xref: /linux/drivers/mmc/core/block.c (revision 9f2c9170934eace462499ba0bfe042cc72900173)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 struct mmc_blk_busy_data {
102 	struct mmc_card *card;
103 	u32 status;
104 };
105 
106 /*
107  * There is one mmc_blk_data per slot.
108  */
109 struct mmc_blk_data {
110 	struct device	*parent;
111 	struct gendisk	*disk;
112 	struct mmc_queue queue;
113 	struct list_head part;
114 	struct list_head rpmbs;
115 
116 	unsigned int	flags;
117 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
119 
120 	struct kref	kref;
121 	unsigned int	read_only;
122 	unsigned int	part_type;
123 	unsigned int	reset_done;
124 #define MMC_BLK_READ		BIT(0)
125 #define MMC_BLK_WRITE		BIT(1)
126 #define MMC_BLK_DISCARD		BIT(2)
127 #define MMC_BLK_SECDISCARD	BIT(3)
128 #define MMC_BLK_CQE_RECOVERY	BIT(4)
129 #define MMC_BLK_TRIM		BIT(5)
130 
131 	/*
132 	 * Only set in main mmc_blk_data associated
133 	 * with mmc_card with dev_set_drvdata, and keeps
134 	 * track of the current selected device partition.
135 	 */
136 	unsigned int	part_curr;
137 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
138 	int	area_type;
139 
140 	/* debugfs files (only in main mmc_blk_data) */
141 	struct dentry *status_dentry;
142 	struct dentry *ext_csd_dentry;
143 };
144 
145 /* Device type for RPMB character devices */
146 static dev_t mmc_rpmb_devt;
147 
148 /* Bus type for RPMB character devices */
149 static struct bus_type mmc_rpmb_bus_type = {
150 	.name = "mmc_rpmb",
151 };
152 
153 /**
154  * struct mmc_rpmb_data - special RPMB device type for these areas
155  * @dev: the device for the RPMB area
156  * @chrdev: character device for the RPMB area
157  * @id: unique device ID number
158  * @part_index: partition index (0 on first)
159  * @md: parent MMC block device
160  * @node: list item, so we can put this device on a list
161  */
162 struct mmc_rpmb_data {
163 	struct device dev;
164 	struct cdev chrdev;
165 	int id;
166 	unsigned int part_index;
167 	struct mmc_blk_data *md;
168 	struct list_head node;
169 };
170 
171 static DEFINE_MUTEX(open_lock);
172 
173 module_param(perdev_minors, int, 0444);
174 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
175 
176 static inline int mmc_blk_part_switch(struct mmc_card *card,
177 				      unsigned int part_type);
178 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
179 			       struct mmc_card *card,
180 			       int recovery_mode,
181 			       struct mmc_queue *mq);
182 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
183 
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 	struct mmc_blk_data *md;
187 
188 	mutex_lock(&open_lock);
189 	md = disk->private_data;
190 	if (md && !kref_get_unless_zero(&md->kref))
191 		md = NULL;
192 	mutex_unlock(&open_lock);
193 
194 	return md;
195 }
196 
197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 	int devidx = disk->first_minor / perdev_minors;
200 	return devidx;
201 }
202 
203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 	int devidx;
207 
208 	devidx = mmc_get_devidx(md->disk);
209 	ida_simple_remove(&mmc_blk_ida, devidx);
210 
211 	mutex_lock(&open_lock);
212 	md->disk->private_data = NULL;
213 	mutex_unlock(&open_lock);
214 
215 	put_disk(md->disk);
216 	kfree(md);
217 }
218 
219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 	kref_put(&md->kref, mmc_blk_kref_release);
222 }
223 
224 static ssize_t power_ro_lock_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	int ret;
228 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 	struct mmc_card *card = md->queue.card;
230 	int locked = 0;
231 
232 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 		locked = 2;
234 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 		locked = 1;
236 
237 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238 
239 	mmc_blk_put(md);
240 
241 	return ret;
242 }
243 
244 static ssize_t power_ro_lock_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t count)
246 {
247 	int ret;
248 	struct mmc_blk_data *md, *part_md;
249 	struct mmc_queue *mq;
250 	struct request *req;
251 	unsigned long set;
252 
253 	if (kstrtoul(buf, 0, &set))
254 		return -EINVAL;
255 
256 	if (set != 1)
257 		return count;
258 
259 	md = mmc_blk_get(dev_to_disk(dev));
260 	mq = &md->queue;
261 
262 	/* Dispatch locking to the block layer */
263 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 	if (IS_ERR(req)) {
265 		count = PTR_ERR(req);
266 		goto out_put;
267 	}
268 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 	blk_execute_rq(req, false);
270 	ret = req_to_mmc_queue_req(req)->drv_op_result;
271 	blk_mq_free_request(req);
272 
273 	if (!ret) {
274 		pr_info("%s: Locking boot partition ro until next power on\n",
275 			md->disk->disk_name);
276 		set_disk_ro(md->disk, 1);
277 
278 		list_for_each_entry(part_md, &md->part, part)
279 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
280 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
281 				set_disk_ro(part_md->disk, 1);
282 			}
283 	}
284 out_put:
285 	mmc_blk_put(md);
286 	return count;
287 }
288 
289 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
290 		power_ro_lock_show, power_ro_lock_store);
291 
292 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
293 			     char *buf)
294 {
295 	int ret;
296 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
297 
298 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
299 		       get_disk_ro(dev_to_disk(dev)) ^
300 		       md->read_only);
301 	mmc_blk_put(md);
302 	return ret;
303 }
304 
305 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
306 			      const char *buf, size_t count)
307 {
308 	int ret;
309 	char *end;
310 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
311 	unsigned long set = simple_strtoul(buf, &end, 0);
312 	if (end == buf) {
313 		ret = -EINVAL;
314 		goto out;
315 	}
316 
317 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
318 	ret = count;
319 out:
320 	mmc_blk_put(md);
321 	return ret;
322 }
323 
324 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
325 
326 static struct attribute *mmc_disk_attrs[] = {
327 	&dev_attr_force_ro.attr,
328 	&dev_attr_ro_lock_until_next_power_on.attr,
329 	NULL,
330 };
331 
332 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
333 		struct attribute *a, int n)
334 {
335 	struct device *dev = kobj_to_dev(kobj);
336 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
337 	umode_t mode = a->mode;
338 
339 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
340 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
341 	    md->queue.card->ext_csd.boot_ro_lockable) {
342 		mode = S_IRUGO;
343 		if (!(md->queue.card->ext_csd.boot_ro_lock &
344 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
345 			mode |= S_IWUSR;
346 	}
347 
348 	mmc_blk_put(md);
349 	return mode;
350 }
351 
352 static const struct attribute_group mmc_disk_attr_group = {
353 	.is_visible	= mmc_disk_attrs_is_visible,
354 	.attrs		= mmc_disk_attrs,
355 };
356 
357 static const struct attribute_group *mmc_disk_attr_groups[] = {
358 	&mmc_disk_attr_group,
359 	NULL,
360 };
361 
362 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
363 {
364 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
365 	int ret = -ENXIO;
366 
367 	mutex_lock(&block_mutex);
368 	if (md) {
369 		ret = 0;
370 		if ((mode & FMODE_WRITE) && md->read_only) {
371 			mmc_blk_put(md);
372 			ret = -EROFS;
373 		}
374 	}
375 	mutex_unlock(&block_mutex);
376 
377 	return ret;
378 }
379 
380 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
381 {
382 	struct mmc_blk_data *md = disk->private_data;
383 
384 	mutex_lock(&block_mutex);
385 	mmc_blk_put(md);
386 	mutex_unlock(&block_mutex);
387 }
388 
389 static int
390 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
391 {
392 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
393 	geo->heads = 4;
394 	geo->sectors = 16;
395 	return 0;
396 }
397 
398 struct mmc_blk_ioc_data {
399 	struct mmc_ioc_cmd ic;
400 	unsigned char *buf;
401 	u64 buf_bytes;
402 	struct mmc_rpmb_data *rpmb;
403 };
404 
405 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
406 	struct mmc_ioc_cmd __user *user)
407 {
408 	struct mmc_blk_ioc_data *idata;
409 	int err;
410 
411 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
412 	if (!idata) {
413 		err = -ENOMEM;
414 		goto out;
415 	}
416 
417 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
418 		err = -EFAULT;
419 		goto idata_err;
420 	}
421 
422 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
423 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
424 		err = -EOVERFLOW;
425 		goto idata_err;
426 	}
427 
428 	if (!idata->buf_bytes) {
429 		idata->buf = NULL;
430 		return idata;
431 	}
432 
433 	idata->buf = memdup_user((void __user *)(unsigned long)
434 				 idata->ic.data_ptr, idata->buf_bytes);
435 	if (IS_ERR(idata->buf)) {
436 		err = PTR_ERR(idata->buf);
437 		goto idata_err;
438 	}
439 
440 	return idata;
441 
442 idata_err:
443 	kfree(idata);
444 out:
445 	return ERR_PTR(err);
446 }
447 
448 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
449 				      struct mmc_blk_ioc_data *idata)
450 {
451 	struct mmc_ioc_cmd *ic = &idata->ic;
452 
453 	if (copy_to_user(&(ic_ptr->response), ic->response,
454 			 sizeof(ic->response)))
455 		return -EFAULT;
456 
457 	if (!idata->ic.write_flag) {
458 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
459 				 idata->buf, idata->buf_bytes))
460 			return -EFAULT;
461 	}
462 
463 	return 0;
464 }
465 
466 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
467 			       struct mmc_blk_ioc_data *idata)
468 {
469 	struct mmc_command cmd = {}, sbc = {};
470 	struct mmc_data data = {};
471 	struct mmc_request mrq = {};
472 	struct scatterlist sg;
473 	int err;
474 	unsigned int target_part;
475 
476 	if (!card || !md || !idata)
477 		return -EINVAL;
478 
479 	/*
480 	 * The RPMB accesses comes in from the character device, so we
481 	 * need to target these explicitly. Else we just target the
482 	 * partition type for the block device the ioctl() was issued
483 	 * on.
484 	 */
485 	if (idata->rpmb) {
486 		/* Support multiple RPMB partitions */
487 		target_part = idata->rpmb->part_index;
488 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
489 	} else {
490 		target_part = md->part_type;
491 	}
492 
493 	cmd.opcode = idata->ic.opcode;
494 	cmd.arg = idata->ic.arg;
495 	cmd.flags = idata->ic.flags;
496 
497 	if (idata->buf_bytes) {
498 		data.sg = &sg;
499 		data.sg_len = 1;
500 		data.blksz = idata->ic.blksz;
501 		data.blocks = idata->ic.blocks;
502 
503 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
504 
505 		if (idata->ic.write_flag)
506 			data.flags = MMC_DATA_WRITE;
507 		else
508 			data.flags = MMC_DATA_READ;
509 
510 		/* data.flags must already be set before doing this. */
511 		mmc_set_data_timeout(&data, card);
512 
513 		/* Allow overriding the timeout_ns for empirical tuning. */
514 		if (idata->ic.data_timeout_ns)
515 			data.timeout_ns = idata->ic.data_timeout_ns;
516 
517 		mrq.data = &data;
518 	}
519 
520 	mrq.cmd = &cmd;
521 
522 	err = mmc_blk_part_switch(card, target_part);
523 	if (err)
524 		return err;
525 
526 	if (idata->ic.is_acmd) {
527 		err = mmc_app_cmd(card->host, card);
528 		if (err)
529 			return err;
530 	}
531 
532 	if (idata->rpmb) {
533 		sbc.opcode = MMC_SET_BLOCK_COUNT;
534 		/*
535 		 * We don't do any blockcount validation because the max size
536 		 * may be increased by a future standard. We just copy the
537 		 * 'Reliable Write' bit here.
