1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "crypto.h" 55 #include "host.h" 56 #include "bus.h" 57 #include "mmc_ops.h" 58 #include "quirks.h" 59 #include "sd_ops.h" 60 61 MODULE_ALIAS("mmc:block"); 62 #ifdef MODULE_PARAM_PREFIX 63 #undef MODULE_PARAM_PREFIX 64 #endif 65 #define MODULE_PARAM_PREFIX "mmcblk." 66 67 /* 68 * Set a 10 second timeout for polling write request busy state. Note, mmc core 69 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 70 * second software timer to timeout the whole request, so 10 seconds should be 71 * ample. 72 */ 73 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 172 struct mmc_card *card, 173 int disable_multi, 174 struct mmc_queue *mq); 175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 176 177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 178 { 179 struct mmc_blk_data *md; 180 181 mutex_lock(&open_lock); 182 md = disk->private_data; 183 if (md && md->usage == 0) 184 md = NULL; 185 if (md) 186 md->usage++; 187 mutex_unlock(&open_lock); 188 189 return md; 190 } 191 192 static inline int mmc_get_devidx(struct gendisk *disk) 193 { 194 int devidx = disk->first_minor / perdev_minors; 195 return devidx; 196 } 197 198 static void mmc_blk_put(struct mmc_blk_data *md) 199 { 200 mutex_lock(&open_lock); 201 md->usage--; 202 if (md->usage == 0) { 203 int devidx = mmc_get_devidx(md->disk); 204 blk_put_queue(md->queue.queue); 205 ida_simple_remove(&mmc_blk_ida, devidx); 206 put_disk(md->disk); 207 kfree(md); 208 } 209 mutex_unlock(&open_lock); 210 } 211 212 static ssize_t power_ro_lock_show(struct device *dev, 213 struct device_attribute *attr, char *buf) 214 { 215 int ret; 216 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 217 struct mmc_card *card = md->queue.card; 218 int locked = 0; 219 220 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 221 locked = 2; 222 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 223 locked = 1; 224 225 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 226 227 mmc_blk_put(md); 228 229 return ret; 230 } 231 232 static ssize_t power_ro_lock_store(struct device *dev, 233 struct device_attribute *attr, const char *buf, size_t count) 234 { 235 int ret; 236 struct mmc_blk_data *md, *part_md; 237 struct mmc_queue *mq; 238 struct request *req; 239 unsigned long set; 240 241 if (kstrtoul(buf, 0, &set)) 242 return -EINVAL; 243 244 if (set != 1) 245 return count; 246 247 md = mmc_blk_get(dev_to_disk(dev)); 248 mq = &md->queue; 249 250 /* Dispatch locking to the block layer */ 251 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 252 if (IS_ERR(req)) { 253 count = PTR_ERR(req); 254 goto out_put; 255 } 256 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 257 blk_execute_rq(NULL, req, 0); 258 ret = req_to_mmc_queue_req(req)->drv_op_result; 259 blk_put_request(req); 260 261 if (!ret) { 262 pr_info("%s: Locking boot partition ro until next power on\n", 263 md->disk->disk_name); 264 set_disk_ro(md->disk, 1); 265 266 list_for_each_entry(part_md, &md->part, part) 267 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 268 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 269 set_disk_ro(part_md->disk, 1); 270 } 271 } 272 out_put: 273 mmc_blk_put(md); 274 return count; 275 } 276 277 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 278 char *buf) 279 { 280 int ret; 281 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 282 283 ret = snprintf(buf, PAGE_SIZE, "%d\n", 284 get_disk_ro(dev_to_disk(dev)) ^ 285 md->read_only); 286 mmc_blk_put(md); 287 return ret; 288 } 289 290 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 291 const char *buf, size_t count) 292 { 293 int ret; 294 char *end; 295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 296 unsigned long set = simple_strtoul(buf, &end, 0); 297 if (end == buf) { 298 ret = -EINVAL; 299 goto out; 300 } 301 302 set_disk_ro(dev_to_disk(dev), set || md->read_only); 303 ret = count; 304 out: 305 mmc_blk_put(md); 306 return ret; 307 } 308 309 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 310 { 311 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 312 int ret = -ENXIO; 313 314 mutex_lock(&block_mutex); 315 if (md) { 316 ret = 0; 317 if ((mode & FMODE_WRITE) && md->read_only) { 318 mmc_blk_put(md); 319 ret = -EROFS; 320 } 321 } 322 mutex_unlock(&block_mutex); 323 324 return ret; 325 } 326 327 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 328 { 329 struct mmc_blk_data *md = disk->private_data; 330 331 mutex_lock(&block_mutex); 332 mmc_blk_put(md); 333 mutex_unlock(&block_mutex); 334 } 335 336 static int 337 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 338 { 339 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 340 geo->heads = 4; 341 geo->sectors = 16; 342 return 0; 343 } 344 345 struct mmc_blk_ioc_data { 346 struct mmc_ioc_cmd ic; 347 unsigned char *buf; 348 u64 buf_bytes; 349 struct mmc_rpmb_data *rpmb; 350 }; 351 352 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 353 struct mmc_ioc_cmd __user *user) 354 { 355 struct mmc_blk_ioc_data *idata; 356 int err; 357 358 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 359 if (!idata) { 360 err = -ENOMEM; 361 goto out; 362 } 363 364 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 365 err = -EFAULT; 366 goto idata_err; 367 } 368 369 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 370 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 371 err = -EOVERFLOW; 372 goto idata_err; 373 } 374 375 if (!idata->buf_bytes) { 376 idata->buf = NULL; 377 return idata; 378 } 379 380 idata->buf = memdup_user((void __user *)(unsigned long) 381 idata->ic.data_ptr, idata->buf_bytes); 382 if (IS_ERR(idata->buf)) { 383 err = PTR_ERR(idata->buf); 384 goto idata_err; 385 } 386 387 return idata; 388 389 idata_err: 390 kfree(idata); 391 out: 392 return ERR_PTR(err); 393 } 394 395 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 396 struct mmc_blk_ioc_data *idata) 397 { 398 struct mmc_ioc_cmd *ic = &idata->ic; 399 400 if (copy_to_user(&(ic_ptr->response), ic->response, 401 sizeof(ic->response))) 402 return -EFAULT; 403 404 if (!idata->ic.write_flag) { 405 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 406 idata->buf, idata->buf_bytes)) 407 return -EFAULT; 408 } 409 410 return 0; 411 } 412 413 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 414 u32 *resp_errs) 415 { 416 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 417 int err = 0; 418 u32 status; 419 420 do { 421 bool done = time_after(jiffies, timeout); 422 423 err = __mmc_send_status(card, &status, 5); 424 if (err) { 425 dev_err(mmc_dev(card->host), 426 "error %d requesting status\n", err); 427 return err; 428 } 429 430 /* Accumulate any response error bits seen */ 431 if (resp_errs) 432 *resp_errs |= status; 433 434 /* 435 * Timeout if the device never becomes ready for data and never 436 * leaves the program state. 437 */ 438 if (done) { 439 dev_err(mmc_dev(card->host), 440 "Card stuck in wrong state! %s status: %#x\n", 441 __func__, status); 442 return -ETIMEDOUT; 443 } 444 } while (!mmc_ready_for_data(status)); 445 446 return err; 447 } 448 449 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 450 struct mmc_blk_ioc_data *idata) 451 { 452 struct mmc_command cmd = {}, sbc = {}; 453 struct mmc_data data = {}; 454 struct mmc_request mrq = {}; 455 struct scatterlist sg; 456 int err; 457 unsigned int target_part; 458 459 if (!card || !md || !idata) 460 return -EINVAL; 461 462 /* 463 * The RPMB accesses comes in from the character device, so we 464 * need to target these explicitly. Else we just target the 465 * partition type for the block device the ioctl() was issued 466 * on. 467 */ 468 if (idata->rpmb) { 469 /* Support multiple RPMB partitions */ 470 target_part = idata->rpmb->part_index; 471 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 472 } else { 473 target_part = md->part_type; 474 } 475 476 cmd.opcode = idata->ic.opcode; 477 cmd.arg = idata->ic.arg; 478 cmd.flags = idata->ic.flags; 479 480 if (idata->buf_bytes) { 481 data.sg = &sg; 482 data.sg_len = 1; 483 data.blksz = idata->ic.blksz; 484 data.blocks = idata->ic.blocks; 485 486 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 487 488 if (idata->ic.write_flag) 489 data.flags = MMC_DATA_WRITE; 490 else 491 data.flags = MMC_DATA_READ; 492 493 /* data.flags must already be set before doing this. */ 494 mmc_set_data_timeout(&data, card); 495 496 /* Allow overriding the timeout_ns for empirical tuning. */ 497 if (idata->ic.data_timeout_ns) 498 data.timeout_ns = idata->ic.data_timeout_ns; 499 500 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 501 /* 502 * Pretend this is a data transfer and rely on the 503 * host driver to compute timeout. When all host 504 * drivers support cmd.cmd_timeout for R1B, this 505 * can be changed to: 506 * 507 * mrq.data = NULL; 508 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 509 */ 510 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 511 } 512 513 mrq.data = &data; 514 } 515 516 mrq.cmd = &cmd; 517 518 err = mmc_blk_part_switch(card, target_part); 519 if (err) 520 return err; 521 522 if (idata->ic.is_acmd) { 523 err = mmc_app_cmd(card->host, card); 524 if (err) 525 return err; 526 } 527 528 if (idata->rpmb) { 529 sbc.opcode = MMC_SET_BLOCK_COUNT; 530 /* 531 * We don't do any blockcount validation because the max size 532 * may be increased by a future standard. We just copy the 533 * 'Reliable Write' bit here. 534 */ 535 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 536 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 537 mrq.sbc = &sbc; 538 } 539 540 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 541 (cmd.opcode == MMC_SWITCH)) 542 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 543 544 mmc_wait_for_req(card->host, &mrq); 545 546 if (cmd.error) { 547 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 548 __func__, cmd.error); 549 return cmd.error; 550 } 551 if (data.error) { 552 dev_err(mmc_dev(card->host), "%s: data error %d\n", 553 __func__, data.error); 554 return data.error; 555 } 556 557 /* 558 * Make sure the cache of the PARTITION_CONFIG register and 559 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 560 * changed it successfully. 