xref: /linux/drivers/mmc/core/block.c (revision 9cc8d0ecdd2aad42e377e971e3bb114339df609e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string.h>
37 #include <linux/string_helpers.h>
38 #include <linux/delay.h>
39 #include <linux/capability.h>
40 #include <linux/compat.h>
41 #include <linux/pm_runtime.h>
42 #include <linux/idr.h>
43 #include <linux/debugfs.h>
44 #include <linux/rpmb.h>
45 
46 #include <linux/mmc/ioctl.h>
47 #include <linux/mmc/card.h>
48 #include <linux/mmc/host.h>
49 #include <linux/mmc/mmc.h>
50 #include <linux/mmc/sd.h>
51 
52 #include <linux/uaccess.h>
53 #include <linux/unaligned.h>
54 
55 #include "queue.h"
56 #include "block.h"
57 #include "core.h"
58 #include "card.h"
59 #include "crypto.h"
60 #include "host.h"
61 #include "bus.h"
62 #include "mmc_ops.h"
63 #include "quirks.h"
64 #include "sd_ops.h"
65 
66 MODULE_ALIAS("mmc:block");
67 #ifdef MODULE_PARAM_PREFIX
68 #undef MODULE_PARAM_PREFIX
69 #endif
70 #define MODULE_PARAM_PREFIX "mmcblk."
71 
72 /*
73  * Set a 10 second timeout for polling write request busy state. Note, mmc core
74  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
75  * second software timer to timeout the whole request, so 10 seconds should be
76  * ample.
77  */
78 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
81 
82 /**
83  * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51)
84  *
85  * @stuff        : stuff bytes
86  * @key_mac      : The authentication key or the message authentication
87  *                 code (MAC) depending on the request/response type.
88  *                 The MAC will be delivered in the last (or the only)
89  *                 block of data.
90  * @data         : Data to be written or read by signed access.
91  * @nonce        : Random number generated by the host for the requests
92  *                 and copied to the response by the RPMB engine.
93  * @write_counter: Counter value for the total amount of the successful
94  *                 authenticated data write requests made by the host.
95  * @addr         : Address of the data to be programmed to or read
96  *                 from the RPMB. Address is the serial number of
97  *                 the accessed block (half sector 256B).
98  * @block_count  : Number of blocks (half sectors, 256B) requested to be
99  *                 read/programmed.
100  * @result       : Includes information about the status of the write counter
101  *                 (valid, expired) and result of the access made to the RPMB.
102  * @req_resp     : Defines the type of request and response to/from the memory.
103  *
104  * The stuff bytes and big-endian properties are modeled to fit to the spec.
105  */
106 struct rpmb_frame {
107 	u8     stuff[196];
108 	u8     key_mac[32];
109 	u8     data[256];
110 	u8     nonce[16];
111 	__be32 write_counter;
112 	__be16 addr;
113 	__be16 block_count;
114 	__be16 result;
115 	__be16 req_resp;
116 } __packed;
117 
118 #define RPMB_PROGRAM_KEY       0x1    /* Program RPMB Authentication Key */
119 #define RPMB_GET_WRITE_COUNTER 0x2    /* Read RPMB write counter */
120 #define RPMB_WRITE_DATA        0x3    /* Write data to RPMB partition */
121 #define RPMB_READ_DATA         0x4    /* Read data from RPMB partition */
122 #define RPMB_RESULT_READ       0x5    /* Read result request  (Internal) */
123 
124 static DEFINE_MUTEX(block_mutex);
125 
126 /*
127  * The defaults come from config options but can be overriden by module
128  * or bootarg options.
129  */
130 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
131 
132 /*
133  * We've only got one major, so number of mmcblk devices is
134  * limited to (1 << 20) / number of minors per device.  It is also
135  * limited by the MAX_DEVICES below.
136  */
137 static int max_devices;
138 
139 #define MAX_DEVICES 256
140 
141 static DEFINE_IDA(mmc_blk_ida);
142 static DEFINE_IDA(mmc_rpmb_ida);
143 
144 struct mmc_blk_busy_data {
145 	struct mmc_card *card;
146 	u32 status;
147 };
148 
149 /*
150  * There is one mmc_blk_data per slot.
151  */
152 struct mmc_blk_data {
153 	struct device	*parent;
154 	struct gendisk	*disk;
155 	struct mmc_queue queue;
156 	struct list_head part;
157 	struct list_head rpmbs;
158 
159 	unsigned int	flags;
160 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
161 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
162 
163 	struct kref	kref;
164 	unsigned int	read_only;
165 	unsigned int	part_type;
166 	unsigned int	reset_done;
167 #define MMC_BLK_READ		BIT(0)
168 #define MMC_BLK_WRITE		BIT(1)
169 #define MMC_BLK_DISCARD		BIT(2)
170 #define MMC_BLK_SECDISCARD	BIT(3)
171 #define MMC_BLK_CQE_RECOVERY	BIT(4)
172 #define MMC_BLK_TRIM		BIT(5)
173 
174 	/*
175 	 * Only set in main mmc_blk_data associated
176 	 * with mmc_card with dev_set_drvdata, and keeps
177 	 * track of the current selected device partition.
178 	 */
179 	unsigned int	part_curr;
180 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
181 	int	area_type;
182 
183 	/* debugfs files (only in main mmc_blk_data) */
184 	struct dentry *status_dentry;
185 	struct dentry *ext_csd_dentry;
186 };
187 
188 /* Device type for RPMB character devices */
189 static dev_t mmc_rpmb_devt;
190 
191 /* Bus type for RPMB character devices */
192 static const struct bus_type mmc_rpmb_bus_type = {
193 	.name = "mmc_rpmb",
194 };
195 
196 /**
197  * struct mmc_rpmb_data - special RPMB device type for these areas
198  * @dev: the device for the RPMB area
199  * @chrdev: character device for the RPMB area
200  * @id: unique device ID number
201  * @part_index: partition index (0 on first)
202  * @md: parent MMC block device
203  * @rdev: registered RPMB device
204  * @node: list item, so we can put this device on a list
205  */
206 struct mmc_rpmb_data {
207 	struct device dev;
208 	struct cdev chrdev;
209 	int id;
210 	unsigned int part_index;
211 	struct mmc_blk_data *md;
212 	struct rpmb_dev *rdev;
213 	struct list_head node;
214 };
215 
216 static DEFINE_MUTEX(open_lock);
217 
218 module_param(perdev_minors, int, 0444);
219 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
220 
221 static inline int mmc_blk_part_switch(struct mmc_card *card,
222 				      unsigned int part_type);
223 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
224 			       struct mmc_card *card,
225 			       int recovery_mode,
226 			       struct mmc_queue *mq);
227 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
228 static int mmc_spi_err_check(struct mmc_card *card);
229 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
230 
231 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
232 {
233 	struct mmc_blk_data *md;
234 
235 	mutex_lock(&open_lock);
236 	md = disk->private_data;
237 	if (md && !kref_get_unless_zero(&md->kref))
238 		md = NULL;
239 	mutex_unlock(&open_lock);
240 
241 	return md;
242 }
243 
244 static inline int mmc_get_devidx(struct gendisk *disk)
245 {
246 	int devidx = disk->first_minor / perdev_minors;
247 	return devidx;
248 }
249 
250 static void mmc_blk_kref_release(struct kref *ref)
251 {
252 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
253 	int devidx;
254 
255 	devidx = mmc_get_devidx(md->disk);
256 	ida_free(&mmc_blk_ida, devidx);
257 
258 	mutex_lock(&open_lock);
259 	md->disk->private_data = NULL;
260 	mutex_unlock(&open_lock);
261 
262 	put_disk(md->disk);
263 	kfree(md);
264 }
265 
266 static void mmc_blk_put(struct mmc_blk_data *md)
267 {
268 	kref_put(&md->kref, mmc_blk_kref_release);
269 }
270 
271 static ssize_t power_ro_lock_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	int ret;
275 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
276 	struct mmc_card *card = md->queue.card;
277 	int locked = 0;
278 
279 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
280 		locked = 2;
281 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
282 		locked = 1;
283 
284 	ret = sysfs_emit(buf, "%d\n", locked);
285 
286 	mmc_blk_put(md);
287 
288 	return ret;
289 }
290 
291 static ssize_t power_ro_lock_store(struct device *dev,
292 		struct device_attribute *attr, const char *buf, size_t count)
293 {
294 	int ret;
295 	struct mmc_blk_data *md, *part_md;
296 	struct mmc_queue *mq;
297 	struct request *req;
298 	unsigned long set;
299 
300 	if (kstrtoul(buf, 0, &set))
301 		return -EINVAL;
302 
303 	if (set != 1)
304 		return count;
305 
306 	md = mmc_blk_get(dev_to_disk(dev));
307 	mq = &md->queue;
308 
309 	/* Dispatch locking to the block layer */
310 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
311 	if (IS_ERR(req)) {
312 		count = PTR_ERR(req);
313 		goto out_put;
314 	}
315 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
316 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
317 	blk_execute_rq(req, false);
318 	ret = req_to_mmc_queue_req(req)->drv_op_result;
319 	blk_mq_free_request(req);
320 
321 	if (!ret) {
322 		pr_info("%s: Locking boot partition ro until next power on\n",
323 			md->disk->disk_name);
324 		set_disk_ro(md->disk, 1);
325 
326 		list_for_each_entry(part_md, &md->part, part)
327 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
328 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
329 				set_disk_ro(part_md->disk, 1);
330 			}
331 	}
332 out_put:
333 	mmc_blk_put(md);
334 	return count;
335 }
336 
337 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
338 		power_ro_lock_show, power_ro_lock_store);
339 
340 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
341 			     char *buf)
342 {
343 	int ret;
344 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
345 
346 	ret = sysfs_emit(buf, "%d\n",
347 			 get_disk_ro(dev_to_disk(dev)) ^
348 			 md->read_only);
349 	mmc_blk_put(md);
350 	return ret;
351 }
352 
353 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
354 			      const char *buf, size_t count)
355 {
356 	int ret;
357 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
358 	unsigned long set;
359 
360 	if (kstrtoul(buf, 0, &set)) {
361 		ret = -EINVAL;
362 		goto out;
363 	}
364 
365 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
366 	ret = count;
367 out:
368 	mmc_blk_put(md);
369 	return ret;
370 }
371 
372 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
373 
374 static struct attribute *mmc_disk_attrs[] = {
375 	&dev_attr_force_ro.attr,
376 	&dev_attr_ro_lock_until_next_power_on.attr,
377 	NULL,
378 };
379 
380 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
381 		struct attribute *a, int n)
382 {
383 	struct device *dev = kobj_to_dev(kobj);
384 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
385 	umode_t mode = a->mode;
386 
387 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
388 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
389 	    md->queue.card->ext_csd.boot_ro_lockable) {
390 		mode = S_IRUGO;
391 		if (!(md->queue.card->ext_csd.boot_ro_lock &
392 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
393 			mode |= S_IWUSR;
394 	}
395 
396 	mmc_blk_put(md);
397 	return mode;
398 }
399 
400 static const struct attribute_group mmc_disk_attr_group = {
401 	.is_visible	= mmc_disk_attrs_is_visible,
402 	.attrs		= mmc_disk_attrs,