538 		 */
539 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
540 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
541 		mrq.sbc = &sbc;
542 	}
543 
544 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
545 	    (cmd.opcode == MMC_SWITCH))
546 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
547 
548 	mmc_wait_for_req(card->host, &mrq);
549 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
550 
551 	if (cmd.error) {
552 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
553 						__func__, cmd.error);
554 		return cmd.error;
555 	}
556 	if (data.error) {
557 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
558 						__func__, data.error);
559 		return data.error;
560 	}
561 
562 	/*
563 	 * Make sure the cache of the PARTITION_CONFIG register and
564 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
565 	 * changed it successfully.
566 	 */
567 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
568 	    (cmd.opcode == MMC_SWITCH)) {
569 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
570 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
571 
572 		/*
573 		 * Update cache so the next mmc_blk_part_switch call operates
574 		 * on up-to-date data.
575 		 */
576 		card->ext_csd.part_config = value;
577 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
578 	}
579 
580 	/*
581 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
582 	 * will get turned back on if the card is re-initialized, e.g.
583 	 * suspend/resume or hw reset in recovery.
584 	 */
585 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
586 	    (cmd.opcode == MMC_SWITCH)) {
587 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
588 
589 		card->ext_csd.cache_ctrl = value;
590 	}
591 
592 	/*
593 	 * According to the SD specs, some commands require a delay after
594 	 * issuing the command.
595 	 */
596 	if (idata->ic.postsleep_min_us)
597 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
598 
599 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
600 		/*
601 		 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
602 		 * allow to override the default timeout value if a custom timeout is specified.
603 		 */
604 		err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
605 					false, MMC_BUSY_IO);
606 	}
607 
608 	return err;
609 }
610 
611 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
612 			     struct mmc_ioc_cmd __user *ic_ptr,
613 			     struct mmc_rpmb_data *rpmb)
614 {
615 	struct mmc_blk_ioc_data *idata;
616 	struct mmc_blk_ioc_data *idatas[1];
617 	struct mmc_queue *mq;
618 	struct mmc_card *card;
619 	int err = 0, ioc_err = 0;
620 	struct request *req;
621 
622 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
623 	if (IS_ERR(idata))
624 		return PTR_ERR(idata);
625 	/* This will be NULL on non-RPMB ioctl():s */
626 	idata->rpmb = rpmb;
627 
628 	card = md->queue.card;
629 	if (IS_ERR(card)) {
630 		err = PTR_ERR(card);
631 		goto cmd_done;
632 	}
633 
634 	/*
635 	 * Dispatch the ioctl() into the block request queue.
636 	 */
637 	mq = &md->queue;
638 	req = blk_mq_alloc_request(mq->queue,
639 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
640 	if (IS_ERR(req)) {
641 		err = PTR_ERR(req);
642 		goto cmd_done;
643 	}
644 	idatas[0] = idata;
645 	req_to_mmc_queue_req(req)->drv_op =
646 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
647 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
648 	req_to_mmc_queue_req(req)->ioc_count = 1;
649 	blk_execute_rq(req, false);
650 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
651 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
652 	blk_mq_free_request(req);
653 
654 cmd_done:
655 	kfree(idata->buf);
656 	kfree(idata);
657 	return ioc_err ? ioc_err : err;
658 }
659 
660 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
661 				   struct mmc_ioc_multi_cmd __user *user,
662 				   struct mmc_rpmb_data *rpmb)
663 {
664 	struct mmc_blk_ioc_data **idata = NULL;
665 	struct mmc_ioc_cmd __user *cmds = user->cmds;
666 	struct mmc_card *card;
667 	struct mmc_queue *mq;
668 	int err = 0, ioc_err = 0;
669 	__u64 num_of_cmds;
670 	unsigned int i, n;
671 	struct request *req;
672 
673 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
674 			   sizeof(num_of_cmds)))
675 		return -EFAULT;
676 
677 	if (!num_of_cmds)
678 		return 0;
679 
680 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
681 		return -EINVAL;
682 
683 	n = num_of_cmds;
684 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
685 	if (!idata)
686 		return -ENOMEM;
687 
688 	for (i = 0; i < n; i++) {
689 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
690 		if (IS_ERR(idata[i])) {
691 			err = PTR_ERR(idata[i]);
692 			n = i;
693 			goto cmd_err;
694 		}
695 		/* This will be NULL on non-RPMB ioctl():s */
696 		idata[i]->rpmb = rpmb;
697 	}
698 
699 	card = md->queue.card;
700 	if (IS_ERR(card)) {
701 		err = PTR_ERR(card);
702 		goto cmd_err;
703 	}
704 
705 
706 	/*
707 	 * Dispatch the ioctl()s into the block request queue.
708 	 */
709 	mq = &md->queue;
710 	req = blk_mq_alloc_request(mq->queue,
711 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
712 	if (IS_ERR(req)) {
713 		err = PTR_ERR(req);
714 		goto cmd_err;
715 	}
716 	req_to_mmc_queue_req(req)->drv_op =
717 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
718 	req_to_mmc_queue_req(req)->drv_op_data = idata;
719 	req_to_mmc_queue_req(req)->ioc_count = n;
720 	blk_execute_rq(req, false);
721 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
722 
723 	/* copy to user if data and response */
724 	for (i = 0; i < n && !err; i++)
725 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
726 
727 	blk_mq_free_request(req);
728 
729 cmd_err:
730 	for (i = 0; i < n; i++) {
731 		kfree(idata[i]->buf);
732 		kfree(idata[i]);
733 	}
734 	kfree(idata);
735 	return ioc_err ? ioc_err : err;
736 }
737 
738 static int mmc_blk_check_blkdev(struct block_device *bdev)
739 {
740 	/*
741 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
742 	 * whole block device, not on a partition.  This prevents overspray
743 	 * between sibling partitions.
744 	 */
745 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
746 		return -EPERM;
747 	return 0;
748 }
749 
750 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
751 	unsigned int cmd, unsigned long arg)
752 {
753 	struct mmc_blk_data *md;
754 	int ret;
755 
756 	switch (cmd) {
757 	case MMC_IOC_CMD:
758 		ret = mmc_blk_check_blkdev(bdev);
759 		if (ret)
760 			return ret;
761 		md = mmc_blk_get(bdev->bd_disk);
762 		if (!md)
763 			return -EINVAL;
764 		ret = mmc_blk_ioctl_cmd(md,
765 					(struct mmc_ioc_cmd __user *)arg,
766 					NULL);
767 		mmc_blk_put(md);
768 		return ret;
769 	case MMC_IOC_MULTI_CMD:
770 		ret = mmc_blk_check_blkdev(bdev);
771 		if (ret)
772 			return ret;
773 		md = mmc_blk_get(bdev->bd_disk);
774 		if (!md)
775 			return -EINVAL;
776 		ret = mmc_blk_ioctl_multi_cmd(md,
777 					(struct mmc_ioc_multi_cmd __user *)arg,
778 					NULL);
779 		mmc_blk_put(md);
780 		return ret;
781 	default:
782 		return -EINVAL;
783 	}
784 }
785 
786 #ifdef CONFIG_COMPAT
787 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
788 	unsigned int cmd, unsigned long arg)
789 {
790 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
791 }
792 #endif
793 
794 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
795 					  sector_t *sector)
796 {
797 	struct mmc_blk_data *md;
798 	int ret;
799 
800 	md = mmc_blk_get(disk);
801 	if (!md)
802 		return -EINVAL;
803 
804 	if (md->queue.card)
805 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
806 	else
807 		ret = -ENODEV;
808 
809 	mmc_blk_put(md);
810 
811 	return ret;
812 }
813 
814 static const struct block_device_operations mmc_bdops = {
815 	.open			= mmc_blk_open,
816 	.release		= mmc_blk_release,
817 	.getgeo			= mmc_blk_getgeo,
818 	.owner			= THIS_MODULE,
819 	.ioctl			= mmc_blk_ioctl,
820 #ifdef CONFIG_COMPAT
821 	.compat_ioctl		= mmc_blk_compat_ioctl,
822 #endif
823 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
824 };
825 
826 static int mmc_blk_part_switch_pre(struct mmc_card *card,
827 				   unsigned int part_type)
828 {
829 	int ret = 0;
830 
831 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
832 		if (card->ext_csd.cmdq_en) {
833 			ret = mmc_cmdq_disable(card);
834 			if (ret)
835 				return ret;
836 		}
837 		mmc_retune_pause(card->host);
838 	}
839 
840 	return ret;
841 }
842 
843 static int mmc_blk_part_switch_post(struct mmc_card *card,
844 				    unsigned int part_type)
845 {
846 	int ret = 0;
847 
848 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
849 		mmc_retune_unpause(card->host);
850 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
851 			ret = mmc_cmdq_enable(card);
852 	}
853 
854 	return ret;
855 }
856 
857 static inline int mmc_blk_part_switch(struct mmc_card *card,
858 				      unsigned int part_type)
859 {
860 	int ret = 0;
861 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
862 
863 	if (main_md->part_curr == part_type)
864 		return 0;
865 
866 	if (mmc_card_mmc(card)) {
867 		u8 part_config = card->ext_csd.part_config;
868 
869 		ret = mmc_blk_part_switch_pre(card, part_type);
870 		if (ret)
871 			return ret;
872 
873 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
874 		part_config |= part_type;
875 
876 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
877 				 EXT_CSD_PART_CONFIG, part_config,
878 				 card->ext_csd.part_time);
879 		if (ret) {
880 			mmc_blk_part_switch_post(card, part_type);
881 			return ret;
882 		}
883 
884 		card->ext_csd.part_config = part_config;
885 
886 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
887 	}
888 
889 	main_md->part_curr = part_type;
890 	return ret;
891 }
892 
893 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
894 {
895 	int err;
896 	u32 result;
897 	__be32 *blocks;
898 
899 	struct mmc_request mrq = {};
900 	struct mmc_command cmd = {};
901 	struct mmc_data data = {};
902 
903 	struct scatterlist sg;
904 
905 	cmd.opcode = MMC_APP_CMD;
906 	cmd.arg = card->rca << 16;
907 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
908 
909 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
910 	if (err)
911 		return err;
912 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
913 		return -EIO;
914 
915 	memset(&cmd, 0, sizeof(struct mmc_command));
916 
917 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
918 	cmd.arg = 0;
919 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
920 
921 	data.blksz = 4;
922 	data.blocks = 1;
923 	data.flags = MMC_DATA_READ;
924 	data.sg = &sg;
925 	data.sg_len = 1;
926 	mmc_set_data_timeout(&data, card);
927 
928 	mrq.cmd = &cmd;
929 	mrq.data = &data;
930 
931 	blocks = kmalloc(4, GFP_KERNEL);
932 	if (!blocks)
933 		return -ENOMEM;
934 
935 	sg_init_one(&sg, blocks, 4);
936 
937 	mmc_wait_for_req(card->host, &mrq);
938 
939 	result = ntohl(*blocks);
940 	kfree(blocks);
941 
942 	if (cmd.error || data.error)
943 		return -EIO;
944 
945 	*written_blocks = result;
946 
947 	return 0;
948 }
949 
950 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
951 {
952 	if (host->actual_clock)
953 		return host->actual_clock / 1000;
954 
955 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
956 	if (host->ios.clock)
957 		return host->ios.clock / 2000;
958 
959 	/* How can there be no clock */
960 	WARN_ON_ONCE(1);
961 	return 100; /* 100 kHz is minimum possible value */
962 }
963 
964 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
965 					    struct mmc_data *data)
966 {
967 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
968 	unsigned int khz;
969 
970 	if (data->timeout_clks) {
971 		khz = mmc_blk_clock_khz(host);
972 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
973 	}
974 
975 	return ms;
976 }
977 
978 /*
979  * Attempts to reset the card and get back to the requested partition.
