 0, ioc_err = 0;
634 	struct request *req;
635 
636 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
637 	if (IS_ERR(idata))
638 		return PTR_ERR(idata);
639 	/* This will be NULL on non-RPMB ioctl():s */
640 	idata->rpmb = rpmb;
641 
642 	card = md->queue.card;
643 	if (IS_ERR(card)) {
644 		err = PTR_ERR(card);
645 		goto cmd_done;
646 	}
647 
648 	/*
649 	 * Dispatch the ioctl() into the block request queue.
650 	 */
651 	mq = &md->queue;
652 	req = blk_mq_alloc_request(mq->queue,
653 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
654 	if (IS_ERR(req)) {
655 		err = PTR_ERR(req);
656 		goto cmd_done;
657 	}
658 	idatas[0] = idata;
659 	req_to_mmc_queue_req(req)->drv_op =
660 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
661 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
662 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
663 	req_to_mmc_queue_req(req)->ioc_count = 1;
664 	blk_execute_rq(req, false);
665 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
666 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
667 	blk_mq_free_request(req);
668 
669 cmd_done:
670 	kfree(idata->buf);
671 	kfree(idata);
672 	return ioc_err ? ioc_err : err;
673 }
674 
675 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
676 				   struct mmc_ioc_multi_cmd __user *user,
677 				   struct mmc_rpmb_data *rpmb)
678 {
679 	struct mmc_blk_ioc_data **idata = NULL;
680 	struct mmc_ioc_cmd __user *cmds = user->cmds;
681 	struct mmc_card *card;
682 	struct mmc_queue *mq;
683 	int err = 0, ioc_err = 0;
684 	__u64 num_of_cmds;
685 	unsigned int i, n;
686 	struct request *req;
687 
688 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
689 			   sizeof(num_of_cmds)))
690 		return -EFAULT;
691 
692 	if (!num_of_cmds)
693 		return 0;
694 
695 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
696 		return -EINVAL;
697 
698 	n = num_of_cmds;
699 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
700 	if (!idata)
701 		return -ENOMEM;
702 
703 	for (i = 0; i < n; i++) {
704 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
705 		if (IS_ERR(idata[i])) {
706 			err = PTR_ERR(idata[i]);
707 			n = i;
708 			goto cmd_err;
709 		}
710 		/* This will be NULL on non-RPMB ioctl():s */
711 		idata[i]->rpmb = rpmb;
712 	}
713 
714 	card = md->queue.card;
715 	if (IS_ERR(card)) {
716 		err = PTR_ERR(card);
717 		goto cmd_err;
718 	}
719 
720 
721 	/*
722 	 * Dispatch the ioctl()s into the block request queue.
723 	 */
724 	mq = &md->queue;
725 	req = blk_mq_alloc_request(mq->queue,
726 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
727 	if (IS_ERR(req)) {
728 		err = PTR_ERR(req);
729 		goto cmd_err;
730 	}
731 	req_to_mmc_queue_req(req)->drv_op =
732 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
733 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
734 	req_to_mmc_queue_req(req)->drv_op_data = idata;
735 	req_to_mmc_queue_req(req)->ioc_count = n;
736 	blk_execute_rq(req, false);
737 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
738 
739 	/* copy to user if data and response */
740 	for (i = 0; i < n && !err; i++)
741 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
742 
743 	blk_mq_free_request(req);
744 
745 cmd_err:
746 	for (i = 0; i < n; i++) {
747 		kfree(idata[i]->buf);
748 		kfree(idata[i]);
749 	}
750 	kfree(idata);
751 	return ioc_err ? ioc_err : err;
752 }
753 
754 static int mmc_blk_check_blkdev(struct block_device *bdev)
755 {
756 	/*
757 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
758 	 * whole block device, not on a partition.  This prevents overspray
759 	 * between sibling partitions.
760 	 */
761 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
762 		return -EPERM;
763 	return 0;
764 }
765 
766 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
767 	unsigned int cmd, unsigned long arg)
768 {
769 	struct mmc_blk_data *md;
770 	int ret;
771 
772 	switch (cmd) {
773 	case MMC_IOC_CMD:
774 		ret = mmc_blk_check_blkdev(bdev);
775 		if (ret)
776 			return ret;
777 		md = mmc_blk_get(bdev->bd_disk);
778 		if (!md)
779 			return -EINVAL;
780 		ret = mmc_blk_ioctl_cmd(md,
781 					(struct mmc_ioc_cmd __user *)arg,
782 					NULL);
783 		mmc_blk_put(md);
784 		return ret;
785 	case MMC_IOC_MULTI_CMD:
786 		ret = mmc_blk_check_blkdev(bdev);
787 		if (ret)
788 			return ret;
789 		md = mmc_blk_get(bdev->bd_disk);
790 		if (!md)
791 			return -EINVAL;
792 		ret = mmc_blk_ioctl_multi_cmd(md,
793 					(struct mmc_ioc_multi_cmd __user *)arg,
794 					NULL);
795 		mmc_blk_put(md);
796 		return ret;
797 	default:
798 		return -EINVAL;
799 	}
800 }
801 
802 #ifdef CONFIG_COMPAT
803 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
804 	unsigned int cmd, unsigned long arg)
805 {
806 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
807 }
808 #endif
809 
810 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
811 					  sector_t *sector)
812 {
813 	struct mmc_blk_data *md;
814 	int ret;
815 
816 	md = mmc_blk_get(disk);
817 	if (!md)
818 		return -EINVAL;
819 
820 	if (md->queue.card)
821 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
822 	else
823 		ret = -ENODEV;
824 
825 	mmc_blk_put(md);
826 
827 	return ret;
828 }
829 
830 static const struct block_device_operations mmc_bdops = {
831 	.open			= mmc_blk_open,
832 	.release		= mmc_blk_release,
833 	.getgeo			= mmc_blk_getgeo,
834 	.owner			= THIS_MODULE,
835 	.ioctl			= mmc_blk_ioctl,
836 #ifdef CONFIG_COMPAT
837 	.compat_ioctl		= mmc_blk_compat_ioctl,
838 #endif
839 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
840 };
841 
842 static int mmc_blk_part_switch_pre(struct mmc_card *card,
843 				   unsigned int part_type)
844 {
845 	int ret = 0;
846 
847 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
848 		if (card->ext_csd.cmdq_en) {
849 			ret = mmc_cmdq_disable(card);
850 			if (ret)
851 				return ret;
852 		}
853 		mmc_retune_pause(card->host);
854 	}
855 
856 	return ret;
857 }
858 
859 static int mmc_blk_part_switch_post(struct mmc_card *card,
860 				    unsigned int part_type)
861 {
862 	int ret = 0;
863 
864 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
865 		mmc_retune_unpause(card->host);
866 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
867 			ret = mmc_cmdq_enable(card);
868 	}
869 
870 	return ret;
871 }
872 
873 static inline int mmc_blk_part_switch(struct mmc_card *card,
874 				      unsigned int part_type)
875 {
876 	int ret = 0;
877 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
878 
879 	if (main_md->part_curr == part_type)
880 		return 0;
881 
882 	if (mmc_card_mmc(card)) {
883 		u8 part_config = card->ext_csd.part_config;
884 
885 		ret = mmc_blk_part_switch_pre(card, part_type);
886 		if (ret)
887 			return ret;
888 
889 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
890 		part_config |= part_type;
891 
892 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
893 				 EXT_CSD_PART_CONFIG, part_config,
894 				 card->ext_csd.part_time);
895 		if (ret) {
896 			mmc_blk_part_switch_post(card, part_type);
897 			return ret;
898 		}
899 
900 		card->ext_csd.part_config = part_config;
901 
902 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
903 	}
904 
905 	main_md->part_curr = part_type;
906 	return ret;
907 }
908 
909 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
910 {
911 	int err;
912 	u32 result;
913 	__be32 *blocks;
914 
915 	struct mmc_request mrq = {};
916 	struct mmc_command cmd = {};
917 	struct mmc_data data = {};
918 
919 	struct scatterlist sg;
920 
921 	err = mmc_app_cmd(card->host, card);
922 	if (err)
923 		return err;
924 
925 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
926 	cmd.arg = 0;
927 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
928 
929 	data.blksz = 4;
930 	data.blocks = 1;
931 	data.flags = MMC_DATA_READ;
932 	data.sg = &sg;
933 	data.sg_len = 1;
934 	mmc_set_data_timeout(&data, card);
935 
936 	mrq.cmd = &cmd;
937 	mrq.data = &data;
938 
939 	blocks = kmalloc(4, GFP_KERNEL);
940 	if (!blocks)
941 		return -ENOMEM;
942 
943 	sg_init_one(&sg, blocks, 4);
944 
945 	mmc_wait_for_req(card->host, &mrq);
946 
947 	result = ntohl(*blocks);
948 	kfree(blocks);
949 
950 	if (cmd.error || data.error)
951 		return -EIO;
952 
953 	*written_blocks = result;
954 
955 	return 0;
956 }
957 
958 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
959 {
960 	if (host->actual_clock)
961 		return host->actual_clock / 1000;
962 
963 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
964 	if (host->ios.clock)
965 		return host->ios.clock / 2000;
966 
967 	/* How can there be no clock */
968 	WARN_ON_ONCE(1);
969 	return 100; /* 100 kHz is minimum possible value */
970 }
971 
972 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
973 					    struct mmc_data *data)
974 {
975 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
976 	unsigned int khz;
977 
978 	if (data->timeout_clks) {
979 		khz = mmc_blk_clock_khz(host);
980 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
981 	}
982 
983 	return ms;
984 }
985 
986 /*
987  * Attempts to reset the card and get back to the requested partition.