403 };
404 
405 static const struct attribute_group *mmc_disk_attr_groups[] = {
406 	&mmc_disk_attr_group,
407 	NULL,
408 };
409 
410 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
411 {
412 	struct mmc_blk_data *md = mmc_blk_get(disk);
413 	int ret = -ENXIO;
414 
415 	mutex_lock(&block_mutex);
416 	if (md) {
417 		ret = 0;
418 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
419 			mmc_blk_put(md);
420 			ret = -EROFS;
421 		}
422 	}
423 	mutex_unlock(&block_mutex);
424 
425 	return ret;
426 }
427 
428 static void mmc_blk_release(struct gendisk *disk)
429 {
430 	struct mmc_blk_data *md = disk->private_data;
431 
432 	mutex_lock(&block_mutex);
433 	mmc_blk_put(md);
434 	mutex_unlock(&block_mutex);
435 }
436 
437 static int
438 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
439 {
440 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
441 	geo->heads = 4;
442 	geo->sectors = 16;
443 	return 0;
444 }
445 
446 struct mmc_blk_ioc_data {
447 	struct mmc_ioc_cmd ic;
448 	unsigned char *buf;
449 	u64 buf_bytes;
450 	unsigned int flags;
451 #define MMC_BLK_IOC_DROP	BIT(0)	/* drop this mrq */
452 #define MMC_BLK_IOC_SBC	BIT(1)	/* use mrq.sbc */
453 
454 	struct mmc_rpmb_data *rpmb;
455 };
456 
457 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
458 	struct mmc_ioc_cmd __user *user)
459 {
460 	struct mmc_blk_ioc_data *idata;
461 	int err;
462 
463 	idata = kzalloc(sizeof(*idata), GFP_KERNEL);
464 	if (!idata) {
465 		err = -ENOMEM;
466 		goto out;
467 	}
468 
469 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
470 		err = -EFAULT;
471 		goto idata_err;
472 	}
473 
474 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
475 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
476 		err = -EOVERFLOW;
477 		goto idata_err;
478 	}
479 
480 	if (!idata->buf_bytes) {
481 		idata->buf = NULL;
482 		return idata;
483 	}
484 
485 	idata->buf = memdup_user((void __user *)(unsigned long)
486 				 idata->ic.data_ptr, idata->buf_bytes);
487 	if (IS_ERR(idata->buf)) {
488 		err = PTR_ERR(idata->buf);
489 		goto idata_err;
490 	}
491 
492 	return idata;
493 
494 idata_err:
495 	kfree(idata);
496 out:
497 	return ERR_PTR(err);
498 }
499 
500 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
501 				      struct mmc_blk_ioc_data *idata)
502 {
503 	struct mmc_ioc_cmd *ic = &idata->ic;
504 
505 	if (copy_to_user(&(ic_ptr->response), ic->response,
506 			 sizeof(ic->response)))
507 		return -EFAULT;
508 
509 	if (!idata->ic.write_flag) {
510 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
511 				 idata->buf, idata->buf_bytes))
512 			return -EFAULT;
513 	}
514 
515 	return 0;
516 }
517 
518 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
519 			       struct mmc_blk_ioc_data **idatas, int i)
520 {
521 	struct mmc_command cmd = {}, sbc = {};
522 	struct mmc_data data = {};
523 	struct mmc_request mrq = {};
524 	struct scatterlist sg;
525 	bool r1b_resp;
526 	unsigned int busy_timeout_ms;
527 	int err;
528 	unsigned int target_part;
529 	struct mmc_blk_ioc_data *idata = idatas[i];
530 	struct mmc_blk_ioc_data *prev_idata = NULL;
531 
532 	if (!card || !md || !idata)
533 		return -EINVAL;
534 
535 	if (idata->flags & MMC_BLK_IOC_DROP)
536 		return 0;
537 
538 	if (idata->flags & MMC_BLK_IOC_SBC && i > 0)
539 		prev_idata = idatas[i - 1];
540 
541 	/*
542 	 * The RPMB accesses comes in from the character device, so we
543 	 * need to target these explicitly. Else we just target the
544 	 * partition type for the block device the ioctl() was issued
545 	 * on.
546 	 */
547 	if (idata->rpmb) {
548 		/* Support multiple RPMB partitions */
549 		target_part = idata->rpmb->part_index;
550 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
551 	} else {
552 		target_part = md->part_type;
553 	}
554 
555 	cmd.opcode = idata->ic.opcode;
556 	cmd.arg = idata->ic.arg;
557 	cmd.flags = idata->ic.flags;
558 
559 	if (idata->buf_bytes) {
560 		data.sg = &sg;
561 		data.sg_len = 1;
562 		data.blksz = idata->ic.blksz;
563 		data.blocks = idata->ic.blocks;
564 
565 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
566 
567 		if (idata->ic.write_flag)
568 			data.flags = MMC_DATA_WRITE;
569 		else
570 			data.flags = MMC_DATA_READ;
571 
572 		/* data.flags must already be set before doing this. */
573 		mmc_set_data_timeout(&data, card);
574 
575 		/* Allow overriding the timeout_ns for empirical tuning. */
576 		if (idata->ic.data_timeout_ns)
577 			data.timeout_ns = idata->ic.data_timeout_ns;
578 
579 		mrq.data = &data;
580 	}
581 
582 	mrq.cmd = &cmd;
583 
584 	err = mmc_blk_part_switch(card, target_part);
585 	if (err)
586 		return err;
587 
588 	if (idata->ic.is_acmd) {
589 		err = mmc_app_cmd(card->host, card);
590 		if (err)
591 			return err;
592 	}
593 
594 	if (idata->rpmb || prev_idata) {
595 		sbc.opcode = MMC_SET_BLOCK_COUNT;
596 		/*
597 		 * We don't do any blockcount validation because the max size
598 		 * may be increased by a future standard. We just copy the
599 		 * 'Reliable Write' bit here.
600 		 */
601 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
602 		if (prev_idata)
603 			sbc.arg = prev_idata->ic.arg;
604 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
605 		mrq.sbc = &sbc;
606 	}
607 
608 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
609 	    (cmd.opcode == MMC_SWITCH))
610 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
611 
612 	/* If it's an R1B response we need some more preparations. */
613 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
614 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
615 	if (r1b_resp)
616 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
617 
618 	mmc_wait_for_req(card->host, &mrq);
619 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
620 
621 	if (prev_idata) {
622 		memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
623 		if (sbc.error) {
624 			dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
625 							__func__, sbc.error);
626 			return sbc.error;
627 		}
628 	}
629 
630 	if (cmd.error) {
631 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
632 						__func__, cmd.error);
633 		return cmd.error;
634 	}
635 	if (data.error) {
636 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
637 						__func__, data.error);
638 		return data.error;
639 	}
640 
641 	/*
642 	 * Make sure the cache of the PARTITION_CONFIG register and
643 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
644 	 * changed it successfully.
645 	 */
646 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
647 	    (cmd.opcode == MMC_SWITCH)) {
648 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
649 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
650 
651 		/*
652 		 * Update cache so the next mmc_blk_part_switch call operates
653 		 * on up-to-date data.
654 		 */
655 		card->ext_csd.part_config = value;
656 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
657 	}
658 
659 	/*
660 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
661 	 * will get turned back on if the card is re-initialized, e.g.
662 	 * suspend/resume or hw reset in recovery.
663 	 */
664 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
665 	    (cmd.opcode == MMC_SWITCH)) {
666 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
667 
668 		card->ext_csd.cache_ctrl = value;
669 	}
670 
671 	/*
672 	 * According to the SD specs, some commands require a delay after
673 	 * issuing the command.
674 	 */
675 	if (idata->ic.postsleep_min_us)
676 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
677 
678 	if (mmc_host_is_spi(card->host)) {
679 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
680 			return mmc_spi_err_check(card);
681 		return err;
682 	}
683 
684 	/*
685 	 * Ensure RPMB, writes and R1B responses are completed by polling with
686 	 * CMD13. Note that, usually we don't need to poll when using HW busy
687 	 * detection, but here it's needed since some commands may indicate the
688 	 * error through the R1 status bits.
689 	 */
690 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
691 		struct mmc_blk_busy_data cb_data = {
692 			.card = card,
693 		};
694 
695 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
696 					  &mmc_blk_busy_cb, &cb_data);
697 
698 		idata->ic.response[0] = cb_data.status;
699 	}
700 
701 	return err;
702 }
703 
704 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
705 			     struct mmc_ioc_cmd __user *ic_ptr,
706 			     struct mmc_rpmb_data *rpmb)
707 {
708 	struct mmc_blk_ioc_data *idata;
709 	struct mmc_blk_ioc_data *idatas[1];
710 	struct mmc_queue *mq;
711 	struct mmc_card *card;
712 	int err = 0, ioc_err = 0;
713 	struct request *req;
714 
715 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
716 	if (IS_ERR(idata))
717 		return PTR_ERR(idata);
718 	/* This will be NULL on non-RPMB ioctl():s */
719 	idata->rpmb = rpmb;
720 
721 	card = md->queue.card;
722 	if (IS_ERR(card)) {
723 		err = PTR_ERR(card);
724 		goto cmd_done;
725 	}
726 
727 	/*
728 	 * Dispatch the ioctl() into the block request queue.
729 	 */
730 	mq = &md->queue;
731 	req = blk_mq_alloc_request(mq->queue,
732 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
733 	if (IS_ERR(req)) {
734 		err = PTR_ERR(req);
735 		goto cmd_done;
736 	}
737 	idatas[0] = idata;
738 	req_to_mmc_queue_req(req)->drv_op =
739 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
740 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
741 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
742 	req_to_mmc_queue_req(req)->ioc_count = 1;
743 	blk_execute_rq(req, false);
744 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
745 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
746 	blk_mq_free_request(req);
747 
748 cmd_done:
749 	kfree(idata->buf);
750 	kfree(idata);
751 	return ioc_err ? ioc_err : err;
752 }
753 
754 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
755 				   struct mmc_ioc_multi_cmd __user *user,
756 				   struct mmc_rpmb_data *rpmb)
757 {
758 	struct mmc_blk_ioc_data **idata = NULL;
759 	struct mmc_ioc_cmd __user *cmds = user->cmds;
760 	struct mmc_card *card;
761 	struct mmc_queue *mq;
762 	int err = 0, ioc_err = 0;
763 	__u64 num_of_cmds;
764 	unsigned int i, n;
765 	struct request *req;
766 
767 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
768 			   sizeof(num_of_cmds)))
769 		return -EFAULT;
770 
771 	if (!num_of_cmds)
772 		return 0;
773 
774 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
775 		return -EINVAL;
776 
777 	n = num_of_cmds;
778 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
779 	if (!idata)
780 		return -ENOMEM;
781 
782 	for (i = 0; i < n; i++) {
783 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
784 		if (IS_ERR(idata[i])) {
785 			err = PTR_ERR(idata[i]);
786 			n = i;
787 			goto cmd_err;
788 		}
789 		/* This will be NULL on non-RPMB ioctl():s */
790 		idata[i]->rpmb = rpmb;
791 	}
792 
793 	card = md->queue.card;
794 	if (IS_ERR(card)) {
795 		err = PTR_ERR(card);
796 		goto cmd_err;
797 	}
798 
799 
800 	/*
801 	 * Dispatch the ioctl()s into the block request queue.