980  * Therefore any error here must result in cancelling the block layer
981  * request, it must not be reattempted without going through the mmc_blk
982  * partition sanity checks.
983  */
984 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
985 			 int type)
986 {
987 	int err;
988 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
989 
990 	if (md->reset_done & type)
991 		return -EEXIST;
992 
993 	md->reset_done |= type;
994 	err = mmc_hw_reset(host->card);
995 	/*
996 	 * A successful reset will leave the card in the main partition, but
997 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
998 	 * in that case.
999 	 */
1000 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1001 	if (err)
1002 		return err;
1003 	/* Ensure we switch back to the correct partition */
1004 	if (mmc_blk_part_switch(host->card, md->part_type))
1005 		/*
1006 		 * We have failed to get back into the correct
1007 		 * partition, so we need to abort the whole request.
1008 		 */
1009 		return -ENODEV;
1010 	return 0;
1011 }
1012 
1013 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1014 {
1015 	md->reset_done &= ~type;
1016 }
1017 
1018 /*
1019  * The non-block commands come back from the block layer after it queued it and
1020  * processed it with all other requests and then they get issued in this
1021  * function.
1022  */
1023 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1024 {
1025 	struct mmc_queue_req *mq_rq;
1026 	struct mmc_card *card = mq->card;
1027 	struct mmc_blk_data *md = mq->blkdata;
1028 	struct mmc_blk_ioc_data **idata;
1029 	bool rpmb_ioctl;
1030 	u8 **ext_csd;
1031 	u32 status;
1032 	int ret;
1033 	int i;
1034 
1035 	mq_rq = req_to_mmc_queue_req(req);
1036 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1037 
1038 	switch (mq_rq->drv_op) {
1039 	case MMC_DRV_OP_IOCTL:
1040 		if (card->ext_csd.cmdq_en) {
1041 			ret = mmc_cmdq_disable(card);
1042 			if (ret)
1043 				break;
1044 		}
1045 		fallthrough;
1046 	case MMC_DRV_OP_IOCTL_RPMB:
1047 		idata = mq_rq->drv_op_data;
1048 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1049 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1050 			if (ret)
1051 				break;
1052 		}
1053 		/* Always switch back to main area after RPMB access */
1054 		if (rpmb_ioctl)
1055 			mmc_blk_part_switch(card, 0);
1056 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1057 			mmc_cmdq_enable(card);
1058 		break;
1059 	case MMC_DRV_OP_BOOT_WP:
1060 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1061 				 card->ext_csd.boot_ro_lock |
1062 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1063 				 card->ext_csd.part_time);
1064 		if (ret)
1065 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1066 			       md->disk->disk_name, ret);
1067 		else
1068 			card->ext_csd.boot_ro_lock |=
1069 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1070 		break;
1071 	case MMC_DRV_OP_GET_CARD_STATUS:
1072 		ret = mmc_send_status(card, &status);
1073 		if (!ret)
1074 			ret = status;
1075 		break;
1076 	case MMC_DRV_OP_GET_EXT_CSD:
1077 		ext_csd = mq_rq->drv_op_data;
1078 		ret = mmc_get_ext_csd(card, ext_csd);
1079 		break;
1080 	default:
1081 		pr_err("%s: unknown driver specific operation\n",
1082 		       md->disk->disk_name);
1083 		ret = -EINVAL;
1084 		break;
1085 	}
1086 	mq_rq->drv_op_result = ret;
1087 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1088 }
1089 
1090 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1091 				   int type, unsigned int erase_arg)
1092 {
1093 	struct mmc_blk_data *md = mq->blkdata;
1094 	struct mmc_card *card = md->queue.card;
1095 	unsigned int from, nr;
1096 	int err = 0;
1097 	blk_status_t status = BLK_STS_OK;
1098 
1099 	if (!mmc_can_erase(card)) {
1100 		status = BLK_STS_NOTSUPP;
1101 		goto fail;
1102 	}
1103 
1104 	from = blk_rq_pos(req);
1105 	nr = blk_rq_sectors(req);
1106 
1107 	do {
1108 		err = 0;
1109 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1110 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1111 					 INAND_CMD38_ARG_EXT_CSD,
1112 					 erase_arg == MMC_TRIM_ARG ?
1113 					 INAND_CMD38_ARG_TRIM :
1114 					 INAND_CMD38_ARG_ERASE,
1115 					 card->ext_csd.generic_cmd6_time);
1116 		}
1117 		if (!err)
1118 			err = mmc_erase(card, from, nr, erase_arg);
1119 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1120 	if (err)
1121 		status = BLK_STS_IOERR;
1122 	else
1123 		mmc_blk_reset_success(md, type);
1124 fail:
1125 	blk_mq_end_request(req, status);
1126 }
1127 
1128 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1129 {
1130 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1131 }
1132 
1133 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1134 {
1135 	struct mmc_blk_data *md = mq->blkdata;
1136 	struct mmc_card *card = md->queue.card;
1137 	unsigned int arg = card->erase_arg;
1138 
1139 	if (mmc_card_broken_sd_discard(card))
1140 		arg = SD_ERASE_ARG;
1141 
1142 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1143 }
1144 
1145 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1146 				       struct request *req)
1147 {
1148 	struct mmc_blk_data *md = mq->blkdata;
1149 	struct mmc_card *card = md->queue.card;
1150 	unsigned int from, nr, arg;
1151 	int err = 0, type = MMC_BLK_SECDISCARD;
1152 	blk_status_t status = BLK_STS_OK;
1153 
1154 	if (!(mmc_can_secure_erase_trim(card))) {
1155 		status = BLK_STS_NOTSUPP;
1156 		goto out;
1157 	}
1158 
1159 	from = blk_rq_pos(req);
1160 	nr = blk_rq_sectors(req);
1161 
1162 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1163 		arg = MMC_SECURE_TRIM1_ARG;
1164 	else
1165 		arg = MMC_SECURE_ERASE_ARG;
1166 
1167 retry:
1168 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 				 INAND_CMD38_ARG_EXT_CSD,
1171 				 arg == MMC_SECURE_TRIM1_ARG ?
1172 				 INAND_CMD38_ARG_SECTRIM1 :
1173 				 INAND_CMD38_ARG_SECERASE,
1174 				 card->ext_csd.generic_cmd6_time);
1175 		if (err)
1176 			goto out_retry;
1177 	}
1178 
1179 	err = mmc_erase(card, from, nr, arg);
1180 	if (err == -EIO)
1181 		goto out_retry;
1182 	if (err) {
1183 		status = BLK_STS_IOERR;
1184 		goto out;
1185 	}
1186 
1187 	if (arg == MMC_SECURE_TRIM1_ARG) {
1188 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1189 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1190 					 INAND_CMD38_ARG_EXT_CSD,
1191 					 INAND_CMD38_ARG_SECTRIM2,
1192 					 card->ext_csd.generic_cmd6_time);
1193 			if (err)
1194 				goto out_retry;
1195 		}
1196 
1197 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1198 		if (err == -EIO)
1199 			goto out_retry;
1200 		if (err) {
1201 			status = BLK_STS_IOERR;
1202 			goto out;
1203 		}
1204 	}
1205 
1206 out_retry:
1207 	if (err && !mmc_blk_reset(md, card->host, type))
1208 		goto retry;
1209 	if (!err)
1210 		mmc_blk_reset_success(md, type);
1211 out:
1212 	blk_mq_end_request(req, status);
1213 }
1214 
1215 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1216 {
1217 	struct mmc_blk_data *md = mq->blkdata;
1218 	struct mmc_card *card = md->queue.card;
1219 	int ret = 0;
1220 
1221 	ret = mmc_flush_cache(card->host);
1222 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1223 }
1224 
1225 /*
1226  * Reformat current write as a reliable write, supporting
1227  * both legacy and the enhanced reliable write MMC cards.
1228  * In each transfer we'll handle only as much as a single
1229  * reliable write can handle, thus finish the request in
1230  * partial completions.
1231  */
1232 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1233 				    struct mmc_card *card,
1234 				    struct request *req)
1235 {
1236 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1237 		/* Legacy mode imposes restrictions on transfers. */
1238 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1239 			brq->data.blocks = 1;
1240 
1241 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1242 			brq->data.blocks = card->ext_csd.rel_sectors;
1243 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1244 			brq->data.blocks = 1;
1245 	}
1246 }
1247 
1248 #define CMD_ERRORS_EXCL_OOR						\
1249 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1250 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1251 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1252 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1253 	 R1_CC_ERROR |		/* Card controller error */		\
1254 	 R1_ERROR)		/* General/unknown error */
1255 
1256 #define CMD_ERRORS							\
1257 	(CMD_ERRORS_EXCL_OOR |						\
1258 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1259 
1260 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1261 {
1262 	u32 val;
1263 
1264 	/*
1265 	 * Per the SD specification(physical layer version 4.10)[1],
1266 	 * section 4.3.3, it explicitly states that "When the last
1267 	 * block of user area is read using CMD18, the host should
1268 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1269 	 * is correct". And JESD84-B51 for eMMC also has a similar
1270 	 * statement on section 6.8.3.
1271 	 *
1272 	 * Multiple block read/write could be done by either predefined
1273 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1274 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1275 	 *
1276 	 * However the spec[1] doesn't tell us whether we should also
1277 	 * ignore that for predefined method. But per the spec[1], section
1278 	 * 4.15 Set Block Count Command, it says"If illegal block count
1279 	 * is set, out of range error will be indicated during read/write
1280 	 * operation (For example, data transfer is stopped at user area
1281 	 * boundary)." In another word, we could expect a out of range error
1282 	 * in the response for the following CMD18/25. And if argument of
1283 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1284 	 * we could also expect to get a -ETIMEDOUT or any error number from
1285 	 * the host drivers due to missing data response(for write)/data(for
1286 	 * read), as the cards will stop the data transfer by itself per the
1287 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1288 	 */
1289 
1290 	if (!brq->stop.error) {
1291 		bool oor_with_open_end;
1292 		/* If there is no error yet, check R1 response */
1293 
1294 		val = brq->stop.resp[0] & CMD_ERRORS;
1295 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1296 
1297 		if (val && !oor_with_open_end)
1298 			brq->stop.error = -EIO;
1299 	}
1300 }
1301 
1302 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1303 			      int recovery_mode, bool *do_rel_wr_p,
1304 			      bool *do_data_tag_p)
1305 {
1306 	struct mmc_blk_data *md = mq->blkdata;
1307 	struct mmc_card *card = md->queue.card;
1308 	struct mmc_blk_request *brq = &mqrq->brq;
1309 	struct request *req = mmc_queue_req_to_req(mqrq);
1310 	bool do_rel_wr, do_data_tag;
1311 
1312 	/*
1313 	 * Reliable writes are used to implement Forced Unit Access and
1314 	 * are supported only on MMCs.