988  * Therefore any error here must result in cancelling the block layer
989  * request, it must not be reattempted without going through the mmc_blk
990  * partition sanity checks.
991  */
992 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
993 			 int type)
994 {
995 	int err;
996 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
997 
998 	if (md->reset_done & type)
999 		return -EEXIST;
1000 
1001 	md->reset_done |= type;
1002 	err = mmc_hw_reset(host->card);
1003 	/*
1004 	 * A successful reset will leave the card in the main partition, but
1005 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1006 	 * in that case.
1007 	 */
1008 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1009 	if (err)
1010 		return err;
1011 	/* Ensure we switch back to the correct partition */
1012 	if (mmc_blk_part_switch(host->card, md->part_type))
1013 		/*
1014 		 * We have failed to get back into the correct
1015 		 * partition, so we need to abort the whole request.
1016 		 */
1017 		return -ENODEV;
1018 	return 0;
1019 }
1020 
1021 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1022 {
1023 	md->reset_done &= ~type;
1024 }
1025 
1026 /*
1027  * The non-block commands come back from the block layer after it queued it and
1028  * processed it with all other requests and then they get issued in this
1029  * function.
1030  */
1031 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1032 {
1033 	struct mmc_queue_req *mq_rq;
1034 	struct mmc_card *card = mq->card;
1035 	struct mmc_blk_data *md = mq->blkdata;
1036 	struct mmc_blk_ioc_data **idata;
1037 	bool rpmb_ioctl;
1038 	u8 **ext_csd;
1039 	u32 status;
1040 	int ret;
1041 	int i;
1042 
1043 	mq_rq = req_to_mmc_queue_req(req);
1044 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1045 
1046 	switch (mq_rq->drv_op) {
1047 	case MMC_DRV_OP_IOCTL:
1048 		if (card->ext_csd.cmdq_en) {
1049 			ret = mmc_cmdq_disable(card);
1050 			if (ret)
1051 				break;
1052 		}
1053 		fallthrough;
1054 	case MMC_DRV_OP_IOCTL_RPMB:
1055 		idata = mq_rq->drv_op_data;
1056 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1057 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1058 			if (ret)
1059 				break;
1060 		}
1061 		/* Always switch back to main area after RPMB access */
1062 		if (rpmb_ioctl)
1063 			mmc_blk_part_switch(card, 0);
1064 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1065 			mmc_cmdq_enable(card);
1066 		break;
1067 	case MMC_DRV_OP_BOOT_WP:
1068 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1069 				 card->ext_csd.boot_ro_lock |
1070 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1071 				 card->ext_csd.part_time);
1072 		if (ret)
1073 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1074 			       md->disk->disk_name, ret);
1075 		else
1076 			card->ext_csd.boot_ro_lock |=
1077 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1078 		break;
1079 	case MMC_DRV_OP_GET_CARD_STATUS:
1080 		ret = mmc_send_status(card, &status);
1081 		if (!ret)
1082 			ret = status;
1083 		break;
1084 	case MMC_DRV_OP_GET_EXT_CSD:
1085 		ext_csd = mq_rq->drv_op_data;
1086 		ret = mmc_get_ext_csd(card, ext_csd);
1087 		break;
1088 	default:
1089 		pr_err("%s: unknown driver specific operation\n",
1090 		       md->disk->disk_name);
1091 		ret = -EINVAL;
1092 		break;
1093 	}
1094 	mq_rq->drv_op_result = ret;
1095 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1096 }
1097 
1098 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1099 				   int type, unsigned int erase_arg)
1100 {
1101 	struct mmc_blk_data *md = mq->blkdata;
1102 	struct mmc_card *card = md->queue.card;
1103 	unsigned int from, nr;
1104 	int err = 0;
1105 	blk_status_t status = BLK_STS_OK;
1106 
1107 	if (!mmc_can_erase(card)) {
1108 		status = BLK_STS_NOTSUPP;
1109 		goto fail;
1110 	}
1111 
1112 	from = blk_rq_pos(req);
1113 	nr = blk_rq_sectors(req);
1114 
1115 	do {
1116 		err = 0;
1117 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1118 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1119 					 INAND_CMD38_ARG_EXT_CSD,
1120 					 erase_arg == MMC_TRIM_ARG ?
1121 					 INAND_CMD38_ARG_TRIM :
1122 					 INAND_CMD38_ARG_ERASE,
1123 					 card->ext_csd.generic_cmd6_time);
1124 		}
1125 		if (!err)
1126 			err = mmc_erase(card, from, nr, erase_arg);
1127 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1128 	if (err)
1129 		status = BLK_STS_IOERR;
1130 	else
1131 		mmc_blk_reset_success(md, type);
1132 fail:
1133 	blk_mq_end_request(req, status);
1134 }
1135 
1136 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1137 {
1138 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1139 }
1140 
1141 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1142 {
1143 	struct mmc_blk_data *md = mq->blkdata;
1144 	struct mmc_card *card = md->queue.card;
1145 	unsigned int arg = card->erase_arg;
1146 
1147 	if (mmc_card_broken_sd_discard(card))
1148 		arg = SD_ERASE_ARG;
1149 
1150 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1151 }
1152 
1153 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1154 				       struct request *req)
1155 {
1156 	struct mmc_blk_data *md = mq->blkdata;
1157 	struct mmc_card *card = md->queue.card;
1158 	unsigned int from, nr, arg;
1159 	int err = 0, type = MMC_BLK_SECDISCARD;
1160 	blk_status_t status = BLK_STS_OK;
1161 
1162 	if (!(mmc_can_secure_erase_trim(card))) {
1163 		status = BLK_STS_NOTSUPP;
1164 		goto out;
1165 	}
1166 
1167 	from = blk_rq_pos(req);
1168 	nr = blk_rq_sectors(req);
1169 
1170 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1171 		arg = MMC_SECURE_TRIM1_ARG;
1172 	else
1173 		arg = MMC_SECURE_ERASE_ARG;
1174 
1175 retry:
1176 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1177 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1178 				 INAND_CMD38_ARG_EXT_CSD,
1179 				 arg == MMC_SECURE_TRIM1_ARG ?
1180 				 INAND_CMD38_ARG_SECTRIM1 :
1181 				 INAND_CMD38_ARG_SECERASE,
1182 				 card->ext_csd.generic_cmd6_time);
1183 		if (err)
1184 			goto out_retry;
1185 	}
1186 
1187 	err = mmc_erase(card, from, nr, arg);
1188 	if (err == -EIO)
1189 		goto out_retry;
1190 	if (err) {
1191 		status = BLK_STS_IOERR;
1192 		goto out;
1193 	}
1194 
1195 	if (arg == MMC_SECURE_TRIM1_ARG) {
1196 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1197 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1198 					 INAND_CMD38_ARG_EXT_CSD,
1199 					 INAND_CMD38_ARG_SECTRIM2,
1200 					 card->ext_csd.generic_cmd6_time);
1201 			if (err)
1202 				goto out_retry;
1203 		}
1204 
1205 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1206 		if (err == -EIO)
1207 			goto out_retry;
1208 		if (err) {
1209 			status = BLK_STS_IOERR;
1210 			goto out;
1211 		}
1212 	}
1213 
1214 out_retry:
1215 	if (err && !mmc_blk_reset(md, card->host, type))
1216 		goto retry;
1217 	if (!err)
1218 		mmc_blk_reset_success(md, type);
1219 out:
1220 	blk_mq_end_request(req, status);
1221 }
1222 
1223 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1224 {
1225 	struct mmc_blk_data *md = mq->blkdata;
1226 	struct mmc_card *card = md->queue.card;
1227 	int ret = 0;
1228 
1229 	ret = mmc_flush_cache(card->host);
1230 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1231 }
1232 
1233 /*
1234  * Reformat current write as a reliable write, supporting
1235  * both legacy and the enhanced reliable write MMC cards.
1236  * In each transfer we'll handle only as much as a single
1237  * reliable write can handle, thus finish the request in
1238  * partial completions.
1239  */
1240 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1241 				    struct mmc_card *card,
1242 				    struct request *req)
1243 {
1244 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1245 		/* Legacy mode imposes restrictions on transfers. */
1246 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1247 			brq->data.blocks = 1;
1248 
1249 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1250 			brq->data.blocks = card->ext_csd.rel_sectors;
1251 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1252 			brq->data.blocks = 1;
1253 	}
1254 }
1255 
1256 #define CMD_ERRORS_EXCL_OOR						\
1257 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1258 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1259 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1260 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1261 	 R1_CC_ERROR |		/* Card controller error */		\
1262 	 R1_ERROR)		/* General/unknown error */
1263 
1264 #define CMD_ERRORS							\
1265 	(CMD_ERRORS_EXCL_OOR |						\
1266 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1267 
1268 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1269 {
1270 	u32 val;
1271 
1272 	/*
1273 	 * Per the SD specification(physical layer version 4.10)[1],
1274 	 * section 4.3.3, it explicitly states that "When the last
1275 	 * block of user area is read using CMD18, the host should
1276 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1277 	 * is correct". And JESD84-B51 for eMMC also has a similar
1278 	 * statement on section 6.8.3.
