1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 static int mmc_spi_err_check(struct mmc_card *card); 182 183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 184 { 185 struct mmc_blk_data *md; 186 187 mutex_lock(&open_lock); 188 md = disk->private_data; 189 if (md && !kref_get_unless_zero(&md->kref)) 190 md = NULL; 191 mutex_unlock(&open_lock); 192 193 return md; 194 } 195 196 static inline int mmc_get_devidx(struct gendisk *disk) 197 { 198 int devidx = disk->first_minor / perdev_minors; 199 return devidx; 200 } 201 202 static void mmc_blk_kref_release(struct kref *ref) 203 { 204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 205 int devidx; 206 207 devidx = mmc_get_devidx(md->disk); 208 ida_simple_remove(&mmc_blk_ida, devidx); 209 210 mutex_lock(&open_lock); 211 md->disk->private_data = NULL; 212 mutex_unlock(&open_lock); 213 214 put_disk(md->disk); 215 kfree(md); 216 } 217 218 static void mmc_blk_put(struct mmc_blk_data *md) 219 { 220 kref_put(&md->kref, mmc_blk_kref_release); 221 } 222 223 static ssize_t power_ro_lock_show(struct device *dev, 224 struct device_attribute *attr, char *buf) 225 { 226 int ret; 227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 228 struct mmc_card *card = md->queue.card; 229 int locked = 0; 230 231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 232 locked = 2; 233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 234 locked = 1; 235 236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 237 238 mmc_blk_put(md); 239 240 return ret; 241 } 242 243 static ssize_t power_ro_lock_store(struct device *dev, 244 struct device_attribute *attr, const char *buf, size_t count) 245 { 246 int ret; 247 struct mmc_blk_data *md, *part_md; 248 struct mmc_queue *mq; 249 struct request *req; 250 unsigned long set; 251 252 if (kstrtoul(buf, 0, &set)) 253 return -EINVAL; 254 255 if (set != 1) 256 return count; 257 258 md = mmc_blk_get(dev_to_disk(dev)); 259 mq = &md->queue; 260 261 /* Dispatch locking to the block layer */ 262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 263 if (IS_ERR(req)) { 264 count = PTR_ERR(req); 265 goto out_put; 266 } 267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 268 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 269 blk_execute_rq(req, false); 270 ret = req_to_mmc_queue_req(req)->drv_op_result; 271 blk_mq_free_request(req); 272 273 if (!ret) { 274 pr_info("%s: Locking boot partition ro until next power on\n", 275 md->disk->disk_name); 276 set_disk_ro(md->disk, 1); 277 278 list_for_each_entry(part_md, &md->part, part) 279 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 280 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 281 set_disk_ro(part_md->disk, 1); 282 } 283 } 284 out_put: 285 mmc_blk_put(md); 286 return count; 287 } 288 289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 290 power_ro_lock_show, power_ro_lock_store); 291 292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 293 char *buf) 294 { 295 int ret; 296 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 297 298 ret = snprintf(buf, PAGE_SIZE, "%d\n", 299 get_disk_ro(dev_to_disk(dev)) ^ 300 md->read_only); 301 mmc_blk_put(md); 302 return ret; 303 } 304 305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 306 const char *buf, size_t count) 307 { 308 int ret; 309 char *end; 310 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 311 unsigned long set = simple_strtoul(buf, &end, 0); 312 if (end == buf) { 313 ret = -EINVAL; 314 goto out; 315 } 316 317 set_disk_ro(dev_to_disk(dev), set || md->read_only); 318 ret = count; 319 out: 320 mmc_blk_put(md); 321 return ret; 322 } 323 324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 325 326 static struct attribute *mmc_disk_attrs[] = { 327 &dev_attr_force_ro.attr, 328 &dev_attr_ro_lock_until_next_power_on.attr, 329 NULL, 330 }; 331 332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 333 struct attribute *a, int n) 334 { 335 struct device *dev = kobj_to_dev(kobj); 336 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 337 umode_t mode = a->mode; 338 339 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 340 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 341 md->queue.card->ext_csd.boot_ro_lockable) { 342 mode = S_IRUGO; 343 if (!(md->queue.card->ext_csd.boot_ro_lock & 344 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 345 mode |= S_IWUSR; 346 } 347 348 mmc_blk_put(md); 349 return mode; 350 } 351 352 static const struct attribute_group mmc_disk_attr_group = { 353 .is_visible = mmc_disk_attrs_is_visible, 354 .attrs = mmc_disk_attrs, 355 }; 356 357 static const struct attribute_group *mmc_disk_attr_groups[] = { 358 &mmc_disk_attr_group, 359 NULL, 360 }; 361 362 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 363 { 364 struct mmc_blk_data *md = mmc_blk_get(disk); 365 int ret = -ENXIO; 366 367 mutex_lock(&block_mutex); 368 if (md) { 369 ret = 0; 370 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 371 mmc_blk_put(md); 372 ret = -EROFS; 373 } 374 } 375 mutex_unlock(&block_mutex); 376 377 return ret; 378 } 379 380 static void mmc_blk_release(struct gendisk *disk) 381 { 382 struct mmc_blk_data *md = disk->private_data; 383 384 mutex_lock(&block_mutex); 385 mmc_blk_put(md); 386 mutex_unlock(&block_mutex); 387 } 388 389 static int 390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 391 { 392 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 393 geo->heads = 4; 394 geo->sectors = 16; 395 return 0; 396 } 397 398 struct mmc_blk_ioc_data { 399 struct mmc_ioc_cmd ic; 400 unsigned char *buf; 401 u64 buf_bytes; 402 struct mmc_rpmb_data *rpmb; 403 }; 404 405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 406 struct mmc_ioc_cmd __user *user) 407 { 408 struct mmc_blk_ioc_data *idata; 409 int err; 410 411 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 412 if (!idata) { 413 err = -ENOMEM; 414 goto out; 415 } 416 417 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 418 err = -EFAULT; 419 goto idata_err; 420 } 421 422 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 423 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 424 err = -EOVERFLOW; 425 goto idata_err; 426 } 427 428 if (!idata->buf_bytes) { 429 idata->buf = NULL; 430 return idata; 431 } 432 433 idata->buf = memdup_user((void __user *)(unsigned long) 434 idata->ic.data_ptr, idata->buf_bytes); 435 if (IS_ERR(idata->buf)) { 436 err = PTR_ERR(idata->buf); 437 goto idata_err; 438 } 439 440 return idata; 441 442 idata_err: 443 kfree(idata); 444 out: 445 return ERR_PTR(err); 446 } 447 448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 449 struct mmc_blk_ioc_data *idata) 450 { 451 struct mmc_ioc_cmd *ic = &idata->ic; 452 453 if (copy_to_user(&(ic_ptr->response), ic->response, 454 sizeof(ic->response))) 455 return -EFAULT; 456 457 if (!idata->ic.write_flag) { 458 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 459 idata->buf, idata->buf_bytes)) 460 return -EFAULT; 461 } 462 463 return 0; 464 } 465 466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 467 struct mmc_blk_ioc_data *idata) 468 { 469 struct mmc_command cmd = {}, sbc = {}; 470 struct mmc_data data = {}; 471 struct mmc_request mrq = {}; 472 struct scatterlist sg; 473 bool r1b_resp, use_r1b_resp = false; 474 unsigned int busy_timeout_ms; 475 int err; 476 unsigned int target_part; 477 478 if (!card || !md || !idata) 479 return -EINVAL; 480 481 /* 482 * The RPMB accesses comes in from the character device, so we 483 * need to target these explicitly. Else we just target the 484 * partition type for the block device the ioctl() was issued 485 * on. 486 */ 487 if (idata->rpmb) { 488 /* Support multiple RPMB partitions */ 489 target_part = idata->rpmb->part_index; 490 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 491 } else { 492 target_part = md->part_type; 493 } 494 495 cmd.opcode = idata->ic.opcode; 496 cmd.arg = idata->ic.arg; 497 cmd.flags = idata->ic.flags; 498 499 if (idata->buf_bytes) { 500 data.sg = &sg; 501 data.sg_len = 1; 502 data.blksz = idata->ic.blksz; 503 data.blocks = idata->ic.blocks; 504 505 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 506 507 if (idata->ic.write_flag) 508 data.flags = MMC_DATA_WRITE; 509 else 510 data.flags = MMC_DATA_READ; 511 512 /* data.flags must already be set before doing this. */ 513 mmc_set_data_timeout(&data, card); 514 515 /* Allow overriding the timeout_ns for empirical tuning. */ 516 if (idata->ic.data_timeout_ns) 517 data.timeout_ns = idata->ic.data_timeout_ns; 518 519 mrq.data = &data; 520 } 521 522 mrq.cmd = &cmd; 523 524 err = mmc_blk_part_switch(card, target_part); 525 if (err) 526 return err; 527 528 if (idata->ic.is_acmd) { 529 err = mmc_app_cmd(card->host, card); 530 if (err) 531 return err; 532 } 533 534 if (idata->rpmb) { 535 sbc.opcode = MMC_SET_BLOCK_COUNT; 536 /* 537 * We don't do any blockcount validation because the max size 538 * may be increased by a future standard. We just copy the 539 * 'Reliable Write' bit here. 540 */ 541 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 542 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 543 mrq.sbc = &sbc; 544 } 545 546 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 547 (cmd.opcode == MMC_SWITCH)) 548 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 549 550 /* If it's an R1B response we need some more preparations. */ 551 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 552 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 553 if (r1b_resp) 554 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, 555 busy_timeout_ms); 556 557 mmc_wait_for_req(card->host, &mrq); 558 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 559 560 if (cmd.error) { 561 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 562 __func__, cmd.error); 563 return cmd.error; 564 } 565 if (data.error) { 566 dev_err(mmc_dev(card->host), "%s: data error %d\n", 567 __func__, data.error); 568 return data.error; 569 } 570 571 /* 572 * Make sure the cache of the PARTITION_CONFIG register and 573 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 574 * changed it successfully. 