1315 	 */
1316 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1317 		    rq_data_dir(req) == WRITE &&
1318 		    (md->flags & MMC_BLK_REL_WR);
1319 
1320 	memset(brq, 0, sizeof(struct mmc_blk_request));
1321 
1322 	mmc_crypto_prepare_req(mqrq);
1323 
1324 	brq->mrq.data = &brq->data;
1325 	brq->mrq.tag = req->tag;
1326 
1327 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1328 	brq->stop.arg = 0;
1329 
1330 	if (rq_data_dir(req) == READ) {
1331 		brq->data.flags = MMC_DATA_READ;
1332 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1333 	} else {
1334 		brq->data.flags = MMC_DATA_WRITE;
1335 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1336 	}
1337 
1338 	brq->data.blksz = 512;
1339 	brq->data.blocks = blk_rq_sectors(req);
1340 	brq->data.blk_addr = blk_rq_pos(req);
1341 
1342 	/*
1343 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1344 	 * The eMMC will give "high" priority tasks priority over "simple"
1345 	 * priority tasks. Here we always set "simple" priority by not setting
1346 	 * MMC_DATA_PRIO.
1347 	 */
1348 
1349 	/*
1350 	 * The block layer doesn't support all sector count
1351 	 * restrictions, so we need to be prepared for too big
1352 	 * requests.
1353 	 */
1354 	if (brq->data.blocks > card->host->max_blk_count)
1355 		brq->data.blocks = card->host->max_blk_count;
1356 
1357 	if (brq->data.blocks > 1) {
1358 		/*
1359 		 * Some SD cards in SPI mode return a CRC error or even lock up
1360 		 * completely when trying to read the last block using a
1361 		 * multiblock read command.
1362 		 */
1363 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1364 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1365 		     get_capacity(md->disk)))
1366 			brq->data.blocks--;
1367 
1368 		/*
1369 		 * After a read error, we redo the request one (native) sector
1370 		 * at a time in order to accurately determine which
1371 		 * sectors can be read successfully.
1372 		 */
1373 		if (recovery_mode)
1374 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1375 
1376 		/*
1377 		 * Some controllers have HW issues while operating
1378 		 * in multiple I/O mode
1379 		 */
1380 		if (card->host->ops->multi_io_quirk)
1381 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1382 						(rq_data_dir(req) == READ) ?
1383 						MMC_DATA_READ : MMC_DATA_WRITE,
1384 						brq->data.blocks);
1385 	}
1386 
1387 	if (do_rel_wr) {
1388 		mmc_apply_rel_rw(brq, card, req);
1389 		brq->data.flags |= MMC_DATA_REL_WR;
1390 	}
1391 
1392 	/*
1393 	 * Data tag is used only during writing meta data to speed
1394 	 * up write and any subsequent read of this meta data
1395 	 */
1396 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1397 		      (req->cmd_flags & REQ_META) &&
1398 		      (rq_data_dir(req) == WRITE) &&
1399 		      ((brq->data.blocks * brq->data.blksz) >=
1400 		       card->ext_csd.data_tag_unit_size);
1401 
1402 	if (do_data_tag)
1403 		brq->data.flags |= MMC_DATA_DAT_TAG;
1404 
1405 	mmc_set_data_timeout(&brq->data, card);
1406 
1407 	brq->data.sg = mqrq->sg;
1408 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1409 
1410 	/*
1411 	 * Adjust the sg list so it is the same size as the
1412 	 * request.
1413 	 */
1414 	if (brq->data.blocks != blk_rq_sectors(req)) {
1415 		int i, data_size = brq->data.blocks << 9;
1416 		struct scatterlist *sg;
1417 
1418 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1419 			data_size -= sg->length;
1420 			if (data_size <= 0) {
1421 				sg->length += data_size;
1422 				i++;
1423 				break;
1424 			}
1425 		}
1426 		brq->data.sg_len = i;
1427 	}
1428 
1429 	if (do_rel_wr_p)
1430 		*do_rel_wr_p = do_rel_wr;
1431 
1432 	if (do_data_tag_p)
1433 		*do_data_tag_p = do_data_tag;
1434 }
1435 
1436 #define MMC_CQE_RETRIES 2
1437 
1438 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1439 {
1440 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1441 	struct mmc_request *mrq = &mqrq->brq.mrq;
1442 	struct request_queue *q = req->q;
1443 	struct mmc_host *host = mq->card->host;
1444 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1445 	unsigned long flags;
1446 	bool put_card;
1447 	int err;
1448 
1449 	mmc_cqe_post_req(host, mrq);
1450 
1451 	if (mrq->cmd && mrq->cmd->error)
1452 		err = mrq->cmd->error;
1453 	else if (mrq->data && mrq->data->error)
1454 		err = mrq->data->error;
1455 	else
1456 		err = 0;
1457 
1458 	if (err) {
1459 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1460 			blk_mq_requeue_request(req, true);
1461 		else
1462 			blk_mq_end_request(req, BLK_STS_IOERR);
1463 	} else if (mrq->data) {
1464 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1465 			blk_mq_requeue_request(req, true);
1466 		else
1467 			__blk_mq_end_request(req, BLK_STS_OK);
1468 	} else {
1469 		blk_mq_end_request(req, BLK_STS_OK);
1470 	}
1471 
1472 	spin_lock_irqsave(&mq->lock, flags);
1473 
1474 	mq->in_flight[issue_type] -= 1;
1475 
1476 	put_card = (mmc_tot_in_flight(mq) == 0);
1477 
1478 	mmc_cqe_check_busy(mq);
1479 
1480 	spin_unlock_irqrestore(&mq->lock, flags);
1481 
1482 	if (!mq->cqe_busy)
1483 		blk_mq_run_hw_queues(q, true);
1484 
1485 	if (put_card)
1486 		mmc_put_card(mq->card, &mq->ctx);
1487 }
1488 
1489 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1490 {
1491 	struct mmc_card *card = mq->card;
1492 	struct mmc_host *host = card->host;
1493 	int err;
1494 
1495 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1496 
1497 	err = mmc_cqe_recovery(host);
1498 	if (err)
1499 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1500 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1501 
1502 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1503 }
1504 
1505 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1506 {
1507 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1508 						  brq.mrq);
1509 	struct request *req = mmc_queue_req_to_req(mqrq);
1510 	struct request_queue *q = req->q;
1511 	struct mmc_queue *mq = q->queuedata;
1512 
1513 	/*
1514 	 * Block layer timeouts race with completions which means the normal
1515 	 * completion path cannot be used during recovery.
1516 	 */
1517 	if (mq->in_recovery)
1518 		mmc_blk_cqe_complete_rq(mq, req);
1519 	else if (likely(!blk_should_fake_timeout(req->q)))
1520 		blk_mq_complete_request(req);
1521 }
1522 
1523 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1524 {
1525 	mrq->done		= mmc_blk_cqe_req_done;
1526 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1527 
1528 	return mmc_cqe_start_req(host, mrq);
1529 }
1530 
1531 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1532 						 struct request *req)
1533 {
1534 	struct mmc_blk_request *brq = &mqrq->brq;
1535 
1536 	memset(brq, 0, sizeof(*brq));
1537 
1538 	brq->mrq.cmd = &brq->cmd;
1539 	brq->mrq.tag = req->tag;
1540 
1541 	return &brq->mrq;
1542 }
1543 
1544 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1545 {
1546 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1547 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1548 
1549 	mrq->cmd->opcode = MMC_SWITCH;
1550 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1551 			(EXT_CSD_FLUSH_CACHE << 16) |
1552 			(1 << 8) |
1553 			EXT_CSD_CMD_SET_NORMAL;
1554 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1555 
1556 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1557 }
1558 
1559 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1560 {
1561 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1562 	struct mmc_host *host = mq->card->host;
1563 	int err;
1564 
1565 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1566 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1567 	mmc_pre_req(host, &mqrq->brq.mrq);
1568 
1569 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1570 	if (err)
1571 		mmc_post_req(host, &mqrq->brq.mrq, err);
1572 
1573 	return err;
1574 }
1575 
1576 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1577 {
1578 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1579 	struct mmc_host *host = mq->card->host;
1580 
1581 	if (host->hsq_enabled)
1582 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1583 
1584 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1585 
1586 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1587 }
1588 
1589 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1590 			       struct mmc_card *card,
1591 			       int recovery_mode,
1592 			       struct mmc_queue *mq)
1593 {
1594 	u32 readcmd, writecmd;
1595 	struct mmc_blk_request *brq = &mqrq->brq;
1596 	struct request *req = mmc_queue_req_to_req(mqrq);
1597 	struct mmc_blk_data *md = mq->blkdata;
1598 	bool do_rel_wr, do_data_tag;
1599 
1600 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1601 
1602 	brq->mrq.cmd = &brq->cmd;
1603 
1604 	brq->cmd.arg = blk_rq_pos(req);
1605 	if (!mmc_card_blockaddr(card))
1606 		brq->cmd.arg <<= 9;
1607 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1608 
1609 	if (brq->data.blocks > 1 || do_rel_wr) {
1610 		/* SPI multiblock writes terminate using a special
1611 		 * token, not a STOP_TRANSMISSION request.
1612 		 */
1613 		if (!mmc_host_is_spi(card->host) ||
1614 		    rq_data_dir(req) == READ)
1615 			brq->mrq.stop = &brq->stop;
1616 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1617 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1618 	} else {
1619 		brq->mrq.stop = NULL;
1620 		readcmd = MMC_READ_SINGLE_BLOCK;
1621 		writecmd = MMC_WRITE_BLOCK;
1622 	}
1623 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1624 
1625 	/*
1626 	 * Pre-defined multi-block transfers are preferable to
1627 	 * open ended-ones (and necessary for reliable writes).
1628 	 * However, it is not sufficient to just send CMD23,
1629 	 * and avoid the final CMD12, as on an error condition
1630 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1631 	 * with Auto-CMD23 enhancements provided by some
1632 	 * hosts, means that the complexity of dealing
1633 	 * with this is best left to the host. If CMD23 is
1634 	 * supported by card and host, we'll fill sbc in and let
1635 	 * the host deal with handling it correctly. This means
1636 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1637 	 * change of behavior will be observed.
1638 	 *
1639 	 * N.B: Some MMC cards experience perf degradation.
1640 	 * We'll avoid using CMD23-bounded multiblock writes for
1641 	 * these, while retaining features like reliable writes.