1279 	 *
1280 	 * Multiple block read/write could be done by either predefined
1281 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1282 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1283 	 *
1284 	 * However the spec[1] doesn't tell us whether we should also
1285 	 * ignore that for predefined method. But per the spec[1], section
1286 	 * 4.15 Set Block Count Command, it says"If illegal block count
1287 	 * is set, out of range error will be indicated during read/write
1288 	 * operation (For example, data transfer is stopped at user area
1289 	 * boundary)." In another word, we could expect a out of range error
1290 	 * in the response for the following CMD18/25. And if argument of
1291 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1292 	 * we could also expect to get a -ETIMEDOUT or any error number from
1293 	 * the host drivers due to missing data response(for write)/data(for
1294 	 * read), as the cards will stop the data transfer by itself per the
1295 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1296 	 */
1297 
1298 	if (!brq->stop.error) {
1299 		bool oor_with_open_end;
1300 		/* If there is no error yet, check R1 response */
1301 
1302 		val = brq->stop.resp[0] & CMD_ERRORS;
1303 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1304 
1305 		if (val && !oor_with_open_end)
1306 			brq->stop.error = -EIO;
1307 	}
1308 }
1309 
1310 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1311 			      int recovery_mode, bool *do_rel_wr_p,
1312 			      bool *do_data_tag_p)
1313 {
1314 	struct mmc_blk_data *md = mq->blkdata;
1315 	struct mmc_card *card = md->queue.card;
1316 	struct mmc_blk_request *brq = &mqrq->brq;
1317 	struct request *req = mmc_queue_req_to_req(mqrq);
1318 	bool do_rel_wr, do_data_tag;
1319 
1320 	/*
1321 	 * Reliable writes are used to implement Forced Unit Access and
1322 	 * are supported only on MMCs.
1323 	 */
1324 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1325 		    rq_data_dir(req) == WRITE &&
1326 		    (md->flags & MMC_BLK_REL_WR);
1327 
1328 	memset(brq, 0, sizeof(struct mmc_blk_request));
1329 
1330 	mmc_crypto_prepare_req(mqrq);
1331 
1332 	brq->mrq.data = &brq->data;
1333 	brq->mrq.tag = req->tag;
1334 
1335 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1336 	brq->stop.arg = 0;
1337 
1338 	if (rq_data_dir(req) == READ) {
1339 		brq->data.flags = MMC_DATA_READ;
1340 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1341 	} else {
1342 		brq->data.flags = MMC_DATA_WRITE;
1343 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1344 	}
1345 
1346 	brq->data.blksz = 512;
1347 	brq->data.blocks = blk_rq_sectors(req);
1348 	brq->data.blk_addr = blk_rq_pos(req);
1349 
1350 	/*
1351 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1352 	 * The eMMC will give "high" priority tasks priority over "simple"
1353 	 * priority tasks. Here we always set "simple" priority by not setting
1354 	 * MMC_DATA_PRIO.
1355 	 */
1356 
1357 	/*
1358 	 * The block layer doesn't support all sector count
1359 	 * restrictions, so we need to be prepared for too big
1360 	 * requests.
1361 	 */
1362 	if (brq->data.blocks > card->host->max_blk_count)
1363 		brq->data.blocks = card->host->max_blk_count;
1364 
1365 	if (brq->data.blocks > 1) {
1366 		/*
1367 		 * Some SD cards in SPI mode return a CRC error or even lock up
1368 		 * completely when trying to read the last block using a
1369 		 * multiblock read command.
1370 		 */
1371 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1372 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1373 		     get_capacity(md->disk)))
1374 			brq->data.blocks--;
1375 
1376 		/*
1377 		 * After a read error, we redo the request one (native) sector
1378 		 * at a time in order to accurately determine which
1379 		 * sectors can be read successfully.
1380 		 */
1381 		if (recovery_mode)
1382 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1383 
1384 		/*
1385 		 * Some controllers have HW issues while operating
1386 		 * in multiple I/O mode
1387 		 */
1388 		if (card->host->ops->multi_io_quirk)
1389 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1390 						(rq_data_dir(req) == READ) ?
1391 						MMC_DATA_READ : MMC_DATA_WRITE,
1392 						brq->data.blocks);
1393 	}
1394 
1395 	if (do_rel_wr) {
1396 		mmc_apply_rel_rw(brq, card, req);
1397 		brq->data.flags |= MMC_DATA_REL_WR;
1398 	}
1399 
1400 	/*
1401 	 * Data tag is used only during writing meta data to speed
1402 	 * up write and any subsequent read of this meta data
1403 	 */
1404 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1405 		      (req->cmd_flags & REQ_META) &&
1406 		      (rq_data_dir(req) == WRITE) &&
1407 		      ((brq->data.blocks * brq->data.blksz) >=
1408 		       card->ext_csd.data_tag_unit_size);
1409 
1410 	if (do_data_tag)
1411 		brq->data.flags |= MMC_DATA_DAT_TAG;
1412 
1413 	mmc_set_data_timeout(&brq->data, card);
1414 
1415 	brq->data.sg = mqrq->sg;
1416 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1417 
1418 	/*
1419 	 * Adjust the sg list so it is the same size as the
1420 	 * request.
1421 	 */
1422 	if (brq->data.blocks != blk_rq_sectors(req)) {
1423 		int i, data_size = brq->data.blocks << 9;
1424 		struct scatterlist *sg;
1425 
1426 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1427 			data_size -= sg->length;
1428 			if (data_size <= 0) {
1429 				sg->length += data_size;
1430 				i++;
1431 				break;
1432 			}
1433 		}
1434 		brq->data.sg_len = i;
1435 	}
1436 
1437 	if (do_rel_wr_p)
1438 		*do_rel_wr_p = do_rel_wr;
1439 
1440 	if (do_data_tag_p)
1441 		*do_data_tag_p = do_data_tag;
1442 }
1443 
1444 #define MMC_CQE_RETRIES 2
1445 
1446 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1447 {
1448 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1449 	struct mmc_request *mrq = &mqrq->brq.mrq;
1450 	struct request_queue *q = req->q;
1451 	struct mmc_host *host = mq->card->host;
1452 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1453 	unsigned long flags;
1454 	bool put_card;
1455 	int err;
1456 
1457 	mmc_cqe_post_req(host, mrq);
1458 
1459 	if (mrq->cmd && mrq->cmd->error)
1460 		err = mrq->cmd->error;
1461 	else if (mrq->data && mrq->data->error)
1462 		err = mrq->data->error;
1463 	else
1464 		err = 0;
1465 
1466 	if (err) {
1467 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1468 			blk_mq_requeue_request(req, true);
1469 		else
1470 			blk_mq_end_request(req, BLK_STS_IOERR);
1471 	} else if (mrq->data) {
1472 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1473 			blk_mq_requeue_request(req, true);
1474 		else
1475 			__blk_mq_end_request(req, BLK_STS_OK);
1476 	} else {
1477 		blk_mq_end_request(req, BLK_STS_OK);
1478 	}
1479 
1480 	spin_lock_irqsave(&mq->lock, flags);
1481 
1482 	mq->in_flight[issue_type] -= 1;
1483 
1484 	put_card = (mmc_tot_in_flight(mq) == 0);
1485 
1486 	mmc_cqe_check_busy(mq);
1487 
1488 	spin_unlock_irqrestore(&mq->lock, flags);
1489 
1490 	if (!mq->cqe_busy)
1491 		blk_mq_run_hw_queues(q, true);
1492 
1493 	if (put_card)
1494 		mmc_put_card(mq->card, &mq->ctx);
1495 }
1496 
1497 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1498 {
1499 	struct mmc_card *card = mq->card;
1500 	struct mmc_host *host = card->host;
1501 	int err;
1502 
1503 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1504 
1505 	err = mmc_cqe_recovery(host);
1506 	if (err)
1507 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1508 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1509 
1510 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1511 }
1512 
1513 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1514 {
1515 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1516 						  brq.mrq);
1517 	struct request *req = mmc_queue_req_to_req(mqrq);
1518 	struct request_queue *q = req->q;
1519 	struct mmc_queue *mq = q->queuedata;
1520 
1521 	/*
1522 	 * Block layer timeouts race with completions which means the normal
1523 	 * completion path cannot be used during recovery.
1524 	 */
1525 	if (mq->in_recovery)
1526 		mmc_blk_cqe_complete_rq(mq, req);
1527 	else if (likely(!blk_should_fake_timeout(req->q)))
1528 		blk_mq_complete_request(req);
1529 }
1530 
1531 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1532 {
1533 	mrq->done		= mmc_blk_cqe_req_done;
1534 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1535 
1536 	return mmc_cqe_start_req(host, mrq);
1537 }
1538 
1539 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1540 						 struct request *req)
1541 {
1542 	struct mmc_blk_request *brq = &mqrq->brq;
1543 
1544 	memset(brq, 0, sizeof(*brq));
1545 
1546 	brq->mrq.cmd = &brq->cmd;
1547 	brq->mrq.tag = req->tag;
1548 
1549 	return &brq->mrq;
1550 }
1551 
1552 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1553 {
1554 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1555 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1556 
1557 	mrq->cmd->opcode = MMC_SWITCH;
1558 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1559 			(EXT_CSD_FLUSH_CACHE << 16) |
1560 			(1 << 8) |
1561 			EXT_CSD_CMD_SET_NORMAL;
1562 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1563 
1564 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1565 }
1566 
1567 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1568 {
1569 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1570 	struct mmc_host *host = mq->card->host;
1571 	int err;
1572 
1573 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1574 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1575 	mmc_pre_req(host, &mqrq->brq.mrq);
1576 
1577 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1578 	if (err)
1579 		mmc_post_req(host, &mqrq->brq.mrq, err);
1580 
1581 	return err;
1582 }
1583 
1584 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1585 {
1586 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1587 	struct mmc_host *host = mq->card->host;
1588 
1589 	if (host->hsq_enabled)
1590 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1591 
1592 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1593 
1594 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1595 }
1596 
1597 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1598 			       struct mmc_card *card,
1599 			       int recovery_mode,
1600 			       struct mmc_queue *mq)
1601 {
1602 	u32 readcmd, writecmd;
1603 	struct mmc_blk_request *brq = &mqrq->brq;
1604 	struct request *req = mmc_queue_req_to_req(mqrq);
1605 	struct mmc_blk_data *md = mq->blkdata;
1606 	bool do_rel_wr, do_data_tag;
1607 
1608 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1609 
1610 	brq->mrq.cmd = &brq->cmd;
1611 
1612 	brq->cmd.arg = blk_rq_pos(req);
1613 	if (!mmc_card_blockaddr(card))
1614 		brq->cmd.arg <<= 9;
1615 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1616 
1617 	if (brq->data.blocks > 1 || do_rel_wr) {
1618 		/* SPI multiblock writes terminate using a special
1619 		 * token, not a STOP_TRANSMISSION request.