575 */ 576 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 577 (cmd.opcode == MMC_SWITCH)) { 578 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 579 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 580 581 /* 582 * Update cache so the next mmc_blk_part_switch call operates 583 * on up-to-date data. 584 */ 585 card->ext_csd.part_config = value; 586 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 587 } 588 589 /* 590 * Make sure to update CACHE_CTRL in case it was changed. The cache 591 * will get turned back on if the card is re-initialized, e.g. 592 * suspend/resume or hw reset in recovery. 593 */ 594 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 595 (cmd.opcode == MMC_SWITCH)) { 596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 597 598 card->ext_csd.cache_ctrl = value; 599 } 600 601 /* 602 * According to the SD specs, some commands require a delay after 603 * issuing the command. 604 */ 605 if (idata->ic.postsleep_min_us) 606 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 607 608 /* No need to poll when using HW busy detection. */ 609 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 610 return 0; 611 612 if (mmc_host_is_spi(card->host)) { 613 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) 614 return mmc_spi_err_check(card); 615 return err; 616 } 617 /* Ensure RPMB/R1B command has completed by polling with CMD13. */ 618 if (idata->rpmb || r1b_resp) 619 err = mmc_poll_for_busy(card, busy_timeout_ms, false, 620 MMC_BUSY_IO); 621 622 return err; 623 } 624 625 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 626 struct mmc_ioc_cmd __user *ic_ptr, 627 struct mmc_rpmb_data *rpmb) 628 { 629 struct mmc_blk_ioc_data *idata; 630 struct mmc_blk_ioc_data *idatas[1]; 631 struct mmc_queue *mq; 632 struct mmc_card *card; 633 int err = 0, ioc_err = 0; 634 struct request *req; 635 636 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 637 if (IS_ERR(idata)) 638 return PTR_ERR(idata); 639 /* This will be NULL on non-RPMB ioctl():s */ 640 idata->rpmb = rpmb; 641 642 card = md->queue.card; 643 if (IS_ERR(card)) { 644 err = PTR_ERR(card); 645 goto cmd_done; 646 } 647 648 /* 649 * Dispatch the ioctl() into the block request queue. 650 */ 651 mq = &md->queue; 652 req = blk_mq_alloc_request(mq->queue, 653 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 654 if (IS_ERR(req)) { 655 err = PTR_ERR(req); 656 goto cmd_done; 657 } 658 idatas[0] = idata; 659 req_to_mmc_queue_req(req)->drv_op = 660 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 661 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 662 req_to_mmc_queue_req(req)->drv_op_data = idatas; 663 req_to_mmc_queue_req(req)->ioc_count = 1; 664 blk_execute_rq(req, false); 665 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 666 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 667 blk_mq_free_request(req); 668 669 cmd_done: 670 kfree(idata->buf); 671 kfree(idata); 672 return ioc_err ? ioc_err : err; 673 } 674 675 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 676 struct mmc_ioc_multi_cmd __user *user, 677 struct mmc_rpmb_data *rpmb) 678 { 679 struct mmc_blk_ioc_data **idata = NULL; 680 struct mmc_ioc_cmd __user *cmds = user->cmds; 681 struct mmc_card *card; 682 struct mmc_queue *mq; 683 int err = 0, ioc_err = 0; 684 __u64 num_of_cmds; 685 unsigned int i, n; 686 struct request *req; 687 688 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 689 sizeof(num_of_cmds))) 690 return -EFAULT; 691 692 if (!num_of_cmds) 693 return 0; 694 695 if (num_of_cmds > MMC_IOC_MAX_CMDS) 696 return -EINVAL; 697 698 n = num_of_cmds; 699 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 700 if (!idata) 701 return -ENOMEM; 702 703 for (i = 0; i < n; i++) { 704 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 705 if (IS_ERR(idata[i])) { 706 err = PTR_ERR(idata[i]); 707 n = i; 708 goto cmd_err; 709 } 710 /* This will be NULL on non-RPMB ioctl():s */ 711 idata[i]->rpmb = rpmb; 712 } 713 714 card = md->queue.card; 715 if (IS_ERR(card)) { 716 err = PTR_ERR(card); 717 goto cmd_err; 718 } 719 720 721 /* 722 * Dispatch the ioctl()s into the block request queue. 723 */ 724 mq = &md->queue; 725 req = blk_mq_alloc_request(mq->queue, 726 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 727 if (IS_ERR(req)) { 728 err = PTR_ERR(req); 729 goto cmd_err; 730 } 731 req_to_mmc_queue_req(req)->drv_op = 732 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 733 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 734 req_to_mmc_queue_req(req)->drv_op_data = idata; 735 req_to_mmc_queue_req(req)->ioc_count = n; 736 blk_execute_rq(req, false); 737 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 738 739 /* copy to user if data and response */ 740 for (i = 0; i < n && !err; i++) 741 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 742 743 blk_mq_free_request(req); 744 745 cmd_err: 746 for (i = 0; i < n; i++) { 747 kfree(idata[i]->buf); 748 kfree(idata[i]); 749 } 750 kfree(idata); 751 return ioc_err ? ioc_err : err; 752 } 753 754 static int mmc_blk_check_blkdev(struct block_device *bdev) 755 { 756 /* 757 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 758 * whole block device, not on a partition. This prevents overspray 759 * between sibling partitions. 760 */ 761 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 762 return -EPERM; 763 return 0; 764 } 765 766 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 767 unsigned int cmd, unsigned long arg) 768 { 769 struct mmc_blk_data *md; 770 int ret; 771 772 switch (cmd) { 773 case MMC_IOC_CMD: 774 ret = mmc_blk_check_blkdev(bdev); 775 if (ret) 776 return ret; 777 md = mmc_blk_get(bdev->bd_disk); 778 if (!md) 779 return -EINVAL; 780 ret = mmc_blk_ioctl_cmd(md, 781 (struct mmc_ioc_cmd __user *)arg, 782 NULL); 783 mmc_blk_put(md); 784 return ret; 785 case MMC_IOC_MULTI_CMD: 786 ret = mmc_blk_check_blkdev(bdev); 787 if (ret) 788 return ret; 789 md = mmc_blk_get(bdev->bd_disk); 790 if (!md) 791 return -EINVAL; 792 ret = mmc_blk_ioctl_multi_cmd(md, 793 (struct mmc_ioc_multi_cmd __user *)arg, 794 NULL); 795 mmc_blk_put(md); 796 return ret; 797 default: 798 return -EINVAL; 799 } 800 } 801 802 #ifdef CONFIG_COMPAT 803 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 804 unsigned int cmd, unsigned long arg) 805 { 806 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 807 } 808 #endif 809 810 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 811 sector_t *sector) 812 { 813 struct mmc_blk_data *md; 814 int ret; 815 816 md = mmc_blk_get(disk); 817 if (!md) 818 return -EINVAL; 819 820 if (md->queue.card) 821 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 822 else 823 ret = -ENODEV; 824 825 mmc_blk_put(md); 826 827 return ret; 828 } 829 830 static const struct block_device_operations mmc_bdops = { 831 .open = mmc_blk_open, 832 .release = mmc_blk_release, 833 .getgeo = mmc_blk_getgeo, 834 .owner = THIS_MODULE, 835 .ioctl = mmc_blk_ioctl, 836 #ifdef CONFIG_COMPAT 837 .compat_ioctl = mmc_blk_compat_ioctl, 838 #endif 839 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 840 }; 841 842 static int mmc_blk_part_switch_pre(struct mmc_card *card, 843 unsigned int part_type) 844 { 845 int ret = 0; 846 847 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 848 if (card->ext_csd.cmdq_en) { 849 ret = mmc_cmdq_disable(card); 850 if (ret) 851 return ret; 852 } 853 mmc_retune_pause(card->host); 854 } 855 856 return ret; 857 } 858 859 static int mmc_blk_part_switch_post(struct mmc_card *card, 860 unsigned int part_type) 861 { 862 int ret = 0; 863 864 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 865 mmc_retune_unpause(card->host); 866 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 867 ret = mmc_cmdq_enable(card); 868 } 869 870 return ret; 871 } 872 873 static inline int mmc_blk_part_switch(struct mmc_card *card, 874 unsigned int part_type) 875 { 876 int ret = 0; 877 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 878 879 if (main_md->part_curr == part_type) 880 return 0; 881 882 if (mmc_card_mmc(card)) { 883 u8 part_config = card->ext_csd.part_config; 884 885 ret = mmc_blk_part_switch_pre(card, part_type); 886 if (ret) 887 return ret; 888 889 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 890 part_config |= part_type; 891 892 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 893 EXT_CSD_PART_CONFIG, part_config, 894 card->ext_csd.part_time); 895 if (ret) { 896 mmc_blk_part_switch_post(card, part_type); 897 return ret; 898 } 899 900 card->ext_csd.part_config = part_config; 901 902 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 903 } 904 905 main_md->part_curr = part_type; 906 return ret; 907 } 908 909 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 910 { 911 int err; 912 u32 result; 913 __be32 *blocks; 914 915 struct mmc_request mrq = {}; 916 struct mmc_command cmd = {}; 917 struct mmc_data data = {}; 918 919 struct scatterlist sg; 920 921 err = mmc_app_cmd(card->host, card); 922 if (err) 923 return err; 924 925 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 926 cmd.arg = 0; 927 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 928 929 data.blksz = 4; 930 data.blocks = 1; 931 data.flags = MMC_DATA_READ; 932 data.sg = &sg; 933 data.sg_len = 1; 934 mmc_set_data_timeout(&data, card); 935 936 mrq.cmd = &cmd; 937 mrq.data = &data; 938 939 blocks = kmalloc(4, GFP_KERNEL); 940 if (!blocks) 941 return -ENOMEM; 942 943 sg_init_one(&sg, blocks, 4); 944 945 mmc_wait_for_req(card->host, &mrq); 946 947 result = ntohl(*blocks); 948 kfree(blocks); 949 950 if (cmd.error || data.error) 951 return -EIO; 952 953 *written_blocks = result; 954 955 return 0; 956 } 957 958 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 959 { 960 if (host->actual_clock) 961 return host->actual_clock / 1000; 962 963 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 964 if (host->ios.clock) 965 return host->ios.clock / 2000; 966 967 /* How can there be no clock */ 968 WARN_ON_ONCE(1); 969 return 100; /* 100 kHz is minimum possible value */ 970 } 971 972 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 973 struct mmc_data *data) 974 { 975 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 976 unsigned int khz; 977 978 if (data->timeout_clks) { 979 khz = mmc_blk_clock_khz(host); 980 ms += DIV_ROUND_UP(data->timeout_clks, khz); 981 } 982 983 return ms; 984 } 985 986 /* 987 * Attempts to reset the card and get back to the requested partition. 