1642 	 */
1643 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1644 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1645 	     do_data_tag)) {
1646 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1647 		brq->sbc.arg = brq->data.blocks |
1648 			(do_rel_wr ? (1 << 31) : 0) |
1649 			(do_data_tag ? (1 << 29) : 0);
1650 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1651 		brq->mrq.sbc = &brq->sbc;
1652 	}
1653 }
1654 
1655 #define MMC_MAX_RETRIES		5
1656 #define MMC_DATA_RETRIES	2
1657 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1658 
1659 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1660 {
1661 	struct mmc_command cmd = {
1662 		.opcode = MMC_STOP_TRANSMISSION,
1663 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1664 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1665 		.busy_timeout = timeout,
1666 	};
1667 
1668 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1669 }
1670 
1671 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1672 {
1673 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674 	struct mmc_blk_request *brq = &mqrq->brq;
1675 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1676 	int err;
1677 
1678 	mmc_retune_hold_now(card->host);
1679 
1680 	mmc_blk_send_stop(card, timeout);
1681 
1682 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1683 
1684 	mmc_retune_release(card->host);
1685 
1686 	return err;
1687 }
1688 
1689 #define MMC_READ_SINGLE_RETRIES	2
1690 
1691 /* Single (native) sector read during recovery */
1692 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1693 {
1694 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1695 	struct mmc_request *mrq = &mqrq->brq.mrq;
1696 	struct mmc_card *card = mq->card;
1697 	struct mmc_host *host = card->host;
1698 	blk_status_t error = BLK_STS_OK;
1699 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1700 
1701 	do {
1702 		u32 status;
1703 		int err;
1704 		int retries = 0;
1705 
1706 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1707 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1708 
1709 			mmc_wait_for_req(host, mrq);
1710 
1711 			err = mmc_send_status(card, &status);
1712 			if (err)
1713 				goto error_exit;
1714 
1715 			if (!mmc_host_is_spi(host) &&
1716 			    !mmc_ready_for_data(status)) {
1717 				err = mmc_blk_fix_state(card, req);
1718 				if (err)
1719 					goto error_exit;
1720 			}
1721 
1722 			if (!mrq->cmd->error)
1723 				break;
1724 		}
1725 
1726 		if (mrq->cmd->error ||
1727 		    mrq->data->error ||
1728 		    (!mmc_host_is_spi(host) &&
1729 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1730 			error = BLK_STS_IOERR;
1731 		else
1732 			error = BLK_STS_OK;
1733 
1734 	} while (blk_update_request(req, error, bytes_per_read));
1735 
1736 	return;
1737 
1738 error_exit:
1739 	mrq->data->bytes_xfered = 0;
1740 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1741 	/* Let it try the remaining request again */
1742 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1743 		mqrq->retries = MMC_MAX_RETRIES - 1;
1744 }
1745 
1746 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1747 {
1748 	return !!brq->mrq.sbc;
1749 }
1750 
1751 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1752 {
1753 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1754 }
1755 
1756 /*
1757  * Check for errors the host controller driver might not have seen such as
1758  * response mode errors or invalid card state.
1759  */
1760 static bool mmc_blk_status_error(struct request *req, u32 status)
1761 {
1762 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1763 	struct mmc_blk_request *brq = &mqrq->brq;
1764 	struct mmc_queue *mq = req->q->queuedata;
1765 	u32 stop_err_bits;
1766 
1767 	if (mmc_host_is_spi(mq->card->host))
1768 		return false;
1769 
1770 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1771 
1772 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1773 	       brq->stop.resp[0] & stop_err_bits ||
1774 	       status            & stop_err_bits ||
1775 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1776 }
1777 
1778 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1779 {
1780 	return !brq->sbc.error && !brq->cmd.error &&
1781 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1782 }
1783 
1784 /*
1785  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1786  * policy:
1787  * 1. A request that has transferred at least some data is considered
1788  * successful and will be requeued if there is remaining data to
1789  * transfer.
1790  * 2. Otherwise the number of retries is incremented and the request
1791  * will be requeued if there are remaining retries.
1792  * 3. Otherwise the request will be errored out.
1793  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1794  * mqrq->retries. So there are only 4 possible actions here:
1795  *	1. do not accept the bytes_xfered value i.e. set it to zero
1796  *	2. change mqrq->retries to determine the number of retries
1797  *	3. try to reset the card
1798  *	4. read one sector at a time
1799  */
1800 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1801 {
1802 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1803 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1804 	struct mmc_blk_request *brq = &mqrq->brq;
1805 	struct mmc_blk_data *md = mq->blkdata;
1806 	struct mmc_card *card = mq->card;
1807 	u32 status;
1808 	u32 blocks;
1809 	int err;
1810 
1811 	/*
1812 	 * Some errors the host driver might not have seen. Set the number of
1813 	 * bytes transferred to zero in that case.
1814 	 */
1815 	err = __mmc_send_status(card, &status, 0);
1816 	if (err || mmc_blk_status_error(req, status))
1817 		brq->data.bytes_xfered = 0;
1818 
1819 	mmc_retune_release(card->host);
1820 
1821 	/*
1822 	 * Try again to get the status. This also provides an opportunity for
1823 	 * re-tuning.
1824 	 */
1825 	if (err)
1826 		err = __mmc_send_status(card, &status, 0);
1827 
1828 	/*
1829 	 * Nothing more to do after the number of bytes transferred has been
1830 	 * updated and there is no card.
1831 	 */
1832 	if (err && mmc_detect_card_removed(card->host))
1833 		return;
1834 
1835 	/* Try to get back to "tran" state */
1836 	if (!mmc_host_is_spi(mq->card->host) &&
1837 	    (err || !mmc_ready_for_data(status)))
1838 		err = mmc_blk_fix_state(mq->card, req);
1839 
1840 	/*
1841 	 * Special case for SD cards where the card might record the number of
1842 	 * blocks written.
1843 	 */
1844 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1845 	    rq_data_dir(req) == WRITE) {
1846 		if (mmc_sd_num_wr_blocks(card, &blocks))
1847 			brq->data.bytes_xfered = 0;
1848 		else
1849 			brq->data.bytes_xfered = blocks << 9;
1850 	}
1851 
1852 	/* Reset if the card is in a bad state */
1853 	if (!mmc_host_is_spi(mq->card->host) &&
1854 	    err && mmc_blk_reset(md, card->host, type)) {
1855 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1856 		mqrq->retries = MMC_NO_RETRIES;
1857 		return;
1858 	}
1859 
1860 	/*
1861 	 * If anything was done, just return and if there is anything remaining
1862 	 * on the request it will get requeued.
1863 	 */
1864 	if (brq->data.bytes_xfered)
1865 		return;
1866 
1867 	/* Reset before last retry */
1868 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1869 	    mmc_blk_reset(md, card->host, type))
1870 		return;
1871 
1872 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1873 	if (brq->sbc.error || brq->cmd.error)
1874 		return;
1875 
1876 	/* Reduce the remaining retries for data errors */
1877 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1878 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1879 		return;
1880 	}
1881 
1882 	if (rq_data_dir(req) == READ && brq->data.blocks >
1883 			queue_physical_block_size(mq->queue) >> 9) {
1884 		/* Read one (native) sector at a time */
1885 		mmc_blk_read_single(mq, req);
1886 		return;
1887 	}
1888 }
1889 
1890 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1891 {
1892 	mmc_blk_eval_resp_error(brq);
1893 
1894 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1895 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1896 }
1897 
1898 static int mmc_spi_err_check(struct mmc_card *card)
1899 {
1900 	u32 status = 0;
1901 	int err;
1902 
1903 	/*
1904 	 * SPI does not have a TRAN state we have to wait on, instead the
1905 	 * card is ready again when it no longer holds the line LOW.
1906 	 * We still have to ensure two things here before we know the write
1907 	 * was successful:
1908 	 * 1. The card has not disconnected during busy and we actually read our
1909 	 * own pull-up, thinking it was still connected, so ensure it
1910 	 * still responds.
1911 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1912 	 * just reconnected card after being disconnected during busy.
1913 	 */
1914 	err = __mmc_send_status(card, &status, 0);
1915 	if (err)
1916 		return err;
1917 	/* All R1 and R2 bits of SPI are errors in our case */
1918 	if (status)
1919 		return -EIO;
1920 	return 0;
1921 }
1922 
1923 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1924 {
1925 	struct mmc_blk_busy_data *data = cb_data;
1926 	u32 status = 0;
1927 	int err;
1928 
1929 	err = mmc_send_status(data->card, &status);
1930 	if (err)
1931 		return err;
1932 
1933 	/* Accumulate response error bits. */
1934 	data->status |= status;
1935 
1936 	*busy = !mmc_ready_for_data(status);
1937 	return 0;
1938 }
1939 
1940 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1941 {
1942 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1943 	struct mmc_blk_busy_data cb_data;
1944 	int err;
1945 
1946 	if (rq_data_dir(req) == READ)
1947 		return 0;
1948 
1949 	if (mmc_host_is_spi(card->host)) {
1950 		err = mmc_spi_err_check(card);
1951 		if (err)
1952 			mqrq->brq.data.bytes_xfered = 0;
1953 		return err;
1954 	}
1955 
1956 	cb_data.card = card;
1957 	cb_data.status = 0;
1958 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1959 				  &mmc_blk_busy_cb, &cb_data);
1960 
1961 	/*
1962 	 * Do not assume data transferred correctly if there are any error bits
1963 	 * set.
1964 	 */
1965 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1966 		mqrq->brq.data.bytes_xfered = 0;
1967 		err = err ? err : -EIO;
1968 	}
1969 
1970 	/* Copy the exception bit so it will be seen later on */
1971 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1972 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1973 
1974 	return err;
1975 }
1976 
1977 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1978 					    struct request *req)
1979 {
1980 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1981 
1982 	mmc_blk_reset_success(mq->blkdata, type);
1983 }
1984 
1985 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1986 {
1987 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1988 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1989 
1990 	if (nr_bytes) {
1991 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1992 			blk_mq_requeue_request(req, true);
1993 		else
1994 			__blk_mq_end_request(req, BLK_STS_OK);
1995 	} else if (!blk_rq_bytes(req)) {
1996 		__blk_mq_end_request(req, BLK_STS_IOERR);
1997 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1998 		blk_mq_requeue_request(req, true);
1999 	} else {
2000 		if (mmc_card_removed(mq->card))
2001 			req->rq_flags |= RQF_QUIET;
2002 		blk_mq_end_request(req, BLK_STS_IOERR);
2003 	}
2004 }
2005 
2006 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2007 					struct mmc_queue_req *mqrq)
2008 {
2009 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2010 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2011 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2012 }
2013 
2014 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2015 				 struct mmc_queue_req *mqrq)
2016 {
2017 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2018 		mmc_run_bkops(mq->card);
2019 }
2020 
2021 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2022 {
2023 	struct mmc_queue_req *mqrq =
2024 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2025 	struct request *req = mmc_queue_req_to_req(mqrq);
2026 	struct request_queue *q = req->q;
2027 	struct mmc_queue *mq = q->queuedata;
2028 	struct mmc_host *host = mq->card->host;
2029 	unsigned long flags;
2030 
2031 	if (mmc_blk_rq_error(&mqrq->brq) ||
2032 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2033 		spin_lock_irqsave(&mq->lock, flags);
2034 		mq->recovery_needed = true;
2035 		mq->recovery_req = req;
2036 		spin_unlock_irqrestore(&mq->lock, flags);
2037 
2038 		host->cqe_ops->cqe_recovery_start(host);
2039 
2040 		schedule_work(&mq->recovery_work);
2041 		return;
2042 	}
2043 
2044 	mmc_blk_rw_reset_success(mq, req);
2045 
2046 	/*
2047 	 * Block layer timeouts race with completions which means the normal
2048 	 * completion path cannot be used during recovery.