1620 		 */
1621 		if (!mmc_host_is_spi(card->host) ||
1622 		    rq_data_dir(req) == READ)
1623 			brq->mrq.stop = &brq->stop;
1624 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1625 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1626 	} else {
1627 		brq->mrq.stop = NULL;
1628 		readcmd = MMC_READ_SINGLE_BLOCK;
1629 		writecmd = MMC_WRITE_BLOCK;
1630 	}
1631 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1632 
1633 	/*
1634 	 * Pre-defined multi-block transfers are preferable to
1635 	 * open ended-ones (and necessary for reliable writes).
1636 	 * However, it is not sufficient to just send CMD23,
1637 	 * and avoid the final CMD12, as on an error condition
1638 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1639 	 * with Auto-CMD23 enhancements provided by some
1640 	 * hosts, means that the complexity of dealing
1641 	 * with this is best left to the host. If CMD23 is
1642 	 * supported by card and host, we'll fill sbc in and let
1643 	 * the host deal with handling it correctly. This means
1644 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1645 	 * change of behavior will be observed.
1646 	 *
1647 	 * N.B: Some MMC cards experience perf degradation.
1648 	 * We'll avoid using CMD23-bounded multiblock writes for
1649 	 * these, while retaining features like reliable writes.
1650 	 */
1651 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1652 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1653 	     do_data_tag)) {
1654 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1655 		brq->sbc.arg = brq->data.blocks |
1656 			(do_rel_wr ? (1 << 31) : 0) |
1657 			(do_data_tag ? (1 << 29) : 0);
1658 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1659 		brq->mrq.sbc = &brq->sbc;
1660 	}
1661 }
1662 
1663 #define MMC_MAX_RETRIES		5
1664 #define MMC_DATA_RETRIES	2
1665 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1666 
1667 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1668 {
1669 	struct mmc_command cmd = {
1670 		.opcode = MMC_STOP_TRANSMISSION,
1671 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1672 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1673 		.busy_timeout = timeout,
1674 	};
1675 
1676 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1677 }
1678 
1679 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1680 {
1681 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1682 	struct mmc_blk_request *brq = &mqrq->brq;
1683 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1684 	int err;
1685 
1686 	mmc_retune_hold_now(card->host);
1687 
1688 	mmc_blk_send_stop(card, timeout);
1689 
1690 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1691 
1692 	mmc_retune_release(card->host);
1693 
1694 	return err;
1695 }
1696 
1697 #define MMC_READ_SINGLE_RETRIES	2
1698 
1699 /* Single (native) sector read during recovery */
1700 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1701 {
1702 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1703 	struct mmc_request *mrq = &mqrq->brq.mrq;
1704 	struct mmc_card *card = mq->card;
1705 	struct mmc_host *host = card->host;
1706 	blk_status_t error = BLK_STS_OK;
1707 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1708 
1709 	do {
1710 		u32 status;
1711 		int err;
1712 		int retries = 0;
1713 
1714 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1715 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1716 
1717 			mmc_wait_for_req(host, mrq);
1718 
1719 			err = mmc_send_status(card, &status);
1720 			if (err)
1721 				goto error_exit;
1722 
1723 			if (!mmc_host_is_spi(host) &&
1724 			    !mmc_ready_for_data(status)) {
1725 				err = mmc_blk_fix_state(card, req);
1726 				if (err)
1727 					goto error_exit;
1728 			}
1729 
1730 			if (!mrq->cmd->error)
1731 				break;
1732 		}
1733 
1734 		if (mrq->cmd->error ||
1735 		    mrq->data->error ||
1736 		    (!mmc_host_is_spi(host) &&
1737 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1738 			error = BLK_STS_IOERR;
1739 		else
1740 			error = BLK_STS_OK;
1741 
1742 	} while (blk_update_request(req, error, bytes_per_read));
1743 
1744 	return;
1745 
1746 error_exit:
1747 	mrq->data->bytes_xfered = 0;
1748 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1749 	/* Let it try the remaining request again */
1750 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1751 		mqrq->retries = MMC_MAX_RETRIES - 1;
1752 }
1753 
1754 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1755 {
1756 	return !!brq->mrq.sbc;
1757 }
1758 
1759 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1760 {
1761 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1762 }
1763 
1764 /*
1765  * Check for errors the host controller driver might not have seen such as
1766  * response mode errors or invalid card state.
1767  */
1768 static bool mmc_blk_status_error(struct request *req, u32 status)
1769 {
1770 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1771 	struct mmc_blk_request *brq = &mqrq->brq;
1772 	struct mmc_queue *mq = req->q->queuedata;
1773 	u32 stop_err_bits;
1774 
1775 	if (mmc_host_is_spi(mq->card->host))
1776 		return false;
1777 
1778 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1779 
1780 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1781 	       brq->stop.resp[0] & stop_err_bits ||
1782 	       status            & stop_err_bits ||
1783 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1784 }
1785 
1786 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1787 {
1788 	return !brq->sbc.error && !brq->cmd.error &&
1789 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1790 }
1791 
1792 /*
1793  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1794  * policy:
1795  * 1. A request that has transferred at least some data is considered
1796  * successful and will be requeued if there is remaining data to
1797  * transfer.
1798  * 2. Otherwise the number of retries is incremented and the request
1799  * will be requeued if there are remaining retries.
1800  * 3. Otherwise the request will be errored out.
1801  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1802  * mqrq->retries. So there are only 4 possible actions here:
1803  *	1. do not accept the bytes_xfered value i.e. set it to zero
1804  *	2. change mqrq->retries to determine the number of retries
1805  *	3. try to reset the card
1806  *	4. read one sector at a time
1807  */
1808 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1809 {
1810 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1811 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1812 	struct mmc_blk_request *brq = &mqrq->brq;
1813 	struct mmc_blk_data *md = mq->blkdata;
1814 	struct mmc_card *card = mq->card;
1815 	u32 status;
1816 	u32 blocks;
1817 	int err;
1818 
1819 	/*
1820 	 * Some errors the host driver might not have seen. Set the number of
1821 	 * bytes transferred to zero in that case.
1822 	 */
1823 	err = __mmc_send_status(card, &status, 0);
1824 	if (err || mmc_blk_status_error(req, status))
1825 		brq->data.bytes_xfered = 0;
1826 
1827 	mmc_retune_release(card->host);
1828 
1829 	/*
1830 	 * Try again to get the status. This also provides an opportunity for
1831 	 * re-tuning.
1832 	 */
1833 	if (err)
1834 		err = __mmc_send_status(card, &status, 0);
1835 
1836 	/*
1837 	 * Nothing more to do after the number of bytes transferred has been
1838 	 * updated and there is no card.
1839 	 */
1840 	if (err && mmc_detect_card_removed(card->host))
1841 		return;
1842 
1843 	/* Try to get back to "tran" state */
1844 	if (!mmc_host_is_spi(mq->card->host) &&
1845 	    (err || !mmc_ready_for_data(status)))
1846 		err = mmc_blk_fix_state(mq->card, req);
1847 
1848 	/*
1849 	 * Special case for SD cards where the card might record the number of
1850 	 * blocks written.
1851 	 */
1852 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1853 	    rq_data_dir(req) == WRITE) {
1854 		if (mmc_sd_num_wr_blocks(card, &blocks))
1855 			brq->data.bytes_xfered = 0;
1856 		else
1857 			brq->data.bytes_xfered = blocks << 9;
1858 	}
1859 
1860 	/* Reset if the card is in a bad state */
1861 	if (!mmc_host_is_spi(mq->card->host) &&
1862 	    err && mmc_blk_reset(md, card->host, type)) {
1863 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1864 		mqrq->retries = MMC_NO_RETRIES;
1865 		return;
1866 	}
1867 
1868 	/*
1869 	 * If anything was done, just return and if there is anything remaining
1870 	 * on the request it will get requeued.