988 * Therefore any error here must result in cancelling the block layer 989 * request, it must not be reattempted without going through the mmc_blk 990 * partition sanity checks. 991 */ 992 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 993 int type) 994 { 995 int err; 996 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 997 998 if (md->reset_done & type) 999 return -EEXIST; 1000 1001 md->reset_done |= type; 1002 err = mmc_hw_reset(host->card); 1003 /* 1004 * A successful reset will leave the card in the main partition, but 1005 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1006 * in that case. 1007 */ 1008 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1009 if (err) 1010 return err; 1011 /* Ensure we switch back to the correct partition */ 1012 if (mmc_blk_part_switch(host->card, md->part_type)) 1013 /* 1014 * We have failed to get back into the correct 1015 * partition, so we need to abort the whole request. 1016 */ 1017 return -ENODEV; 1018 return 0; 1019 } 1020 1021 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1022 { 1023 md->reset_done &= ~type; 1024 } 1025 1026 /* 1027 * The non-block commands come back from the block layer after it queued it and 1028 * processed it with all other requests and then they get issued in this 1029 * function. 1030 */ 1031 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1032 { 1033 struct mmc_queue_req *mq_rq; 1034 struct mmc_card *card = mq->card; 1035 struct mmc_blk_data *md = mq->blkdata; 1036 struct mmc_blk_ioc_data **idata; 1037 bool rpmb_ioctl; 1038 u8 **ext_csd; 1039 u32 status; 1040 int ret; 1041 int i; 1042 1043 mq_rq = req_to_mmc_queue_req(req); 1044 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1045 1046 switch (mq_rq->drv_op) { 1047 case MMC_DRV_OP_IOCTL: 1048 if (card->ext_csd.cmdq_en) { 1049 ret = mmc_cmdq_disable(card); 1050 if (ret) 1051 break; 1052 } 1053 fallthrough; 1054 case MMC_DRV_OP_IOCTL_RPMB: 1055 idata = mq_rq->drv_op_data; 1056 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1057 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1058 if (ret) 1059 break; 1060 } 1061 /* Always switch back to main area after RPMB access */ 1062 if (rpmb_ioctl) 1063 mmc_blk_part_switch(card, 0); 1064 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1065 mmc_cmdq_enable(card); 1066 break; 1067 case MMC_DRV_OP_BOOT_WP: 1068 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1069 card->ext_csd.boot_ro_lock | 1070 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1071 card->ext_csd.part_time); 1072 if (ret) 1073 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1074 md->disk->disk_name, ret); 1075 else 1076 card->ext_csd.boot_ro_lock |= 1077 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1078 break; 1079 case MMC_DRV_OP_GET_CARD_STATUS: 1080 ret = mmc_send_status(card, &status); 1081 if (!ret) 1082 ret = status; 1083 break; 1084 case MMC_DRV_OP_GET_EXT_CSD: 1085 ext_csd = mq_rq->drv_op_data; 1086 ret = mmc_get_ext_csd(card, ext_csd); 1087 break; 1088 default: 1089 pr_err("%s: unknown driver specific operation\n", 1090 md->disk->disk_name); 1091 ret = -EINVAL; 1092 break; 1093 } 1094 mq_rq->drv_op_result = ret; 1095 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1096 } 1097 1098 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1099 int type, unsigned int erase_arg) 1100 { 1101 struct mmc_blk_data *md = mq->blkdata; 1102 struct mmc_card *card = md->queue.card; 1103 unsigned int from, nr; 1104 int err = 0; 1105 blk_status_t status = BLK_STS_OK; 1106 1107 if (!mmc_can_erase(card)) { 1108 status = BLK_STS_NOTSUPP; 1109 goto fail; 1110 } 1111 1112 from = blk_rq_pos(req); 1113 nr = blk_rq_sectors(req); 1114 1115 do { 1116 err = 0; 1117 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1118 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1119 INAND_CMD38_ARG_EXT_CSD, 1120 erase_arg == MMC_TRIM_ARG ? 1121 INAND_CMD38_ARG_TRIM : 1122 INAND_CMD38_ARG_ERASE, 1123 card->ext_csd.generic_cmd6_time); 1124 } 1125 if (!err) 1126 err = mmc_erase(card, from, nr, erase_arg); 1127 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1128 if (err) 1129 status = BLK_STS_IOERR; 1130 else 1131 mmc_blk_reset_success(md, type); 1132 fail: 1133 blk_mq_end_request(req, status); 1134 } 1135 1136 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1137 { 1138 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1139 } 1140 1141 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1142 { 1143 struct mmc_blk_data *md = mq->blkdata; 1144 struct mmc_card *card = md->queue.card; 1145 unsigned int arg = card->erase_arg; 1146 1147 if (mmc_card_broken_sd_discard(card)) 1148 arg = SD_ERASE_ARG; 1149 1150 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1151 } 1152 1153 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1154 struct request *req) 1155 { 1156 struct mmc_blk_data *md = mq->blkdata; 1157 struct mmc_card *card = md->queue.card; 1158 unsigned int from, nr, arg; 1159 int err = 0, type = MMC_BLK_SECDISCARD; 1160 blk_status_t status = BLK_STS_OK; 1161 1162 if (!(mmc_can_secure_erase_trim(card))) { 1163 status = BLK_STS_NOTSUPP; 1164 goto out; 1165 } 1166 1167 from = blk_rq_pos(req); 1168 nr = blk_rq_sectors(req); 1169 1170 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1171 arg = MMC_SECURE_TRIM1_ARG; 1172 else 1173 arg = MMC_SECURE_ERASE_ARG; 1174 1175 retry: 1176 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1177 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1178 INAND_CMD38_ARG_EXT_CSD, 1179 arg == MMC_SECURE_TRIM1_ARG ? 1180 INAND_CMD38_ARG_SECTRIM1 : 1181 INAND_CMD38_ARG_SECERASE, 1182 card->ext_csd.generic_cmd6_time); 1183 if (err) 1184 goto out_retry; 1185 } 1186 1187 err = mmc_erase(card, from, nr, arg); 1188 if (err == -EIO) 1189 goto out_retry; 1190 if (err) { 1191 status = BLK_STS_IOERR; 1192 goto out; 1193 } 1194 1195 if (arg == MMC_SECURE_TRIM1_ARG) { 1196 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1197 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1198 INAND_CMD38_ARG_EXT_CSD, 1199 INAND_CMD38_ARG_SECTRIM2, 1200 card->ext_csd.generic_cmd6_time); 1201 if (err) 1202 goto out_retry; 1203 } 1204 1205 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1206 if (err == -EIO) 1207 goto out_retry; 1208 if (err) { 1209 status = BLK_STS_IOERR; 1210 goto out; 1211 } 1212 } 1213 1214 out_retry: 1215 if (err && !mmc_blk_reset(md, card->host, type)) 1216 goto retry; 1217 if (!err) 1218 mmc_blk_reset_success(md, type); 1219 out: 1220 blk_mq_end_request(req, status); 1221 } 1222 1223 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1224 { 1225 struct mmc_blk_data *md = mq->blkdata; 1226 struct mmc_card *card = md->queue.card; 1227 int ret = 0; 1228 1229 ret = mmc_flush_cache(card->host); 1230 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1231 } 1232 1233 /* 1234 * Reformat current write as a reliable write, supporting 1235 * both legacy and the enhanced reliable write MMC cards. 1236 * In each transfer we'll handle only as much as a single 1237 * reliable write can handle, thus finish the request in 1238 * partial completions. 1239 */ 1240 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1241 struct mmc_card *card, 1242 struct request *req) 1243 { 1244 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1245 /* Legacy mode imposes restrictions on transfers. */ 1246 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1247 brq->data.blocks = 1; 1248 1249 if (brq->data.blocks > card->ext_csd.rel_sectors) 1250 brq->data.blocks = card->ext_csd.rel_sectors; 1251 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1252 brq->data.blocks = 1; 1253 } 1254 } 1255 1256 #define CMD_ERRORS_EXCL_OOR \ 1257 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1258 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1259 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1260 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1261 R1_CC_ERROR | /* Card controller error */ \ 1262 R1_ERROR) /* General/unknown error */ 1263 1264 #define CMD_ERRORS \ 1265 (CMD_ERRORS_EXCL_OOR | \ 1266 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1267 1268 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1269 { 1270 u32 val; 1271 1272 /* 1273 * Per the SD specification(physical layer version 4.10)[1], 1274 * section 4.3.3, it explicitly states that "When the last 1275 * block of user area is read using CMD18, the host should 1276 * ignore OUT_OF_RANGE error that may occur even the sequence 1277 * is correct". And JESD84-B51 for eMMC also has a similar 1278 * statement on section 6.8.3. 1279 * 1280 * Multiple block read/write could be done by either predefined 1281 * method, namely CMD23, or open-ending mode. For open-ending mode, 1282 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1283 * 1284 * However the spec[1] doesn't tell us whether we should also 1285 * ignore that for predefined method. But per the spec[1], section 1286 * 4.15 Set Block Count Command, it says"If illegal block count 1287 * is set, out of range error will be indicated during read/write 1288 * operation (For example, data transfer is stopped at user area 1289 * boundary)." In another word, we could expect a out of range error 1290 * in the response for the following CMD18/25. And if argument of 1291 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1292 * we could also expect to get a -ETIMEDOUT or any error number from 1293 * the host drivers due to missing data response(for write)/data(for 1294 * read), as the cards will stop the data transfer by itself per the 1295 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1296 */ 1297 1298 if (!brq->stop.error) { 1299 bool oor_with_open_end; 1300 /* If there is no error yet, check R1 response */ 1301 1302 val = brq->stop.resp[0] & CMD_ERRORS; 1303 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1304 1305 if (val && !oor_with_open_end) 1306 brq->stop.error = -EIO; 1307 } 1308 } 1309 1310 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1311 int recovery_mode, bool *do_rel_wr_p, 1312 bool *do_data_tag_p) 1313 { 1314 struct mmc_blk_data *md = mq->blkdata; 1315 struct mmc_card *card = md->queue.card; 1316 struct mmc_blk_request *brq = &mqrq->brq; 1317 struct request *req = mmc_queue_req_to_req(mqrq); 1318 bool do_rel_wr, do_data_tag; 1319 1320 /* 1321 * Reliable writes are used to implement Forced Unit Access and 1322 * are supported only on MMCs. 1323 */ 1324 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1325 rq_data_dir(req) == WRITE && 1326 (md->flags & MMC_BLK_REL_WR); 1327 1328 memset(brq, 0, sizeof(struct mmc_blk_request)); 1329 1330 mmc_crypto_prepare_req(mqrq); 1331 1332 brq->mrq.data = &brq->data; 1333 brq->mrq.tag = req->tag; 1334 1335 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1336 brq->stop.arg = 0; 1337 1338 if (rq_data_dir(req) == READ) { 1339 brq->data.flags = MMC_DATA_READ; 1340 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1341 } else { 1342 brq->data.flags = MMC_DATA_WRITE; 1343 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1344 } 1345 1346 brq->data.blksz = 512; 1347 brq->data.blocks = blk_rq_sectors(req); 1348 brq->data.blk_addr = blk_rq_pos(req); 1349 1350 /* 1351 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1352 * The eMMC will give "high" priority tasks priority over "simple" 1353 * priority tasks. Here we always set "simple" priority by not setting 1354 * MMC_DATA_PRIO. 1355 */ 1356 1357 /* 1358 * The block layer doesn't support all sector count 1359 * restrictions, so we need to be prepared for too big 1360 * requests. 