561 */ 562 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 563 (cmd.opcode == MMC_SWITCH)) { 564 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 565 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 566 567 /* 568 * Update cache so the next mmc_blk_part_switch call operates 569 * on up-to-date data. 570 */ 571 card->ext_csd.part_config = value; 572 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 573 } 574 575 /* 576 * Make sure to update CACHE_CTRL in case it was changed. The cache 577 * will get turned back on if the card is re-initialized, e.g. 578 * suspend/resume or hw reset in recovery. 579 */ 580 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 581 (cmd.opcode == MMC_SWITCH)) { 582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 583 584 card->ext_csd.cache_ctrl = value; 585 } 586 587 /* 588 * According to the SD specs, some commands require a delay after 589 * issuing the command. 590 */ 591 if (idata->ic.postsleep_min_us) 592 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 593 594 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 595 596 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 597 /* 598 * Ensure RPMB/R1B command has completed by polling CMD13 599 * "Send Status". 600 */ 601 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 602 } 603 604 return err; 605 } 606 607 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 608 struct mmc_ioc_cmd __user *ic_ptr, 609 struct mmc_rpmb_data *rpmb) 610 { 611 struct mmc_blk_ioc_data *idata; 612 struct mmc_blk_ioc_data *idatas[1]; 613 struct mmc_queue *mq; 614 struct mmc_card *card; 615 int err = 0, ioc_err = 0; 616 struct request *req; 617 618 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 619 if (IS_ERR(idata)) 620 return PTR_ERR(idata); 621 /* This will be NULL on non-RPMB ioctl():s */ 622 idata->rpmb = rpmb; 623 624 card = md->queue.card; 625 if (IS_ERR(card)) { 626 err = PTR_ERR(card); 627 goto cmd_done; 628 } 629 630 /* 631 * Dispatch the ioctl() into the block request queue. 632 */ 633 mq = &md->queue; 634 req = blk_get_request(mq->queue, 635 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 636 if (IS_ERR(req)) { 637 err = PTR_ERR(req); 638 goto cmd_done; 639 } 640 idatas[0] = idata; 641 req_to_mmc_queue_req(req)->drv_op = 642 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 643 req_to_mmc_queue_req(req)->drv_op_data = idatas; 644 req_to_mmc_queue_req(req)->ioc_count = 1; 645 blk_execute_rq(NULL, req, 0); 646 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 647 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 648 blk_put_request(req); 649 650 cmd_done: 651 kfree(idata->buf); 652 kfree(idata); 653 return ioc_err ? ioc_err : err; 654 } 655 656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 657 struct mmc_ioc_multi_cmd __user *user, 658 struct mmc_rpmb_data *rpmb) 659 { 660 struct mmc_blk_ioc_data **idata = NULL; 661 struct mmc_ioc_cmd __user *cmds = user->cmds; 662 struct mmc_card *card; 663 struct mmc_queue *mq; 664 int i, err = 0, ioc_err = 0; 665 __u64 num_of_cmds; 666 struct request *req; 667 668 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 669 sizeof(num_of_cmds))) 670 return -EFAULT; 671 672 if (!num_of_cmds) 673 return 0; 674 675 if (num_of_cmds > MMC_IOC_MAX_CMDS) 676 return -EINVAL; 677 678 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 679 if (!idata) 680 return -ENOMEM; 681 682 for (i = 0; i < num_of_cmds; i++) { 683 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 684 if (IS_ERR(idata[i])) { 685 err = PTR_ERR(idata[i]); 686 num_of_cmds = i; 687 goto cmd_err; 688 } 689 /* This will be NULL on non-RPMB ioctl():s */ 690 idata[i]->rpmb = rpmb; 691 } 692 693 card = md->queue.card; 694 if (IS_ERR(card)) { 695 err = PTR_ERR(card); 696 goto cmd_err; 697 } 698 699 700 /* 701 * Dispatch the ioctl()s into the block request queue. 702 */ 703 mq = &md->queue; 704 req = blk_get_request(mq->queue, 705 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 706 if (IS_ERR(req)) { 707 err = PTR_ERR(req); 708 goto cmd_err; 709 } 710 req_to_mmc_queue_req(req)->drv_op = 711 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 712 req_to_mmc_queue_req(req)->drv_op_data = idata; 713 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 714 blk_execute_rq(NULL, req, 0); 715 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 716 717 /* copy to user if data and response */ 718 for (i = 0; i < num_of_cmds && !err; i++) 719 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 720 721 blk_put_request(req); 722 723 cmd_err: 724 for (i = 0; i < num_of_cmds; i++) { 725 kfree(idata[i]->buf); 726 kfree(idata[i]); 727 } 728 kfree(idata); 729 return ioc_err ? ioc_err : err; 730 } 731 732 static int mmc_blk_check_blkdev(struct block_device *bdev) 733 { 734 /* 735 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 736 * whole block device, not on a partition. This prevents overspray 737 * between sibling partitions. 738 */ 739 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 740 return -EPERM; 741 return 0; 742 } 743 744 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 745 unsigned int cmd, unsigned long arg) 746 { 747 struct mmc_blk_data *md; 748 int ret; 749 750 switch (cmd) { 751 case MMC_IOC_CMD: 752 ret = mmc_blk_check_blkdev(bdev); 753 if (ret) 754 return ret; 755 md = mmc_blk_get(bdev->bd_disk); 756 if (!md) 757 return -EINVAL; 758 ret = mmc_blk_ioctl_cmd(md, 759 (struct mmc_ioc_cmd __user *)arg, 760 NULL); 761 mmc_blk_put(md); 762 return ret; 763 case MMC_IOC_MULTI_CMD: 764 ret = mmc_blk_check_blkdev(bdev); 765 if (ret) 766 return ret; 767 md = mmc_blk_get(bdev->bd_disk); 768 if (!md) 769 return -EINVAL; 770 ret = mmc_blk_ioctl_multi_cmd(md, 771 (struct mmc_ioc_multi_cmd __user *)arg, 772 NULL); 773 mmc_blk_put(md); 774 return ret; 775 default: 776 return -EINVAL; 777 } 778 } 779 780 #ifdef CONFIG_COMPAT 781 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 782 unsigned int cmd, unsigned long arg) 783 { 784 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 785 } 786 #endif 787 788 static const struct block_device_operations mmc_bdops = { 789 .open = mmc_blk_open, 790 .release = mmc_blk_release, 791 .getgeo = mmc_blk_getgeo, 792 .owner = THIS_MODULE, 793 .ioctl = mmc_blk_ioctl, 794 #ifdef CONFIG_COMPAT 795 .compat_ioctl = mmc_blk_compat_ioctl, 796 #endif 797 }; 798 799 static int mmc_blk_part_switch_pre(struct mmc_card *card, 800 unsigned int part_type) 801 { 802 int ret = 0; 803 804 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 805 if (card->ext_csd.cmdq_en) { 806 ret = mmc_cmdq_disable(card); 807 if (ret) 808 return ret; 809 } 810 mmc_retune_pause(card->host); 811 } 812 813 return ret; 814 } 815 816 static int mmc_blk_part_switch_post(struct mmc_card *card, 817 unsigned int part_type) 818 { 819 int ret = 0; 820 821 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 822 mmc_retune_unpause(card->host); 823 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 824 ret = mmc_cmdq_enable(card); 825 } 826 827 return ret; 828 } 829 830 static inline int mmc_blk_part_switch(struct mmc_card *card, 831 unsigned int part_type) 832 { 833 int ret = 0; 834 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 835 836 if (main_md->part_curr == part_type) 837 return 0; 838 839 if (mmc_card_mmc(card)) { 840 u8 part_config = card->ext_csd.part_config; 841 842 ret = mmc_blk_part_switch_pre(card, part_type); 843 if (ret) 844 return ret; 845 846 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 847 part_config |= part_type; 848 849 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 850 EXT_CSD_PART_CONFIG, part_config, 851 card->ext_csd.part_time); 852 if (ret) { 853 mmc_blk_part_switch_post(card, part_type); 854 return ret; 855 } 856 857 card->ext_csd.part_config = part_config; 858 859 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 860 } 861 862 main_md->part_curr = part_type; 863 return ret; 864 } 865 866 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 867 { 868 int err; 869 u32 result; 870 __be32 *blocks; 871 872 struct mmc_request mrq = {}; 873 struct mmc_command cmd = {}; 874 struct mmc_data data = {}; 875 876 struct scatterlist sg; 877 878 cmd.opcode = MMC_APP_CMD; 879 cmd.arg = card->rca << 16; 880 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 881 882 err = mmc_wait_for_cmd(card->host, &cmd, 0); 883 if (err) 884 return err; 885 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 886 return -EIO; 887 888 memset(&cmd, 0, sizeof(struct mmc_command)); 889 890 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 891 cmd.arg = 0; 892 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 893 894 data.blksz = 4; 895 data.blocks = 1; 896 data.flags = MMC_DATA_READ; 897 data.sg = &sg; 898 data.sg_len = 1; 899 mmc_set_data_timeout(&data, card); 900 901 mrq.cmd = &cmd; 902 mrq.data = &data; 903 904 blocks = kmalloc(4, GFP_KERNEL); 905 if (!blocks) 906 return -ENOMEM; 907 908 sg_init_one(&sg, blocks, 4); 909 910 mmc_wait_for_req(card->host, &mrq); 911 912 result = ntohl(*blocks); 913 kfree(blocks); 914 915 if (cmd.error || data.error) 916 return -EIO; 917 918 *written_blocks = result; 919 920 return 0; 921 } 922 923 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 924 { 925 if (host->actual_clock) 926 return host->actual_clock / 1000; 927 928 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 929 if (host->ios.clock) 930 return host->ios.clock / 2000; 931 932 /* How can there be no clock */ 933 WARN_ON_ONCE(1); 934 return 100; /* 100 kHz is minimum possible value */ 935 } 936 937 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 938 struct mmc_data *data) 939 { 940 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 941 unsigned int khz; 942 943 if (data->timeout_clks) { 944 khz = mmc_blk_clock_khz(host); 945 ms += DIV_ROUND_UP(data->timeout_clks, khz); 946 } 947 948 return ms; 949 } 950 951 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 952 int type) 953 { 954 int err; 955 956 if (md->reset_done & type) 957 return -EEXIST; 958 959 md->reset_done |= type; 960 err = mmc_hw_reset(host); 961 /* Ensure we switch back to the correct partition */ 962 if (err) { 963 struct mmc_blk_data *main_md = 964 dev_get_drvdata(&host->card->dev); 965 int part_err; 966 967 main_md->part_curr = main_md->part_type; 968 part_err = mmc_blk_part_switch(host->card, md->part_type); 969 if (part_err) { 970 /* 971 * We have failed to get back into the correct 972 * partition, so we need to abort the whole request. 