1871 	 */
1872 	if (brq->data.bytes_xfered)
1873 		return;
1874 
1875 	/* Reset before last retry */
1876 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1877 	    mmc_blk_reset(md, card->host, type))
1878 		return;
1879 
1880 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1881 	if (brq->sbc.error || brq->cmd.error)
1882 		return;
1883 
1884 	/* Reduce the remaining retries for data errors */
1885 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1886 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1887 		return;
1888 	}
1889 
1890 	if (rq_data_dir(req) == READ && brq->data.blocks >
1891 			queue_physical_block_size(mq->queue) >> 9) {
1892 		/* Read one (native) sector at a time */
1893 		mmc_blk_read_single(mq, req);
1894 		return;
1895 	}
1896 }
1897 
1898 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1899 {
1900 	mmc_blk_eval_resp_error(brq);
1901 
1902 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1903 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1904 }
1905 
1906 static int mmc_spi_err_check(struct mmc_card *card)
1907 {
1908 	u32 status = 0;
1909 	int err;
1910 
1911 	/*
1912 	 * SPI does not have a TRAN state we have to wait on, instead the
1913 	 * card is ready again when it no longer holds the line LOW.
1914 	 * We still have to ensure two things here before we know the write
1915 	 * was successful:
1916 	 * 1. The card has not disconnected during busy and we actually read our
1917 	 * own pull-up, thinking it was still connected, so ensure it
1918 	 * still responds.
1919 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1920 	 * just reconnected card after being disconnected during busy.
1921 	 */
1922 	err = __mmc_send_status(card, &status, 0);
1923 	if (err)
1924 		return err;
1925 	/* All R1 and R2 bits of SPI are errors in our case */
1926 	if (status)
1927 		return -EIO;
1928 	return 0;
1929 }
1930 
1931 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1932 {
1933 	struct mmc_blk_busy_data *data = cb_data;
1934 	u32 status = 0;
1935 	int err;
1936 
1937 	err = mmc_send_status(data->card, &status);
1938 	if (err)
1939 		return err;
1940 
1941 	/* Accumulate response error bits. */
1942 	data->status |= status;
1943 
1944 	*busy = !mmc_ready_for_data(status);
1945 	return 0;
1946 }
1947 
1948 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1949 {
1950 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1951 	struct mmc_blk_busy_data cb_data;
1952 	int err;
1953 
1954 	if (rq_data_dir(req) == READ)
1955 		return 0;
1956 
1957 	if (mmc_host_is_spi(card->host)) {
1958 		err = mmc_spi_err_check(card);
1959 		if (err)
1960 			mqrq->brq.data.bytes_xfered = 0;
1961 		return err;
1962 	}
1963 
1964 	cb_data.card = card;
1965 	cb_data.status = 0;
1966 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1967 				  &mmc_blk_busy_cb, &cb_data);
1968 
1969 	/*
1970 	 * Do not assume data transferred correctly if there are any error bits
1971 	 * set.
1972 	 */
1973 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1974 		mqrq->brq.data.bytes_xfered = 0;
1975 		err = err ? err : -EIO;
1976 	}
1977 
1978 	/* Copy the exception bit so it will be seen later on */
1979 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1980 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1981 
1982 	return err;
1983 }
1984 
1985 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1986 					    struct request *req)
1987 {
1988 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1989 
1990 	mmc_blk_reset_success(mq->blkdata, type);
1991 }
1992 
1993 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1994 {
1995 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1996 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1997 
1998 	if (nr_bytes) {
1999 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2000 			blk_mq_requeue_request(req, true);
2001 		else
2002 			__blk_mq_end_request(req, BLK_STS_OK);
2003 	} else if (!blk_rq_bytes(req)) {
2004 		__blk_mq_end_request(req, BLK_STS_IOERR);
2005 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2006 		blk_mq_requeue_request(req, true);
2007 	} else {
2008 		if (mmc_card_removed(mq->card))
2009 			req->rq_flags |= RQF_QUIET;
2010 		blk_mq_end_request(req, BLK_STS_IOERR);
2011 	}
2012 }
2013 
2014 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2015 					struct mmc_queue_req *mqrq)
2016 {
2017 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2018 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2019 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2020 }
2021 
2022 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2023 				 struct mmc_queue_req *mqrq)
2024 {
2025 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2026 		mmc_run_bkops(mq->card);
2027 }
2028 
2029 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2030 {
2031 	struct mmc_queue_req *mqrq =
2032 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2033 	struct request *req = mmc_queue_req_to_req(mqrq);
2034 	struct request_queue *q = req->q;
2035 	struct mmc_queue *mq = q->queuedata;
2036 	struct mmc_host *host = mq->card->host;
2037 	unsigned long flags;
2038 
2039 	if (mmc_blk_rq_error(&mqrq->brq) ||
2040 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2041 		spin_lock_irqsave(&mq->lock, flags);
2042 		mq->recovery_needed = true;
2043 		mq->recovery_req = req;
2044 		spin_unlock_irqrestore(&mq->lock, flags);
2045 
2046 		host->cqe_ops->cqe_recovery_start(host);
2047 
2048 		schedule_work(&mq->recovery_work);
2049 		return;
2050 	}
2051 
2052 	mmc_blk_rw_reset_success(mq, req);
2053 
2054 	/*
2055 	 * Block layer timeouts race with completions which means the normal
2056 	 * completion path cannot be used during recovery.
2057 	 */
2058 	if (mq->in_recovery)
2059 		mmc_blk_cqe_complete_rq(mq, req);
2060 	else if (likely(!blk_should_fake_timeout(req->q)))
2061 		blk_mq_complete_request(req);
2062 }
2063 
2064 void mmc_blk_mq_complete(struct request *req)
2065 {
2066 	struct mmc_queue *mq = req->q->queuedata;
2067 	struct mmc_host *host = mq->card->host;
2068 
2069 	if (host->cqe_enabled)
2070 		mmc_blk_cqe_complete_rq(mq, req);
2071 	else if (likely(!blk_should_fake_timeout(req->q)))
2072 		mmc_blk_mq_complete_rq(mq, req);
2073 }
2074 
2075 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2076 				       struct request *req)
2077 {
2078 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2079 	struct mmc_host *host = mq->card->host;
2080 
2081 	if (mmc_blk_rq_error(&mqrq->brq) ||
2082 	    mmc_blk_card_busy(mq->card, req)) {
2083 		mmc_blk_mq_rw_recovery(mq, req);
2084 	} else {
2085 		mmc_blk_rw_reset_success(mq, req);
2086 		mmc_retune_release(host);
2087 	}
2088 
2089 	mmc_blk_urgent_bkops(mq, mqrq);
2090 }
2091 
2092 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2093 {
2094 	unsigned long flags;
2095 	bool put_card;
2096 
2097 	spin_lock_irqsave(&mq->lock, flags);
2098 
2099 	mq->in_flight[issue_type] -= 1;
2100 
2101 	put_card = (mmc_tot_in_flight(mq) == 0);
2102 
2103 	spin_unlock_irqrestore(&mq->lock, flags);
2104 
2105 	if (put_card)
2106 		mmc_put_card(mq->card, &mq->ctx);
2107 }
2108 
2109 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2110 				bool can_sleep)
2111 {
2112 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2113 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2114 	struct mmc_request *mrq = &mqrq->brq.mrq;
2115 	struct mmc_host *host = mq->card->host;
2116 
2117 	mmc_post_req(host, mrq, 0);
2118 
2119 	/*
2120 	 * Block layer timeouts race with completions which means the normal
2121 	 * completion path cannot be used during recovery.
2122 	 */
2123 	if (mq->in_recovery) {
2124 		mmc_blk_mq_complete_rq(mq, req);
2125 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2126 		if (can_sleep)
2127 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2128 		else
2129 			blk_mq_complete_request(req);
2130 	}
2131 
2132 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2133 }
2134 
2135 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2136 {
2137 	struct request *req = mq->recovery_req;
2138 	struct mmc_host *host = mq->card->host;
2139 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2140 
2141 	mq->recovery_req = NULL;
2142 	mq->rw_wait = false;
2143 
2144 	if (mmc_blk_rq_error(&mqrq->brq)) {
2145 		mmc_retune_hold_now(host);
2146 		mmc_blk_mq_rw_recovery(mq, req);
2147 	}
2148 
2149 	mmc_blk_urgent_bkops(mq, mqrq);
2150 
2151 	mmc_blk_mq_post_req(mq, req, true);
2152 }
2153 
2154 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2155 					 struct request **prev_req)
2156 {
2157 	if (mmc_host_done_complete(mq->card->host))
2158 		return;
2159 
2160 	mutex_lock(&mq->complete_lock);
2161 
2162 	if (!mq->complete_req)
2163 		goto out_unlock;
2164 
2165 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2166 
2167 	if (prev_req)
2168 		*prev_req = mq->complete_req;
2169 	else
2170 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2171 
2172 	mq->complete_req = NULL;
2173 
2174 out_unlock:
2175 	mutex_unlock(&mq->complete_lock);
2176 }
2177 
2178 void mmc_blk_mq_complete_work(struct work_struct *work)
2179 {
2180 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2181 					    complete_work);
2182 
2183 	mmc_blk_mq_complete_prev_req(mq, NULL);
2184 }
2185 
2186 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2187 {
2188 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2189 						  brq.mrq);
2190 	struct request *req = mmc_queue_req_to_req(mqrq);
2191 	struct request_queue *q = req->q;
2192 	struct mmc_queue *mq = q->queuedata;
2193 	struct mmc_host *host = mq->card->host;
2194 	unsigned long flags;
2195 
2196 	if (!mmc_host_done_complete(host)) {
2197 		bool waiting;
2198 
2199 		/*
2200 		 * We cannot complete the request in this context, so record
2201 		 * that there is a request to complete, and that a following
2202 		 * request does not need to wait (although it does need to
2203 		 * complete complete_req first).