802 	 */
803 	mq = &md->queue;
804 	req = blk_mq_alloc_request(mq->queue,
805 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
806 	if (IS_ERR(req)) {
807 		err = PTR_ERR(req);
808 		goto cmd_err;
809 	}
810 	req_to_mmc_queue_req(req)->drv_op =
811 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
812 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
813 	req_to_mmc_queue_req(req)->drv_op_data = idata;
814 	req_to_mmc_queue_req(req)->ioc_count = n;
815 	blk_execute_rq(req, false);
816 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
817 
818 	/* copy to user if data and response */
819 	for (i = 0; i < n && !err; i++)
820 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
821 
822 	blk_mq_free_request(req);
823 
824 cmd_err:
825 	for (i = 0; i < n; i++) {
826 		kfree(idata[i]->buf);
827 		kfree(idata[i]);
828 	}
829 	kfree(idata);
830 	return ioc_err ? ioc_err : err;
831 }
832 
833 static int mmc_blk_check_blkdev(struct block_device *bdev)
834 {
835 	/*
836 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
837 	 * whole block device, not on a partition.  This prevents overspray
838 	 * between sibling partitions.
839 	 */
840 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
841 		return -EPERM;
842 	return 0;
843 }
844 
845 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
846 	unsigned int cmd, unsigned long arg)
847 {
848 	struct mmc_blk_data *md;
849 	int ret;
850 
851 	switch (cmd) {
852 	case MMC_IOC_CMD:
853 		ret = mmc_blk_check_blkdev(bdev);
854 		if (ret)
855 			return ret;
856 		md = mmc_blk_get(bdev->bd_disk);
857 		if (!md)
858 			return -EINVAL;
859 		ret = mmc_blk_ioctl_cmd(md,
860 					(struct mmc_ioc_cmd __user *)arg,
861 					NULL);
862 		mmc_blk_put(md);
863 		return ret;
864 	case MMC_IOC_MULTI_CMD:
865 		ret = mmc_blk_check_blkdev(bdev);
866 		if (ret)
867 			return ret;
868 		md = mmc_blk_get(bdev->bd_disk);
869 		if (!md)
870 			return -EINVAL;
871 		ret = mmc_blk_ioctl_multi_cmd(md,
872 					(struct mmc_ioc_multi_cmd __user *)arg,
873 					NULL);
874 		mmc_blk_put(md);
875 		return ret;
876 	default:
877 		return -EINVAL;
878 	}
879 }
880 
881 #ifdef CONFIG_COMPAT
882 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
883 	unsigned int cmd, unsigned long arg)
884 {
885 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
886 }
887 #endif
888 
889 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
890 					  sector_t *sector)
891 {
892 	struct mmc_blk_data *md;
893 	int ret;
894 
895 	md = mmc_blk_get(disk);
896 	if (!md)
897 		return -EINVAL;
898 
899 	if (md->queue.card)
900 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
901 	else
902 		ret = -ENODEV;
903 
904 	mmc_blk_put(md);
905 
906 	return ret;
907 }
908 
909 static const struct block_device_operations mmc_bdops = {
910 	.open			= mmc_blk_open,
911 	.release		= mmc_blk_release,
912 	.getgeo			= mmc_blk_getgeo,
913 	.owner			= THIS_MODULE,
914 	.ioctl			= mmc_blk_ioctl,
915 #ifdef CONFIG_COMPAT
916 	.compat_ioctl		= mmc_blk_compat_ioctl,
917 #endif
918 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
919 };
920 
921 static int mmc_blk_part_switch_pre(struct mmc_card *card,
922 				   unsigned int part_type)
923 {
924 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
925 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
926 	int ret = 0;
927 
928 	if ((part_type & mask) == rpmb) {
929 		if (card->ext_csd.cmdq_en) {
930 			ret = mmc_cmdq_disable(card);
931 			if (ret)
932 				return ret;
933 		}
934 		mmc_retune_pause(card->host);
935 	}
936 
937 	return ret;
938 }
939 
940 static int mmc_blk_part_switch_post(struct mmc_card *card,
941 				    unsigned int part_type)
942 {
943 	const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK;
944 	const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB;
945 	int ret = 0;
946 
947 	if ((part_type & mask) == rpmb) {
948 		mmc_retune_unpause(card->host);
949 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
950 			ret = mmc_cmdq_enable(card);
951 	}
952 
953 	return ret;
954 }
955 
956 static inline int mmc_blk_part_switch(struct mmc_card *card,
957 				      unsigned int part_type)
958 {
959 	int ret = 0;
960 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
961 
962 	if (main_md->part_curr == part_type)
963 		return 0;
964 
965 	if (mmc_card_mmc(card)) {
966 		u8 part_config = card->ext_csd.part_config;
967 
968 		ret = mmc_blk_part_switch_pre(card, part_type);
969 		if (ret)
970 			return ret;
971 
972 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
973 		part_config |= part_type;
974 
975 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
976 				 EXT_CSD_PART_CONFIG, part_config,
977 				 card->ext_csd.part_time);
978 		if (ret) {
979 			mmc_blk_part_switch_post(card, part_type);
980 			return ret;
981 		}
982 
983 		card->ext_csd.part_config = part_config;
984 
985 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
986 	}
987 
988 	main_md->part_curr = part_type;
989 	return ret;
990 }
991 
992 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
993 {
994 	int err;
995 	u32 result;
996 	__be32 *blocks;
997 	u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4;
998 	unsigned int noio_flag;
999 
1000 	struct mmc_request mrq = {};
1001 	struct mmc_command cmd = {};
1002 	struct mmc_data data = {};
1003 	struct scatterlist sg;
1004 
1005 	err = mmc_app_cmd(card->host, card);
1006 	if (err)
1007 		return err;
1008 
1009 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
1010 	cmd.arg = 0;
1011 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1012 
1013 	data.blksz = resp_sz;
1014 	data.blocks = 1;
1015 	data.flags = MMC_DATA_READ;
1016 	data.sg = &sg;
1017 	data.sg_len = 1;
1018 	mmc_set_data_timeout(&data, card);
1019 
1020 	mrq.cmd = &cmd;
1021 	mrq.data = &data;
1022 
1023 	noio_flag = memalloc_noio_save();
1024 	blocks = kmalloc(resp_sz, GFP_KERNEL);
1025 	memalloc_noio_restore(noio_flag);
1026 	if (!blocks)
1027 		return -ENOMEM;
1028 
1029 	sg_init_one(&sg, blocks, resp_sz);
1030 
1031 	mmc_wait_for_req(card->host, &mrq);
1032 
1033 	if (mmc_card_ult_capacity(card)) {
1034 		/*
1035 		 * Normally, ACMD22 returns the number of written sectors as
1036 		 * u32. SDUC, however, returns it as u64.  This is not a
1037 		 * superfluous requirement, because SDUC writes may exceed 2TB.
1038 		 * For Linux mmc however, the previously write operation could
1039 		 * not be more than the block layer limits, thus just make room
1040 		 * for a u64 and cast the response back to u32.
1041 		 */
1042 		result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX);
1043 	} else {
1044 		result = ntohl(*blocks);
1045 	}
1046 	kfree(blocks);
1047 
1048 	if (cmd.error || data.error)
1049 		return -EIO;
1050 
1051 	*written_blocks = result;
1052 
1053 	return 0;
1054 }
1055 
1056 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
1057 {
1058 	if (host->actual_clock)
1059 		return host->actual_clock / 1000;
1060 
1061 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
1062 	if (host->ios.clock)
1063 		return host->ios.clock / 2000;
1064 
1065 	/* How can there be no clock */
1066 	WARN_ON_ONCE(1);
1067 	return 100; /* 100 kHz is minimum possible value */
1068 }
1069 
1070 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1071 					    struct mmc_data *data)
1072 {
1073 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1074 	unsigned int khz;
1075 
1076 	if (data->timeout_clks) {
1077 		khz = mmc_blk_clock_khz(host);
1078 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
1079 	}
1080 
1081 	return ms;
1082 }
1083 
1084 /*
1085  * Attempts to reset the card and get back to the requested partition.
1086  * Therefore any error here must result in cancelling the block layer
1087  * request, it must not be reattempted without going through the mmc_blk
1088  * partition sanity checks.
1089  */
1090 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1091 			 int type)
1092 {
1093 	int err;
1094 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1095 
1096 	if (md->reset_done & type)
1097 		return -EEXIST;
1098 
1099 	md->reset_done |= type;
1100 	err = mmc_hw_reset(host->card);
1101 	/*
1102 	 * A successful reset will leave the card in the main partition, but
1103 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1104 	 * in that case.
1105 	 */
1106 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1107 	if (err)
1108 		return err;
1109 	/* Ensure we switch back to the correct partition */
1110 	if (mmc_blk_part_switch(host->card, md->part_type))
1111 		/*
1112 		 * We have failed to get back into the correct
1113 		 * partition, so we need to abort the whole request.
1114 		 */
1115 		return -ENODEV;
1116 	return 0;
1117 }
1118 
1119 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1120 {
1121 	md->reset_done &= ~type;
1122 }
1123 
1124 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1125 {
1126 	struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1127 	int i;
1128 
1129 	for (i = 1; i < mq_rq->ioc_count; i++) {
1130 		if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1131 		    mmc_op_multi(idata[i]->ic.opcode)) {
1132 			idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1133 			idata[i]->flags |= MMC_BLK_IOC_SBC;
1134 		}
1135 	}
1136 }
1137 
1138 /*
1139  * The non-block commands come back from the block layer after it queued it and
1140  * processed it with all other requests and then they get issued in this
1141  * function.