973 */ 974 return -ENODEV; 975 } 976 } 977 return err; 978 } 979 980 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 981 { 982 md->reset_done &= ~type; 983 } 984 985 /* 986 * The non-block commands come back from the block layer after it queued it and 987 * processed it with all other requests and then they get issued in this 988 * function. 989 */ 990 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 991 { 992 struct mmc_queue_req *mq_rq; 993 struct mmc_card *card = mq->card; 994 struct mmc_blk_data *md = mq->blkdata; 995 struct mmc_blk_ioc_data **idata; 996 bool rpmb_ioctl; 997 u8 **ext_csd; 998 u32 status; 999 int ret; 1000 int i; 1001 1002 mq_rq = req_to_mmc_queue_req(req); 1003 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1004 1005 switch (mq_rq->drv_op) { 1006 case MMC_DRV_OP_IOCTL: 1007 case MMC_DRV_OP_IOCTL_RPMB: 1008 idata = mq_rq->drv_op_data; 1009 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1010 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1011 if (ret) 1012 break; 1013 } 1014 /* Always switch back to main area after RPMB access */ 1015 if (rpmb_ioctl) 1016 mmc_blk_part_switch(card, 0); 1017 break; 1018 case MMC_DRV_OP_BOOT_WP: 1019 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1020 card->ext_csd.boot_ro_lock | 1021 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1022 card->ext_csd.part_time); 1023 if (ret) 1024 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1025 md->disk->disk_name, ret); 1026 else 1027 card->ext_csd.boot_ro_lock |= 1028 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1029 break; 1030 case MMC_DRV_OP_GET_CARD_STATUS: 1031 ret = mmc_send_status(card, &status); 1032 if (!ret) 1033 ret = status; 1034 break; 1035 case MMC_DRV_OP_GET_EXT_CSD: 1036 ext_csd = mq_rq->drv_op_data; 1037 ret = mmc_get_ext_csd(card, ext_csd); 1038 break; 1039 default: 1040 pr_err("%s: unknown driver specific operation\n", 1041 md->disk->disk_name); 1042 ret = -EINVAL; 1043 break; 1044 } 1045 mq_rq->drv_op_result = ret; 1046 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1047 } 1048 1049 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1050 { 1051 struct mmc_blk_data *md = mq->blkdata; 1052 struct mmc_card *card = md->queue.card; 1053 unsigned int from, nr; 1054 int err = 0, type = MMC_BLK_DISCARD; 1055 blk_status_t status = BLK_STS_OK; 1056 1057 if (!mmc_can_erase(card)) { 1058 status = BLK_STS_NOTSUPP; 1059 goto fail; 1060 } 1061 1062 from = blk_rq_pos(req); 1063 nr = blk_rq_sectors(req); 1064 1065 do { 1066 err = 0; 1067 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1068 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1069 INAND_CMD38_ARG_EXT_CSD, 1070 card->erase_arg == MMC_TRIM_ARG ? 1071 INAND_CMD38_ARG_TRIM : 1072 INAND_CMD38_ARG_ERASE, 1073 card->ext_csd.generic_cmd6_time); 1074 } 1075 if (!err) 1076 err = mmc_erase(card, from, nr, card->erase_arg); 1077 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1078 if (err) 1079 status = BLK_STS_IOERR; 1080 else 1081 mmc_blk_reset_success(md, type); 1082 fail: 1083 blk_mq_end_request(req, status); 1084 } 1085 1086 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1087 struct request *req) 1088 { 1089 struct mmc_blk_data *md = mq->blkdata; 1090 struct mmc_card *card = md->queue.card; 1091 unsigned int from, nr, arg; 1092 int err = 0, type = MMC_BLK_SECDISCARD; 1093 blk_status_t status = BLK_STS_OK; 1094 1095 if (!(mmc_can_secure_erase_trim(card))) { 1096 status = BLK_STS_NOTSUPP; 1097 goto out; 1098 } 1099 1100 from = blk_rq_pos(req); 1101 nr = blk_rq_sectors(req); 1102 1103 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1104 arg = MMC_SECURE_TRIM1_ARG; 1105 else 1106 arg = MMC_SECURE_ERASE_ARG; 1107 1108 retry: 1109 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1110 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1111 INAND_CMD38_ARG_EXT_CSD, 1112 arg == MMC_SECURE_TRIM1_ARG ? 1113 INAND_CMD38_ARG_SECTRIM1 : 1114 INAND_CMD38_ARG_SECERASE, 1115 card->ext_csd.generic_cmd6_time); 1116 if (err) 1117 goto out_retry; 1118 } 1119 1120 err = mmc_erase(card, from, nr, arg); 1121 if (err == -EIO) 1122 goto out_retry; 1123 if (err) { 1124 status = BLK_STS_IOERR; 1125 goto out; 1126 } 1127 1128 if (arg == MMC_SECURE_TRIM1_ARG) { 1129 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1130 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1131 INAND_CMD38_ARG_EXT_CSD, 1132 INAND_CMD38_ARG_SECTRIM2, 1133 card->ext_csd.generic_cmd6_time); 1134 if (err) 1135 goto out_retry; 1136 } 1137 1138 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1139 if (err == -EIO) 1140 goto out_retry; 1141 if (err) { 1142 status = BLK_STS_IOERR; 1143 goto out; 1144 } 1145 } 1146 1147 out_retry: 1148 if (err && !mmc_blk_reset(md, card->host, type)) 1149 goto retry; 1150 if (!err) 1151 mmc_blk_reset_success(md, type); 1152 out: 1153 blk_mq_end_request(req, status); 1154 } 1155 1156 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1157 { 1158 struct mmc_blk_data *md = mq->blkdata; 1159 struct mmc_card *card = md->queue.card; 1160 int ret = 0; 1161 1162 ret = mmc_flush_cache(card); 1163 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1164 } 1165 1166 /* 1167 * Reformat current write as a reliable write, supporting 1168 * both legacy and the enhanced reliable write MMC cards. 1169 * In each transfer we'll handle only as much as a single 1170 * reliable write can handle, thus finish the request in 1171 * partial completions. 1172 */ 1173 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1174 struct mmc_card *card, 1175 struct request *req) 1176 { 1177 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1178 /* Legacy mode imposes restrictions on transfers. */ 1179 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1180 brq->data.blocks = 1; 1181 1182 if (brq->data.blocks > card->ext_csd.rel_sectors) 1183 brq->data.blocks = card->ext_csd.rel_sectors; 1184 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1185 brq->data.blocks = 1; 1186 } 1187 } 1188 1189 #define CMD_ERRORS_EXCL_OOR \ 1190 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1191 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1192 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1193 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1194 R1_CC_ERROR | /* Card controller error */ \ 1195 R1_ERROR) /* General/unknown error */ 1196 1197 #define CMD_ERRORS \ 1198 (CMD_ERRORS_EXCL_OOR | \ 1199 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1200 1201 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1202 { 1203 u32 val; 1204 1205 /* 1206 * Per the SD specification(physical layer version 4.10)[1], 1207 * section 4.3.3, it explicitly states that "When the last 1208 * block of user area is read using CMD18, the host should 1209 * ignore OUT_OF_RANGE error that may occur even the sequence 1210 * is correct". And JESD84-B51 for eMMC also has a similar 1211 * statement on section 6.8.3. 1212 * 1213 * Multiple block read/write could be done by either predefined 1214 * method, namely CMD23, or open-ending mode. For open-ending mode, 1215 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1216 * 1217 * However the spec[1] doesn't tell us whether we should also 1218 * ignore that for predefined method. But per the spec[1], section 1219 * 4.15 Set Block Count Command, it says"If illegal block count 1220 * is set, out of range error will be indicated during read/write 1221 * operation (For example, data transfer is stopped at user area 1222 * boundary)." In another word, we could expect a out of range error 1223 * in the response for the following CMD18/25. And if argument of 1224 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1225 * we could also expect to get a -ETIMEDOUT or any error number from 1226 * the host drivers due to missing data response(for write)/data(for 1227 * read), as the cards will stop the data transfer by itself per the 1228 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1229 */ 1230 1231 if (!brq->stop.error) { 1232 bool oor_with_open_end; 1233 /* If there is no error yet, check R1 response */ 1234 1235 val = brq->stop.resp[0] & CMD_ERRORS; 1236 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1237 1238 if (val && !oor_with_open_end) 1239 brq->stop.error = -EIO; 1240 } 1241 } 1242 1243 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1244 int disable_multi, bool *do_rel_wr_p, 1245 bool *do_data_tag_p) 1246 { 1247 struct mmc_blk_data *md = mq->blkdata; 1248 struct mmc_card *card = md->queue.card; 1249 struct mmc_blk_request *brq = &mqrq->brq; 1250 struct request *req = mmc_queue_req_to_req(mqrq); 1251 bool do_rel_wr, do_data_tag; 1252 1253 /* 1254 * Reliable writes are used to implement Forced Unit Access and 1255 * are supported only on MMCs. 1256 */ 1257 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1258 rq_data_dir(req) == WRITE && 1259 (md->flags & MMC_BLK_REL_WR); 1260 1261 memset(brq, 0, sizeof(struct mmc_blk_request)); 1262 1263 mmc_crypto_prepare_req(mqrq); 1264 1265 brq->mrq.data = &brq->data; 1266 brq->mrq.tag = req->tag; 1267 1268 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1269 brq->stop.arg = 0; 1270 1271 if (rq_data_dir(req) == READ) { 1272 brq->data.flags = MMC_DATA_READ; 1273 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1274 } else { 1275 brq->data.flags = MMC_DATA_WRITE; 1276 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1277 } 1278 1279 brq->data.blksz = 512; 1280 brq->data.blocks = blk_rq_sectors(req); 1281 brq->data.blk_addr = blk_rq_pos(req); 1282 1283 /* 1284 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1285 * The eMMC will give "high" priority tasks priority over "simple" 1286 * priority tasks. Here we always set "simple" priority by not setting 1287 * MMC_DATA_PRIO. 1288 */ 1289 1290 /* 1291 * The block layer doesn't support all sector count 1292 * restrictions, so we need to be prepared for too big 1293 * requests. 