2049 	 */
2050 	if (mq->in_recovery)
2051 		mmc_blk_cqe_complete_rq(mq, req);
2052 	else if (likely(!blk_should_fake_timeout(req->q)))
2053 		blk_mq_complete_request(req);
2054 }
2055 
2056 void mmc_blk_mq_complete(struct request *req)
2057 {
2058 	struct mmc_queue *mq = req->q->queuedata;
2059 	struct mmc_host *host = mq->card->host;
2060 
2061 	if (host->cqe_enabled)
2062 		mmc_blk_cqe_complete_rq(mq, req);
2063 	else if (likely(!blk_should_fake_timeout(req->q)))
2064 		mmc_blk_mq_complete_rq(mq, req);
2065 }
2066 
2067 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2068 				       struct request *req)
2069 {
2070 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2071 	struct mmc_host *host = mq->card->host;
2072 
2073 	if (mmc_blk_rq_error(&mqrq->brq) ||
2074 	    mmc_blk_card_busy(mq->card, req)) {
2075 		mmc_blk_mq_rw_recovery(mq, req);
2076 	} else {
2077 		mmc_blk_rw_reset_success(mq, req);
2078 		mmc_retune_release(host);
2079 	}
2080 
2081 	mmc_blk_urgent_bkops(mq, mqrq);
2082 }
2083 
2084 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2085 {
2086 	unsigned long flags;
2087 	bool put_card;
2088 
2089 	spin_lock_irqsave(&mq->lock, flags);
2090 
2091 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2092 
2093 	put_card = (mmc_tot_in_flight(mq) == 0);
2094 
2095 	spin_unlock_irqrestore(&mq->lock, flags);
2096 
2097 	if (put_card)
2098 		mmc_put_card(mq->card, &mq->ctx);
2099 }
2100 
2101 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2102 				bool can_sleep)
2103 {
2104 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2105 	struct mmc_request *mrq = &mqrq->brq.mrq;
2106 	struct mmc_host *host = mq->card->host;
2107 
2108 	mmc_post_req(host, mrq, 0);
2109 
2110 	/*
2111 	 * Block layer timeouts race with completions which means the normal
2112 	 * completion path cannot be used during recovery.
2113 	 */
2114 	if (mq->in_recovery) {
2115 		mmc_blk_mq_complete_rq(mq, req);
2116 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2117 		if (can_sleep)
2118 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2119 		else
2120 			blk_mq_complete_request(req);
2121 	}
2122 
2123 	mmc_blk_mq_dec_in_flight(mq, req);
2124 }
2125 
2126 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2127 {
2128 	struct request *req = mq->recovery_req;
2129 	struct mmc_host *host = mq->card->host;
2130 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2131 
2132 	mq->recovery_req = NULL;
2133 	mq->rw_wait = false;
2134 
2135 	if (mmc_blk_rq_error(&mqrq->brq)) {
2136 		mmc_retune_hold_now(host);
2137 		mmc_blk_mq_rw_recovery(mq, req);
2138 	}
2139 
2140 	mmc_blk_urgent_bkops(mq, mqrq);
2141 
2142 	mmc_blk_mq_post_req(mq, req, true);
2143 }
2144 
2145 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2146 					 struct request **prev_req)
2147 {
2148 	if (mmc_host_done_complete(mq->card->host))
2149 		return;
2150 
2151 	mutex_lock(&mq->complete_lock);
2152 
2153 	if (!mq->complete_req)
2154 		goto out_unlock;
2155 
2156 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2157 
2158 	if (prev_req)
2159 		*prev_req = mq->complete_req;
2160 	else
2161 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2162 
2163 	mq->complete_req = NULL;
2164 
2165 out_unlock:
2166 	mutex_unlock(&mq->complete_lock);
2167 }
2168 
2169 void mmc_blk_mq_complete_work(struct work_struct *work)
2170 {
2171 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2172 					    complete_work);
2173 
2174 	mmc_blk_mq_complete_prev_req(mq, NULL);
2175 }
2176 
2177 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2178 {
2179 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2180 						  brq.mrq);
2181 	struct request *req = mmc_queue_req_to_req(mqrq);
2182 	struct request_queue *q = req->q;
2183 	struct mmc_queue *mq = q->queuedata;
2184 	struct mmc_host *host = mq->card->host;
2185 	unsigned long flags;
2186 
2187 	if (!mmc_host_done_complete(host)) {
2188 		bool waiting;
2189 
2190 		/*
2191 		 * We cannot complete the request in this context, so record
2192 		 * that there is a request to complete, and that a following
2193 		 * request does not need to wait (although it does need to
2194 		 * complete complete_req first).
2195 		 */
2196 		spin_lock_irqsave(&mq->lock, flags);
2197 		mq->complete_req = req;
2198 		mq->rw_wait = false;
2199 		waiting = mq->waiting;
2200 		spin_unlock_irqrestore(&mq->lock, flags);
2201 
2202 		/*
2203 		 * If 'waiting' then the waiting task will complete this
2204 		 * request, otherwise queue a work to do it. Note that
2205 		 * complete_work may still race with the dispatch of a following
2206 		 * request.
2207 		 */
2208 		if (waiting)
2209 			wake_up(&mq->wait);
2210 		else
2211 			queue_work(mq->card->complete_wq, &mq->complete_work);
2212 
2213 		return;
2214 	}
2215 
2216 	/* Take the recovery path for errors or urgent background operations */
2217 	if (mmc_blk_rq_error(&mqrq->brq) ||
2218 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2219 		spin_lock_irqsave(&mq->lock, flags);
2220 		mq->recovery_needed = true;
2221 		mq->recovery_req = req;
2222 		spin_unlock_irqrestore(&mq->lock, flags);
2223 		wake_up(&mq->wait);
2224 		schedule_work(&mq->recovery_work);
2225 		return;
2226 	}
2227 
2228 	mmc_blk_rw_reset_success(mq, req);
2229 
2230 	mq->rw_wait = false;
2231 	wake_up(&mq->wait);
2232 
2233 	/* context unknown */
2234 	mmc_blk_mq_post_req(mq, req, false);
2235 }
2236 
2237 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2238 {
2239 	unsigned long flags;
2240 	bool done;
2241 
2242 	/*
2243 	 * Wait while there is another request in progress, but not if recovery
2244 	 * is needed. Also indicate whether there is a request waiting to start.
2245 	 */
2246 	spin_lock_irqsave(&mq->lock, flags);
2247 	if (mq->recovery_needed) {
2248 		*err = -EBUSY;
2249 		done = true;
2250 	} else {
2251 		done = !mq->rw_wait;
2252 	}
2253 	mq->waiting = !done;
2254 	spin_unlock_irqrestore(&mq->lock, flags);
2255 
2256 	return done;
2257 }
2258 
2259 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2260 {
2261 	int err = 0;
2262 
2263 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2264 
2265 	/* Always complete the previous request if there is one */
2266 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2267 
2268 	return err;
2269 }
2270 
2271 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2272 				  struct request *req)
2273 {
2274 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2275 	struct mmc_host *host = mq->card->host;
2276 	struct request *prev_req = NULL;
2277 	int err = 0;
2278 
2279 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2280 
2281 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2282 
2283 	mmc_pre_req(host, &mqrq->brq.mrq);
2284 
2285 	err = mmc_blk_rw_wait(mq, &prev_req);
2286 	if (err)
2287 		goto out_post_req;
2288 
2289 	mq->rw_wait = true;
2290 
2291 	err = mmc_start_request(host, &mqrq->brq.mrq);
2292 
2293 	if (prev_req)
2294 		mmc_blk_mq_post_req(mq, prev_req, true);
2295 
2296 	if (err)
2297 		mq->rw_wait = false;
2298 
2299 	/* Release re-tuning here where there is no synchronization required */
2300 	if (err || mmc_host_done_complete(host))
2301 		mmc_retune_release(host);
2302 
2303 out_post_req:
2304 	if (err)
2305 		mmc_post_req(host, &mqrq->brq.mrq, err);
2306 
2307 	return err;
2308 }
2309 
2310 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2311 {
2312 	if (host->cqe_enabled)
2313 		return host->cqe_ops->cqe_wait_for_idle(host);
2314 
2315 	return mmc_blk_rw_wait(mq, NULL);
2316 }
2317 
2318 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2319 {
2320 	struct mmc_blk_data *md = mq->blkdata;
2321 	struct mmc_card *card = md->queue.card;
2322 	struct mmc_host *host = card->host;
2323 	int ret;
2324 
2325 	ret = mmc_blk_part_switch(card, md->part_type);
2326 	if (ret)
2327 		return MMC_REQ_FAILED_TO_START;
2328 
2329 	switch (mmc_issue_type(mq, req)) {
2330 	case MMC_ISSUE_SYNC:
2331 		ret = mmc_blk_wait_for_idle(mq, host);
2332 		if (ret)
2333 			return MMC_REQ_BUSY;
2334 		switch (req_op(req)) {
2335 		case REQ_OP_DRV_IN:
2336 		case REQ_OP_DRV_OUT:
2337 			mmc_blk_issue_drv_op(mq, req);
2338 			break;
2339 		case REQ_OP_DISCARD:
2340 			mmc_blk_issue_discard_rq(mq, req);
2341 			break;
2342 		case REQ_OP_SECURE_ERASE:
2343 			mmc_blk_issue_secdiscard_rq(mq, req);
2344 			break;
2345 		case REQ_OP_WRITE_ZEROES:
2346 			mmc_blk_issue_trim_rq(mq, req);
2347 			break;
2348 		case REQ_OP_FLUSH:
2349 			mmc_blk_issue_flush(mq, req);
2350 			break;
2351 		default:
2352 			WARN_ON_ONCE(1);
2353 			return MMC_REQ_FAILED_TO_START;
2354 		}
2355 		return MMC_REQ_FINISHED;
2356 	case MMC_ISSUE_DCMD:
2357 	case MMC_ISSUE_ASYNC:
2358 		switch (req_op(req)) {
2359 		case REQ_OP_FLUSH:
2360 			if (!mmc_cache_enabled(host)) {
2361 				blk_mq_end_request(req, BLK_STS_OK);
2362 				return MMC_REQ_FINISHED;
2363 			}
2364 			ret = mmc_blk_cqe_issue_flush(mq, req);
2365 			break;
2366 		case REQ_OP_READ:
2367 		case REQ_OP_WRITE:
2368 			if (host->cqe_enabled)
2369 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2370 			else
2371 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2372 			break;
2373 		default:
2374 			WARN_ON_ONCE(1);
2375 			ret = -EINVAL;
2376 		}
2377 		if (!ret)
2378 			return MMC_REQ_STARTED;
2379 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2380 	default:
2381 		WARN_ON_ONCE(1);
2382 		return MMC_REQ_FAILED_TO_START;
2383 	}
2384 }
2385 
2386 static inline int mmc_blk_readonly(struct mmc_card *card)
2387 {
2388 	return mmc_card_readonly(card) ||
2389 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2390 }
2391 
2392 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2393 					      struct device *parent,
2394 					      sector_t size,
2395 					      bool default_ro,
2396 					      const char *subname,
2397 					      int area_type,
2398 					      unsigned int part_type)
2399 {
2400 	struct mmc_blk_data *md;
2401 	int devidx, ret;
2402 	char cap_str[10];
2403 	bool cache_enabled = false;
2404 	bool fua_enabled = false;
2405 
2406 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2407 	if (devidx < 0) {
2408 		/*
2409 		 * We get -ENOSPC because there are no more any available
2410 		 * devidx. The reason may be that, either userspace haven't yet
2411 		 * unmounted the partitions, which postpones mmc_blk_release()
2412 		 * from being called, or the device has more partitions than
2413 		 * what we support.