1142  */
1143 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1144 {
1145 	struct mmc_queue_req *mq_rq;
1146 	struct mmc_card *card = mq->card;
1147 	struct mmc_blk_data *md = mq->blkdata;
1148 	struct mmc_blk_ioc_data **idata;
1149 	bool rpmb_ioctl;
1150 	u8 **ext_csd;
1151 	u32 status;
1152 	int ret;
1153 	int i;
1154 
1155 	mq_rq = req_to_mmc_queue_req(req);
1156 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1157 
1158 	switch (mq_rq->drv_op) {
1159 	case MMC_DRV_OP_IOCTL:
1160 		if (card->ext_csd.cmdq_en) {
1161 			ret = mmc_cmdq_disable(card);
1162 			if (ret)
1163 				break;
1164 		}
1165 
1166 		mmc_blk_check_sbc(mq_rq);
1167 
1168 		fallthrough;
1169 	case MMC_DRV_OP_IOCTL_RPMB:
1170 		idata = mq_rq->drv_op_data;
1171 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1172 			ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1173 			if (ret)
1174 				break;
1175 		}
1176 		/* Always switch back to main area after RPMB access */
1177 		if (rpmb_ioctl)
1178 			mmc_blk_part_switch(card, 0);
1179 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1180 			mmc_cmdq_enable(card);
1181 		break;
1182 	case MMC_DRV_OP_BOOT_WP:
1183 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1184 				 card->ext_csd.boot_ro_lock |
1185 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1186 				 card->ext_csd.part_time);
1187 		if (ret)
1188 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1189 			       md->disk->disk_name, ret);
1190 		else
1191 			card->ext_csd.boot_ro_lock |=
1192 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1193 		break;
1194 	case MMC_DRV_OP_GET_CARD_STATUS:
1195 		ret = mmc_send_status(card, &status);
1196 		if (!ret)
1197 			ret = status;
1198 		break;
1199 	case MMC_DRV_OP_GET_EXT_CSD:
1200 		ext_csd = mq_rq->drv_op_data;
1201 		ret = mmc_get_ext_csd(card, ext_csd);
1202 		break;
1203 	default:
1204 		pr_err("%s: unknown driver specific operation\n",
1205 		       md->disk->disk_name);
1206 		ret = -EINVAL;
1207 		break;
1208 	}
1209 	mq_rq->drv_op_result = ret;
1210 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1211 }
1212 
1213 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1214 				   int type, unsigned int erase_arg)
1215 {
1216 	struct mmc_blk_data *md = mq->blkdata;
1217 	struct mmc_card *card = md->queue.card;
1218 	unsigned int nr;
1219 	sector_t from;
1220 	int err = 0;
1221 	blk_status_t status = BLK_STS_OK;
1222 
1223 	if (!mmc_can_erase(card)) {
1224 		status = BLK_STS_NOTSUPP;
1225 		goto fail;
1226 	}
1227 
1228 	from = blk_rq_pos(req);
1229 	nr = blk_rq_sectors(req);
1230 
1231 	do {
1232 		err = 0;
1233 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1234 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1235 					 INAND_CMD38_ARG_EXT_CSD,
1236 					 erase_arg == MMC_TRIM_ARG ?
1237 					 INAND_CMD38_ARG_TRIM :
1238 					 INAND_CMD38_ARG_ERASE,
1239 					 card->ext_csd.generic_cmd6_time);
1240 		}
1241 		if (!err)
1242 			err = mmc_erase(card, from, nr, erase_arg);
1243 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1244 	if (err)
1245 		status = BLK_STS_IOERR;
1246 	else
1247 		mmc_blk_reset_success(md, type);
1248 fail:
1249 	blk_mq_end_request(req, status);
1250 }
1251 
1252 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1253 {
1254 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1255 }
1256 
1257 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1258 {
1259 	struct mmc_blk_data *md = mq->blkdata;
1260 	struct mmc_card *card = md->queue.card;
1261 	unsigned int arg = card->erase_arg;
1262 
1263 	if (mmc_card_broken_sd_discard(card))
1264 		arg = SD_ERASE_ARG;
1265 
1266 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1267 }
1268 
1269 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1270 				       struct request *req)
1271 {
1272 	struct mmc_blk_data *md = mq->blkdata;
1273 	struct mmc_card *card = md->queue.card;
1274 	unsigned int nr, arg;
1275 	sector_t from;
1276 	int err = 0, type = MMC_BLK_SECDISCARD;
1277 	blk_status_t status = BLK_STS_OK;
1278 
1279 	if (!(mmc_can_secure_erase_trim(card))) {
1280 		status = BLK_STS_NOTSUPP;
1281 		goto out;
1282 	}
1283 
1284 	from = blk_rq_pos(req);
1285 	nr = blk_rq_sectors(req);
1286 
1287 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1288 		arg = MMC_SECURE_TRIM1_ARG;
1289 	else
1290 		arg = MMC_SECURE_ERASE_ARG;
1291 
1292 retry:
1293 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1294 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1295 				 INAND_CMD38_ARG_EXT_CSD,
1296 				 arg == MMC_SECURE_TRIM1_ARG ?
1297 				 INAND_CMD38_ARG_SECTRIM1 :
1298 				 INAND_CMD38_ARG_SECERASE,
1299 				 card->ext_csd.generic_cmd6_time);
1300 		if (err)
1301 			goto out_retry;
1302 	}
1303 
1304 	err = mmc_erase(card, from, nr, arg);
1305 	if (err == -EIO)
1306 		goto out_retry;
1307 	if (err) {
1308 		status = BLK_STS_IOERR;
1309 		goto out;
1310 	}
1311 
1312 	if (arg == MMC_SECURE_TRIM1_ARG) {
1313 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1314 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1315 					 INAND_CMD38_ARG_EXT_CSD,
1316 					 INAND_CMD38_ARG_SECTRIM2,
1317 					 card->ext_csd.generic_cmd6_time);
1318 			if (err)
1319 				goto out_retry;
1320 		}
1321 
1322 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1323 		if (err == -EIO)
1324 			goto out_retry;
1325 		if (err) {
1326 			status = BLK_STS_IOERR;
1327 			goto out;
1328 		}
1329 	}
1330 
1331 out_retry:
1332 	if (err && !mmc_blk_reset(md, card->host, type))
1333 		goto retry;
1334 	if (!err)
1335 		mmc_blk_reset_success(md, type);
1336 out:
1337 	blk_mq_end_request(req, status);
1338 }
1339 
1340 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1341 {
1342 	struct mmc_blk_data *md = mq->blkdata;
1343 	struct mmc_card *card = md->queue.card;
1344 	int ret = 0;
1345 
1346 	ret = mmc_flush_cache(card->host);
1347 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1348 }
1349 
1350 /*
1351  * Reformat current write as a reliable write, supporting
1352  * both legacy and the enhanced reliable write MMC cards.
1353  * In each transfer we'll handle only as much as a single
1354  * reliable write can handle, thus finish the request in
1355  * partial completions.
1356  */
1357 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1358 				    struct mmc_card *card,
1359 				    struct request *req)
1360 {
1361 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1362 		/* Legacy mode imposes restrictions on transfers. */
1363 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1364 			brq->data.blocks = 1;
1365 
1366 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1367 			brq->data.blocks = card->ext_csd.rel_sectors;
1368 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1369 			brq->data.blocks = 1;
1370 	}
1371 }
1372 
1373 #define CMD_ERRORS_EXCL_OOR						\
1374 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1375 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1376 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1377 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1378 	 R1_CC_ERROR |		/* Card controller error */		\
1379 	 R1_ERROR)		/* General/unknown error */
1380 
1381 #define CMD_ERRORS							\
1382 	(CMD_ERRORS_EXCL_OOR |						\
1383 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1384 
1385 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1386 {
1387 	u32 val;
1388 
1389 	/*
1390 	 * Per the SD specification(physical layer version 4.10)[1],
1391 	 * section 4.3.3, it explicitly states that "When the last
1392 	 * block of user area is read using CMD18, the host should
1393 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1394 	 * is correct". And JESD84-B51 for eMMC also has a similar
1395 	 * statement on section 6.8.3.
1396 	 *
1397 	 * Multiple block read/write could be done by either predefined
1398 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1399 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1400 	 *
1401 	 * However the spec[1] doesn't tell us whether we should also
1402 	 * ignore that for predefined method. But per the spec[1], section
1403 	 * 4.15 Set Block Count Command, it says"If illegal block count
1404 	 * is set, out of range error will be indicated during read/write
1405 	 * operation (For example, data transfer is stopped at user area
1406 	 * boundary)." In another word, we could expect a out of range error
1407 	 * in the response for the following CMD18/25. And if argument of
1408 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1409 	 * we could also expect to get a -ETIMEDOUT or any error number from
1410 	 * the host drivers due to missing data response(for write)/data(for
1411 	 * read), as the cards will stop the data transfer by itself per the
1412 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1413 	 */
1414 
1415 	if (!brq->stop.error) {
1416 		bool oor_with_open_end;
1417 		/* If there is no error yet, check R1 response */
1418 
1419 		val = brq->stop.resp[0] & CMD_ERRORS;
1420 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1421 
1422 		if (val && !oor_with_open_end)
1423 			brq->stop.error = -EIO;
1424 	}
1425 }
1426 
1427 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1428 			      int recovery_mode, bool *do_rel_wr_p,
1429 			      bool *do_data_tag_p)
1430 {
1431 	struct mmc_blk_data *md = mq->blkdata;
1432 	struct mmc_card *card = md->queue.card;
1433 	struct mmc_blk_request *brq = &mqrq->brq;
1434 	struct request *req = mmc_queue_req_to_req(mqrq);
1435 	bool do_rel_wr, do_data_tag;
1436 
1437 	/*
1438 	 * Reliable writes are used to implement Forced Unit Access and
1439 	 * are supported only on MMCs.
1440 	 */
1441 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1442 		    rq_data_dir(req) == WRITE &&
1443 		    (md->flags & MMC_BLK_REL_WR);
1444 
1445 	memset(brq, 0, sizeof(struct mmc_blk_request));
1446 
1447 	mmc_crypto_prepare_req(mqrq);
1448 
1449 	brq->mrq.data = &brq->data;
1450 	brq->mrq.tag = req->tag;
1451 
1452 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1453 	brq->stop.arg = 0;
1454 
1455 	if (rq_data_dir(req) == READ) {
1456 		brq->data.flags = MMC_DATA_READ;
1457 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1458 	} else {
1459 		brq->data.flags = MMC_DATA_WRITE;
1460 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1461 	}
1462 
1463 	brq->data.blksz = 512;
1464 	brq->data.blocks = blk_rq_sectors(req);
1465 	brq->data.blk_addr = blk_rq_pos(req);
1466 
1467 	/*
1468 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1469 	 * The eMMC will give "high" priority tasks priority over "simple"
1470 	 * priority tasks. Here we always set "simple" priority by not setting
1471 	 * MMC_DATA_PRIO.
1472 	 */
1473 
1474 	/*
1475 	 * The block layer doesn't support all sector count
1476 	 * restrictions, so we need to be prepared for too big
1477 	 * requests.
1478 	 */
1479 	if (brq->data.blocks > card->host->max_blk_count)
1480 		brq->data.blocks = card->host->max_blk_count;
1481 
1482 	if (brq->data.blocks > 1) {
1483 		/*
1484 		 * Some SD cards in SPI mode return a CRC error or even lock up
1485 		 * completely when trying to read the last block using a
1486 		 * multiblock read command.
1487 		 */
1488 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1489 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1490 		     get_capacity(md->disk)))
1491 			brq->data.blocks--;
1492 
1493 		/*
1494 		 * After a read error, we redo the request one (native) sector
1495 		 * at a time in order to accurately determine which
1496 		 * sectors can be read successfully.
1497 		 */
1498 		if (recovery_mode)
1499 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1500 
1501 		/*
1502 		 * Some controllers have HW issues while operating
1503 		 * in multiple I/O mode
1504 		 */
1505 		if (card->host->ops->multi_io_quirk)
1506 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1507 						(rq_data_dir(req) == READ) ?