2204 		 */
2205 		spin_lock_irqsave(&mq->lock, flags);
2206 		mq->complete_req = req;
2207 		mq->rw_wait = false;
2208 		waiting = mq->waiting;
2209 		spin_unlock_irqrestore(&mq->lock, flags);
2210 
2211 		/*
2212 		 * If 'waiting' then the waiting task will complete this
2213 		 * request, otherwise queue a work to do it. Note that
2214 		 * complete_work may still race with the dispatch of a following
2215 		 * request.
2216 		 */
2217 		if (waiting)
2218 			wake_up(&mq->wait);
2219 		else
2220 			queue_work(mq->card->complete_wq, &mq->complete_work);
2221 
2222 		return;
2223 	}
2224 
2225 	/* Take the recovery path for errors or urgent background operations */
2226 	if (mmc_blk_rq_error(&mqrq->brq) ||
2227 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2228 		spin_lock_irqsave(&mq->lock, flags);
2229 		mq->recovery_needed = true;
2230 		mq->recovery_req = req;
2231 		spin_unlock_irqrestore(&mq->lock, flags);
2232 		wake_up(&mq->wait);
2233 		schedule_work(&mq->recovery_work);
2234 		return;
2235 	}
2236 
2237 	mmc_blk_rw_reset_success(mq, req);
2238 
2239 	mq->rw_wait = false;
2240 	wake_up(&mq->wait);
2241 
2242 	/* context unknown */
2243 	mmc_blk_mq_post_req(mq, req, false);
2244 }
2245 
2246 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2247 {
2248 	unsigned long flags;
2249 	bool done;
2250 
2251 	/*
2252 	 * Wait while there is another request in progress, but not if recovery
2253 	 * is needed. Also indicate whether there is a request waiting to start.
2254 	 */
2255 	spin_lock_irqsave(&mq->lock, flags);
2256 	if (mq->recovery_needed) {
2257 		*err = -EBUSY;
2258 		done = true;
2259 	} else {
2260 		done = !mq->rw_wait;
2261 	}
2262 	mq->waiting = !done;
2263 	spin_unlock_irqrestore(&mq->lock, flags);
2264 
2265 	return done;
2266 }
2267 
2268 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2269 {
2270 	int err = 0;
2271 
2272 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2273 
2274 	/* Always complete the previous request if there is one */
2275 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2276 
2277 	return err;
2278 }
2279 
2280 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2281 				  struct request *req)
2282 {
2283 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2284 	struct mmc_host *host = mq->card->host;
2285 	struct request *prev_req = NULL;
2286 	int err = 0;
2287 
2288 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2289 
2290 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2291 
2292 	mmc_pre_req(host, &mqrq->brq.mrq);
2293 
2294 	err = mmc_blk_rw_wait(mq, &prev_req);
2295 	if (err)
2296 		goto out_post_req;
2297 
2298 	mq->rw_wait = true;
2299 
2300 	err = mmc_start_request(host, &mqrq->brq.mrq);
2301 
2302 	if (prev_req)
2303 		mmc_blk_mq_post_req(mq, prev_req, true);
2304 
2305 	if (err)
2306 		mq->rw_wait = false;
2307 
2308 	/* Release re-tuning here where there is no synchronization required */
2309 	if (err || mmc_host_done_complete(host))
2310 		mmc_retune_release(host);
2311 
2312 out_post_req:
2313 	if (err)
2314 		mmc_post_req(host, &mqrq->brq.mrq, err);
2315 
2316 	return err;
2317 }
2318 
2319 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2320 {
2321 	if (host->cqe_enabled)
2322 		return host->cqe_ops->cqe_wait_for_idle(host);
2323 
2324 	return mmc_blk_rw_wait(mq, NULL);
2325 }
2326 
2327 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2328 {
2329 	struct mmc_blk_data *md = mq->blkdata;
2330 	struct mmc_card *card = md->queue.card;
2331 	struct mmc_host *host = card->host;
2332 	int ret;
2333 
2334 	ret = mmc_blk_part_switch(card, md->part_type);
2335 	if (ret)
2336 		return MMC_REQ_FAILED_TO_START;
2337 
2338 	switch (mmc_issue_type(mq, req)) {
2339 	case MMC_ISSUE_SYNC:
2340 		ret = mmc_blk_wait_for_idle(mq, host);
2341 		if (ret)
2342 			return MMC_REQ_BUSY;
2343 		switch (req_op(req)) {
2344 		case REQ_OP_DRV_IN:
2345 		case REQ_OP_DRV_OUT:
2346 			mmc_blk_issue_drv_op(mq, req);
2347 			break;
2348 		case REQ_OP_DISCARD:
2349 			mmc_blk_issue_discard_rq(mq, req);
2350 			break;
2351 		case REQ_OP_SECURE_ERASE:
2352 			mmc_blk_issue_secdiscard_rq(mq, req);
2353 			break;
2354 		case REQ_OP_WRITE_ZEROES:
2355 			mmc_blk_issue_trim_rq(mq, req);
2356 			break;
2357 		case REQ_OP_FLUSH:
2358 			mmc_blk_issue_flush(mq, req);
2359 			break;
2360 		default:
2361 			WARN_ON_ONCE(1);
2362 			return MMC_REQ_FAILED_TO_START;
2363 		}
2364 		return MMC_REQ_FINISHED;
2365 	case MMC_ISSUE_DCMD:
2366 	case MMC_ISSUE_ASYNC:
2367 		switch (req_op(req)) {
2368 		case REQ_OP_FLUSH:
2369 			if (!mmc_cache_enabled(host)) {
2370 				blk_mq_end_request(req, BLK_STS_OK);
2371 				return MMC_REQ_FINISHED;
2372 			}
2373 			ret = mmc_blk_cqe_issue_flush(mq, req);
2374 			break;
2375 		case REQ_OP_READ:
2376 		case REQ_OP_WRITE:
2377 			if (host->cqe_enabled)
2378 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2379 			else
2380 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2381 			break;
2382 		default:
2383 			WARN_ON_ONCE(1);
2384 			ret = -EINVAL;
2385 		}
2386 		if (!ret)
2387 			return MMC_REQ_STARTED;
2388 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2389 	default:
2390 		WARN_ON_ONCE(1);
2391 		return MMC_REQ_FAILED_TO_START;
2392 	}
2393 }
2394 
2395 static inline int mmc_blk_readonly(struct mmc_card *card)
2396 {
2397 	return mmc_card_readonly(card) ||
2398 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2399 }
2400 
2401 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2402 					      struct device *parent,
2403 					      sector_t size,
2404 					      bool default_ro,
2405 					      const char *subname,
2406 					      int area_type,
2407 					      unsigned int part_type)
2408 {
2409 	struct mmc_blk_data *md;
2410 	int devidx, ret;
2411 	char cap_str[10];
2412 	bool cache_enabled = false;
2413 	bool fua_enabled = false;
2414 
2415 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2416 	if (devidx < 0) {
2417 		/*
2418 		 * We get -ENOSPC because there are no more any available
2419 		 * devidx. The reason may be that, either userspace haven't yet
2420 		 * unmounted the partitions, which postpones mmc_blk_release()
2421 		 * from being called, or the device has more partitions than
2422 		 * what we support.
2423 		 */
2424 		if (devidx == -ENOSPC)
2425 			dev_err(mmc_dev(card->host),
2426 				"no more device IDs available\n");
2427 
2428 		return ERR_PTR(devidx);
2429 	}
2430 
2431 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2432 	if (!md) {
2433 		ret = -ENOMEM;
2434 		goto out;
2435 	}
2436 
2437 	md->area_type = area_type;
2438 
2439 	/*
2440 	 * Set the read-only status based on the supported commands
2441 	 * and the write protect switch.
2442 	 */
2443 	md->read_only = mmc_blk_readonly(card);
2444 
2445 	md->disk = mmc_init_queue(&md->queue, card);
2446 	if (IS_ERR(md->disk)) {
2447 		ret = PTR_ERR(md->disk);
2448 		goto err_kfree;
2449 	}
2450 
2451 	INIT_LIST_HEAD(&md->part);
2452 	INIT_LIST_HEAD(&md->rpmbs);
2453 	kref_init(&md->kref);
2454 
2455 	md->queue.blkdata = md;
2456 	md->part_type = part_type;
2457 
2458 	md->disk->major	= MMC_BLOCK_MAJOR;
2459 	md->disk->minors = perdev_minors;
2460 	md->disk->first_minor = devidx * perdev_minors;
2461 	md->disk->fops = &mmc_bdops;
2462 	md->disk->private_data = md;
2463 	md->parent = parent;
2464 	set_disk_ro(md->disk, md->read_only || default_ro);
2465 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2466 		md->disk->flags |= GENHD_FL_NO_PART;
2467 
2468 	/*
2469 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2470 	 *
2471 	 * - be set for removable media with permanent block devices
2472 	 * - be unset for removable block devices with permanent media
2473 	 *
2474 	 * Since MMC block devices clearly fall under the second
2475 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2476 	 * should use the block device creation/destruction hotplug
2477 	 * messages to tell when the card is present.