2414 		 */
2415 		if (devidx == -ENOSPC)
2416 			dev_err(mmc_dev(card->host),
2417 				"no more device IDs available\n");
2418 
2419 		return ERR_PTR(devidx);
2420 	}
2421 
2422 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2423 	if (!md) {
2424 		ret = -ENOMEM;
2425 		goto out;
2426 	}
2427 
2428 	md->area_type = area_type;
2429 
2430 	/*
2431 	 * Set the read-only status based on the supported commands
2432 	 * and the write protect switch.
2433 	 */
2434 	md->read_only = mmc_blk_readonly(card);
2435 
2436 	md->disk = mmc_init_queue(&md->queue, card);
2437 	if (IS_ERR(md->disk)) {
2438 		ret = PTR_ERR(md->disk);
2439 		goto err_kfree;
2440 	}
2441 
2442 	INIT_LIST_HEAD(&md->part);
2443 	INIT_LIST_HEAD(&md->rpmbs);
2444 	kref_init(&md->kref);
2445 
2446 	md->queue.blkdata = md;
2447 	md->part_type = part_type;
2448 
2449 	md->disk->major	= MMC_BLOCK_MAJOR;
2450 	md->disk->minors = perdev_minors;
2451 	md->disk->first_minor = devidx * perdev_minors;
2452 	md->disk->fops = &mmc_bdops;
2453 	md->disk->private_data = md;
2454 	md->parent = parent;
2455 	set_disk_ro(md->disk, md->read_only || default_ro);
2456 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2457 		md->disk->flags |= GENHD_FL_NO_PART;
2458 
2459 	/*
2460 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2461 	 *
2462 	 * - be set for removable media with permanent block devices
2463 	 * - be unset for removable block devices with permanent media
2464 	 *
2465 	 * Since MMC block devices clearly fall under the second
2466 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2467 	 * should use the block device creation/destruction hotplug
2468 	 * messages to tell when the card is present.
2469 	 */
2470 
2471 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2472 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2473 
2474 	set_capacity(md->disk, size);
2475 
2476 	if (mmc_host_cmd23(card->host)) {
2477 		if ((mmc_card_mmc(card) &&
2478 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2479 		    (mmc_card_sd(card) &&
2480 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2481 			md->flags |= MMC_BLK_CMD23;
2482 	}
2483 
2484 	if (md->flags & MMC_BLK_CMD23 &&
2485 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2486 	     card->ext_csd.rel_sectors)) {
2487 		md->flags |= MMC_BLK_REL_WR;
2488 		fua_enabled = true;
2489 		cache_enabled = true;
2490 	}
2491 	if (mmc_cache_enabled(card->host))
2492 		cache_enabled  = true;
2493 
2494 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2495 
2496 	string_get_size((u64)size, 512, STRING_UNITS_2,
2497 			cap_str, sizeof(cap_str));
2498 	pr_info("%s: %s %s %s %s\n",
2499 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2500 		cap_str, md->read_only ? "(ro)" : "");
2501 
2502 	/* used in ->open, must be set before add_disk: */
2503 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2504 		dev_set_drvdata(&card->dev, md);
2505 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2506 	if (ret)
2507 		goto err_put_disk;
2508 	return md;
2509 
2510  err_put_disk:
2511 	put_disk(md->disk);
2512 	blk_mq_free_tag_set(&md->queue.tag_set);
2513  err_kfree:
2514 	kfree(md);
2515  out:
2516 	ida_simple_remove(&mmc_blk_ida, devidx);
2517 	return ERR_PTR(ret);
2518 }
2519 
2520 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2521 {
2522 	sector_t size;
2523 
2524 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2525 		/*
2526 		 * The EXT_CSD sector count is in number or 512 byte
2527 		 * sectors.
2528 		 */
2529 		size = card->ext_csd.sectors;
2530 	} else {
2531 		/*
2532 		 * The CSD capacity field is in units of read_blkbits.
2533 		 * set_capacity takes units of 512 bytes.
2534 		 */
2535 		size = (typeof(sector_t))card->csd.capacity
2536 			<< (card->csd.read_blkbits - 9);
2537 	}
2538 
2539 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2540 					MMC_BLK_DATA_AREA_MAIN, 0);
2541 }
2542 
2543 static int mmc_blk_alloc_part(struct mmc_card *card,
2544 			      struct mmc_blk_data *md,
2545 			      unsigned int part_type,
2546 			      sector_t size,
2547 			      bool default_ro,
2548 			      const char *subname,
2549 			      int area_type)
2550 {
2551 	struct mmc_blk_data *part_md;
2552 
2553 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2554 				    subname, area_type, part_type);
2555 	if (IS_ERR(part_md))
2556 		return PTR_ERR(part_md);
2557 	list_add(&part_md->part, &md->part);
2558 
2559 	return 0;
2560 }
2561 
2562 /**
2563  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2564  * @filp: the character device file
2565  * @cmd: the ioctl() command
2566  * @arg: the argument from userspace
2567  *
2568  * This will essentially just redirect the ioctl()s coming in over to
2569  * the main block device spawning the RPMB character device.
2570  */
2571 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2572 			   unsigned long arg)
2573 {
2574 	struct mmc_rpmb_data *rpmb = filp->private_data;
2575 	int ret;
2576 
2577 	switch (cmd) {
2578 	case MMC_IOC_CMD:
2579 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2580 					(struct mmc_ioc_cmd __user *)arg,
2581 					rpmb);
2582 		break;
2583 	case MMC_IOC_MULTI_CMD:
2584 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2585 					(struct mmc_ioc_multi_cmd __user *)arg,
2586 					rpmb);
2587 		break;
2588 	default:
2589 		ret = -EINVAL;
2590 		break;
2591 	}
2592 
2593 	return ret;
2594 }
2595 
2596 #ifdef CONFIG_COMPAT
2597 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2598 			      unsigned long arg)
2599 {
2600 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2601 }
2602 #endif
2603 
2604 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2605 {
2606 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2607 						  struct mmc_rpmb_data, chrdev);
2608 
2609 	get_device(&rpmb->dev);
2610 	filp->private_data = rpmb;
2611 	mmc_blk_get(rpmb->md->disk);
2612 
2613 	return nonseekable_open(inode, filp);
2614 }
2615 
2616 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2617 {
2618 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2619 						  struct mmc_rpmb_data, chrdev);
2620 
2621 	mmc_blk_put(rpmb->md);
2622 	put_device(&rpmb->dev);
2623 
2624 	return 0;
2625 }
2626 
2627 static const struct file_operations mmc_rpmb_fileops = {
2628 	.release = mmc_rpmb_chrdev_release,
2629 	.open = mmc_rpmb_chrdev_open,
2630 	.owner = THIS_MODULE,
2631 	.llseek = no_llseek,
2632 	.unlocked_ioctl = mmc_rpmb_ioctl,
2633 #ifdef CONFIG_COMPAT
2634 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2635 #endif
2636 };
2637 
2638 static void mmc_blk_rpmb_device_release(struct device *dev)
2639 {
2640 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2641 
2642 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2643 	kfree(rpmb);
2644 }
2645 
2646 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2647 				   struct mmc_blk_data *md,
2648 				   unsigned int part_index,
2649 				   sector_t size,
2650 				   const char *subname)
2651 {
2652 	int devidx, ret;
2653 	char rpmb_name[DISK_NAME_LEN];
2654 	char cap_str[10];
2655 	struct mmc_rpmb_data *rpmb;
2656 
2657 	/* This creates the minor number for the RPMB char device */
2658 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2659 	if (devidx < 0)
2660 		return devidx;
2661 
2662 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2663 	if (!rpmb) {
2664 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2665 		return -ENOMEM;
2666 	}
2667 
2668 	snprintf(rpmb_name, sizeof(rpmb_name),
2669 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2670 
2671 	rpmb->id = devidx;
2672 	rpmb->part_index = part_index;
2673 	rpmb->dev.init_name = rpmb_name;
2674 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2675 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2676 	rpmb->dev.parent = &card->dev;
2677 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2678 	device_initialize(&rpmb->dev);
2679 	dev_set_drvdata(&rpmb->dev, rpmb);
2680 	rpmb->md = md;
2681 
2682 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2683 	rpmb->chrdev.owner = THIS_MODULE;
2684 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2685 	if (ret) {
2686 		pr_err("%s: could not add character device\n", rpmb_name);
2687 		goto out_put_device;
2688 	}
2689 
2690 	list_add(&rpmb->node, &md->rpmbs);
2691 
2692 	string_get_size((u64)size, 512, STRING_UNITS_2,
2693 			cap_str, sizeof(cap_str));
2694 
2695 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2696 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2697 		MAJOR(mmc_rpmb_devt), rpmb->id);
2698 
2699 	return 0;
2700 
2701 out_put_device:
2702 	put_device(&rpmb->dev);
2703 	return ret;
2704 }
2705 
2706 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2707 
2708 {
2709 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2710 	put_device(&rpmb->dev);
2711 }
2712 
2713 /* MMC Physical partitions consist of two boot partitions and
2714  * up to four general purpose partitions.
2715  * For each partition enabled in EXT_CSD a block device will be allocatedi
2716  * to provide access to the partition.
2717  */
2718 
2719 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2720 {
2721 	int idx, ret;
2722 
2723 	if (!mmc_card_mmc(card))
2724 		return 0;
2725 
2726 	for (idx = 0; idx < card->nr_parts; idx++) {
2727 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2728 			/*
2729 			 * RPMB partitions does not provide block access, they
2730 			 * are only accessed using ioctl():s. Thus create
2731 			 * special RPMB block devices that do not have a
2732 			 * backing block queue for these.
2733 			 */
2734 			ret = mmc_blk_alloc_rpmb_part(card, md,
2735 				card->part[idx].part_cfg,
2736 				card->part[idx].size >> 9,
2737 				card->part[idx].name);
2738 			if (ret)
2739 				return ret;
2740 		} else if (card->part[idx].size) {
2741 			ret = mmc_blk_alloc_part(card, md,
2742 				card->part[idx].part_cfg,
2743 				card->part[idx].size >> 9,
2744 				card->part[idx].force_ro,
2745 				card->part[idx].name,
2746 				card->part[idx].area_type);
2747 			if (ret)
2748 				return ret;
2749 		}
2750 	}
2751 
2752 	return 0;
2753 }
2754 
2755 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2756 {
2757 	/*
2758 	 * Flush remaining requests and free queues. It is freeing the queue
2759 	 * that stops new requests from being accepted.