1508 						MMC_DATA_READ : MMC_DATA_WRITE,
1509 						brq->data.blocks);
1510 	}
1511 
1512 	if (do_rel_wr) {
1513 		mmc_apply_rel_rw(brq, card, req);
1514 		brq->data.flags |= MMC_DATA_REL_WR;
1515 	}
1516 
1517 	/*
1518 	 * Data tag is used only during writing meta data to speed
1519 	 * up write and any subsequent read of this meta data
1520 	 */
1521 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1522 		      (req->cmd_flags & REQ_META) &&
1523 		      (rq_data_dir(req) == WRITE) &&
1524 		      ((brq->data.blocks * brq->data.blksz) >=
1525 		       card->ext_csd.data_tag_unit_size);
1526 
1527 	if (do_data_tag)
1528 		brq->data.flags |= MMC_DATA_DAT_TAG;
1529 
1530 	mmc_set_data_timeout(&brq->data, card);
1531 
1532 	brq->data.sg = mqrq->sg;
1533 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1534 
1535 	/*
1536 	 * Adjust the sg list so it is the same size as the
1537 	 * request.
1538 	 */
1539 	if (brq->data.blocks != blk_rq_sectors(req)) {
1540 		int i, data_size = brq->data.blocks << 9;
1541 		struct scatterlist *sg;
1542 
1543 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1544 			data_size -= sg->length;
1545 			if (data_size <= 0) {
1546 				sg->length += data_size;
1547 				i++;
1548 				break;
1549 			}
1550 		}
1551 		brq->data.sg_len = i;
1552 	}
1553 
1554 	if (do_rel_wr_p)
1555 		*do_rel_wr_p = do_rel_wr;
1556 
1557 	if (do_data_tag_p)
1558 		*do_data_tag_p = do_data_tag;
1559 }
1560 
1561 #define MMC_CQE_RETRIES 2
1562 
1563 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1564 {
1565 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566 	struct mmc_request *mrq = &mqrq->brq.mrq;
1567 	struct request_queue *q = req->q;
1568 	struct mmc_host *host = mq->card->host;
1569 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1570 	unsigned long flags;
1571 	bool put_card;
1572 	int err;
1573 
1574 	mmc_cqe_post_req(host, mrq);
1575 
1576 	if (mrq->cmd && mrq->cmd->error)
1577 		err = mrq->cmd->error;
1578 	else if (mrq->data && mrq->data->error)
1579 		err = mrq->data->error;
1580 	else
1581 		err = 0;
1582 
1583 	if (err) {
1584 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1585 			blk_mq_requeue_request(req, true);
1586 		else
1587 			blk_mq_end_request(req, BLK_STS_IOERR);
1588 	} else if (mrq->data) {
1589 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1590 			blk_mq_requeue_request(req, true);
1591 		else
1592 			__blk_mq_end_request(req, BLK_STS_OK);
1593 	} else if (mq->in_recovery) {
1594 		blk_mq_requeue_request(req, true);
1595 	} else {
1596 		blk_mq_end_request(req, BLK_STS_OK);
1597 	}
1598 
1599 	spin_lock_irqsave(&mq->lock, flags);
1600 
1601 	mq->in_flight[issue_type] -= 1;
1602 
1603 	put_card = (mmc_tot_in_flight(mq) == 0);
1604 
1605 	mmc_cqe_check_busy(mq);
1606 
1607 	spin_unlock_irqrestore(&mq->lock, flags);
1608 
1609 	if (!mq->cqe_busy)
1610 		blk_mq_run_hw_queues(q, true);
1611 
1612 	if (put_card)
1613 		mmc_put_card(mq->card, &mq->ctx);
1614 }
1615 
1616 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1617 {
1618 	struct mmc_card *card = mq->card;
1619 	struct mmc_host *host = card->host;
1620 	int err;
1621 
1622 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1623 
1624 	err = mmc_cqe_recovery(host);
1625 	if (err)
1626 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1627 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1628 
1629 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1630 }
1631 
1632 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1633 {
1634 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1635 						  brq.mrq);
1636 	struct request *req = mmc_queue_req_to_req(mqrq);
1637 	struct request_queue *q = req->q;
1638 	struct mmc_queue *mq = q->queuedata;
1639 
1640 	/*
1641 	 * Block layer timeouts race with completions which means the normal
1642 	 * completion path cannot be used during recovery.
1643 	 */
1644 	if (mq->in_recovery)
1645 		mmc_blk_cqe_complete_rq(mq, req);
1646 	else if (likely(!blk_should_fake_timeout(req->q)))
1647 		blk_mq_complete_request(req);
1648 }
1649 
1650 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1651 {
1652 	mrq->done		= mmc_blk_cqe_req_done;
1653 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1654 
1655 	return mmc_cqe_start_req(host, mrq);
1656 }
1657 
1658 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1659 						 struct request *req)
1660 {
1661 	struct mmc_blk_request *brq = &mqrq->brq;
1662 
1663 	memset(brq, 0, sizeof(*brq));
1664 
1665 	brq->mrq.cmd = &brq->cmd;
1666 	brq->mrq.tag = req->tag;
1667 
1668 	return &brq->mrq;
1669 }
1670 
1671 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1672 {
1673 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1674 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1675 
1676 	mrq->cmd->opcode = MMC_SWITCH;
1677 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1678 			(EXT_CSD_FLUSH_CACHE << 16) |
1679 			(1 << 8) |
1680 			EXT_CSD_CMD_SET_NORMAL;
1681 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1682 
1683 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1684 }
1685 
1686 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1687 {
1688 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1689 	struct mmc_host *host = mq->card->host;
1690 	int err;
1691 
1692 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1693 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1694 	mmc_pre_req(host, &mqrq->brq.mrq);
1695 
1696 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1697 	if (err)
1698 		mmc_post_req(host, &mqrq->brq.mrq, err);
1699 
1700 	return err;
1701 }
1702 
1703 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1704 {
1705 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1706 	struct mmc_host *host = mq->card->host;
1707 
1708 	if (host->hsq_enabled)
1709 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1710 
1711 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1712 
1713 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1714 }
1715 
1716 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1717 			       struct mmc_card *card,
1718 			       int recovery_mode,
1719 			       struct mmc_queue *mq)
1720 {
1721 	u32 readcmd, writecmd;
1722 	struct mmc_blk_request *brq = &mqrq->brq;
1723 	struct request *req = mmc_queue_req_to_req(mqrq);
1724 	struct mmc_blk_data *md = mq->blkdata;
1725 	bool do_rel_wr, do_data_tag;
1726 
1727 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1728 
1729 	brq->mrq.cmd = &brq->cmd;
1730 
1731 	brq->cmd.arg = blk_rq_pos(req);
1732 	if (!mmc_card_blockaddr(card))
1733 		brq->cmd.arg <<= 9;
1734 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1735 
1736 	if (brq->data.blocks > 1 || do_rel_wr) {
1737 		/* SPI multiblock writes terminate using a special
1738 		 * token, not a STOP_TRANSMISSION request.
1739 		 */
1740 		if (!mmc_host_is_spi(card->host) ||
1741 		    rq_data_dir(req) == READ)
1742 			brq->mrq.stop = &brq->stop;
1743 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1744 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1745 	} else {
1746 		brq->mrq.stop = NULL;
1747 		readcmd = MMC_READ_SINGLE_BLOCK;
1748 		writecmd = MMC_WRITE_BLOCK;
1749 	}
1750 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1751 
1752 	/*
1753 	 * Pre-defined multi-block transfers are preferable to
1754 	 * open ended-ones (and necessary for reliable writes).
1755 	 * However, it is not sufficient to just send CMD23,
1756 	 * and avoid the final CMD12, as on an error condition
1757 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1758 	 * with Auto-CMD23 enhancements provided by some
1759 	 * hosts, means that the complexity of dealing
1760 	 * with this is best left to the host. If CMD23 is
1761 	 * supported by card and host, we'll fill sbc in and let
1762 	 * the host deal with handling it correctly. This means
1763 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1764 	 * change of behavior will be observed.
1765 	 *
1766 	 * N.B: Some MMC cards experience perf degradation.
1767 	 * We'll avoid using CMD23-bounded multiblock writes for
1768 	 * these, while retaining features like reliable writes.
1769 	 */
1770 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1771 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1772 	     do_data_tag)) {
1773 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1774 		brq->sbc.arg = brq->data.blocks |
1775 			(do_rel_wr ? (1 << 31) : 0) |
1776 			(do_data_tag ? (1 << 29) : 0);
1777 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1778 		brq->mrq.sbc = &brq->sbc;
1779 	}
1780 
1781 	if (mmc_card_ult_capacity(card)) {
1782 		brq->cmd.ext_addr = blk_rq_pos(req) >> 32;
1783 		brq->cmd.has_ext_addr = true;
1784 	}
1785 }
1786 
1787 #define MMC_MAX_RETRIES		5
1788 #define MMC_DATA_RETRIES	2
1789 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1790 
1791 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1792 {
1793 	struct mmc_command cmd = {
1794 		.opcode = MMC_STOP_TRANSMISSION,
1795 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1796 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1797 		.busy_timeout = timeout,
1798 	};
1799 
1800 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1801 }
1802 
1803 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1804 {
1805 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806 	struct mmc_blk_request *brq = &mqrq->brq;
1807 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1808 	int err;
1809 
1810 	mmc_retune_hold_now(card->host);
1811 
1812 	mmc_blk_send_stop(card, timeout);
1813 
1814 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1815 
1816 	mmc_retune_release(card->host);
1817 
1818 	return err;
1819 }
1820 
1821 #define MMC_READ_SINGLE_RETRIES	2
1822 
1823 /* Single (native) sector read during recovery */
1824 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1825 {
1826 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1827 	struct mmc_request *mrq = &mqrq->brq.mrq;
1828 	struct mmc_card *card = mq->card;
1829 	struct mmc_host *host = card->host;
1830 	blk_status_t error = BLK_STS_OK;
1831 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1832 
1833 	do {
1834 		u32 status;
1835 		int err;
1836 		int retries = 0;
1837 
1838 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1839 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1840 
1841 			mmc_wait_for_req(host, mrq);
1842 
1843 			err = mmc_send_status(card, &status);
1844 			if (err)
1845 				goto error_exit;
1846 
1847 			if (!mmc_host_is_spi(host) &&
1848 			    !mmc_ready_for_data(status)) {
1849 				err = mmc_blk_fix_state(card, req);
1850 				if (err)
1851 					goto error_exit;
1852 			}
1853 
1854 			if (!mrq->cmd->error)
1855 				break;
1856 		}
1857 
1858 		if (mrq->cmd->error ||
1859 		    mrq->data->error ||
1860 		    (!mmc_host_is_spi(host) &&
1861 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1862 			error = BLK_STS_IOERR;
1863 		else
1864 			error = BLK_STS_OK;
1865 
1866 	} while (blk_update_request(req, error, bytes_per_read));
1867 
1868 	return;
1869 
1870 error_exit:
1871 	mrq->data->bytes_xfered = 0;
1872 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1873 	/* Let it try the remaining request again */
1874 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1875 		mqrq->retries = MMC_MAX_RETRIES - 1;
1876 }
1877 
1878 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1879 {
1880 	return !!brq->mrq.sbc;
1881 }
1882 
1883 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1884 {
1885 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1886 }
1887 
1888 /*
1889  * Check for errors the host controller driver might not have seen such as
1890  * response mode errors or invalid card state.