1361 */ 1362 if (brq->data.blocks > card->host->max_blk_count) 1363 brq->data.blocks = card->host->max_blk_count; 1364 1365 if (brq->data.blocks > 1) { 1366 /* 1367 * Some SD cards in SPI mode return a CRC error or even lock up 1368 * completely when trying to read the last block using a 1369 * multiblock read command. 1370 */ 1371 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1372 (blk_rq_pos(req) + blk_rq_sectors(req) == 1373 get_capacity(md->disk))) 1374 brq->data.blocks--; 1375 1376 /* 1377 * After a read error, we redo the request one (native) sector 1378 * at a time in order to accurately determine which 1379 * sectors can be read successfully. 1380 */ 1381 if (recovery_mode) 1382 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1383 1384 /* 1385 * Some controllers have HW issues while operating 1386 * in multiple I/O mode 1387 */ 1388 if (card->host->ops->multi_io_quirk) 1389 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1390 (rq_data_dir(req) == READ) ? 1391 MMC_DATA_READ : MMC_DATA_WRITE, 1392 brq->data.blocks); 1393 } 1394 1395 if (do_rel_wr) { 1396 mmc_apply_rel_rw(brq, card, req); 1397 brq->data.flags |= MMC_DATA_REL_WR; 1398 } 1399 1400 /* 1401 * Data tag is used only during writing meta data to speed 1402 * up write and any subsequent read of this meta data 1403 */ 1404 do_data_tag = card->ext_csd.data_tag_unit_size && 1405 (req->cmd_flags & REQ_META) && 1406 (rq_data_dir(req) == WRITE) && 1407 ((brq->data.blocks * brq->data.blksz) >= 1408 card->ext_csd.data_tag_unit_size); 1409 1410 if (do_data_tag) 1411 brq->data.flags |= MMC_DATA_DAT_TAG; 1412 1413 mmc_set_data_timeout(&brq->data, card); 1414 1415 brq->data.sg = mqrq->sg; 1416 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1417 1418 /* 1419 * Adjust the sg list so it is the same size as the 1420 * request. 1421 */ 1422 if (brq->data.blocks != blk_rq_sectors(req)) { 1423 int i, data_size = brq->data.blocks << 9; 1424 struct scatterlist *sg; 1425 1426 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1427 data_size -= sg->length; 1428 if (data_size <= 0) { 1429 sg->length += data_size; 1430 i++; 1431 break; 1432 } 1433 } 1434 brq->data.sg_len = i; 1435 } 1436 1437 if (do_rel_wr_p) 1438 *do_rel_wr_p = do_rel_wr; 1439 1440 if (do_data_tag_p) 1441 *do_data_tag_p = do_data_tag; 1442 } 1443 1444 #define MMC_CQE_RETRIES 2 1445 1446 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1447 { 1448 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1449 struct mmc_request *mrq = &mqrq->brq.mrq; 1450 struct request_queue *q = req->q; 1451 struct mmc_host *host = mq->card->host; 1452 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1453 unsigned long flags; 1454 bool put_card; 1455 int err; 1456 1457 mmc_cqe_post_req(host, mrq); 1458 1459 if (mrq->cmd && mrq->cmd->error) 1460 err = mrq->cmd->error; 1461 else if (mrq->data && mrq->data->error) 1462 err = mrq->data->error; 1463 else 1464 err = 0; 1465 1466 if (err) { 1467 if (mqrq->retries++ < MMC_CQE_RETRIES) 1468 blk_mq_requeue_request(req, true); 1469 else 1470 blk_mq_end_request(req, BLK_STS_IOERR); 1471 } else if (mrq->data) { 1472 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1473 blk_mq_requeue_request(req, true); 1474 else 1475 __blk_mq_end_request(req, BLK_STS_OK); 1476 } else { 1477 blk_mq_end_request(req, BLK_STS_OK); 1478 } 1479 1480 spin_lock_irqsave(&mq->lock, flags); 1481 1482 mq->in_flight[issue_type] -= 1; 1483 1484 put_card = (mmc_tot_in_flight(mq) == 0); 1485 1486 mmc_cqe_check_busy(mq); 1487 1488 spin_unlock_irqrestore(&mq->lock, flags); 1489 1490 if (!mq->cqe_busy) 1491 blk_mq_run_hw_queues(q, true); 1492 1493 if (put_card) 1494 mmc_put_card(mq->card, &mq->ctx); 1495 } 1496 1497 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1498 { 1499 struct mmc_card *card = mq->card; 1500 struct mmc_host *host = card->host; 1501 int err; 1502 1503 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1504 1505 err = mmc_cqe_recovery(host); 1506 if (err) 1507 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1508 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1509 1510 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1511 } 1512 1513 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1514 { 1515 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1516 brq.mrq); 1517 struct request *req = mmc_queue_req_to_req(mqrq); 1518 struct request_queue *q = req->q; 1519 struct mmc_queue *mq = q->queuedata; 1520 1521 /* 1522 * Block layer timeouts race with completions which means the normal 1523 * completion path cannot be used during recovery. 1524 */ 1525 if (mq->in_recovery) 1526 mmc_blk_cqe_complete_rq(mq, req); 1527 else if (likely(!blk_should_fake_timeout(req->q))) 1528 blk_mq_complete_request(req); 1529 } 1530 1531 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1532 { 1533 mrq->done = mmc_blk_cqe_req_done; 1534 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1535 1536 return mmc_cqe_start_req(host, mrq); 1537 } 1538 1539 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1540 struct request *req) 1541 { 1542 struct mmc_blk_request *brq = &mqrq->brq; 1543 1544 memset(brq, 0, sizeof(*brq)); 1545 1546 brq->mrq.cmd = &brq->cmd; 1547 brq->mrq.tag = req->tag; 1548 1549 return &brq->mrq; 1550 } 1551 1552 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1553 { 1554 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1555 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1556 1557 mrq->cmd->opcode = MMC_SWITCH; 1558 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1559 (EXT_CSD_FLUSH_CACHE << 16) | 1560 (1 << 8) | 1561 EXT_CSD_CMD_SET_NORMAL; 1562 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1563 1564 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1565 } 1566 1567 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1568 { 1569 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1570 struct mmc_host *host = mq->card->host; 1571 int err; 1572 1573 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1574 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1575 mmc_pre_req(host, &mqrq->brq.mrq); 1576 1577 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1578 if (err) 1579 mmc_post_req(host, &mqrq->brq.mrq, err); 1580 1581 return err; 1582 } 1583 1584 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1585 { 1586 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1587 struct mmc_host *host = mq->card->host; 1588 1589 if (host->hsq_enabled) 1590 return mmc_blk_hsq_issue_rw_rq(mq, req); 1591 1592 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1593 1594 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1595 } 1596 1597 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1598 struct mmc_card *card, 1599 int recovery_mode, 1600 struct mmc_queue *mq) 1601 { 1602 u32 readcmd, writecmd; 1603 struct mmc_blk_request *brq = &mqrq->brq; 1604 struct request *req = mmc_queue_req_to_req(mqrq); 1605 struct mmc_blk_data *md = mq->blkdata; 1606 bool do_rel_wr, do_data_tag; 1607 1608 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1609 1610 brq->mrq.cmd = &brq->cmd; 1611 1612 brq->cmd.arg = blk_rq_pos(req); 1613 if (!mmc_card_blockaddr(card)) 1614 brq->cmd.arg <<= 9; 1615 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1616 1617 if (brq->data.blocks > 1 || do_rel_wr) { 1618 /* SPI multiblock writes terminate using a special 1619 * token, not a STOP_TRANSMISSION request. 1620 */ 1621 if (!mmc_host_is_spi(card->host) || 1622 rq_data_dir(req) == READ) 1623 brq->mrq.stop = &brq->stop; 1624 readcmd = MMC_READ_MULTIPLE_BLOCK; 1625 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1626 } else { 1627 brq->mrq.stop = NULL; 1628 readcmd = MMC_READ_SINGLE_BLOCK; 1629 writecmd = MMC_WRITE_BLOCK; 1630 } 1631 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1632 1633 /* 1634 * Pre-defined multi-block transfers are preferable to 1635 * open ended-ones (and necessary for reliable writes). 1636 * However, it is not sufficient to just send CMD23, 1637 * and avoid the final CMD12, as on an error condition 1638 * CMD12 (stop) needs to be sent anyway. This, coupled 1639 * with Auto-CMD23 enhancements provided by some 1640 * hosts, means that the complexity of dealing 1641 * with this is best left to the host. If CMD23 is 1642 * supported by card and host, we'll fill sbc in and let 1643 * the host deal with handling it correctly. This means 1644 * that for hosts that don't expose MMC_CAP_CMD23, no 1645 * change of behavior will be observed. 1646 * 1647 * N.B: Some MMC cards experience perf degradation. 1648 * We'll avoid using CMD23-bounded multiblock writes for 1649 * these, while retaining features like reliable writes. 