2760 	 */
2761 	del_gendisk(md->disk);
2762 	mmc_cleanup_queue(&md->queue);
2763 	mmc_blk_put(md);
2764 }
2765 
2766 static void mmc_blk_remove_parts(struct mmc_card *card,
2767 				 struct mmc_blk_data *md)
2768 {
2769 	struct list_head *pos, *q;
2770 	struct mmc_blk_data *part_md;
2771 	struct mmc_rpmb_data *rpmb;
2772 
2773 	/* Remove RPMB partitions */
2774 	list_for_each_safe(pos, q, &md->rpmbs) {
2775 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2776 		list_del(pos);
2777 		mmc_blk_remove_rpmb_part(rpmb);
2778 	}
2779 	/* Remove block partitions */
2780 	list_for_each_safe(pos, q, &md->part) {
2781 		part_md = list_entry(pos, struct mmc_blk_data, part);
2782 		list_del(pos);
2783 		mmc_blk_remove_req(part_md);
2784 	}
2785 }
2786 
2787 #ifdef CONFIG_DEBUG_FS
2788 
2789 static int mmc_dbg_card_status_get(void *data, u64 *val)
2790 {
2791 	struct mmc_card *card = data;
2792 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2793 	struct mmc_queue *mq = &md->queue;
2794 	struct request *req;
2795 	int ret;
2796 
2797 	/* Ask the block layer about the card status */
2798 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2799 	if (IS_ERR(req))
2800 		return PTR_ERR(req);
2801 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2802 	blk_execute_rq(req, false);
2803 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2804 	if (ret >= 0) {
2805 		*val = ret;
2806 		ret = 0;
2807 	}
2808 	blk_mq_free_request(req);
2809 
2810 	return ret;
2811 }
2812 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2813 			 NULL, "%08llx\n");
2814 
2815 /* That is two digits * 512 + 1 for newline */
2816 #define EXT_CSD_STR_LEN 1025
2817 
2818 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2819 {
2820 	struct mmc_card *card = inode->i_private;
2821 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2822 	struct mmc_queue *mq = &md->queue;
2823 	struct request *req;
2824 	char *buf;
2825 	ssize_t n = 0;
2826 	u8 *ext_csd;
2827 	int err, i;
2828 
2829 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2830 	if (!buf)
2831 		return -ENOMEM;
2832 
2833 	/* Ask the block layer for the EXT CSD */
2834 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2835 	if (IS_ERR(req)) {
2836 		err = PTR_ERR(req);
2837 		goto out_free;
2838 	}
2839 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2840 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2841 	blk_execute_rq(req, false);
2842 	err = req_to_mmc_queue_req(req)->drv_op_result;
2843 	blk_mq_free_request(req);
2844 	if (err) {
2845 		pr_err("FAILED %d\n", err);
2846 		goto out_free;
2847 	}
2848 
2849 	for (i = 0; i < 512; i++)
2850 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2851 	n += sprintf(buf + n, "\n");
2852 
2853 	if (n != EXT_CSD_STR_LEN) {
2854 		err = -EINVAL;
2855 		kfree(ext_csd);
2856 		goto out_free;
2857 	}
2858 
2859 	filp->private_data = buf;
2860 	kfree(ext_csd);
2861 	return 0;
2862 
2863 out_free:
2864 	kfree(buf);
2865 	return err;
2866 }
2867 
2868 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2869 				size_t cnt, loff_t *ppos)
2870 {
2871 	char *buf = filp->private_data;
2872 
2873 	return simple_read_from_buffer(ubuf, cnt, ppos,
2874 				       buf, EXT_CSD_STR_LEN);
2875 }
2876 
2877 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2878 {
2879 	kfree(file->private_data);
2880 	return 0;
2881 }
2882 
2883 static const struct file_operations mmc_dbg_ext_csd_fops = {
2884 	.open		= mmc_ext_csd_open,
2885 	.read		= mmc_ext_csd_read,
2886 	.release	= mmc_ext_csd_release,
2887 	.llseek		= default_llseek,
2888 };
2889 
2890 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2891 {
2892 	struct dentry *root;
2893 
2894 	if (!card->debugfs_root)
2895 		return 0;
2896 
2897 	root = card->debugfs_root;
2898 
2899 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2900 		md->status_dentry =
2901 			debugfs_create_file_unsafe("status", 0400, root,
2902 						   card,
2903 						   &mmc_dbg_card_status_fops);
2904 		if (!md->status_dentry)
2905 			return -EIO;
2906 	}
2907 
2908 	if (mmc_card_mmc(card)) {
2909 		md->ext_csd_dentry =
2910 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2911 					    &mmc_dbg_ext_csd_fops);
2912 		if (!md->ext_csd_dentry)
2913 			return -EIO;
2914 	}
2915 
2916 	return 0;
2917 }
2918 
2919 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2920 				   struct mmc_blk_data *md)
2921 {
2922 	if (!card->debugfs_root)
2923 		return;
2924 
2925 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2926 		debugfs_remove(md->status_dentry);
2927 		md->status_dentry = NULL;
2928 	}
2929 
2930 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2931 		debugfs_remove(md->ext_csd_dentry);
2932 		md->ext_csd_dentry = NULL;
2933 	}
2934 }
2935 
2936 #else
2937 
2938 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2939 {
2940 	return 0;
2941 }
2942 
2943 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2944 				   struct mmc_blk_data *md)
2945 {
2946 }
2947 
2948 #endif /* CONFIG_DEBUG_FS */
2949 
2950 static int mmc_blk_probe(struct mmc_card *card)
2951 {
2952 	struct mmc_blk_data *md;
2953 	int ret = 0;
2954 
2955 	/*
2956 	 * Check that the card supports the command class(es) we need.
2957 	 */
2958 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2959 		return -ENODEV;
2960 
2961 	mmc_fixup_device(card, mmc_blk_fixups);
2962 
2963 	card->complete_wq = alloc_workqueue("mmc_complete",
2964 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2965 	if (!card->complete_wq) {
2966 		pr_err("Failed to create mmc completion workqueue");
2967 		return -ENOMEM;
2968 	}
2969 
2970 	md = mmc_blk_alloc(card);
2971 	if (IS_ERR(md)) {
2972 		ret = PTR_ERR(md);
2973 		goto out_free;
2974 	}
2975 
2976 	ret = mmc_blk_alloc_parts(card, md);
2977 	if (ret)
2978 		goto out;
2979 
2980 	/* Add two debugfs entries */
2981 	mmc_blk_add_debugfs(card, md);
2982 
2983 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2984 	pm_runtime_use_autosuspend(&card->dev);
2985 
2986 	/*
2987 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2988 	 * decision to be taken during the SDIO init sequence instead.
2989 	 */
2990 	if (!mmc_card_sd_combo(card)) {
2991 		pm_runtime_set_active(&card->dev);
2992 		pm_runtime_enable(&card->dev);
2993 	}
2994 
2995 	return 0;
2996 
2997 out:
2998 	mmc_blk_remove_parts(card, md);
2999 	mmc_blk_remove_req(md);
3000 out_free:
3001 	destroy_workqueue(card->complete_wq);
3002 	return ret;
3003 }
3004 
3005 static void mmc_blk_remove(struct mmc_card *card)
3006 {
3007 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3008 
3009 	mmc_blk_remove_debugfs(card, md);
3010 	mmc_blk_remove_parts(card, md);
3011 	pm_runtime_get_sync(&card->dev);
3012 	if (md->part_curr != md->part_type) {
3013 		mmc_claim_host(card->host);
3014 		mmc_blk_part_switch(card, md->part_type);
3015 		mmc_release_host(card->host);
3016 	}
3017 	if (!mmc_card_sd_combo(card))
3018 		pm_runtime_disable(&card->dev);
3019 	pm_runtime_put_noidle(&card->dev);
3020 	mmc_blk_remove_req(md);
3021 	dev_set_drvdata(&card->dev, NULL);
3022 	destroy_workqueue(card->complete_wq);
3023 }
3024 
3025 static int _mmc_blk_suspend(struct mmc_card *card)
3026 {
3027 	struct mmc_blk_data *part_md;
3028 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3029 
3030 	if (md) {
3031 		mmc_queue_suspend(&md->queue);
3032 		list_for_each_entry(part_md, &md->part, part) {
3033 			mmc_queue_suspend(&part_md->queue);
3034 		}
3035 	}
3036 	return 0;
3037 }
3038 
3039 static void mmc_blk_shutdown(struct mmc_card *card)
3040 {
3041 	_mmc_blk_suspend(card);
3042 }
3043 
3044 #ifdef CONFIG_PM_SLEEP
3045 static int mmc_blk_suspend(struct device *dev)
3046 {
3047 	struct mmc_card *card = mmc_dev_to_card(dev);
3048 
3049 	return _mmc_blk_suspend(card);
3050 }
3051 
3052 static int mmc_blk_resume(struct device *dev)
3053 {
3054 	struct mmc_blk_data *part_md;
3055 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3056 
3057 	if (md) {
3058 		/*
3059 		 * Resume involves the card going into idle state,
3060 		 * so current partition is always the main one.
3061 		 */
3062 		md->part_curr = md->part_type;
3063 		mmc_queue_resume(&md->queue);
3064 		list_for_each_entry(part_md, &md->part, part) {
3065 			mmc_queue_resume(&part_md->queue);
3066 		}
3067 	}
3068 	return 0;
3069 }
3070 #endif
3071 
3072 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3073 
3074 static struct mmc_driver mmc_driver = {
3075 	.drv		= {
3076 		.name	= "mmcblk",
3077 		.pm	= &mmc_blk_pm_ops,
3078 	},
3079 	.probe		= mmc_blk_probe,
3080 	.remove		= mmc_blk_remove,
3081 	.shutdown	= mmc_blk_shutdown,
3082 };
3083 
3084 static int __init mmc_blk_init(void)
3085 {
3086 	int res;
3087 
3088 	res  = bus_register(&mmc_rpmb_bus_type);
3089 	if (res < 0) {
3090 		pr_err("mmcblk: could not register RPMB bus type\n");
3091 		return res;
3092 	}
3093 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3094 	if (res < 0) {
3095 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3096 		goto out_bus_unreg;
3097 	}
3098 
3099 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3100 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3101 
3102 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3103 
3104 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3105 	if (res)
3106 		goto out_chrdev_unreg;
3107 
3108 	res = mmc_register_driver(&mmc_driver);
3109 	if (res)
3110 		goto out_blkdev_unreg;
3111 
3112 	return 0;
3113 
3114 out_blkdev_unreg:
3115 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3116 out_chrdev_unreg:
3117 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3118 out_bus_unreg:
3119 	bus_unregister(&mmc_rpmb_bus_type);
3120 	return res;
3121 }
3122 
3123 static void __exit mmc_blk_exit(void)
3124 {
3125 	mmc_unregister_driver(&mmc_driver);
3126 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3127 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3128 	bus_unregister(&mmc_rpmb_bus_type);
3129 }
3130 
3131 module_init(mmc_blk_init);
3132 module_exit(mmc_blk_exit);
3133 
3134 MODULE_LICENSE("GPL");
3135 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3136 
3137