1891  */
1892 static bool mmc_blk_status_error(struct request *req, u32 status)
1893 {
1894 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1895 	struct mmc_blk_request *brq = &mqrq->brq;
1896 	struct mmc_queue *mq = req->q->queuedata;
1897 	u32 stop_err_bits;
1898 
1899 	if (mmc_host_is_spi(mq->card->host))
1900 		return false;
1901 
1902 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1903 
1904 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1905 	       brq->stop.resp[0] & stop_err_bits ||
1906 	       status            & stop_err_bits ||
1907 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1908 }
1909 
1910 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1911 {
1912 	return !brq->sbc.error && !brq->cmd.error &&
1913 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1914 }
1915 
1916 /*
1917  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1918  * policy:
1919  * 1. A request that has transferred at least some data is considered
1920  * successful and will be requeued if there is remaining data to
1921  * transfer.
1922  * 2. Otherwise the number of retries is incremented and the request
1923  * will be requeued if there are remaining retries.
1924  * 3. Otherwise the request will be errored out.
1925  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1926  * mqrq->retries. So there are only 4 possible actions here:
1927  *	1. do not accept the bytes_xfered value i.e. set it to zero
1928  *	2. change mqrq->retries to determine the number of retries
1929  *	3. try to reset the card
1930  *	4. read one sector at a time
1931  */
1932 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1933 {
1934 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1935 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1936 	struct mmc_blk_request *brq = &mqrq->brq;
1937 	struct mmc_blk_data *md = mq->blkdata;
1938 	struct mmc_card *card = mq->card;
1939 	u32 status;
1940 	u32 blocks;
1941 	int err;
1942 
1943 	/*
1944 	 * Some errors the host driver might not have seen. Set the number of
1945 	 * bytes transferred to zero in that case.
1946 	 */
1947 	err = __mmc_send_status(card, &status, 0);
1948 	if (err || mmc_blk_status_error(req, status))
1949 		brq->data.bytes_xfered = 0;
1950 
1951 	mmc_retune_release(card->host);
1952 
1953 	/*
1954 	 * Try again to get the status. This also provides an opportunity for
1955 	 * re-tuning.
1956 	 */
1957 	if (err)
1958 		err = __mmc_send_status(card, &status, 0);
1959 
1960 	/*
1961 	 * Nothing more to do after the number of bytes transferred has been
1962 	 * updated and there is no card.
1963 	 */
1964 	if (err && mmc_detect_card_removed(card->host))
1965 		return;
1966 
1967 	/* Try to get back to "tran" state */
1968 	if (!mmc_host_is_spi(mq->card->host) &&
1969 	    (err || !mmc_ready_for_data(status)))
1970 		err = mmc_blk_fix_state(mq->card, req);
1971 
1972 	/*
1973 	 * Special case for SD cards where the card might record the number of
1974 	 * blocks written.
1975 	 */
1976 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1977 	    rq_data_dir(req) == WRITE) {
1978 		if (mmc_sd_num_wr_blocks(card, &blocks))
1979 			brq->data.bytes_xfered = 0;
1980 		else
1981 			brq->data.bytes_xfered = blocks << 9;
1982 	}
1983 
1984 	/* Reset if the card is in a bad state */
1985 	if (!mmc_host_is_spi(mq->card->host) &&
1986 	    err && mmc_blk_reset(md, card->host, type)) {
1987 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1988 		mqrq->retries = MMC_NO_RETRIES;
1989 		return;
1990 	}
1991 
1992 	/*
1993 	 * If anything was done, just return and if there is anything remaining
1994 	 * on the request it will get requeued.
1995 	 */
1996 	if (brq->data.bytes_xfered)
1997 		return;
1998 
1999 	/* Reset before last retry */
2000 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
2001 	    mmc_blk_reset(md, card->host, type))
2002 		return;
2003 
2004 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
2005 	if (brq->sbc.error || brq->cmd.error)
2006 		return;
2007 
2008 	/* Reduce the remaining retries for data errors */
2009 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
2010 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
2011 		return;
2012 	}
2013 
2014 	if (rq_data_dir(req) == READ && brq->data.blocks >
2015 			queue_physical_block_size(mq->queue) >> 9) {
2016 		/* Read one (native) sector at a time */
2017 		mmc_blk_read_single(mq, req);
2018 		return;
2019 	}
2020 }
2021 
2022 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
2023 {
2024 	mmc_blk_eval_resp_error(brq);
2025 
2026 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
2027 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
2028 }
2029 
2030 static int mmc_spi_err_check(struct mmc_card *card)
2031 {
2032 	u32 status = 0;
2033 	int err;
2034 
2035 	/*
2036 	 * SPI does not have a TRAN state we have to wait on, instead the
2037 	 * card is ready again when it no longer holds the line LOW.
2038 	 * We still have to ensure two things here before we know the write
2039 	 * was successful:
2040 	 * 1. The card has not disconnected during busy and we actually read our
2041 	 * own pull-up, thinking it was still connected, so ensure it
2042 	 * still responds.
2043 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
2044 	 * just reconnected card after being disconnected during busy.
2045 	 */
2046 	err = __mmc_send_status(card, &status, 0);
2047 	if (err)
2048 		return err;
2049 	/* All R1 and R2 bits of SPI are errors in our case */
2050 	if (status)
2051 		return -EIO;
2052 	return 0;
2053 }
2054 
2055 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
2056 {
2057 	struct mmc_blk_busy_data *data = cb_data;
2058 	u32 status = 0;
2059 	int err;
2060 
2061 	err = mmc_send_status(data->card, &status);
2062 	if (err)
2063 		return err;
2064 
2065 	/* Accumulate response error bits. */
2066 	data->status |= status;
2067 
2068 	*busy = !mmc_ready_for_data(status);
2069 	return 0;
2070 }
2071 
2072 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2073 {
2074 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2075 	struct mmc_blk_busy_data cb_data;
2076 	int err;
2077 
2078 	if (rq_data_dir(req) == READ)
2079 		return 0;
2080 
2081 	if (mmc_host_is_spi(card->host)) {
2082 		err = mmc_spi_err_check(card);
2083 		if (err)
2084 			mqrq->brq.data.bytes_xfered = 0;
2085 		return err;
2086 	}
2087 
2088 	cb_data.card = card;
2089 	cb_data.status = 0;
2090 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2091 				  &mmc_blk_busy_cb, &cb_data);
2092 
2093 	/*
2094 	 * Do not assume data transferred correctly if there are any error bits
2095 	 * set.
2096 	 */
2097 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2098 		mqrq->brq.data.bytes_xfered = 0;
2099 		err = err ? err : -EIO;
2100 	}
2101 
2102 	/* Copy the exception bit so it will be seen later on */
2103 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2104 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2105 
2106 	return err;
2107 }
2108 
2109 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2110 					    struct request *req)
2111 {
2112 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2113 
2114 	mmc_blk_reset_success(mq->blkdata, type);
2115 }
2116 
2117 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2118 {
2119 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2120 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2121 
2122 	if (nr_bytes) {
2123 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2124 			blk_mq_requeue_request(req, true);
2125 		else
2126 			__blk_mq_end_request(req, BLK_STS_OK);
2127 	} else if (!blk_rq_bytes(req)) {
2128 		__blk_mq_end_request(req, BLK_STS_IOERR);
2129 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2130 		blk_mq_requeue_request(req, true);
2131 	} else {
2132 		if (mmc_card_removed(mq->card))
2133 			req->rq_flags |= RQF_QUIET;
2134 		blk_mq_end_request(req, BLK_STS_IOERR);
2135 	}
2136 }
2137 
2138 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2139 					struct mmc_queue_req *mqrq)
2140 {
2141 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2142 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2143 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2144 }
2145 
2146 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2147 				 struct mmc_queue_req *mqrq)
2148 {
2149 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2150 		mmc_run_bkops(mq->card);
2151 }
2152 
2153 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2154 {
2155 	struct mmc_queue_req *mqrq =
2156 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2157 	struct request *req = mmc_queue_req_to_req(mqrq);
2158 	struct request_queue *q = req->q;
2159 	struct mmc_queue *mq = q->queuedata;
2160 	struct mmc_host *host = mq->card->host;
2161 	unsigned long flags;
2162 
2163 	if (mmc_blk_rq_error(&mqrq->brq) ||
2164 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2165 		spin_lock_irqsave(&mq->lock, flags);
2166 		mq->recovery_needed = true;
2167 		mq->recovery_req = req;
2168 		spin_unlock_irqrestore(&mq->lock, flags);
2169 
2170 		host->cqe_ops->cqe_recovery_start(host);
2171 
2172 		schedule_work(&mq->recovery_work);
2173 		return;
2174 	}
2175 
2176 	mmc_blk_rw_reset_success(mq, req);
2177 
2178 	/*
2179 	 * Block layer timeouts race with completions which means the normal
2180 	 * completion path cannot be used during recovery.
2181 	 */
2182 	if (mq->in_recovery)
2183 		mmc_blk_cqe_complete_rq(mq, req);
2184 	else if (likely(!blk_should_fake_timeout(req->q)))
2185 		blk_mq_complete_request(req);
2186 }
2187 
2188 void mmc_blk_mq_complete(struct request *req)
2189 {
2190 	struct mmc_queue *mq = req->q->queuedata;
2191 	struct mmc_host *host = mq->card->host;
2192 
2193 	if (host->cqe_enabled)
2194 		mmc_blk_cqe_complete_rq(mq, req);
2195 	else if (likely(!blk_should_fake_timeout(req->q)))
2196 		mmc_blk_mq_complete_rq(mq, req);
2197 }
2198 
2199 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2200 				       struct request *req)
2201 {
2202 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2203 	struct mmc_host *host = mq->card->host;
2204 
2205 	if (mmc_blk_rq_error(&mqrq->brq) ||
2206 	    mmc_blk_card_busy(mq->card, req)) {
2207 		mmc_blk_mq_rw_recovery(mq, req);
2208 	} else {
2209 		mmc_blk_rw_reset_success(mq, req);
2210 		mmc_retune_release(host);
2211 	}
2212 
2213 	mmc_blk_urgent_bkops(mq, mqrq);
2214 }
2215 
2216 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2217 {
2218 	unsigned long flags;
2219 	bool put_card;
2220 
2221 	spin_lock_irqsave(&mq->lock, flags);
2222 
2223 	mq->in_flight[issue_type] -= 1;
2224 
2225 	put_card = (mmc_tot_in_flight(mq) == 0);
2226 
2227 	spin_unlock_irqrestore(&mq->lock, flags);
2228 
2229 	if (put_card)
2230 		mmc_put_card(mq->card, &mq->ctx);
2231 }
2232 
2233 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2234 				bool can_sleep)
2235 {
2236 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2237 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2238 	struct mmc_request *mrq = &mqrq->brq.mrq;
2239 	struct mmc_host *host = mq->card->host;
2240 
2241 	mmc_post_req(host, mrq, 0);
2242 
2243 	/*
2244 	 * Block layer timeouts race with completions which means the normal
2245 	 * completion path cannot be used during recovery.