1294 */ 1295 if (brq->data.blocks > card->host->max_blk_count) 1296 brq->data.blocks = card->host->max_blk_count; 1297 1298 if (brq->data.blocks > 1) { 1299 /* 1300 * Some SD cards in SPI mode return a CRC error or even lock up 1301 * completely when trying to read the last block using a 1302 * multiblock read command. 1303 */ 1304 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1305 (blk_rq_pos(req) + blk_rq_sectors(req) == 1306 get_capacity(md->disk))) 1307 brq->data.blocks--; 1308 1309 /* 1310 * After a read error, we redo the request one sector 1311 * at a time in order to accurately determine which 1312 * sectors can be read successfully. 1313 */ 1314 if (disable_multi) 1315 brq->data.blocks = 1; 1316 1317 /* 1318 * Some controllers have HW issues while operating 1319 * in multiple I/O mode 1320 */ 1321 if (card->host->ops->multi_io_quirk) 1322 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1323 (rq_data_dir(req) == READ) ? 1324 MMC_DATA_READ : MMC_DATA_WRITE, 1325 brq->data.blocks); 1326 } 1327 1328 if (do_rel_wr) { 1329 mmc_apply_rel_rw(brq, card, req); 1330 brq->data.flags |= MMC_DATA_REL_WR; 1331 } 1332 1333 /* 1334 * Data tag is used only during writing meta data to speed 1335 * up write and any subsequent read of this meta data 1336 */ 1337 do_data_tag = card->ext_csd.data_tag_unit_size && 1338 (req->cmd_flags & REQ_META) && 1339 (rq_data_dir(req) == WRITE) && 1340 ((brq->data.blocks * brq->data.blksz) >= 1341 card->ext_csd.data_tag_unit_size); 1342 1343 if (do_data_tag) 1344 brq->data.flags |= MMC_DATA_DAT_TAG; 1345 1346 mmc_set_data_timeout(&brq->data, card); 1347 1348 brq->data.sg = mqrq->sg; 1349 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1350 1351 /* 1352 * Adjust the sg list so it is the same size as the 1353 * request. 1354 */ 1355 if (brq->data.blocks != blk_rq_sectors(req)) { 1356 int i, data_size = brq->data.blocks << 9; 1357 struct scatterlist *sg; 1358 1359 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1360 data_size -= sg->length; 1361 if (data_size <= 0) { 1362 sg->length += data_size; 1363 i++; 1364 break; 1365 } 1366 } 1367 brq->data.sg_len = i; 1368 } 1369 1370 if (do_rel_wr_p) 1371 *do_rel_wr_p = do_rel_wr; 1372 1373 if (do_data_tag_p) 1374 *do_data_tag_p = do_data_tag; 1375 } 1376 1377 #define MMC_CQE_RETRIES 2 1378 1379 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1380 { 1381 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1382 struct mmc_request *mrq = &mqrq->brq.mrq; 1383 struct request_queue *q = req->q; 1384 struct mmc_host *host = mq->card->host; 1385 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1386 unsigned long flags; 1387 bool put_card; 1388 int err; 1389 1390 mmc_cqe_post_req(host, mrq); 1391 1392 if (mrq->cmd && mrq->cmd->error) 1393 err = mrq->cmd->error; 1394 else if (mrq->data && mrq->data->error) 1395 err = mrq->data->error; 1396 else 1397 err = 0; 1398 1399 if (err) { 1400 if (mqrq->retries++ < MMC_CQE_RETRIES) 1401 blk_mq_requeue_request(req, true); 1402 else 1403 blk_mq_end_request(req, BLK_STS_IOERR); 1404 } else if (mrq->data) { 1405 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1406 blk_mq_requeue_request(req, true); 1407 else 1408 __blk_mq_end_request(req, BLK_STS_OK); 1409 } else { 1410 blk_mq_end_request(req, BLK_STS_OK); 1411 } 1412 1413 spin_lock_irqsave(&mq->lock, flags); 1414 1415 mq->in_flight[issue_type] -= 1; 1416 1417 put_card = (mmc_tot_in_flight(mq) == 0); 1418 1419 mmc_cqe_check_busy(mq); 1420 1421 spin_unlock_irqrestore(&mq->lock, flags); 1422 1423 if (!mq->cqe_busy) 1424 blk_mq_run_hw_queues(q, true); 1425 1426 if (put_card) 1427 mmc_put_card(mq->card, &mq->ctx); 1428 } 1429 1430 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1431 { 1432 struct mmc_card *card = mq->card; 1433 struct mmc_host *host = card->host; 1434 int err; 1435 1436 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1437 1438 err = mmc_cqe_recovery(host); 1439 if (err) 1440 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1441 else 1442 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1443 1444 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1445 } 1446 1447 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1448 { 1449 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1450 brq.mrq); 1451 struct request *req = mmc_queue_req_to_req(mqrq); 1452 struct request_queue *q = req->q; 1453 struct mmc_queue *mq = q->queuedata; 1454 1455 /* 1456 * Block layer timeouts race with completions which means the normal 1457 * completion path cannot be used during recovery. 1458 */ 1459 if (mq->in_recovery) 1460 mmc_blk_cqe_complete_rq(mq, req); 1461 else if (likely(!blk_should_fake_timeout(req->q))) 1462 blk_mq_complete_request(req); 1463 } 1464 1465 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1466 { 1467 mrq->done = mmc_blk_cqe_req_done; 1468 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1469 1470 return mmc_cqe_start_req(host, mrq); 1471 } 1472 1473 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1474 struct request *req) 1475 { 1476 struct mmc_blk_request *brq = &mqrq->brq; 1477 1478 memset(brq, 0, sizeof(*brq)); 1479 1480 brq->mrq.cmd = &brq->cmd; 1481 brq->mrq.tag = req->tag; 1482 1483 return &brq->mrq; 1484 } 1485 1486 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1487 { 1488 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1489 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1490 1491 mrq->cmd->opcode = MMC_SWITCH; 1492 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1493 (EXT_CSD_FLUSH_CACHE << 16) | 1494 (1 << 8) | 1495 EXT_CSD_CMD_SET_NORMAL; 1496 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1497 1498 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1499 } 1500 1501 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1502 { 1503 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1504 struct mmc_host *host = mq->card->host; 1505 int err; 1506 1507 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1508 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1509 mmc_pre_req(host, &mqrq->brq.mrq); 1510 1511 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1512 if (err) 1513 mmc_post_req(host, &mqrq->brq.mrq, err); 1514 1515 return err; 1516 } 1517 1518 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1519 { 1520 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1521 struct mmc_host *host = mq->card->host; 1522 1523 if (host->hsq_enabled) 1524 return mmc_blk_hsq_issue_rw_rq(mq, req); 1525 1526 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1527 1528 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1529 } 1530 1531 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1532 struct mmc_card *card, 1533 int disable_multi, 1534 struct mmc_queue *mq) 1535 { 1536 u32 readcmd, writecmd; 1537 struct mmc_blk_request *brq = &mqrq->brq; 1538 struct request *req = mmc_queue_req_to_req(mqrq); 1539 struct mmc_blk_data *md = mq->blkdata; 1540 bool do_rel_wr, do_data_tag; 1541 1542 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1543 1544 brq->mrq.cmd = &brq->cmd; 1545 1546 brq->cmd.arg = blk_rq_pos(req); 1547 if (!mmc_card_blockaddr(card)) 1548 brq->cmd.arg <<= 9; 1549 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1550 1551 if (brq->data.blocks > 1 || do_rel_wr) { 1552 /* SPI multiblock writes terminate using a special 1553 * token, not a STOP_TRANSMISSION request. 1554 */ 1555 if (!mmc_host_is_spi(card->host) || 1556 rq_data_dir(req) == READ) 1557 brq->mrq.stop = &brq->stop; 1558 readcmd = MMC_READ_MULTIPLE_BLOCK; 1559 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1560 } else { 1561 brq->mrq.stop = NULL; 1562 readcmd = MMC_READ_SINGLE_BLOCK; 1563 writecmd = MMC_WRITE_BLOCK; 1564 } 1565 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1566 1567 /* 1568 * Pre-defined multi-block transfers are preferable to 1569 * open ended-ones (and necessary for reliable writes). 1570 * However, it is not sufficient to just send CMD23, 1571 * and avoid the final CMD12, as on an error condition 1572 * CMD12 (stop) needs to be sent anyway. This, coupled 1573 * with Auto-CMD23 enhancements provided by some 1574 * hosts, means that the complexity of dealing 1575 * with this is best left to the host. If CMD23 is 1576 * supported by card and host, we'll fill sbc in and let 1577 * the host deal with handling it correctly. This means 1578 * that for hosts that don't expose MMC_CAP_CMD23, no 1579 * change of behavior will be observed. 1580 * 1581 * N.B: Some MMC cards experience perf degradation. 1582 * We'll avoid using CMD23-bounded multiblock writes for 1583 * these, while retaining features like reliable writes. 