1650 */ 1651 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1652 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1653 do_data_tag)) { 1654 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1655 brq->sbc.arg = brq->data.blocks | 1656 (do_rel_wr ? (1 << 31) : 0) | 1657 (do_data_tag ? (1 << 29) : 0); 1658 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1659 brq->mrq.sbc = &brq->sbc; 1660 } 1661 } 1662 1663 #define MMC_MAX_RETRIES 5 1664 #define MMC_DATA_RETRIES 2 1665 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1666 1667 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1668 { 1669 struct mmc_command cmd = { 1670 .opcode = MMC_STOP_TRANSMISSION, 1671 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1672 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1673 .busy_timeout = timeout, 1674 }; 1675 1676 return mmc_wait_for_cmd(card->host, &cmd, 5); 1677 } 1678 1679 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1680 { 1681 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1682 struct mmc_blk_request *brq = &mqrq->brq; 1683 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1684 int err; 1685 1686 mmc_retune_hold_now(card->host); 1687 1688 mmc_blk_send_stop(card, timeout); 1689 1690 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1691 1692 mmc_retune_release(card->host); 1693 1694 return err; 1695 } 1696 1697 #define MMC_READ_SINGLE_RETRIES 2 1698 1699 /* Single (native) sector read during recovery */ 1700 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1701 { 1702 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1703 struct mmc_request *mrq = &mqrq->brq.mrq; 1704 struct mmc_card *card = mq->card; 1705 struct mmc_host *host = card->host; 1706 blk_status_t error = BLK_STS_OK; 1707 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1708 1709 do { 1710 u32 status; 1711 int err; 1712 int retries = 0; 1713 1714 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1715 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1716 1717 mmc_wait_for_req(host, mrq); 1718 1719 err = mmc_send_status(card, &status); 1720 if (err) 1721 goto error_exit; 1722 1723 if (!mmc_host_is_spi(host) && 1724 !mmc_ready_for_data(status)) { 1725 err = mmc_blk_fix_state(card, req); 1726 if (err) 1727 goto error_exit; 1728 } 1729 1730 if (!mrq->cmd->error) 1731 break; 1732 } 1733 1734 if (mrq->cmd->error || 1735 mrq->data->error || 1736 (!mmc_host_is_spi(host) && 1737 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1738 error = BLK_STS_IOERR; 1739 else 1740 error = BLK_STS_OK; 1741 1742 } while (blk_update_request(req, error, bytes_per_read)); 1743 1744 return; 1745 1746 error_exit: 1747 mrq->data->bytes_xfered = 0; 1748 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1749 /* Let it try the remaining request again */ 1750 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1751 mqrq->retries = MMC_MAX_RETRIES - 1; 1752 } 1753 1754 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1755 { 1756 return !!brq->mrq.sbc; 1757 } 1758 1759 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1760 { 1761 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1762 } 1763 1764 /* 1765 * Check for errors the host controller driver might not have seen such as 1766 * response mode errors or invalid card state. 1767 */ 1768 static bool mmc_blk_status_error(struct request *req, u32 status) 1769 { 1770 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1771 struct mmc_blk_request *brq = &mqrq->brq; 1772 struct mmc_queue *mq = req->q->queuedata; 1773 u32 stop_err_bits; 1774 1775 if (mmc_host_is_spi(mq->card->host)) 1776 return false; 1777 1778 stop_err_bits = mmc_blk_stop_err_bits(brq); 1779 1780 return brq->cmd.resp[0] & CMD_ERRORS || 1781 brq->stop.resp[0] & stop_err_bits || 1782 status & stop_err_bits || 1783 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1784 } 1785 1786 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1787 { 1788 return !brq->sbc.error && !brq->cmd.error && 1789 !(brq->cmd.resp[0] & CMD_ERRORS); 1790 } 1791 1792 /* 1793 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1794 * policy: 1795 * 1. A request that has transferred at least some data is considered 1796 * successful and will be requeued if there is remaining data to 1797 * transfer. 1798 * 2. Otherwise the number of retries is incremented and the request 1799 * will be requeued if there are remaining retries. 1800 * 3. Otherwise the request will be errored out. 1801 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1802 * mqrq->retries. So there are only 4 possible actions here: 1803 * 1. do not accept the bytes_xfered value i.e. set it to zero 1804 * 2. change mqrq->retries to determine the number of retries 1805 * 3. try to reset the card 1806 * 4. read one sector at a time 1807 */ 1808 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1809 { 1810 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1811 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1812 struct mmc_blk_request *brq = &mqrq->brq; 1813 struct mmc_blk_data *md = mq->blkdata; 1814 struct mmc_card *card = mq->card; 1815 u32 status; 1816 u32 blocks; 1817 int err; 1818 1819 /* 1820 * Some errors the host driver might not have seen. Set the number of 1821 * bytes transferred to zero in that case. 1822 */ 1823 err = __mmc_send_status(card, &status, 0); 1824 if (err || mmc_blk_status_error(req, status)) 1825 brq->data.bytes_xfered = 0; 1826 1827 mmc_retune_release(card->host); 1828 1829 /* 1830 * Try again to get the status. This also provides an opportunity for 1831 * re-tuning. 1832 */ 1833 if (err) 1834 err = __mmc_send_status(card, &status, 0); 1835 1836 /* 1837 * Nothing more to do after the number of bytes transferred has been 1838 * updated and there is no card. 1839 */ 1840 if (err && mmc_detect_card_removed(card->host)) 1841 return; 1842 1843 /* Try to get back to "tran" state */ 1844 if (!mmc_host_is_spi(mq->card->host) && 1845 (err || !mmc_ready_for_data(status))) 1846 err = mmc_blk_fix_state(mq->card, req); 1847 1848 /* 1849 * Special case for SD cards where the card might record the number of 1850 * blocks written. 1851 */ 1852 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1853 rq_data_dir(req) == WRITE) { 1854 if (mmc_sd_num_wr_blocks(card, &blocks)) 1855 brq->data.bytes_xfered = 0; 1856 else 1857 brq->data.bytes_xfered = blocks << 9; 1858 } 1859 1860 /* Reset if the card is in a bad state */ 1861 if (!mmc_host_is_spi(mq->card->host) && 1862 err && mmc_blk_reset(md, card->host, type)) { 1863 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1864 mqrq->retries = MMC_NO_RETRIES; 1865 return; 1866 } 1867 1868 /* 1869 * If anything was done, just return and if there is anything remaining 1870 * on the request it will get requeued. 1871 */ 1872 if (brq->data.bytes_xfered) 1873 return; 1874 1875 /* Reset before last retry */ 1876 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1877 mmc_blk_reset(md, card->host, type)) 1878 return; 1879 1880 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1881 if (brq->sbc.error || brq->cmd.error) 1882 return; 1883 1884 /* Reduce the remaining retries for data errors */ 1885 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1886 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1887 return; 1888 } 1889 1890 if (rq_data_dir(req) == READ && brq->data.blocks > 1891 queue_physical_block_size(mq->queue) >> 9) { 1892 /* Read one (native) sector at a time */ 1893 mmc_blk_read_single(mq, req); 1894 return; 1895 } 1896 } 1897 1898 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1899 { 1900 mmc_blk_eval_resp_error(brq); 1901 1902 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1903 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1904 } 1905 1906 static int mmc_spi_err_check(struct mmc_card *card) 1907 { 1908 u32 status = 0; 1909 int err; 1910 1911 /* 1912 * SPI does not have a TRAN state we have to wait on, instead the 1913 * card is ready again when it no longer holds the line LOW. 1914 * We still have to ensure two things here before we know the write 1915 * was successful: 1916 * 1. The card has not disconnected during busy and we actually read our 1917 * own pull-up, thinking it was still connected, so ensure it 1918 * still responds. 1919 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1920 * just reconnected card after being disconnected during busy. 1921 */ 1922 err = __mmc_send_status(card, &status, 0); 1923 if (err) 1924 return err; 1925 /* All R1 and R2 bits of SPI are errors in our case */ 1926 if (status) 1927 return -EIO; 1928 return 0; 1929 } 1930 1931 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1932 { 1933 struct mmc_blk_busy_data *data = cb_data; 1934 u32 status = 0; 1935 int err; 1936 1937 err = mmc_send_status(data->card, &status); 1938 if (err) 1939 return err; 1940 1941 /* Accumulate response error bits. */ 1942 data->status |= status; 1943 1944 *busy = !mmc_ready_for_data(status); 1945 return 0; 1946 } 1947 1948 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1949 { 1950 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1951 struct mmc_blk_busy_data cb_data; 1952 int err; 1953 1954 if (rq_data_dir(req) == READ) 1955 return 0; 1956 1957 if (mmc_host_is_spi(card->host)) { 1958 err = mmc_spi_err_check(card); 1959 if (err) 1960 mqrq->brq.data.bytes_xfered = 0; 1961 return err; 1962 } 1963 1964 cb_data.card = card; 1965 cb_data.status = 0; 1966 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1967 &mmc_blk_busy_cb, &cb_data); 1968 1969 /* 1970 * Do not assume data transferred correctly if there are any error bits 1971 * set. 1972 */ 1973 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1974 mqrq->brq.data.bytes_xfered = 0; 1975 err = err ? err : -EIO; 1976 } 1977 1978 /* Copy the exception bit so it will be seen later on */ 1979 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1980 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1981 1982 return err; 1983 } 1984 1985 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1986 struct request *req) 1987 { 1988 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1989 1990 mmc_blk_reset_success(mq->blkdata, type); 1991 } 1992 1993 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1994 { 1995 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1996 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1997 1998 if (nr_bytes) { 1999 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2000 blk_mq_requeue_request(req, true); 2001 else 2002 __blk_mq_end_request(req, BLK_STS_OK); 2003 } else if (!blk_rq_bytes(req)) { 2004 __blk_mq_end_request(req, BLK_STS_IOERR); 2005 