2246 	 */
2247 	if (mq->in_recovery) {
2248 		mmc_blk_mq_complete_rq(mq, req);
2249 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2250 		if (can_sleep)
2251 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2252 		else
2253 			blk_mq_complete_request(req);
2254 	}
2255 
2256 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2257 }
2258 
2259 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2260 {
2261 	struct request *req = mq->recovery_req;
2262 	struct mmc_host *host = mq->card->host;
2263 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2264 
2265 	mq->recovery_req = NULL;
2266 	mq->rw_wait = false;
2267 
2268 	if (mmc_blk_rq_error(&mqrq->brq)) {
2269 		mmc_retune_hold_now(host);
2270 		mmc_blk_mq_rw_recovery(mq, req);
2271 	}
2272 
2273 	mmc_blk_urgent_bkops(mq, mqrq);
2274 
2275 	mmc_blk_mq_post_req(mq, req, true);
2276 }
2277 
2278 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2279 					 struct request **prev_req)
2280 {
2281 	if (mmc_host_done_complete(mq->card->host))
2282 		return;
2283 
2284 	mutex_lock(&mq->complete_lock);
2285 
2286 	if (!mq->complete_req)
2287 		goto out_unlock;
2288 
2289 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2290 
2291 	if (prev_req)
2292 		*prev_req = mq->complete_req;
2293 	else
2294 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2295 
2296 	mq->complete_req = NULL;
2297 
2298 out_unlock:
2299 	mutex_unlock(&mq->complete_lock);
2300 }
2301 
2302 void mmc_blk_mq_complete_work(struct work_struct *work)
2303 {
2304 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2305 					    complete_work);
2306 
2307 	mmc_blk_mq_complete_prev_req(mq, NULL);
2308 }
2309 
2310 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2311 {
2312 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2313 						  brq.mrq);
2314 	struct request *req = mmc_queue_req_to_req(mqrq);
2315 	struct request_queue *q = req->q;
2316 	struct mmc_queue *mq = q->queuedata;
2317 	struct mmc_host *host = mq->card->host;
2318 	unsigned long flags;
2319 
2320 	if (!mmc_host_done_complete(host)) {
2321 		bool waiting;
2322 
2323 		/*
2324 		 * We cannot complete the request in this context, so record
2325 		 * that there is a request to complete, and that a following
2326 		 * request does not need to wait (although it does need to
2327 		 * complete complete_req first).
2328 		 */
2329 		spin_lock_irqsave(&mq->lock, flags);
2330 		mq->complete_req = req;
2331 		mq->rw_wait = false;
2332 		waiting = mq->waiting;
2333 		spin_unlock_irqrestore(&mq->lock, flags);
2334 
2335 		/*
2336 		 * If 'waiting' then the waiting task will complete this
2337 		 * request, otherwise queue a work to do it. Note that
2338 		 * complete_work may still race with the dispatch of a following
2339 		 * request.
2340 		 */
2341 		if (waiting)
2342 			wake_up(&mq->wait);
2343 		else
2344 			queue_work(mq->card->complete_wq, &mq->complete_work);
2345 
2346 		return;
2347 	}
2348 
2349 	/* Take the recovery path for errors or urgent background operations */
2350 	if (mmc_blk_rq_error(&mqrq->brq) ||
2351 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2352 		spin_lock_irqsave(&mq->lock, flags);
2353 		mq->recovery_needed = true;
2354 		mq->recovery_req = req;
2355 		spin_unlock_irqrestore(&mq->lock, flags);
2356 		wake_up(&mq->wait);
2357 		schedule_work(&mq->recovery_work);
2358 		return;
2359 	}
2360 
2361 	mmc_blk_rw_reset_success(mq, req);
2362 
2363 	mq->rw_wait = false;
2364 	wake_up(&mq->wait);
2365 
2366 	/* context unknown */
2367 	mmc_blk_mq_post_req(mq, req, false);
2368 }
2369 
2370 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2371 {
2372 	unsigned long flags;
2373 	bool done;
2374 
2375 	/*
2376 	 * Wait while there is another request in progress, but not if recovery
2377 	 * is needed. Also indicate whether there is a request waiting to start.
2378 	 */
2379 	spin_lock_irqsave(&mq->lock, flags);
2380 	if (mq->recovery_needed) {
2381 		*err = -EBUSY;
2382 		done = true;
2383 	} else {
2384 		done = !mq->rw_wait;
2385 	}
2386 	mq->waiting = !done;
2387 	spin_unlock_irqrestore(&mq->lock, flags);
2388 
2389 	return done;
2390 }
2391 
2392 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2393 {
2394 	int err = 0;
2395 
2396 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2397 
2398 	/* Always complete the previous request if there is one */
2399 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2400 
2401 	return err;
2402 }
2403 
2404 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2405 				  struct request *req)
2406 {
2407 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2408 	struct mmc_host *host = mq->card->host;
2409 	struct request *prev_req = NULL;
2410 	int err = 0;
2411 
2412 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2413 
2414 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2415 
2416 	mmc_pre_req(host, &mqrq->brq.mrq);
2417 
2418 	err = mmc_blk_rw_wait(mq, &prev_req);
2419 	if (err)
2420 		goto out_post_req;
2421 
2422 	mq->rw_wait = true;
2423 
2424 	err = mmc_start_request(host, &mqrq->brq.mrq);
2425 
2426 	if (prev_req)
2427 		mmc_blk_mq_post_req(mq, prev_req, true);
2428 
2429 	if (err)
2430 		mq->rw_wait = false;
2431 
2432 	/* Release re-tuning here where there is no synchronization required */
2433 	if (err || mmc_host_done_complete(host))
2434 		mmc_retune_release(host);
2435 
2436 out_post_req:
2437 	if (err)
2438 		mmc_post_req(host, &mqrq->brq.mrq, err);
2439 
2440 	return err;
2441 }
2442 
2443 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2444 {
2445 	if (host->cqe_enabled)
2446 		return host->cqe_ops->cqe_wait_for_idle(host);
2447 
2448 	return mmc_blk_rw_wait(mq, NULL);
2449 }
2450 
2451 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2452 {
2453 	struct mmc_blk_data *md = mq->blkdata;
2454 	struct mmc_card *card = md->queue.card;
2455 	struct mmc_host *host = card->host;
2456 	int ret;
2457 
2458 	ret = mmc_blk_part_switch(card, md->part_type);
2459 	if (ret)
2460 		return MMC_REQ_FAILED_TO_START;
2461 
2462 	switch (mmc_issue_type(mq, req)) {
2463 	case MMC_ISSUE_SYNC:
2464 		ret = mmc_blk_wait_for_idle(mq, host);
2465 		if (ret)
2466 			return MMC_REQ_BUSY;
2467 		switch (req_op(req)) {
2468 		case REQ_OP_DRV_IN:
2469 		case REQ_OP_DRV_OUT:
2470 			mmc_blk_issue_drv_op(mq, req);
2471 			break;
2472 		case REQ_OP_DISCARD:
2473 			mmc_blk_issue_discard_rq(mq, req);
2474 			break;
2475 		case REQ_OP_SECURE_ERASE:
2476 			mmc_blk_issue_secdiscard_rq(mq, req);
2477 			break;
2478 		case REQ_OP_WRITE_ZEROES:
2479 			mmc_blk_issue_trim_rq(mq, req);
2480 			break;
2481 		case REQ_OP_FLUSH:
2482 			mmc_blk_issue_flush(mq, req);
2483 			break;
2484 		default:
2485 			WARN_ON_ONCE(1);
2486 			return MMC_REQ_FAILED_TO_START;
2487 		}
2488 		return MMC_REQ_FINISHED;
2489 	case MMC_ISSUE_DCMD:
2490 	case MMC_ISSUE_ASYNC:
2491 		switch (req_op(req)) {
2492 		case REQ_OP_FLUSH:
2493 			if (!mmc_cache_enabled(host)) {
2494 				blk_mq_end_request(req, BLK_STS_OK);
2495 				return MMC_REQ_FINISHED;
2496 			}
2497 			ret = mmc_blk_cqe_issue_flush(mq, req);
2498 			break;
2499 		case REQ_OP_WRITE:
2500 			card->written_flag = true;
2501 			fallthrough;
2502 		case REQ_OP_READ:
2503 			if (host->cqe_enabled)
2504 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2505 			else
2506 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2507 			break;
2508 		default:
2509 			WARN_ON_ONCE(1);
2510 			ret = -EINVAL;
2511 		}
2512 		if (!ret)
2513 			return MMC_REQ_STARTED;
2514 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2515 	default:
2516 		WARN_ON_ONCE(1);
2517 		return MMC_REQ_FAILED_TO_START;
2518 	}
2519 }
2520 
2521 static inline int mmc_blk_readonly(struct mmc_card *card)
2522 {
2523 	return mmc_card_readonly(card) ||
2524 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2525 }
2526 
2527 /*
2528  * Search for a declared partitions node for the disk in mmc-card related node.
2529  *
2530  * This is to permit support for partition table defined in DT in special case
2531  * where a partition table is not written in the disk and is expected to be
2532  * passed from the running system.
2533  *
2534  * For the user disk, "partitions" node is searched.
2535  * For the special HW disk, "partitions-" node with the appended name is used
2536  * following this conversion table (to adhere to JEDEC naming)
2537  * - boot0 -> partitions-boot1
2538  * - boot1 -> partitions-boot2
2539  * - gp0 -> partitions-gp1
2540  * - gp1 -> partitions-gp2
2541  * - gp2 -> partitions-gp3
2542  * - gp3 -> partitions-gp4
2543  */
2544 static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev,
2545 							 const char *subname)
2546 {
2547 	const char *node_name = "partitions";
2548 
2549 	if (subname) {
2550 		mmc_dev = mmc_dev->parent;
2551 
2552 		/*
2553 		 * Check if we are allocating a BOOT disk boot0/1 disk.
2554 		 * In DT we use the JEDEC naming boot1/2.
2555 		 */
2556 		if (!strcmp(subname, "boot0"))
2557 			node_name = "partitions-boot1";
2558 		if (!strcmp(subname, "boot1"))
2559 			node_name = "partitions-boot2";
2560 		/*
2561 		 * Check if we are allocating a GP disk gp0/1/2/3 disk.
2562 		 * In DT we use the JEDEC naming gp1/2/3/4.