1584 */ 1585 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1586 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1587 do_data_tag)) { 1588 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1589 brq->sbc.arg = brq->data.blocks | 1590 (do_rel_wr ? (1 << 31) : 0) | 1591 (do_data_tag ? (1 << 29) : 0); 1592 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1593 brq->mrq.sbc = &brq->sbc; 1594 } 1595 } 1596 1597 #define MMC_MAX_RETRIES 5 1598 #define MMC_DATA_RETRIES 2 1599 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1600 1601 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1602 { 1603 struct mmc_command cmd = { 1604 .opcode = MMC_STOP_TRANSMISSION, 1605 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1606 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1607 .busy_timeout = timeout, 1608 }; 1609 1610 return mmc_wait_for_cmd(card->host, &cmd, 5); 1611 } 1612 1613 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1614 { 1615 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1616 struct mmc_blk_request *brq = &mqrq->brq; 1617 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1618 int err; 1619 1620 mmc_retune_hold_now(card->host); 1621 1622 mmc_blk_send_stop(card, timeout); 1623 1624 err = card_busy_detect(card, timeout, NULL); 1625 1626 mmc_retune_release(card->host); 1627 1628 return err; 1629 } 1630 1631 #define MMC_READ_SINGLE_RETRIES 2 1632 1633 /* Single sector read during recovery */ 1634 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1635 { 1636 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1637 struct mmc_request *mrq = &mqrq->brq.mrq; 1638 struct mmc_card *card = mq->card; 1639 struct mmc_host *host = card->host; 1640 blk_status_t error = BLK_STS_OK; 1641 int retries = 0; 1642 1643 do { 1644 u32 status; 1645 int err; 1646 1647 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1648 1649 mmc_wait_for_req(host, mrq); 1650 1651 err = mmc_send_status(card, &status); 1652 if (err) 1653 goto error_exit; 1654 1655 if (!mmc_host_is_spi(host) && 1656 !mmc_ready_for_data(status)) { 1657 err = mmc_blk_fix_state(card, req); 1658 if (err) 1659 goto error_exit; 1660 } 1661 1662 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1663 continue; 1664 1665 retries = 0; 1666 1667 if (mrq->cmd->error || 1668 mrq->data->error || 1669 (!mmc_host_is_spi(host) && 1670 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1671 error = BLK_STS_IOERR; 1672 else 1673 error = BLK_STS_OK; 1674 1675 } while (blk_update_request(req, error, 512)); 1676 1677 return; 1678 1679 error_exit: 1680 mrq->data->bytes_xfered = 0; 1681 blk_update_request(req, BLK_STS_IOERR, 512); 1682 /* Let it try the remaining request again */ 1683 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1684 mqrq->retries = MMC_MAX_RETRIES - 1; 1685 } 1686 1687 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1688 { 1689 return !!brq->mrq.sbc; 1690 } 1691 1692 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1693 { 1694 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1695 } 1696 1697 /* 1698 * Check for errors the host controller driver might not have seen such as 1699 * response mode errors or invalid card state. 1700 */ 1701 static bool mmc_blk_status_error(struct request *req, u32 status) 1702 { 1703 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1704 struct mmc_blk_request *brq = &mqrq->brq; 1705 struct mmc_queue *mq = req->q->queuedata; 1706 u32 stop_err_bits; 1707 1708 if (mmc_host_is_spi(mq->card->host)) 1709 return false; 1710 1711 stop_err_bits = mmc_blk_stop_err_bits(brq); 1712 1713 return brq->cmd.resp[0] & CMD_ERRORS || 1714 brq->stop.resp[0] & stop_err_bits || 1715 status & stop_err_bits || 1716 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1717 } 1718 1719 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1720 { 1721 return !brq->sbc.error && !brq->cmd.error && 1722 !(brq->cmd.resp[0] & CMD_ERRORS); 1723 } 1724 1725 /* 1726 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1727 * policy: 1728 * 1. A request that has transferred at least some data is considered 1729 * successful and will be requeued if there is remaining data to 1730 * transfer. 1731 * 2. Otherwise the number of retries is incremented and the request 1732 * will be requeued if there are remaining retries. 1733 * 3. Otherwise the request will be errored out. 1734 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1735 * mqrq->retries. So there are only 4 possible actions here: 1736 * 1. do not accept the bytes_xfered value i.e. set it to zero 1737 * 2. change mqrq->retries to determine the number of retries 1738 * 3. try to reset the card 1739 * 4. read one sector at a time 1740 */ 1741 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1742 { 1743 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1744 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1745 struct mmc_blk_request *brq = &mqrq->brq; 1746 struct mmc_blk_data *md = mq->blkdata; 1747 struct mmc_card *card = mq->card; 1748 u32 status; 1749 u32 blocks; 1750 int err; 1751 1752 /* 1753 * Some errors the host driver might not have seen. Set the number of 1754 * bytes transferred to zero in that case. 1755 */ 1756 err = __mmc_send_status(card, &status, 0); 1757 if (err || mmc_blk_status_error(req, status)) 1758 brq->data.bytes_xfered = 0; 1759 1760 mmc_retune_release(card->host); 1761 1762 /* 1763 * Try again to get the status. This also provides an opportunity for 1764 * re-tuning. 1765 */ 1766 if (err) 1767 err = __mmc_send_status(card, &status, 0); 1768 1769 /* 1770 * Nothing more to do after the number of bytes transferred has been 1771 * updated and there is no card. 1772 */ 1773 if (err && mmc_detect_card_removed(card->host)) 1774 return; 1775 1776 /* Try to get back to "tran" state */ 1777 if (!mmc_host_is_spi(mq->card->host) && 1778 (err || !mmc_ready_for_data(status))) 1779 err = mmc_blk_fix_state(mq->card, req); 1780 1781 /* 1782 * Special case for SD cards where the card might record the number of 1783 * blocks written. 1784 */ 1785 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1786 rq_data_dir(req) == WRITE) { 1787 if (mmc_sd_num_wr_blocks(card, &blocks)) 1788 brq->data.bytes_xfered = 0; 1789 else 1790 brq->data.bytes_xfered = blocks << 9; 1791 } 1792 1793 /* Reset if the card is in a bad state */ 1794 if (!mmc_host_is_spi(mq->card->host) && 1795 err && mmc_blk_reset(md, card->host, type)) { 1796 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1797 mqrq->retries = MMC_NO_RETRIES; 1798 return; 1799 } 1800 1801 /* 1802 * If anything was done, just return and if there is anything remaining 1803 * on the request it will get requeued. 1804 */ 1805 if (brq->data.bytes_xfered) 1806 return; 1807 1808 /* Reset before last retry */ 1809 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1810 mmc_blk_reset(md, card->host, type); 1811 1812 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1813 if (brq->sbc.error || brq->cmd.error) 1814 return; 1815 1816 /* Reduce the remaining retries for data errors */ 1817 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1818 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1819 return; 1820 } 1821 1822 /* FIXME: Missing single sector read for large sector size */ 1823 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1824 brq->data.blocks > 1) { 1825 /* Read one sector at a time */ 1826 mmc_blk_read_single(mq, req); 1827 return; 1828 } 1829 } 1830 1831 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1832 { 1833 mmc_blk_eval_resp_error(brq); 1834 1835 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1836 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1837 } 1838 1839 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1840 { 1841 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1842 u32 status = 0; 1843 int err; 1844 1845 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1846 return 0; 1847 1848 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1849 1850 /* 1851 * Do not assume data transferred correctly if there are any error bits 1852 * set. 1853 */ 1854 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1855 mqrq->brq.data.bytes_xfered = 0; 1856 err = err ? err : -EIO; 1857 } 1858 1859 /* Copy the exception bit so it will be seen later on */ 1860 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1861 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1862 1863 return err; 1864 } 1865 1866 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1867 struct request *req) 1868 { 1869 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1870 1871 mmc_blk_reset_success(mq->blkdata, type); 1872 } 1873 1874 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1875 { 1876 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1877 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1878 1879 if (nr_bytes) { 1880 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1881 blk_mq_requeue_request(req, true); 1882 else 1883 __blk_mq_end_request(req, BLK_STS_OK); 1884 } else if (!blk_rq_bytes(req)) { 1885 __blk_mq_end_request(req, BLK_STS_IOERR); 1886 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1887 blk_mq_requeue_request(req, true); 1888 } else { 1889 if (mmc_card_removed(mq->card)) 1890 req->rq_flags |= RQF_QUIET; 1891 blk_mq_end_request(req, BLK_STS_IOERR); 1892 } 1893 } 1894 1895 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1896 struct mmc_queue_req *mqrq) 1897 { 1898 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1899 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1900 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1901 } 1902 1903 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1904 struct mmc_queue_req *mqrq) 1905 { 1906 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1907 mmc_run_bkops(mq->card); 1908 } 1909 1910 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1911 { 1912 struct mmc_queue_req *mqrq = 1913 container_of(mrq, struct mmc_queue_req, brq.mrq); 1914 struct request *req = mmc_queue_req_to_req(mqrq); 1915 struct request_queue *q = req->q; 1916 struct mmc_queue *mq = q->queuedata; 1917 struct mmc_host *host = mq->card->host; 1918 unsigned long flags; 1919 1920 if (mmc_blk_rq_error(&mqrq->brq) || 1921 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1922 spin_lock_irqsave(&mq->lock, flags); 1923 mq->recovery_needed = true; 1924 mq->recovery_req = req; 1925 spin_unlock_irqrestore(&mq->lock, flags); 1926 1927 host->cqe_ops->cqe_recovery_start(host); 1928 1929 schedule_work(&mq->recovery_work); 1930 return; 1931 } 1932 1933 mmc_blk_rw_reset_success(mq, req); 1934 1935 /* 1936 * Block layer timeouts race with completions which means the normal 1937 * completion path cannot be used during recovery. 