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2006 blk_mq_requeue_request(req, true); 2007 } else { 2008 if (mmc_card_removed(mq->card)) 2009 req->rq_flags |= RQF_QUIET; 2010 blk_mq_end_request(req, BLK_STS_IOERR); 2011 } 2012 } 2013 2014 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2015 struct mmc_queue_req *mqrq) 2016 { 2017 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2018 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2019 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2020 } 2021 2022 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2023 struct mmc_queue_req *mqrq) 2024 { 2025 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2026 mmc_run_bkops(mq->card); 2027 } 2028 2029 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2030 { 2031 struct mmc_queue_req *mqrq = 2032 container_of(mrq, struct mmc_queue_req, brq.mrq); 2033 struct request *req = mmc_queue_req_to_req(mqrq); 2034 struct request_queue *q = req->q; 2035 struct mmc_queue *mq = q->queuedata; 2036 struct mmc_host *host = mq->card->host; 2037 unsigned long flags; 2038 2039 if (mmc_blk_rq_error(&mqrq->brq) || 2040 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2041 spin_lock_irqsave(&mq->lock, flags); 2042 mq->recovery_needed = true; 2043 mq->recovery_req = req; 2044 spin_unlock_irqrestore(&mq->lock, flags); 2045 2046 host->cqe_ops->cqe_recovery_start(host); 2047 2048 schedule_work(&mq->recovery_work); 2049 return; 2050 } 2051 2052 mmc_blk_rw_reset_success(mq, req); 2053 2054 /* 2055 * Block layer timeouts race with completions which means the normal 2056 * completion path cannot be used during recovery. 2057 */ 2058 if (mq->in_recovery) 2059 mmc_blk_cqe_complete_rq(mq, req); 2060 else if (likely(!blk_should_fake_timeout(req->q))) 2061 blk_mq_complete_request(req); 2062 } 2063 2064 void mmc_blk_mq_complete(struct request *req) 2065 { 2066 struct mmc_queue *mq = req->q->queuedata; 2067 struct mmc_host *host = mq->card->host; 2068 2069 if (host->cqe_enabled) 2070 mmc_blk_cqe_complete_rq(mq, req); 2071 else if (likely(!blk_should_fake_timeout(req->q))) 2072 mmc_blk_mq_complete_rq(mq, req); 2073 } 2074 2075 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2076 struct request *req) 2077 { 2078 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2079 struct mmc_host *host = mq->card->host; 2080 2081 if (mmc_blk_rq_error(&mqrq->brq) || 2082 mmc_blk_card_busy(mq->card, req)) { 2083 mmc_blk_mq_rw_recovery(mq, req); 2084 } else { 2085 mmc_blk_rw_reset_success(mq, req); 2086 mmc_retune_release(host); 2087 } 2088 2089 mmc_blk_urgent_bkops(mq, mqrq); 2090 } 2091 2092 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) 2093 { 2094 unsigned long flags; 2095 bool put_card; 2096 2097 spin_lock_irqsave(&mq->lock, flags); 2098 2099 mq->in_flight[issue_type] -= 1; 2100 2101 put_card = (mmc_tot_in_flight(mq) == 0); 2102 2103 spin_unlock_irqrestore(&mq->lock, flags); 2104 2105 if (put_card) 2106 mmc_put_card(mq->card, &mq->ctx); 2107 } 2108 2109 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2110 bool can_sleep) 2111 { 2112 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 2113 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2114 struct mmc_request *mrq = &mqrq->brq.mrq; 2115 struct mmc_host *host = mq->card->host; 2116 2117 mmc_post_req(host, mrq, 0); 2118 2119 /* 2120 * Block layer timeouts race with completions which means the normal 2121 * completion path cannot be used during recovery. 2122 */ 2123 if (mq->in_recovery) { 2124 mmc_blk_mq_complete_rq(mq, req); 2125 } else if (likely(!blk_should_fake_timeout(req->q))) { 2126 if (can_sleep) 2127 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2128 else 2129 blk_mq_complete_request(req); 2130 } 2131 2132 mmc_blk_mq_dec_in_flight(mq, issue_type); 2133 } 2134 2135 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2136 { 2137 struct request *req = mq->recovery_req; 2138 struct mmc_host *host = mq->card->host; 2139 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2140 2141 mq->recovery_req = NULL; 2142 mq->rw_wait = false; 2143 2144 if (mmc_blk_rq_error(&mqrq->brq)) { 2145 mmc_retune_hold_now(host); 2146 mmc_blk_mq_rw_recovery(mq, req); 2147 } 2148 2149 mmc_blk_urgent_bkops(mq, mqrq); 2150 2151 mmc_blk_mq_post_req(mq, req, true); 2152 } 2153 2154 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2155 struct request **prev_req) 2156 { 2157 if (mmc_host_done_complete(mq->card->host)) 2158 return; 2159 2160 mutex_lock(&mq->complete_lock); 2161 2162 if (!mq->complete_req) 2163 goto out_unlock; 2164 2165 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2166 2167 if (prev_req) 2168 *prev_req = mq->complete_req; 2169 else 2170 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2171 2172 mq->complete_req = NULL; 2173 2174 out_unlock: 2175 mutex_unlock(&mq->complete_lock); 2176 } 2177 2178 void mmc_blk_mq_complete_work(struct work_struct *work) 2179 { 2180 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2181 complete_work); 2182 2183 mmc_blk_mq_complete_prev_req(mq, NULL); 2184 } 2185 2186 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2187 { 2188 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2189 brq.mrq); 2190 struct request *req = mmc_queue_req_to_req(mqrq); 2191 struct request_queue *q = req->q; 2192 struct mmc_queue *mq = q->queuedata; 2193 struct mmc_host *host = mq->card->host; 2194 unsigned long flags; 2195 2196 if (!mmc_host_done_complete(host)) { 2197 bool waiting; 2198 2199 /* 2200 * We cannot complete the request in this context, so record 2201 * that there is a request to complete, and that a following 2202 * request does not need to wait (although it does need to 2203 * complete complete_req first). 2204 */ 2205 spin_lock_irqsave(&mq->lock, flags); 2206 mq->complete_req = req; 2207 mq->rw_wait = false; 2208 waiting = mq->waiting; 2209 spin_unlock_irqrestore(&mq->lock, flags); 2210 2211 /* 2212 * If 'waiting' then the waiting task will complete this 2213 * request, otherwise queue a work to do it. Note that 2214 * complete_work may still race with the dispatch of a following 2215 * request. 2216 */ 2217 if (waiting) 2218 wake_up(&mq->wait); 2219 else 2220 queue_work(mq->card->complete_wq, &mq->complete_work); 2221 2222 return; 2223 } 2224 2225 /* Take the recovery path for errors or urgent background operations */ 2226 if (mmc_blk_rq_error(&mqrq->brq) || 2227 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2228 spin_lock_irqsave(&mq->lock, flags); 2229 mq->recovery_needed = true; 2230 mq->recovery_req = req; 2231 spin_unlock_irqrestore(&mq->lock, flags); 2232 wake_up(&mq->wait); 2233 schedule_work(&mq->recovery_work); 2234 return; 2235 } 2236 2237 mmc_blk_rw_reset_success(mq, req); 2238 2239 mq->rw_wait = false; 2240 wake_up(&mq->wait); 2241 2242 /* context unknown */ 2243 mmc_blk_mq_post_req(mq, req, false); 2244 } 2245 2246 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2247 { 2248 unsigned long flags; 2249 bool done; 2250 2251 /* 2252 * Wait while there is another request in progress, but not if recovery 2253 * is needed. Also indicate whether there is a request waiting to start. 2254 */ 2255 spin_lock_irqsave(&mq->lock, flags); 2256 if (mq->recovery_needed) { 2257 *err = -EBUSY; 2258 done = true; 2259 } else { 2260 done = !mq->rw_wait; 2261 } 2262 mq->waiting = !done; 2263 spin_unlock_irqrestore(&mq->lock, flags); 2264 2265 return done; 2266 } 2267 2268 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2269 { 2270 int err = 0; 2271 2272 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2273 2274 /* Always complete the previous request if there is one */ 2275 mmc_blk_mq_complete_prev_req(mq, prev_req); 2276 2277 return err; 2278 } 2279 2280 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2281 struct request *req) 2282 { 2283 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2284 struct mmc_host *host = mq->card->host; 2285 struct request *prev_req = NULL; 2286 int err = 0; 2287 2288 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2289 2290 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2291 2292 mmc_pre_req(host, &mqrq->brq.mrq); 2293 2294 err = mmc_blk_rw_wait(mq, &prev_req); 2295 if (err) 2296 goto out_post_req; 2297 2298 mq->rw_wait = true; 2299 2300 err = mmc_start_request(host, &mqrq->brq.mrq); 2301 2302 if (prev_req) 2303 mmc_blk_mq_post_req(mq, prev_req, true); 2304 2305 if (err) 2306 mq->rw_wait = false; 2307 2308 /* Release re-tuning here where there is no synchronization required */ 2309 if (err || mmc_host_done_complete(host)) 2310 mmc_retune_release(host); 2311 2312 out_post_req: 2313 if (err) 2314 mmc_post_req(host, &mqrq->brq.mrq, err); 2315 2316 return err; 2317 } 2318 2319 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2320 { 2321 if (host->cqe_enabled) 2322 return host->cqe_ops->cqe_wait_for_idle(host); 2323 2324 return mmc_blk_rw_wait(mq, NULL); 2325 } 2326 2327 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2328 { 2329 struct mmc_blk_data *md = mq->blkdata; 2330 struct mmc_card *card = md->queue.card; 2331 struct mmc_host *host = card->host; 2332 int ret; 2333 2334 ret = mmc_blk_part_switch(card, md->part_type); 2335 if (ret) 2336 return MMC_REQ_FAILED_TO_START; 2337 2338 switch (mmc_issue_type(mq, req)) { 2339 case MMC_ISSUE_SYNC: 2340 ret = mmc_blk_wait_for_idle(mq, host); 2341 if (ret) 2342 return MMC_REQ_BUSY; 2343 switch (req_op(req)) { 2344 case REQ_OP_DRV_IN: 2345 case REQ_OP_DRV_OUT: 2346 mmc_blk_issue_drv_op(mq, req); 2347 break; 2348 case REQ_OP_DISCARD: 2349 mmc_blk_issue_discard_rq(mq, req); 2350 break; 2351 case REQ_OP_SECURE_ERASE: 2352 mmc_blk_issue_secdiscard_rq(mq, req); 2353 break; 2354 case REQ_OP_WRITE_ZEROES: 2355 mmc_blk_issue_trim_rq(mq, req); 2356 break; 2357 case REQ_OP_FLUSH: 2358 mmc_blk_issue_flush(mq, req); 2359 break; 2360 default: 2361 WARN_ON_ONCE(1); 2362 return MMC_REQ_FAILED_TO_START; 2363 } 2364 return MMC_REQ_FINISHED; 2365 case MMC_ISSUE_DCMD: 2366 case MMC_ISSUE_ASYNC: 2367 switch (req_op(req)) { 2368 case REQ_OP_FLUSH: 2369 if (!mmc_cache_enabled(host)) { 2370 blk_mq_end_request(req, BLK_STS_OK); 2371 return MMC_REQ_FINISHED; 2372 } 2373 ret = mmc_blk_cqe_issue_flush(mq, req); 2374 break; 2375 case REQ_OP_READ: 2376 case REQ_OP_WRITE: 2377 if (host->cqe_enabled) 2378 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2379 else 2380 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2381 break; 2382 default: 2383 WARN_ON_ONCE(1); 2384 ret = -EINVAL; 2385 } 2386 if (!ret) 2387 return MMC_REQ_STARTED; 2388 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2389 default: 2390 WARN_ON_ONCE(1); 2391 return MMC_REQ_FAILED_TO_START; 2392 } 2393 } 2394 2395 static inline int mmc_blk_readonly(struct mmc_card *card) 2396 { 2397 return mmc_card_readonly(card) || 2398 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2399 } 2400 2401 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2402 struct device *parent, 2403 sector_t size, 2404 bool default_ro, 2405 const char *subname, 2406 int area_type, 2407 unsigned int part_type) 2408 { 2409 struct mmc_blk_data *md; 2410 int devidx, ret; 2411 char cap_str[10]; 2412 bool cache_enabled = false; 2413 bool fua_enabled = false; 2414 2415 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2416 if (devidx < 0) { 2417 /* 2418 * We get -ENOSPC because there are no more any available 2419 * devidx. The reason may be that, either userspace haven't yet 2420 * unmounted the partitions, which postpones mmc_blk_release() 2421 * from being called, or the device has more partitions than 2422 * what we support. 