2478 	 */
2479 
2480 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2481 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2482 
2483 	set_capacity(md->disk, size);
2484 
2485 	if (mmc_host_cmd23(card->host)) {
2486 		if ((mmc_card_mmc(card) &&
2487 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2488 		    (mmc_card_sd(card) &&
2489 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2490 			md->flags |= MMC_BLK_CMD23;
2491 	}
2492 
2493 	if (md->flags & MMC_BLK_CMD23 &&
2494 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2495 	     card->ext_csd.rel_sectors)) {
2496 		md->flags |= MMC_BLK_REL_WR;
2497 		fua_enabled = true;
2498 		cache_enabled = true;
2499 	}
2500 	if (mmc_cache_enabled(card->host))
2501 		cache_enabled  = true;
2502 
2503 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2504 
2505 	string_get_size((u64)size, 512, STRING_UNITS_2,
2506 			cap_str, sizeof(cap_str));
2507 	pr_info("%s: %s %s %s%s\n",
2508 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2509 		cap_str, md->read_only ? " (ro)" : "");
2510 
2511 	/* used in ->open, must be set before add_disk: */
2512 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2513 		dev_set_drvdata(&card->dev, md);
2514 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2515 	if (ret)
2516 		goto err_put_disk;
2517 	return md;
2518 
2519  err_put_disk:
2520 	put_disk(md->disk);
2521 	blk_mq_free_tag_set(&md->queue.tag_set);
2522  err_kfree:
2523 	kfree(md);
2524  out:
2525 	ida_simple_remove(&mmc_blk_ida, devidx);
2526 	return ERR_PTR(ret);
2527 }
2528 
2529 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2530 {
2531 	sector_t size;
2532 
2533 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2534 		/*
2535 		 * The EXT_CSD sector count is in number or 512 byte
2536 		 * sectors.
2537 		 */
2538 		size = card->ext_csd.sectors;
2539 	} else {
2540 		/*
2541 		 * The CSD capacity field is in units of read_blkbits.
2542 		 * set_capacity takes units of 512 bytes.
2543 		 */
2544 		size = (typeof(sector_t))card->csd.capacity
2545 			<< (card->csd.read_blkbits - 9);
2546 	}
2547 
2548 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2549 					MMC_BLK_DATA_AREA_MAIN, 0);
2550 }
2551 
2552 static int mmc_blk_alloc_part(struct mmc_card *card,
2553 			      struct mmc_blk_data *md,
2554 			      unsigned int part_type,
2555 			      sector_t size,
2556 			      bool default_ro,
2557 			      const char *subname,
2558 			      int area_type)
2559 {
2560 	struct mmc_blk_data *part_md;
2561 
2562 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2563 				    subname, area_type, part_type);
2564 	if (IS_ERR(part_md))
2565 		return PTR_ERR(part_md);
2566 	list_add(&part_md->part, &md->part);
2567 
2568 	return 0;
2569 }
2570 
2571 /**
2572  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2573  * @filp: the character device file
2574  * @cmd: the ioctl() command
2575  * @arg: the argument from userspace
2576  *
2577  * This will essentially just redirect the ioctl()s coming in over to
2578  * the main block device spawning the RPMB character device.
2579  */
2580 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2581 			   unsigned long arg)
2582 {
2583 	struct mmc_rpmb_data *rpmb = filp->private_data;
2584 	int ret;
2585 
2586 	switch (cmd) {
2587 	case MMC_IOC_CMD:
2588 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2589 					(struct mmc_ioc_cmd __user *)arg,
2590 					rpmb);
2591 		break;
2592 	case MMC_IOC_MULTI_CMD:
2593 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2594 					(struct mmc_ioc_multi_cmd __user *)arg,
2595 					rpmb);
2596 		break;
2597 	default:
2598 		ret = -EINVAL;
2599 		break;
2600 	}
2601 
2602 	return ret;
2603 }
2604 
2605 #ifdef CONFIG_COMPAT
2606 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2607 			      unsigned long arg)
2608 {
2609 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2610 }
2611 #endif
2612 
2613 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2614 {
2615 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2616 						  struct mmc_rpmb_data, chrdev);
2617 
2618 	get_device(&rpmb->dev);
2619 	filp->private_data = rpmb;
2620 	mmc_blk_get(rpmb->md->disk);
2621 
2622 	return nonseekable_open(inode, filp);
2623 }
2624 
2625 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2626 {
2627 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2628 						  struct mmc_rpmb_data, chrdev);
2629 
2630 	mmc_blk_put(rpmb->md);
2631 	put_device(&rpmb->dev);
2632 
2633 	return 0;
2634 }
2635 
2636 static const struct file_operations mmc_rpmb_fileops = {
2637 	.release = mmc_rpmb_chrdev_release,
2638 	.open = mmc_rpmb_chrdev_open,
2639 	.owner = THIS_MODULE,
2640 	.llseek = no_llseek,
2641 	.unlocked_ioctl = mmc_rpmb_ioctl,
2642 #ifdef CONFIG_COMPAT
2643 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2644 #endif
2645 };
2646 
2647 static void mmc_blk_rpmb_device_release(struct device *dev)
2648 {
2649 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2650 
2651 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2652 	kfree(rpmb);
2653 }
2654 
2655 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2656 				   struct mmc_blk_data *md,
2657 				   unsigned int part_index,
2658 				   sector_t size,
2659 				   const char *subname)
2660 {
2661 	int devidx, ret;
2662 	char rpmb_name[DISK_NAME_LEN];
2663 	char cap_str[10];
2664 	struct mmc_rpmb_data *rpmb;
2665 
2666 	/* This creates the minor number for the RPMB char device */
2667 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2668 	if (devidx < 0)
2669 		return devidx;
2670 
2671 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2672 	if (!rpmb) {
2673 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2674 		return -ENOMEM;
2675 	}
2676 
2677 	snprintf(rpmb_name, sizeof(rpmb_name),
2678 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2679 
2680 	rpmb->id = devidx;
2681 	rpmb->part_index = part_index;
2682 	rpmb->dev.init_name = rpmb_name;
2683 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2684 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2685 	rpmb->dev.parent = &card->dev;
2686 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2687 	device_initialize(&rpmb->dev);
2688 	dev_set_drvdata(&rpmb->dev, rpmb);
2689 	rpmb->md = md;
2690 
2691 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2692 	rpmb->chrdev.owner = THIS_MODULE;
2693 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2694 	if (ret) {
2695 		pr_err("%s: could not add character device\n", rpmb_name);
2696 		goto out_put_device;
2697 	}
2698 
2699 	list_add(&rpmb->node, &md->rpmbs);
2700 
2701 	string_get_size((u64)size, 512, STRING_UNITS_2,
2702 			cap_str, sizeof(cap_str));
2703 
2704 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2705 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2706 		MAJOR(mmc_rpmb_devt), rpmb->id);
2707 
2708 	return 0;
2709 
2710 out_put_device:
2711 	put_device(&rpmb->dev);
2712 	return ret;
2713 }
2714 
2715 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2716 
2717 {
2718 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2719 	put_device(&rpmb->dev);
2720 }
2721 
2722 /* MMC Physical partitions consist of two boot partitions and
2723  * up to four general purpose partitions.
2724  * For each partition enabled in EXT_CSD a block device will be allocatedi
2725  * to provide access to the partition.
2726  */
2727 
2728 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2729 {
2730 	int idx, ret;
2731 
2732 	if (!mmc_card_mmc(card))
2733 		return 0;
2734 
2735 	for (idx = 0; idx < card->nr_parts; idx++) {
2736 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2737 			/*
2738 			 * RPMB partitions does not provide block access, they
2739 			 * are only accessed using ioctl():s. Thus create
2740 			 * special RPMB block devices that do not have a
2741 			 * backing block queue for these.
2742 			 */
2743 			ret = mmc_blk_alloc_rpmb_part(card, md,
2744 				card->part[idx].part_cfg,
2745 				card->part[idx].size >> 9,
2746 				card->part[idx].name);
2747 			if (ret)
2748 				return ret;
2749 		} else if (card->part[idx].size) {
2750 			ret = mmc_blk_alloc_part(card, md,
2751 				card->part[idx].part_cfg,
2752 				card->part[idx].size >> 9,
2753 				card->part[idx].force_ro,
2754 				card->part[idx].name,
2755 				card->part[idx].area_type);
2756 			if (ret)
2757 				return ret;
2758 		}
2759 	}
2760 
2761 	return 0;
2762 }
2763 
2764 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2765 {
2766 	/*
2767 	 * Flush remaining requests and free queues. It is freeing the queue
2768 	 * that stops new requests from being accepted.