1938 */ 1939 if (mq->in_recovery) 1940 mmc_blk_cqe_complete_rq(mq, req); 1941 else if (likely(!blk_should_fake_timeout(req->q))) 1942 blk_mq_complete_request(req); 1943 } 1944 1945 void mmc_blk_mq_complete(struct request *req) 1946 { 1947 struct mmc_queue *mq = req->q->queuedata; 1948 struct mmc_host *host = mq->card->host; 1949 1950 if (host->cqe_enabled) 1951 mmc_blk_cqe_complete_rq(mq, req); 1952 else if (likely(!blk_should_fake_timeout(req->q))) 1953 mmc_blk_mq_complete_rq(mq, req); 1954 } 1955 1956 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1957 struct request *req) 1958 { 1959 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1960 struct mmc_host *host = mq->card->host; 1961 1962 if (mmc_blk_rq_error(&mqrq->brq) || 1963 mmc_blk_card_busy(mq->card, req)) { 1964 mmc_blk_mq_rw_recovery(mq, req); 1965 } else { 1966 mmc_blk_rw_reset_success(mq, req); 1967 mmc_retune_release(host); 1968 } 1969 1970 mmc_blk_urgent_bkops(mq, mqrq); 1971 } 1972 1973 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1974 { 1975 unsigned long flags; 1976 bool put_card; 1977 1978 spin_lock_irqsave(&mq->lock, flags); 1979 1980 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1981 1982 put_card = (mmc_tot_in_flight(mq) == 0); 1983 1984 spin_unlock_irqrestore(&mq->lock, flags); 1985 1986 if (put_card) 1987 mmc_put_card(mq->card, &mq->ctx); 1988 } 1989 1990 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1991 { 1992 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1993 struct mmc_request *mrq = &mqrq->brq.mrq; 1994 struct mmc_host *host = mq->card->host; 1995 1996 mmc_post_req(host, mrq, 0); 1997 1998 /* 1999 * Block layer timeouts race with completions which means the normal 2000 * completion path cannot be used during recovery. 2001 */ 2002 if (mq->in_recovery) 2003 mmc_blk_mq_complete_rq(mq, req); 2004 else if (likely(!blk_should_fake_timeout(req->q))) 2005 blk_mq_complete_request(req); 2006 2007 mmc_blk_mq_dec_in_flight(mq, req); 2008 } 2009 2010 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2011 { 2012 struct request *req = mq->recovery_req; 2013 struct mmc_host *host = mq->card->host; 2014 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2015 2016 mq->recovery_req = NULL; 2017 mq->rw_wait = false; 2018 2019 if (mmc_blk_rq_error(&mqrq->brq)) { 2020 mmc_retune_hold_now(host); 2021 mmc_blk_mq_rw_recovery(mq, req); 2022 } 2023 2024 mmc_blk_urgent_bkops(mq, mqrq); 2025 2026 mmc_blk_mq_post_req(mq, req); 2027 } 2028 2029 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2030 struct request **prev_req) 2031 { 2032 if (mmc_host_done_complete(mq->card->host)) 2033 return; 2034 2035 mutex_lock(&mq->complete_lock); 2036 2037 if (!mq->complete_req) 2038 goto out_unlock; 2039 2040 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2041 2042 if (prev_req) 2043 *prev_req = mq->complete_req; 2044 else 2045 mmc_blk_mq_post_req(mq, mq->complete_req); 2046 2047 mq->complete_req = NULL; 2048 2049 out_unlock: 2050 mutex_unlock(&mq->complete_lock); 2051 } 2052 2053 void mmc_blk_mq_complete_work(struct work_struct *work) 2054 { 2055 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2056 complete_work); 2057 2058 mmc_blk_mq_complete_prev_req(mq, NULL); 2059 } 2060 2061 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2062 { 2063 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2064 brq.mrq); 2065 struct request *req = mmc_queue_req_to_req(mqrq); 2066 struct request_queue *q = req->q; 2067 struct mmc_queue *mq = q->queuedata; 2068 struct mmc_host *host = mq->card->host; 2069 unsigned long flags; 2070 2071 if (!mmc_host_done_complete(host)) { 2072 bool waiting; 2073 2074 /* 2075 * We cannot complete the request in this context, so record 2076 * that there is a request to complete, and that a following 2077 * request does not need to wait (although it does need to 2078 * complete complete_req first). 2079 */ 2080 spin_lock_irqsave(&mq->lock, flags); 2081 mq->complete_req = req; 2082 mq->rw_wait = false; 2083 waiting = mq->waiting; 2084 spin_unlock_irqrestore(&mq->lock, flags); 2085 2086 /* 2087 * If 'waiting' then the waiting task will complete this 2088 * request, otherwise queue a work to do it. Note that 2089 * complete_work may still race with the dispatch of a following 2090 * request. 2091 */ 2092 if (waiting) 2093 wake_up(&mq->wait); 2094 else 2095 queue_work(mq->card->complete_wq, &mq->complete_work); 2096 2097 return; 2098 } 2099 2100 /* Take the recovery path for errors or urgent background operations */ 2101 if (mmc_blk_rq_error(&mqrq->brq) || 2102 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2103 spin_lock_irqsave(&mq->lock, flags); 2104 mq->recovery_needed = true; 2105 mq->recovery_req = req; 2106 spin_unlock_irqrestore(&mq->lock, flags); 2107 wake_up(&mq->wait); 2108 schedule_work(&mq->recovery_work); 2109 return; 2110 } 2111 2112 mmc_blk_rw_reset_success(mq, req); 2113 2114 mq->rw_wait = false; 2115 wake_up(&mq->wait); 2116 2117 mmc_blk_mq_post_req(mq, req); 2118 } 2119 2120 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2121 { 2122 unsigned long flags; 2123 bool done; 2124 2125 /* 2126 * Wait while there is another request in progress, but not if recovery 2127 * is needed. Also indicate whether there is a request waiting to start. 2128 */ 2129 spin_lock_irqsave(&mq->lock, flags); 2130 if (mq->recovery_needed) { 2131 *err = -EBUSY; 2132 done = true; 2133 } else { 2134 done = !mq->rw_wait; 2135 } 2136 mq->waiting = !done; 2137 spin_unlock_irqrestore(&mq->lock, flags); 2138 2139 return done; 2140 } 2141 2142 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2143 { 2144 int err = 0; 2145 2146 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2147 2148 /* Always complete the previous request if there is one */ 2149 mmc_blk_mq_complete_prev_req(mq, prev_req); 2150 2151 return err; 2152 } 2153 2154 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2155 struct request *req) 2156 { 2157 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2158 struct mmc_host *host = mq->card->host; 2159 struct request *prev_req = NULL; 2160 int err = 0; 2161 2162 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2163 2164 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2165 2166 mmc_pre_req(host, &mqrq->brq.mrq); 2167 2168 err = mmc_blk_rw_wait(mq, &prev_req); 2169 if (err) 2170 goto out_post_req; 2171 2172 mq->rw_wait = true; 2173 2174 err = mmc_start_request(host, &mqrq->brq.mrq); 2175 2176 if (prev_req) 2177 mmc_blk_mq_post_req(mq, prev_req); 2178 2179 if (err) 2180 mq->rw_wait = false; 2181 2182 /* Release re-tuning here where there is no synchronization required */ 2183 if (err || mmc_host_done_complete(host)) 2184 mmc_retune_release(host); 2185 2186 out_post_req: 2187 if (err) 2188 mmc_post_req(host, &mqrq->brq.mrq, err); 2189 2190 return err; 2191 } 2192 2193 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2194 { 2195 if (host->cqe_enabled) 2196 return host->cqe_ops->cqe_wait_for_idle(host); 2197 2198 return mmc_blk_rw_wait(mq, NULL); 2199 } 2200 2201 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2202 { 2203 struct mmc_blk_data *md = mq->blkdata; 2204 struct mmc_card *card = md->queue.card; 2205 struct mmc_host *host = card->host; 2206 int ret; 2207 2208 ret = mmc_blk_part_switch(card, md->part_type); 2209 if (ret) 2210 return MMC_REQ_FAILED_TO_START; 2211 2212 switch (mmc_issue_type(mq, req)) { 2213 case MMC_ISSUE_SYNC: 2214 ret = mmc_blk_wait_for_idle(mq, host); 2215 if (ret) 2216 return MMC_REQ_BUSY; 2217 switch (req_op(req)) { 2218 case REQ_OP_DRV_IN: 2219 case REQ_OP_DRV_OUT: 2220 mmc_blk_issue_drv_op(mq, req); 2221 break; 2222 case REQ_OP_DISCARD: 2223 mmc_blk_issue_discard_rq(mq, req); 2224 break; 2225 case REQ_OP_SECURE_ERASE: 2226 mmc_blk_issue_secdiscard_rq(mq, req); 2227 break; 2228 case REQ_OP_FLUSH: 2229 mmc_blk_issue_flush(mq, req); 2230 break; 2231 default: 2232 WARN_ON_ONCE(1); 2233 return MMC_REQ_FAILED_TO_START; 2234 } 2235 return MMC_REQ_FINISHED; 2236 case MMC_ISSUE_DCMD: 2237 case MMC_ISSUE_ASYNC: 2238 switch (req_op(req)) { 2239 case REQ_OP_FLUSH: 2240 if (!mmc_cache_enabled(host)) { 2241 blk_mq_end_request(req, BLK_STS_OK); 2242 return MMC_REQ_FINISHED; 2243 } 2244 ret = mmc_blk_cqe_issue_flush(mq, req); 2245 break; 2246 case REQ_OP_READ: 2247 case REQ_OP_WRITE: 2248 if (host->cqe_enabled) 2249 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2250 else 2251 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2252 break; 2253 default: 2254 WARN_ON_ONCE(1); 2255 ret = -EINVAL; 2256 } 2257 if (!ret) 2258 return MMC_REQ_STARTED; 2259 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2260 default: 2261 WARN_ON_ONCE(1); 2262 return MMC_REQ_FAILED_TO_START; 2263 } 2264 } 2265 2266 static inline int mmc_blk_readonly(struct mmc_card *card) 2267 { 2268 return mmc_card_readonly(card) || 2269 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2270 } 2271 2272 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2273 struct device *parent, 2274 sector_t size, 2275 bool default_ro, 2276 const char *subname, 2277 int area_type) 2278 { 2279 struct mmc_blk_data *md; 2280 int devidx, ret; 2281 char cap_str[10]; 2282 2283 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2284 if (devidx < 0) { 2285 /* 2286 * We get -ENOSPC because there are no more any available 2287 * devidx. The reason may be that, either userspace haven't yet 2288 * unmounted the partitions, which postpones mmc_blk_release() 2289 * from being called, or the device has more partitions than 2290 * what we support. 2291 */ 2292 if (devidx == -ENOSPC) 2293 dev_err(mmc_dev(card->host), 2294 "no more device IDs available\n"); 2295 2296 return ERR_PTR(devidx); 2297 } 2298 2299 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2300 if (!md) { 2301 ret = -ENOMEM; 2302 goto out; 2303 } 2304 2305 md->area_type = area_type; 2306 2307 /* 2308 * Set the read-only status based on the supported commands 2309 * and the write protect switch. 2310 */ 2311 md->read_only = mmc_blk_readonly(card); 2312 2313 md->disk = alloc_disk(perdev_minors); 2314 if (md->disk == NULL) { 2315 ret = -ENOMEM; 2316 goto err_kfree; 2317 } 2318 2319 INIT_LIST_HEAD(&md->part); 2320 INIT_LIST_HEAD(&md->rpmbs); 2321 md->usage = 1; 2322 2323 ret = mmc_init_queue(&md->queue, card); 2324 if (ret) 2325 goto err_putdisk; 2326 2327 md->queue.blkdata = md; 2328 2329 /* 2330 * Keep an extra reference to the queue so that we can shutdown the 2331 * queue (i.e. call blk_cleanup_queue()) while there are still 2332 * references to the 'md'. The corresponding blk_put_queue() is in 2333 * mmc_blk_put(). 