2423 */ 2424 if (devidx == -ENOSPC) 2425 dev_err(mmc_dev(card->host), 2426 "no more device IDs available\n"); 2427 2428 return ERR_PTR(devidx); 2429 } 2430 2431 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2432 if (!md) { 2433 ret = -ENOMEM; 2434 goto out; 2435 } 2436 2437 md->area_type = area_type; 2438 2439 /* 2440 * Set the read-only status based on the supported commands 2441 * and the write protect switch. 2442 */ 2443 md->read_only = mmc_blk_readonly(card); 2444 2445 md->disk = mmc_init_queue(&md->queue, card); 2446 if (IS_ERR(md->disk)) { 2447 ret = PTR_ERR(md->disk); 2448 goto err_kfree; 2449 } 2450 2451 INIT_LIST_HEAD(&md->part); 2452 INIT_LIST_HEAD(&md->rpmbs); 2453 kref_init(&md->kref); 2454 2455 md->queue.blkdata = md; 2456 md->part_type = part_type; 2457 2458 md->disk->major = MMC_BLOCK_MAJOR; 2459 md->disk->minors = perdev_minors; 2460 md->disk->first_minor = devidx * perdev_minors; 2461 md->disk->fops = &mmc_bdops; 2462 md->disk->private_data = md; 2463 md->parent = parent; 2464 set_disk_ro(md->disk, md->read_only || default_ro); 2465 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2466 md->disk->flags |= GENHD_FL_NO_PART; 2467 2468 /* 2469 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2470 * 2471 * - be set for removable media with permanent block devices 2472 * - be unset for removable block devices with permanent media 2473 * 2474 * Since MMC block devices clearly fall under the second 2475 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2476 * should use the block device creation/destruction hotplug 2477 * messages to tell when the card is present. 2478 */ 2479 2480 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2481 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2482 2483 set_capacity(md->disk, size); 2484 2485 if (mmc_host_cmd23(card->host)) { 2486 if ((mmc_card_mmc(card) && 2487 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2488 (mmc_card_sd(card) && 2489 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2490 md->flags |= MMC_BLK_CMD23; 2491 } 2492 2493 if (md->flags & MMC_BLK_CMD23 && 2494 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2495 card->ext_csd.rel_sectors)) { 2496 md->flags |= MMC_BLK_REL_WR; 2497 fua_enabled = true; 2498 cache_enabled = true; 2499 } 2500 if (mmc_cache_enabled(card->host)) 2501 cache_enabled = true; 2502 2503 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2504 2505 string_get_size((u64)size, 512, STRING_UNITS_2, 2506 cap_str, sizeof(cap_str)); 2507 pr_info("%s: %s %s %s%s\n", 2508 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2509 cap_str, md->read_only ? " (ro)" : ""); 2510 2511 /* used in ->open, must be set before add_disk: */ 2512 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2513 dev_set_drvdata(&card->dev, md); 2514 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2515 if (ret) 2516 goto err_put_disk; 2517 return md; 2518 2519 err_put_disk: 2520 put_disk(md->disk); 2521 blk_mq_free_tag_set(&md->queue.tag_set); 2522 err_kfree: 2523 kfree(md); 2524 out: 2525 ida_simple_remove(&mmc_blk_ida, devidx); 2526 return ERR_PTR(ret); 2527 } 2528 2529 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2530 { 2531 sector_t size; 2532 2533 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2534 /* 2535 * The EXT_CSD sector count is in number or 512 byte 2536 * sectors. 2537 */ 2538 size = card->ext_csd.sectors; 2539 } else { 2540 /* 2541 * The CSD capacity field is in units of read_blkbits. 2542 * set_capacity takes units of 512 bytes. 2543 */ 2544 size = (typeof(sector_t))card->csd.capacity 2545 << (card->csd.read_blkbits - 9); 2546 } 2547 2548 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2549 MMC_BLK_DATA_AREA_MAIN, 0); 2550 } 2551 2552 static int mmc_blk_alloc_part(struct mmc_card *card, 2553 struct mmc_blk_data *md, 2554 unsigned int part_type, 2555 sector_t size, 2556 bool default_ro, 2557 const char *subname, 2558 int area_type) 2559 { 2560 struct mmc_blk_data *part_md; 2561 2562 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2563 subname, area_type, part_type); 2564 if (IS_ERR(part_md)) 2565 return PTR_ERR(part_md); 2566 list_add(&part_md->part, &md->part); 2567 2568 return 0; 2569 } 2570 2571 /** 2572 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2573 * @filp: the character device file 2574 * @cmd: the ioctl() command 2575 * @arg: the argument from userspace 2576 * 2577 * This will essentially just redirect the ioctl()s coming in over to 2578 * the main block device spawning the RPMB character device. 2579 */ 2580 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2581 unsigned long arg) 2582 { 2583 struct mmc_rpmb_data *rpmb = filp->private_data; 2584 int ret; 2585 2586 switch (cmd) { 2587 case MMC_IOC_CMD: 2588 ret = mmc_blk_ioctl_cmd(rpmb->md, 2589 (struct mmc_ioc_cmd __user *)arg, 2590 rpmb); 2591 break; 2592 case MMC_IOC_MULTI_CMD: 2593 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2594 (struct mmc_ioc_multi_cmd __user *)arg, 2595 rpmb); 2596 break; 2597 default: 2598 ret = -EINVAL; 2599 break; 2600 } 2601 2602 return ret; 2603 } 2604 2605 #ifdef CONFIG_COMPAT 2606 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2607 unsigned long arg) 2608 { 2609 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2610 } 2611 #endif 2612 2613 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2614 { 2615 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2616 struct mmc_rpmb_data, chrdev); 2617 2618 get_device(&rpmb->dev); 2619 filp->private_data = rpmb; 2620 mmc_blk_get(rpmb->md->disk); 2621 2622 return nonseekable_open(inode, filp); 2623 } 2624 2625 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2626 { 2627 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2628 struct mmc_rpmb_data, chrdev); 2629 2630 mmc_blk_put(rpmb->md); 2631 put_device(&rpmb->dev); 2632 2633 return 0; 2634 } 2635 2636 static const struct file_operations mmc_rpmb_fileops = { 2637 .release = mmc_rpmb_chrdev_release, 2638 .open = mmc_rpmb_chrdev_open, 2639 .owner = THIS_MODULE, 2640 .llseek = no_llseek, 2641 .unlocked_ioctl = mmc_rpmb_ioctl, 2642 #ifdef CONFIG_COMPAT 2643 .compat_ioctl = mmc_rpmb_ioctl_compat, 2644 #endif 2645 }; 2646 2647 static void mmc_blk_rpmb_device_release(struct device *dev) 2648 { 2649 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2650 2651 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2652 kfree(rpmb); 2653 } 2654 2655 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2656 struct mmc_blk_data *md, 2657 unsigned int part_index, 2658 sector_t size, 2659 const char *subname) 2660 { 2661 int devidx, ret; 2662 char rpmb_name[DISK_NAME_LEN]; 2663 char cap_str[10]; 2664 struct mmc_rpmb_data *rpmb; 2665 2666 /* This creates the minor number for the RPMB char device */ 2667 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2668 if (devidx < 0) 2669 return devidx; 2670 2671 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2672 if (!rpmb) { 2673 ida_simple_remove(&mmc_rpmb_ida, devidx); 2674 return -ENOMEM; 2675 } 2676 2677 snprintf(rpmb_name, sizeof(rpmb_name), 2678 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2679 2680 rpmb->id = devidx; 2681 rpmb->part_index = part_index; 2682 rpmb->dev.init_name = rpmb_name; 2683 rpmb->dev.bus = &mmc_rpmb_bus_type; 2684 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2685 rpmb->dev.parent = &card->dev; 2686 rpmb->dev.release = mmc_blk_rpmb_device_release; 2687 device_initialize(&rpmb->dev); 2688 dev_set_drvdata(&rpmb->dev, rpmb); 2689 rpmb->md = md; 2690 2691 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2692 rpmb->chrdev.owner = THIS_MODULE; 2693 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2694 if (ret) { 2695 pr_err("%s: could not add character device\n", rpmb_name); 2696 goto out_put_device; 2697 } 2698 2699 list_add(&rpmb->node, &md->rpmbs); 2700 2701 string_get_size((u64)size, 512, STRING_UNITS_2, 2702 cap_str, sizeof(cap_str)); 2703 2704 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2705 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2706 MAJOR(mmc_rpmb_devt), rpmb->id); 2707 2708 return 0; 2709 2710 out_put_device: 2711 put_device(&rpmb->dev); 2712 return ret; 2713 } 2714 2715 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2716 2717 { 2718 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2719 put_device(&rpmb->dev); 2720 } 2721 2722 /* MMC Physical partitions consist of two boot partitions and 2723 * up to four general purpose partitions. 2724 * For each partition enabled in EXT_CSD a block device will be allocatedi 2725 * to provide access to the partition. 2726 */ 2727 2728 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2729 { 2730 int idx, ret; 2731 2732 if (!mmc_card_mmc(card)) 2733 return 0; 2734 2735 for (idx = 0; idx < card->nr_parts; idx++) { 2736 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2737 /* 2738 * RPMB partitions does not provide block access, they 2739 * are only accessed using ioctl():s. Thus create 2740 * special RPMB block devices that do not have a 2741 * backing block queue for these. 