2769 	 */
2770 	del_gendisk(md->disk);
2771 	mmc_cleanup_queue(&md->queue);
2772 	mmc_blk_put(md);
2773 }
2774 
2775 static void mmc_blk_remove_parts(struct mmc_card *card,
2776 				 struct mmc_blk_data *md)
2777 {
2778 	struct list_head *pos, *q;
2779 	struct mmc_blk_data *part_md;
2780 	struct mmc_rpmb_data *rpmb;
2781 
2782 	/* Remove RPMB partitions */
2783 	list_for_each_safe(pos, q, &md->rpmbs) {
2784 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2785 		list_del(pos);
2786 		mmc_blk_remove_rpmb_part(rpmb);
2787 	}
2788 	/* Remove block partitions */
2789 	list_for_each_safe(pos, q, &md->part) {
2790 		part_md = list_entry(pos, struct mmc_blk_data, part);
2791 		list_del(pos);
2792 		mmc_blk_remove_req(part_md);
2793 	}
2794 }
2795 
2796 #ifdef CONFIG_DEBUG_FS
2797 
2798 static int mmc_dbg_card_status_get(void *data, u64 *val)
2799 {
2800 	struct mmc_card *card = data;
2801 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2802 	struct mmc_queue *mq = &md->queue;
2803 	struct request *req;
2804 	int ret;
2805 
2806 	/* Ask the block layer about the card status */
2807 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2808 	if (IS_ERR(req))
2809 		return PTR_ERR(req);
2810 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2811 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2812 	blk_execute_rq(req, false);
2813 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2814 	if (ret >= 0) {
2815 		*val = ret;
2816 		ret = 0;
2817 	}
2818 	blk_mq_free_request(req);
2819 
2820 	return ret;
2821 }
2822 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2823 			 NULL, "%08llx\n");
2824 
2825 /* That is two digits * 512 + 1 for newline */
2826 #define EXT_CSD_STR_LEN 1025
2827 
2828 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2829 {
2830 	struct mmc_card *card = inode->i_private;
2831 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2832 	struct mmc_queue *mq = &md->queue;
2833 	struct request *req;
2834 	char *buf;
2835 	ssize_t n = 0;
2836 	u8 *ext_csd;
2837 	int err, i;
2838 
2839 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2840 	if (!buf)
2841 		return -ENOMEM;
2842 
2843 	/* Ask the block layer for the EXT CSD */
2844 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2845 	if (IS_ERR(req)) {
2846 		err = PTR_ERR(req);
2847 		goto out_free;
2848 	}
2849 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2850 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2851 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2852 	blk_execute_rq(req, false);
2853 	err = req_to_mmc_queue_req(req)->drv_op_result;
2854 	blk_mq_free_request(req);
2855 	if (err) {
2856 		pr_err("FAILED %d\n", err);
2857 		goto out_free;
2858 	}
2859 
2860 	for (i = 0; i < 512; i++)
2861 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2862 	n += sprintf(buf + n, "\n");
2863 
2864 	if (n != EXT_CSD_STR_LEN) {
2865 		err = -EINVAL;
2866 		kfree(ext_csd);
2867 		goto out_free;
2868 	}
2869 
2870 	filp->private_data = buf;
2871 	kfree(ext_csd);
2872 	return 0;
2873 
2874 out_free:
2875 	kfree(buf);
2876 	return err;
2877 }
2878 
2879 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2880 				size_t cnt, loff_t *ppos)
2881 {
2882 	char *buf = filp->private_data;
2883 
2884 	return simple_read_from_buffer(ubuf, cnt, ppos,
2885 				       buf, EXT_CSD_STR_LEN);
2886 }
2887 
2888 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2889 {
2890 	kfree(file->private_data);
2891 	return 0;
2892 }
2893 
2894 static const struct file_operations mmc_dbg_ext_csd_fops = {
2895 	.open		= mmc_ext_csd_open,
2896 	.read		= mmc_ext_csd_read,
2897 	.release	= mmc_ext_csd_release,
2898 	.llseek		= default_llseek,
2899 };
2900 
2901 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2902 {
2903 	struct dentry *root;
2904 
2905 	if (!card->debugfs_root)
2906 		return;
2907 
2908 	root = card->debugfs_root;
2909 
2910 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2911 		md->status_dentry =
2912 			debugfs_create_file_unsafe("status", 0400, root,
2913 						   card,
2914 						   &mmc_dbg_card_status_fops);
2915 	}
2916 
2917 	if (mmc_card_mmc(card)) {
2918 		md->ext_csd_dentry =
2919 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2920 					    &mmc_dbg_ext_csd_fops);
2921 	}
2922 }
2923 
2924 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2925 				   struct mmc_blk_data *md)
2926 {
2927 	if (!card->debugfs_root)
2928 		return;
2929 
2930 	debugfs_remove(md->status_dentry);
2931 	md->status_dentry = NULL;
2932 
2933 	debugfs_remove(md->ext_csd_dentry);
2934 	md->ext_csd_dentry = NULL;
2935 }
2936 
2937 #else
2938 
2939 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2940 {
2941 }
2942 
2943 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944 				   struct mmc_blk_data *md)
2945 {
2946 }
2947 
2948 #endif /* CONFIG_DEBUG_FS */
2949 
2950 static int mmc_blk_probe(struct mmc_card *card)
2951 {
2952 	struct mmc_blk_data *md;
2953 	int ret = 0;
2954 
2955 	/*
2956 	 * Check that the card supports the command class(es) we need.
2957 	 */
2958 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959 		return -ENODEV;
2960 
2961 	mmc_fixup_device(card, mmc_blk_fixups);
2962 
2963 	card->complete_wq = alloc_workqueue("mmc_complete",
2964 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965 	if (!card->complete_wq) {
2966 		pr_err("Failed to create mmc completion workqueue");
2967 		return -ENOMEM;
2968 	}
2969 
2970 	md = mmc_blk_alloc(card);
2971 	if (IS_ERR(md)) {
2972 		ret = PTR_ERR(md);
2973 		goto out_free;
2974 	}
2975 
2976 	ret = mmc_blk_alloc_parts(card, md);
2977 	if (ret)
2978 		goto out;
2979 
2980 	/* Add two debugfs entries */
2981 	mmc_blk_add_debugfs(card, md);
2982 
2983 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2984 	pm_runtime_use_autosuspend(&card->dev);
2985 
2986 	/*
2987 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2988 	 * decision to be taken during the SDIO init sequence instead.
2989 	 */
2990 	if (!mmc_card_sd_combo(card)) {
2991 		pm_runtime_set_active(&card->dev);
2992 		pm_runtime_enable(&card->dev);
2993 	}
2994 
2995 	return 0;
2996 
2997 out:
2998 	mmc_blk_remove_parts(card, md);
2999 	mmc_blk_remove_req(md);
3000 out_free:
3001 	destroy_workqueue(card->complete_wq);
3002 	return ret;
3003 }
3004 
3005 static void mmc_blk_remove(struct mmc_card *card)
3006 {
3007 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3008 
3009 	mmc_blk_remove_debugfs(card, md);
3010 	mmc_blk_remove_parts(card, md);
3011 	pm_runtime_get_sync(&card->dev);
3012 	if (md->part_curr != md->part_type) {
3013 		mmc_claim_host(card->host);
3014 		mmc_blk_part_switch(card, md->part_type);
3015 		mmc_release_host(card->host);
3016 	}
3017 	if (!mmc_card_sd_combo(card))
3018 		pm_runtime_disable(&card->dev);
3019 	pm_runtime_put_noidle(&card->dev);
3020 	mmc_blk_remove_req(md);
3021 	destroy_workqueue(card->complete_wq);
3022 }
3023 
3024 static int _mmc_blk_suspend(struct mmc_card *card)
3025 {
3026 	struct mmc_blk_data *part_md;
3027 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3028 
3029 	if (md) {
3030 		mmc_queue_suspend(&md->queue);
3031 		list_for_each_entry(part_md, &md->part, part) {
3032 			mmc_queue_suspend(&part_md->queue);
3033 		}
3034 	}
3035 	return 0;
3036 }
3037 
3038 static void mmc_blk_shutdown(struct mmc_card *card)
3039 {
3040 	_mmc_blk_suspend(card);
3041 }
3042 
3043 #ifdef CONFIG_PM_SLEEP
3044 static int mmc_blk_suspend(struct device *dev)
3045 {
3046 	struct mmc_card *card = mmc_dev_to_card(dev);
3047 
3048 	return _mmc_blk_suspend(card);
3049 }
3050 
3051 static int mmc_blk_resume(struct device *dev)
3052 {
3053 	struct mmc_blk_data *part_md;
3054 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3055 
3056 	if (md) {
3057 		/*
3058 		 * Resume involves the card going into idle state,
3059 		 * so current partition is always the main one.
3060 		 */
3061 		md->part_curr = md->part_type;
3062 		mmc_queue_resume(&md->queue);
3063 		list_for_each_entry(part_md, &md->part, part) {
3064 			mmc_queue_resume(&part_md->queue);
3065 		}
3066 	}
3067 	return 0;
3068 }
3069 #endif
3070 
3071 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3072 
3073 static struct mmc_driver mmc_driver = {
3074 	.drv		= {
3075 		.name	= "mmcblk",
3076 		.pm	= &mmc_blk_pm_ops,
3077 	},
3078 	.probe		= mmc_blk_probe,
3079 	.remove		= mmc_blk_remove,
3080 	.shutdown	= mmc_blk_shutdown,
3081 };
3082 
3083 static int __init mmc_blk_init(void)
3084 {
3085 	int res;
3086 
3087 	res  = bus_register(&mmc_rpmb_bus_type);
3088 	if (res < 0) {
3089 		pr_err("mmcblk: could not register RPMB bus type\n");
3090 		return res;
3091 	}
3092 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3093 	if (res < 0) {
3094 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3095 		goto out_bus_unreg;
3096 	}
3097 
3098 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3099 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3100 
3101 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3102 
3103 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3104 	if (res)
3105 		goto out_chrdev_unreg;
3106 
3107 	res = mmc_register_driver(&mmc_driver);
3108 	if (res)
3109 		goto out_blkdev_unreg;
3110 
3111 	return 0;
3112 
3113 out_blkdev_unreg:
3114 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3115 out_chrdev_unreg:
3116 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3117 out_bus_unreg:
3118 	bus_unregister(&mmc_rpmb_bus_type);
3119 	return res;
3120 }
3121 
3122 static void __exit mmc_blk_exit(void)
3123 {
3124 	mmc_unregister_driver(&mmc_driver);
3125 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3126 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3127 	bus_unregister(&mmc_rpmb_bus_type);
3128 }
3129 
3130 module_init(mmc_blk_init);
3131 module_exit(mmc_blk_exit);
3132 
3133 MODULE_LICENSE("GPL");
3134 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3135 
3136