2334 */ 2335 if (!blk_get_queue(md->queue.queue)) { 2336 mmc_cleanup_queue(&md->queue); 2337 ret = -ENODEV; 2338 goto err_putdisk; 2339 } 2340 2341 md->disk->major = MMC_BLOCK_MAJOR; 2342 md->disk->first_minor = devidx * perdev_minors; 2343 md->disk->fops = &mmc_bdops; 2344 md->disk->private_data = md; 2345 md->disk->queue = md->queue.queue; 2346 md->parent = parent; 2347 set_disk_ro(md->disk, md->read_only || default_ro); 2348 md->disk->flags = GENHD_FL_EXT_DEVT; 2349 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2350 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2351 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2352 2353 /* 2354 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2355 * 2356 * - be set for removable media with permanent block devices 2357 * - be unset for removable block devices with permanent media 2358 * 2359 * Since MMC block devices clearly fall under the second 2360 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2361 * should use the block device creation/destruction hotplug 2362 * messages to tell when the card is present. 2363 */ 2364 2365 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2366 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2367 2368 set_capacity(md->disk, size); 2369 2370 if (mmc_host_cmd23(card->host)) { 2371 if ((mmc_card_mmc(card) && 2372 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2373 (mmc_card_sd(card) && 2374 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2375 md->flags |= MMC_BLK_CMD23; 2376 } 2377 2378 if (mmc_card_mmc(card) && 2379 md->flags & MMC_BLK_CMD23 && 2380 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2381 card->ext_csd.rel_sectors)) { 2382 md->flags |= MMC_BLK_REL_WR; 2383 blk_queue_write_cache(md->queue.queue, true, true); 2384 } 2385 2386 string_get_size((u64)size, 512, STRING_UNITS_2, 2387 cap_str, sizeof(cap_str)); 2388 pr_info("%s: %s %s %s %s\n", 2389 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2390 cap_str, md->read_only ? "(ro)" : ""); 2391 2392 return md; 2393 2394 err_putdisk: 2395 put_disk(md->disk); 2396 err_kfree: 2397 kfree(md); 2398 out: 2399 ida_simple_remove(&mmc_blk_ida, devidx); 2400 return ERR_PTR(ret); 2401 } 2402 2403 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2404 { 2405 sector_t size; 2406 2407 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2408 /* 2409 * The EXT_CSD sector count is in number or 512 byte 2410 * sectors. 2411 */ 2412 size = card->ext_csd.sectors; 2413 } else { 2414 /* 2415 * The CSD capacity field is in units of read_blkbits. 2416 * set_capacity takes units of 512 bytes. 2417 */ 2418 size = (typeof(sector_t))card->csd.capacity 2419 << (card->csd.read_blkbits - 9); 2420 } 2421 2422 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2423 MMC_BLK_DATA_AREA_MAIN); 2424 } 2425 2426 static int mmc_blk_alloc_part(struct mmc_card *card, 2427 struct mmc_blk_data *md, 2428 unsigned int part_type, 2429 sector_t size, 2430 bool default_ro, 2431 const char *subname, 2432 int area_type) 2433 { 2434 struct mmc_blk_data *part_md; 2435 2436 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2437 subname, area_type); 2438 if (IS_ERR(part_md)) 2439 return PTR_ERR(part_md); 2440 part_md->part_type = part_type; 2441 list_add(&part_md->part, &md->part); 2442 2443 return 0; 2444 } 2445 2446 /** 2447 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2448 * @filp: the character device file 2449 * @cmd: the ioctl() command 2450 * @arg: the argument from userspace 2451 * 2452 * This will essentially just redirect the ioctl()s coming in over to 2453 * the main block device spawning the RPMB character device. 2454 */ 2455 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2456 unsigned long arg) 2457 { 2458 struct mmc_rpmb_data *rpmb = filp->private_data; 2459 int ret; 2460 2461 switch (cmd) { 2462 case MMC_IOC_CMD: 2463 ret = mmc_blk_ioctl_cmd(rpmb->md, 2464 (struct mmc_ioc_cmd __user *)arg, 2465 rpmb); 2466 break; 2467 case MMC_IOC_MULTI_CMD: 2468 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2469 (struct mmc_ioc_multi_cmd __user *)arg, 2470 rpmb); 2471 break; 2472 default: 2473 ret = -EINVAL; 2474 break; 2475 } 2476 2477 return ret; 2478 } 2479 2480 #ifdef CONFIG_COMPAT 2481 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2482 unsigned long arg) 2483 { 2484 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2485 } 2486 #endif 2487 2488 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2489 { 2490 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2491 struct mmc_rpmb_data, chrdev); 2492 2493 get_device(&rpmb->dev); 2494 filp->private_data = rpmb; 2495 mmc_blk_get(rpmb->md->disk); 2496 2497 return nonseekable_open(inode, filp); 2498 } 2499 2500 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2501 { 2502 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2503 struct mmc_rpmb_data, chrdev); 2504 2505 mmc_blk_put(rpmb->md); 2506 put_device(&rpmb->dev); 2507 2508 return 0; 2509 } 2510 2511 static const struct file_operations mmc_rpmb_fileops = { 2512 .release = mmc_rpmb_chrdev_release, 2513 .open = mmc_rpmb_chrdev_open, 2514 .owner = THIS_MODULE, 2515 .llseek = no_llseek, 2516 .unlocked_ioctl = mmc_rpmb_ioctl, 2517 #ifdef CONFIG_COMPAT 2518 .compat_ioctl = mmc_rpmb_ioctl_compat, 2519 #endif 2520 }; 2521 2522 static void mmc_blk_rpmb_device_release(struct device *dev) 2523 { 2524 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2525 2526 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2527 kfree(rpmb); 2528 } 2529 2530 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2531 struct mmc_blk_data *md, 2532 unsigned int part_index, 2533 sector_t size, 2534 const char *subname) 2535 { 2536 int devidx, ret; 2537 char rpmb_name[DISK_NAME_LEN]; 2538 char cap_str[10]; 2539 struct mmc_rpmb_data *rpmb; 2540 2541 /* This creates the minor number for the RPMB char device */ 2542 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2543 if (devidx < 0) 2544 return devidx; 2545 2546 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2547 if (!rpmb) { 2548 ida_simple_remove(&mmc_rpmb_ida, devidx); 2549 return -ENOMEM; 2550 } 2551 2552 snprintf(rpmb_name, sizeof(rpmb_name), 2553 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2554 2555 rpmb->id = devidx; 2556 rpmb->part_index = part_index; 2557 rpmb->dev.init_name = rpmb_name; 2558 rpmb->dev.bus = &mmc_rpmb_bus_type; 2559 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2560 rpmb->dev.parent = &card->dev; 2561 rpmb->dev.release = mmc_blk_rpmb_device_release; 2562 device_initialize(&rpmb->dev); 2563 dev_set_drvdata(&rpmb->dev, rpmb); 2564 rpmb->md = md; 2565 2566 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2567 rpmb->chrdev.owner = THIS_MODULE; 2568 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2569 if (ret) { 2570 pr_err("%s: could not add character device\n", rpmb_name); 2571 goto out_put_device; 2572 } 2573 2574 list_add(&rpmb->node, &md->rpmbs); 2575 2576 string_get_size((u64)size, 512, STRING_UNITS_2, 2577 cap_str, sizeof(cap_str)); 2578 2579 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2580 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2581 MAJOR(mmc_rpmb_devt), rpmb->id); 2582 2583 return 0; 2584 2585 out_put_device: 2586 put_device(&rpmb->dev); 2587 return ret; 2588 } 2589 2590 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2591 2592 { 2593 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2594 put_device(&rpmb->dev); 2595 } 2596 2597 /* MMC Physical partitions consist of two boot partitions and 2598 * up to four general purpose partitions. 2599 * For each partition enabled in EXT_CSD a block device will be allocatedi 2600 * to provide access to the partition. 2601 */ 2602 2603 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2604 { 2605 int idx, ret; 2606 2607 if (!mmc_card_mmc(card)) 2608 return 0; 2609 2610 for (idx = 0; idx < card->nr_parts; idx++) { 2611 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2612 /* 2613 * RPMB partitions does not provide block access, they 2614 * are only accessed using ioctl():s. Thus create 2615 * special RPMB block devices that do not have a 2616 * backing block queue for these. 2617 */ 2618 ret = mmc_blk_alloc_rpmb_part(card, md, 2619 card->part[idx].part_cfg, 2620 card->part[idx].size >> 9, 2621 card->part[idx].name); 2622 if (ret) 2623 return ret; 2624 } else if (card->part[idx].size) { 2625 ret = mmc_blk_alloc_part(card, md, 2626 card->part[idx].part_cfg, 2627 card->part[idx].size >> 9, 2628 card->part[idx].force_ro, 2629 card->part[idx].name, 2630 card->part[idx].area_type); 2631 if (ret) 2632 return ret; 2633 } 2634 } 2635 2636 return 0; 2637 } 2638 2639 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2640 { 2641 struct mmc_card *card; 2642 2643 if (md) { 2644 /* 2645 * Flush remaining requests and free queues. It 2646 * is freeing the queue that stops new requests 2647 * from being accepted. 