2742 */ 2743 ret = mmc_blk_alloc_rpmb_part(card, md, 2744 card->part[idx].part_cfg, 2745 card->part[idx].size >> 9, 2746 card->part[idx].name); 2747 if (ret) 2748 return ret; 2749 } else if (card->part[idx].size) { 2750 ret = mmc_blk_alloc_part(card, md, 2751 card->part[idx].part_cfg, 2752 card->part[idx].size >> 9, 2753 card->part[idx].force_ro, 2754 card->part[idx].name, 2755 card->part[idx].area_type); 2756 if (ret) 2757 return ret; 2758 } 2759 } 2760 2761 return 0; 2762 } 2763 2764 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2765 { 2766 /* 2767 * Flush remaining requests and free queues. It is freeing the queue 2768 * that stops new requests from being accepted. 2769 */ 2770 del_gendisk(md->disk); 2771 mmc_cleanup_queue(&md->queue); 2772 mmc_blk_put(md); 2773 } 2774 2775 static void mmc_blk_remove_parts(struct mmc_card *card, 2776 struct mmc_blk_data *md) 2777 { 2778 struct list_head *pos, *q; 2779 struct mmc_blk_data *part_md; 2780 struct mmc_rpmb_data *rpmb; 2781 2782 /* Remove RPMB partitions */ 2783 list_for_each_safe(pos, q, &md->rpmbs) { 2784 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2785 list_del(pos); 2786 mmc_blk_remove_rpmb_part(rpmb); 2787 } 2788 /* Remove block partitions */ 2789 list_for_each_safe(pos, q, &md->part) { 2790 part_md = list_entry(pos, struct mmc_blk_data, part); 2791 list_del(pos); 2792 mmc_blk_remove_req(part_md); 2793 } 2794 } 2795 2796 #ifdef CONFIG_DEBUG_FS 2797 2798 static int mmc_dbg_card_status_get(void *data, u64 *val) 2799 { 2800 struct mmc_card *card = data; 2801 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2802 struct mmc_queue *mq = &md->queue; 2803 struct request *req; 2804 int ret; 2805 2806 /* Ask the block layer about the card status */ 2807 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2808 if (IS_ERR(req)) 2809 return PTR_ERR(req); 2810 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2811 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2812 blk_execute_rq(req, false); 2813 ret = req_to_mmc_queue_req(req)->drv_op_result; 2814 if (ret >= 0) { 2815 *val = ret; 2816 ret = 0; 2817 } 2818 blk_mq_free_request(req); 2819 2820 return ret; 2821 } 2822 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2823 NULL, "%08llx\n"); 2824 2825 /* That is two digits * 512 + 1 for newline */ 2826 #define EXT_CSD_STR_LEN 1025 2827 2828 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2829 { 2830 struct mmc_card *card = inode->i_private; 2831 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2832 struct mmc_queue *mq = &md->queue; 2833 struct request *req; 2834 char *buf; 2835 ssize_t n = 0; 2836 u8 *ext_csd; 2837 int err, i; 2838 2839 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2840 if (!buf) 2841 return -ENOMEM; 2842 2843 /* Ask the block layer for the EXT CSD */ 2844 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2845 if (IS_ERR(req)) { 2846 err = PTR_ERR(req); 2847 goto out_free; 2848 } 2849 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2850 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 2851 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2852 blk_execute_rq(req, false); 2853 err = req_to_mmc_queue_req(req)->drv_op_result; 2854 blk_mq_free_request(req); 2855 if (err) { 2856 pr_err("FAILED %d\n", err); 2857 goto out_free; 2858 } 2859 2860 for (i = 0; i < 512; i++) 2861 n += sprintf(buf + n, "%02x", ext_csd[i]); 2862 n += sprintf(buf + n, "\n"); 2863 2864 if (n != EXT_CSD_STR_LEN) { 2865 err = -EINVAL; 2866 kfree(ext_csd); 2867 goto out_free; 2868 } 2869 2870 filp->private_data = buf; 2871 kfree(ext_csd); 2872 return 0; 2873 2874 out_free: 2875 kfree(buf); 2876 return err; 2877 } 2878 2879 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2880 size_t cnt, loff_t *ppos) 2881 { 2882 char *buf = filp->private_data; 2883 2884 return simple_read_from_buffer(ubuf, cnt, ppos, 2885 buf, EXT_CSD_STR_LEN); 2886 } 2887 2888 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2889 { 2890 kfree(file->private_data); 2891 return 0; 2892 } 2893 2894 static const struct file_operations mmc_dbg_ext_csd_fops = { 2895 .open = mmc_ext_csd_open, 2896 .read = mmc_ext_csd_read, 2897 .release = mmc_ext_csd_release, 2898 .llseek = default_llseek, 2899 }; 2900 2901 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2902 { 2903 struct dentry *root; 2904 2905 if (!card->debugfs_root) 2906 return; 2907 2908 root = card->debugfs_root; 2909 2910 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2911 md->status_dentry = 2912 debugfs_create_file_unsafe("status", 0400, root, 2913 card, 2914 &mmc_dbg_card_status_fops); 2915 } 2916 2917 if (mmc_card_mmc(card)) { 2918 md->ext_csd_dentry = 2919 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2920 &mmc_dbg_ext_csd_fops); 2921 } 2922 } 2923 2924 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2925 struct mmc_blk_data *md) 2926 { 2927 if (!card->debugfs_root) 2928 return; 2929 2930 debugfs_remove(md->status_dentry); 2931 md->status_dentry = NULL; 2932 2933 debugfs_remove(md->ext_csd_dentry); 2934 md->ext_csd_dentry = NULL; 2935 } 2936 2937 #else 2938 2939 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2940 { 2941 } 2942 2943 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2944 struct mmc_blk_data *md) 2945 { 2946 } 2947 2948 #endif /* CONFIG_DEBUG_FS */ 2949 2950 static int mmc_blk_probe(struct mmc_card *card) 2951 { 2952 struct mmc_blk_data *md; 2953 int ret = 0; 2954 2955 /* 2956 * Check that the card supports the command class(es) we need. 2957 */ 2958 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2959 return -ENODEV; 2960 2961 mmc_fixup_device(card, mmc_blk_fixups); 2962 2963 card->complete_wq = alloc_workqueue("mmc_complete", 2964 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2965 if (!card->complete_wq) { 2966 pr_err("Failed to create mmc completion workqueue"); 2967 return -ENOMEM; 2968 } 2969 2970 md = mmc_blk_alloc(card); 2971 if (IS_ERR(md)) { 2972 ret = PTR_ERR(md); 2973 goto out_free; 2974 } 2975 2976 ret = mmc_blk_alloc_parts(card, md); 2977 if (ret) 2978 goto out; 2979 2980 /* Add two debugfs entries */ 2981 mmc_blk_add_debugfs(card, md); 2982 2983 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2984 pm_runtime_use_autosuspend(&card->dev); 2985 2986 /* 2987 * Don't enable runtime PM for SD-combo cards here. Leave that 2988 * decision to be taken during the SDIO init sequence instead. 2989 */ 2990 if (!mmc_card_sd_combo(card)) { 2991 pm_runtime_set_active(&card->dev); 2992 pm_runtime_enable(&card->dev); 2993 } 2994 2995 return 0; 2996 2997 out: 2998 mmc_blk_remove_parts(card, md); 2999 mmc_blk_remove_req(md); 3000 out_free: 3001 destroy_workqueue(card->complete_wq); 3002 return ret; 3003 } 3004 3005 static void mmc_blk_remove(struct mmc_card *card) 3006 { 3007 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3008 3009 mmc_blk_remove_debugfs(card, md); 3010 mmc_blk_remove_parts(card, md); 3011 pm_runtime_get_sync(&card->dev); 3012 if (md->part_curr != md->part_type) { 3013 mmc_claim_host(card->host); 3014 mmc_blk_part_switch(card, md->part_type); 3015 mmc_release_host(card->host); 3016 } 3017 if (!mmc_card_sd_combo(card)) 3018 pm_runtime_disable(&card->dev); 3019 pm_runtime_put_noidle(&card->dev); 3020 mmc_blk_remove_req(md); 3021 destroy_workqueue(card->complete_wq); 3022 } 3023 3024 static int _mmc_blk_suspend(struct mmc_card *card) 3025 { 3026 struct mmc_blk_data *part_md; 3027 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3028 3029 if (md) { 3030 mmc_queue_suspend(&md->queue); 3031 list_for_each_entry(part_md, &md->part, part) { 3032 mmc_queue_suspend(&part_md->queue); 3033 } 3034 } 3035 return 0; 3036 } 3037 3038 static void mmc_blk_shutdown(struct mmc_card *card) 3039 { 3040 _mmc_blk_suspend(card); 3041 } 3042 3043 #ifdef CONFIG_PM_SLEEP 3044 static int mmc_blk_suspend(struct device *dev) 3045 { 3046 struct mmc_card *card = mmc_dev_to_card(dev); 3047 3048 return _mmc_blk_suspend(card); 3049 } 3050 3051 static int mmc_blk_resume(struct device *dev) 3052 { 3053 struct mmc_blk_data *part_md; 3054 struct mmc_blk_data *md = dev_get_drvdata(dev); 3055 3056 if (md) { 3057 /* 3058 * Resume involves the card going into idle state, 3059 * so current partition is always the main one. 3060 */ 3061 md->part_curr = md->part_type; 3062 mmc_queue_resume(&md->queue); 3063 list_for_each_entry(part_md, &md->part, part) { 3064 mmc_queue_resume(&part_md->queue); 3065 } 3066 } 3067 return 0; 3068 } 3069 #endif 3070 3071 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3072 3073 static struct mmc_driver mmc_driver = { 3074 .drv = { 3075 .name = "mmcblk", 3076 .pm = &mmc_blk_pm_ops, 3077 }, 3078 .probe = mmc_blk_probe, 3079 .remove = mmc_blk_remove, 3080 .shutdown = mmc_blk_shutdown, 3081 }; 3082 3083 static int __init mmc_blk_init(void) 3084 { 3085 int res; 3086 3087 res = bus_register(&mmc_rpmb_bus_type); 3088 if (res < 0) { 3089 pr_err("mmcblk: could not register RPMB bus type\n"); 3090 return res; 3091 } 3092 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3093 if (res < 0) { 3094 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3095 goto out_bus_unreg; 3096 } 3097 3098 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3099 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3100 3101 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3102 3103 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3104 if (res) 3105 goto out_chrdev_unreg; 3106 3107 res = mmc_register_driver(&mmc_driver); 3108 if (res) 3109 goto out_blkdev_unreg; 3110 3111 return 0; 3112 3113 out_blkdev_unreg: 3114 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3115 out_chrdev_unreg: 3116 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3117 out_bus_unreg: 3118 bus_unregister(&mmc_rpmb_bus_type); 3119 return res; 3120 } 3121 3122 static void __exit mmc_blk_exit(void) 3123 { 3124 mmc_unregister_driver(&mmc_driver); 3125 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3126 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3127 bus_unregister(&mmc_rpmb_bus_type); 3128 } 3129 3130 module_init(mmc_blk_init); 3131 module_exit(mmc_blk_exit); 3132 3133 MODULE_LICENSE("GPL"); 3134 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3135 3136