2648 */ 2649 card = md->queue.card; 2650 if (md->disk->flags & GENHD_FL_UP) { 2651 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2652 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2653 card->ext_csd.boot_ro_lockable) 2654 device_remove_file(disk_to_dev(md->disk), 2655 &md->power_ro_lock); 2656 2657 del_gendisk(md->disk); 2658 } 2659 mmc_cleanup_queue(&md->queue); 2660 mmc_blk_put(md); 2661 } 2662 } 2663 2664 static void mmc_blk_remove_parts(struct mmc_card *card, 2665 struct mmc_blk_data *md) 2666 { 2667 struct list_head *pos, *q; 2668 struct mmc_blk_data *part_md; 2669 struct mmc_rpmb_data *rpmb; 2670 2671 /* Remove RPMB partitions */ 2672 list_for_each_safe(pos, q, &md->rpmbs) { 2673 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2674 list_del(pos); 2675 mmc_blk_remove_rpmb_part(rpmb); 2676 } 2677 /* Remove block partitions */ 2678 list_for_each_safe(pos, q, &md->part) { 2679 part_md = list_entry(pos, struct mmc_blk_data, part); 2680 list_del(pos); 2681 mmc_blk_remove_req(part_md); 2682 } 2683 } 2684 2685 static int mmc_add_disk(struct mmc_blk_data *md) 2686 { 2687 int ret; 2688 struct mmc_card *card = md->queue.card; 2689 2690 device_add_disk(md->parent, md->disk, NULL); 2691 md->force_ro.show = force_ro_show; 2692 md->force_ro.store = force_ro_store; 2693 sysfs_attr_init(&md->force_ro.attr); 2694 md->force_ro.attr.name = "force_ro"; 2695 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2696 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2697 if (ret) 2698 goto force_ro_fail; 2699 2700 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2701 card->ext_csd.boot_ro_lockable) { 2702 umode_t mode; 2703 2704 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2705 mode = S_IRUGO; 2706 else 2707 mode = S_IRUGO | S_IWUSR; 2708 2709 md->power_ro_lock.show = power_ro_lock_show; 2710 md->power_ro_lock.store = power_ro_lock_store; 2711 sysfs_attr_init(&md->power_ro_lock.attr); 2712 md->power_ro_lock.attr.mode = mode; 2713 md->power_ro_lock.attr.name = 2714 "ro_lock_until_next_power_on"; 2715 ret = device_create_file(disk_to_dev(md->disk), 2716 &md->power_ro_lock); 2717 if (ret) 2718 goto power_ro_lock_fail; 2719 } 2720 return ret; 2721 2722 power_ro_lock_fail: 2723 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2724 force_ro_fail: 2725 del_gendisk(md->disk); 2726 2727 return ret; 2728 } 2729 2730 #ifdef CONFIG_DEBUG_FS 2731 2732 static int mmc_dbg_card_status_get(void *data, u64 *val) 2733 { 2734 struct mmc_card *card = data; 2735 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2736 struct mmc_queue *mq = &md->queue; 2737 struct request *req; 2738 int ret; 2739 2740 /* Ask the block layer about the card status */ 2741 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2742 if (IS_ERR(req)) 2743 return PTR_ERR(req); 2744 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2745 blk_execute_rq(NULL, req, 0); 2746 ret = req_to_mmc_queue_req(req)->drv_op_result; 2747 if (ret >= 0) { 2748 *val = ret; 2749 ret = 0; 2750 } 2751 blk_put_request(req); 2752 2753 return ret; 2754 } 2755 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2756 NULL, "%08llx\n"); 2757 2758 /* That is two digits * 512 + 1 for newline */ 2759 #define EXT_CSD_STR_LEN 1025 2760 2761 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2762 { 2763 struct mmc_card *card = inode->i_private; 2764 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2765 struct mmc_queue *mq = &md->queue; 2766 struct request *req; 2767 char *buf; 2768 ssize_t n = 0; 2769 u8 *ext_csd; 2770 int err, i; 2771 2772 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2773 if (!buf) 2774 return -ENOMEM; 2775 2776 /* Ask the block layer for the EXT CSD */ 2777 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2778 if (IS_ERR(req)) { 2779 err = PTR_ERR(req); 2780 goto out_free; 2781 } 2782 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2783 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2784 blk_execute_rq(NULL, req, 0); 2785 err = req_to_mmc_queue_req(req)->drv_op_result; 2786 blk_put_request(req); 2787 if (err) { 2788 pr_err("FAILED %d\n", err); 2789 goto out_free; 2790 } 2791 2792 for (i = 0; i < 512; i++) 2793 n += sprintf(buf + n, "%02x", ext_csd[i]); 2794 n += sprintf(buf + n, "\n"); 2795 2796 if (n != EXT_CSD_STR_LEN) { 2797 err = -EINVAL; 2798 kfree(ext_csd); 2799 goto out_free; 2800 } 2801 2802 filp->private_data = buf; 2803 kfree(ext_csd); 2804 return 0; 2805 2806 out_free: 2807 kfree(buf); 2808 return err; 2809 } 2810 2811 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2812 size_t cnt, loff_t *ppos) 2813 { 2814 char *buf = filp->private_data; 2815 2816 return simple_read_from_buffer(ubuf, cnt, ppos, 2817 buf, EXT_CSD_STR_LEN); 2818 } 2819 2820 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2821 { 2822 kfree(file->private_data); 2823 return 0; 2824 } 2825 2826 static const struct file_operations mmc_dbg_ext_csd_fops = { 2827 .open = mmc_ext_csd_open, 2828 .read = mmc_ext_csd_read, 2829 .release = mmc_ext_csd_release, 2830 .llseek = default_llseek, 2831 }; 2832 2833 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2834 { 2835 struct dentry *root; 2836 2837 if (!card->debugfs_root) 2838 return 0; 2839 2840 root = card->debugfs_root; 2841 2842 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2843 md->status_dentry = 2844 debugfs_create_file_unsafe("status", 0400, root, 2845 card, 2846 &mmc_dbg_card_status_fops); 2847 if (!md->status_dentry) 2848 return -EIO; 2849 } 2850 2851 if (mmc_card_mmc(card)) { 2852 md->ext_csd_dentry = 2853 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2854 &mmc_dbg_ext_csd_fops); 2855 if (!md->ext_csd_dentry) 2856 return -EIO; 2857 } 2858 2859 return 0; 2860 } 2861 2862 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2863 struct mmc_blk_data *md) 2864 { 2865 if (!card->debugfs_root) 2866 return; 2867 2868 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2869 debugfs_remove(md->status_dentry); 2870 md->status_dentry = NULL; 2871 } 2872 2873 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2874 debugfs_remove(md->ext_csd_dentry); 2875 md->ext_csd_dentry = NULL; 2876 } 2877 } 2878 2879 #else 2880 2881 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2882 { 2883 return 0; 2884 } 2885 2886 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2887 struct mmc_blk_data *md) 2888 { 2889 } 2890 2891 #endif /* CONFIG_DEBUG_FS */ 2892 2893 static int mmc_blk_probe(struct mmc_card *card) 2894 { 2895 struct mmc_blk_data *md, *part_md; 2896 int ret = 0; 2897 2898 /* 2899 * Check that the card supports the command class(es) we need. 2900 */ 2901 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2902 return -ENODEV; 2903 2904 mmc_fixup_device(card, mmc_blk_fixups); 2905 2906 card->complete_wq = alloc_workqueue("mmc_complete", 2907 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2908 if (!card->complete_wq) { 2909 pr_err("Failed to create mmc completion workqueue"); 2910 return -ENOMEM; 2911 } 2912 2913 md = mmc_blk_alloc(card); 2914 if (IS_ERR(md)) { 2915 ret = PTR_ERR(md); 2916 goto out_free; 2917 } 2918 2919 ret = mmc_blk_alloc_parts(card, md); 2920 if (ret) 2921 goto out; 2922 2923 dev_set_drvdata(&card->dev, md); 2924 2925 ret = mmc_add_disk(md); 2926 if (ret) 2927 goto out; 2928 2929 list_for_each_entry(part_md, &md->part, part) { 2930 ret = mmc_add_disk(part_md); 2931 if (ret) 2932 goto out; 2933 } 2934 2935 /* Add two debugfs entries */ 2936 mmc_blk_add_debugfs(card, md); 2937 2938 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2939 pm_runtime_use_autosuspend(&card->dev); 2940 2941 /* 2942 * Don't enable runtime PM for SD-combo cards here. Leave that 2943 * decision to be taken during the SDIO init sequence instead. 2944 */ 2945 if (card->type != MMC_TYPE_SD_COMBO) { 2946 pm_runtime_set_active(&card->dev); 2947 pm_runtime_enable(&card->dev); 2948 } 2949 2950 return 0; 2951 2952 out: 2953 mmc_blk_remove_parts(card, md); 2954 mmc_blk_remove_req(md); 2955 out_free: 2956 destroy_workqueue(card->complete_wq); 2957 return ret; 2958 } 2959 2960 static void mmc_blk_remove(struct mmc_card *card) 2961 { 2962 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2963 2964 mmc_blk_remove_debugfs(card, md); 2965 mmc_blk_remove_parts(card, md); 2966 pm_runtime_get_sync(&card->dev); 2967 if (md->part_curr != md->part_type) { 2968 mmc_claim_host(card->host); 2969 mmc_blk_part_switch(card, md->part_type); 2970 mmc_release_host(card->host); 2971 } 2972 if (card->type != MMC_TYPE_SD_COMBO) 2973 pm_runtime_disable(&card->dev); 2974 pm_runtime_put_noidle(&card->dev); 2975 mmc_blk_remove_req(md); 2976 dev_set_drvdata(&card->dev, NULL); 2977 destroy_workqueue(card->complete_wq); 2978 } 2979 2980 static int _mmc_blk_suspend(struct mmc_card *card) 2981 { 2982 struct mmc_blk_data *part_md; 2983 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2984 2985 if (md) { 2986 mmc_queue_suspend(&md->queue); 2987 list_for_each_entry(part_md, &md->part, part) { 2988 mmc_queue_suspend(&part_md->queue); 2989 } 2990 } 2991 return 0; 2992 } 2993 2994 static void mmc_blk_shutdown(struct mmc_card *card) 2995 { 2996 _mmc_blk_suspend(card); 2997 } 2998 2999 #ifdef CONFIG_PM_SLEEP 3000 static int mmc_blk_suspend(struct device *dev) 3001 { 3002 struct mmc_card *card = mmc_dev_to_card(dev); 3003 3004 return _mmc_blk_suspend(card); 3005 } 3006 3007 static int mmc_blk_resume(struct device *dev) 3008 { 3009 struct mmc_blk_data *part_md; 3010 struct mmc_blk_data *md = dev_get_drvdata(dev); 3011 3012 if (md) { 3013 /* 3014 * Resume involves the card going into idle state, 3015 * so current partition is always the main one. 3016 */ 3017 md->part_curr = md->part_type; 3018 mmc_queue_resume(&md->queue); 3019 list_for_each_entry(part_md, &md->part, part) { 3020 mmc_queue_resume(&part_md->queue); 3021 } 3022 } 3023 return 0; 3024 } 3025 #endif 3026 3027 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3028 3029 static struct mmc_driver mmc_driver = { 3030 .drv = { 3031 .name = "mmcblk", 3032 .pm = &mmc_blk_pm_ops, 3033 }, 3034 .probe = mmc_blk_probe, 3035 .remove = mmc_blk_remove, 3036 .shutdown = mmc_blk_shutdown, 3037 }; 3038 3039 static int __init mmc_blk_init(void) 3040 { 3041 int res; 3042 3043 res = bus_register(&mmc_rpmb_bus_type); 3044 if (res < 0) { 3045 pr_err("mmcblk: could not register RPMB bus type\n"); 3046 return res; 3047 } 3048 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3049 if (res < 0) { 3050 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3051 goto out_bus_unreg; 3052 } 3053 3054 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3055 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3056 3057 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3058 3059 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3060 if (res) 3061 goto out_chrdev_unreg; 3062 3063 res = mmc_register_driver(&mmc_driver); 3064 if (res) 3065 goto out_blkdev_unreg; 3066 3067 return 0; 3068 3069 out_blkdev_unreg: 3070 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3071 out_chrdev_unreg: 3072 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3073 out_bus_unreg: 3074 bus_unregister(&mmc_rpmb_bus_type); 3075 return res; 3076 } 3077 3078 static void __exit mmc_blk_exit(void) 3079 { 3080 mmc_unregister_driver(&mmc_driver); 3081 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3082 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3083 bus_unregister(&mmc_rpmb_bus_type); 3084 } 3085 3086 module_init(mmc_blk_init); 3087 module_exit(mmc_blk_exit); 3088 3089 MODULE_LICENSE("GPL"); 3090 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3091 3092