2563 		 */
2564 		if (!strcmp(subname, "gp0"))
2565 			node_name = "partitions-gp1";
2566 		if (!strcmp(subname, "gp1"))
2567 			node_name = "partitions-gp2";
2568 		if (!strcmp(subname, "gp2"))
2569 			node_name = "partitions-gp3";
2570 		if (!strcmp(subname, "gp3"))
2571 			node_name = "partitions-gp4";
2572 	}
2573 
2574 	return device_get_named_child_node(mmc_dev, node_name);
2575 }
2576 
2577 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2578 					      struct device *parent,
2579 					      sector_t size,
2580 					      bool default_ro,
2581 					      const char *subname,
2582 					      int area_type,
2583 					      unsigned int part_type)
2584 {
2585 	struct fwnode_handle *disk_fwnode;
2586 	struct mmc_blk_data *md;
2587 	int devidx, ret;
2588 	char cap_str[10];
2589 	unsigned int features = 0;
2590 
2591 	devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL);
2592 	if (devidx < 0) {
2593 		/*
2594 		 * We get -ENOSPC because there are no more any available
2595 		 * devidx. The reason may be that, either userspace haven't yet
2596 		 * unmounted the partitions, which postpones mmc_blk_release()
2597 		 * from being called, or the device has more partitions than
2598 		 * what we support.
2599 		 */
2600 		if (devidx == -ENOSPC)
2601 			dev_err(mmc_dev(card->host),
2602 				"no more device IDs available\n");
2603 
2604 		return ERR_PTR(devidx);
2605 	}
2606 
2607 	md = kzalloc(sizeof(*md), GFP_KERNEL);
2608 	if (!md) {
2609 		ret = -ENOMEM;
2610 		goto out;
2611 	}
2612 
2613 	md->area_type = area_type;
2614 
2615 	/*
2616 	 * Set the read-only status based on the supported commands
2617 	 * and the write protect switch.
2618 	 */
2619 	md->read_only = mmc_blk_readonly(card);
2620 
2621 	if (mmc_host_cmd23(card->host)) {
2622 		if ((mmc_card_mmc(card) &&
2623 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2624 		    (mmc_card_sd(card) && !mmc_card_ult_capacity(card) &&
2625 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2626 			md->flags |= MMC_BLK_CMD23;
2627 	}
2628 
2629 	if (md->flags & MMC_BLK_CMD23 &&
2630 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2631 	     card->ext_csd.rel_sectors)) {
2632 		md->flags |= MMC_BLK_REL_WR;
2633 		features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA);
2634 	} else if (mmc_cache_enabled(card->host)) {
2635 		features |= BLK_FEAT_WRITE_CACHE;
2636 	}
2637 
2638 	md->disk = mmc_init_queue(&md->queue, card, features);
2639 	if (IS_ERR(md->disk)) {
2640 		ret = PTR_ERR(md->disk);
2641 		goto err_kfree;
2642 	}
2643 
2644 	INIT_LIST_HEAD(&md->part);
2645 	INIT_LIST_HEAD(&md->rpmbs);
2646 	kref_init(&md->kref);
2647 
2648 	md->queue.blkdata = md;
2649 	md->part_type = part_type;
2650 
2651 	md->disk->major	= MMC_BLOCK_MAJOR;
2652 	md->disk->minors = perdev_minors;
2653 	md->disk->first_minor = devidx * perdev_minors;
2654 	md->disk->fops = &mmc_bdops;
2655 	md->disk->private_data = md;
2656 	md->parent = parent;
2657 	set_disk_ro(md->disk, md->read_only || default_ro);
2658 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2659 		md->disk->flags |= GENHD_FL_NO_PART;
2660 
2661 	/*
2662 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2663 	 *
2664 	 * - be set for removable media with permanent block devices
2665 	 * - be unset for removable block devices with permanent media
2666 	 *
2667 	 * Since MMC block devices clearly fall under the second
2668 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2669 	 * should use the block device creation/destruction hotplug
2670 	 * messages to tell when the card is present.
2671 	 */
2672 
2673 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2674 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2675 
2676 	set_capacity(md->disk, size);
2677 
2678 	string_get_size((u64)size, 512, STRING_UNITS_2,
2679 			cap_str, sizeof(cap_str));
2680 	pr_info("%s: %s %s %s%s\n",
2681 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2682 		cap_str, md->read_only ? " (ro)" : "");
2683 
2684 	/* used in ->open, must be set before add_disk: */
2685 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2686 		dev_set_drvdata(&card->dev, md);
2687 	disk_fwnode = mmc_blk_get_partitions_node(parent, subname);
2688 	ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups,
2689 			      disk_fwnode);
2690 	if (ret)
2691 		goto err_put_disk;
2692 	return md;
2693 
2694  err_put_disk:
2695 	put_disk(md->disk);
2696 	blk_mq_free_tag_set(&md->queue.tag_set);
2697  err_kfree:
2698 	kfree(md);
2699  out:
2700 	ida_free(&mmc_blk_ida, devidx);
2701 	return ERR_PTR(ret);
2702 }
2703 
2704 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2705 {
2706 	sector_t size;
2707 
2708 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2709 		/*
2710 		 * The EXT_CSD sector count is in number or 512 byte
2711 		 * sectors.
2712 		 */
2713 		size = card->ext_csd.sectors;
2714 	} else {
2715 		/*
2716 		 * The CSD capacity field is in units of read_blkbits.
2717 		 * set_capacity takes units of 512 bytes.
2718 		 */
2719 		size = (typeof(sector_t))card->csd.capacity
2720 			<< (card->csd.read_blkbits - 9);
2721 	}
2722 
2723 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2724 					MMC_BLK_DATA_AREA_MAIN, 0);
2725 }
2726 
2727 static int mmc_blk_alloc_part(struct mmc_card *card,
2728 			      struct mmc_blk_data *md,
2729 			      unsigned int part_type,
2730 			      sector_t size,
2731 			      bool default_ro,
2732 			      const char *subname,
2733 			      int area_type)
2734 {
2735 	struct mmc_blk_data *part_md;
2736 
2737 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2738 				    subname, area_type, part_type);
2739 	if (IS_ERR(part_md))
2740 		return PTR_ERR(part_md);
2741 	list_add(&part_md->part, &md->part);
2742 
2743 	return 0;
2744 }
2745 
2746 /**
2747  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2748  * @filp: the character device file
2749  * @cmd: the ioctl() command
2750  * @arg: the argument from userspace
2751  *
2752  * This will essentially just redirect the ioctl()s coming in over to
2753  * the main block device spawning the RPMB character device.
2754  */
2755 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2756 			   unsigned long arg)
2757 {
2758 	struct mmc_rpmb_data *rpmb = filp->private_data;
2759 	int ret;
2760 
2761 	switch (cmd) {
2762 	case MMC_IOC_CMD:
2763 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2764 					(struct mmc_ioc_cmd __user *)arg,
2765 					rpmb);
2766 		break;
2767 	case MMC_IOC_MULTI_CMD:
2768 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2769 					(struct mmc_ioc_multi_cmd __user *)arg,
2770 					rpmb);
2771 		break;
2772 	default:
2773 		ret = -EINVAL;
2774 		break;
2775 	}
2776 
2777 	return ret;
2778 }
2779 
2780 #ifdef CONFIG_COMPAT
2781 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2782 			      unsigned long arg)
2783 {
2784 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2785 }
2786 #endif
2787 
2788 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2789 {
2790 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2791 						  struct mmc_rpmb_data, chrdev);
2792 
2793 	get_device(&rpmb->dev);
2794 	filp->private_data = rpmb;
2795 
2796 	return nonseekable_open(inode, filp);
2797 }
2798 
2799 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2800 {
2801 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2802 						  struct mmc_rpmb_data, chrdev);
2803 
2804 	put_device(&rpmb->dev);
2805 
2806 	return 0;
2807 }
2808 
2809 static const struct file_operations mmc_rpmb_fileops = {
2810 	.release = mmc_rpmb_chrdev_release,
2811 	.open = mmc_rpmb_chrdev_open,
2812 	.owner = THIS_MODULE,
2813 	.unlocked_ioctl = mmc_rpmb_ioctl,
2814 #ifdef CONFIG_COMPAT
2815 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2816 #endif
2817 };
2818 
2819 static void mmc_blk_rpmb_device_release(struct device *dev)
2820 {
2821 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2822 
2823 	rpmb_dev_unregister(rpmb->rdev);
2824 	mmc_blk_put(rpmb->md);
2825 	ida_free(&mmc_rpmb_ida, rpmb->id);
2826 	kfree(rpmb);
2827 }
2828 
2829 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count)
2830 {
2831 	unsigned int n;
2832 
2833 	for (n = 0; n < cmd_count; n++)
2834 		kfree(idata[n]);
2835 	kfree(idata);
2836 }
2837 
2838 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb,
2839 					     unsigned int cmd_count)
2840 {
2841 	struct mmc_blk_ioc_data **idata;
2842 	unsigned int n;
2843 
2844 	idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL);
2845 	if (!idata)
2846 		return NULL;
2847 
2848 	for (n = 0; n < cmd_count; n++) {
2849 		idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL);
2850 		if (!idata[n]) {
2851 			free_idata(idata, n);
2852 			return NULL;
2853 		}
2854 		idata[n]->rpmb = rpmb;
2855 	}
2856 
2857 	return idata;
2858 }
2859 
2860 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode,
2861 		      int write_flag, u8 *buf, unsigned int buf_bytes)
2862 {
2863 	/*
2864 	 * The size of an RPMB frame must match what's expected by the
2865 	 * hardware.
2866 	 */
2867 	BUILD_BUG_ON(sizeof(struct rpmb_frame) != 512);
2868 
2869 	idata->ic.opcode = opcode;
2870 	idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
2871 	idata->ic.write_flag = write_flag;
2872 	idata->ic.blksz = sizeof(struct rpmb_frame);
2873 	idata->ic.blocks = buf_bytes /  idata->ic.blksz;
2874 	idata->buf = buf;
2875 	idata->buf_bytes = buf_bytes;
2876 }
2877 
2878 static int mmc_route_rpmb_frames(struct device *dev, u8 *req,
2879 				 unsigned int req_len, u8 *resp,
2880 				 unsigned int resp_len)
2881 {
2882 	struct rpmb_frame *frm = (struct rpmb_frame *)req;
2883 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2884 	struct mmc_blk_data *md = rpmb->md;
2885 	struct mmc_blk_ioc_data **idata;
2886 	struct mmc_queue_req *mq_rq;
2887 	unsigned int cmd_count;
2888 	struct request *rq;
2889 	u16 req_type;
2890 	bool write;
2891 	int ret;
2892 
2893 	if (IS_ERR(md->queue.card))
2894 		return PTR_ERR(md->queue.card);
2895 
2896 	if (req_len < sizeof(*frm))
2897 		return -EINVAL;
2898 
2899 	req_type = be16_to_cpu(frm->req_resp);
2900 	switch (req_type) {
2901 	case RPMB_PROGRAM_KEY:
2902 		if (req_len != sizeof(struct rpmb_frame) ||
2903 		    resp_len != sizeof(struct rpmb_frame))
2904 			return -EINVAL;
2905 		write = true;
2906 		break;
2907 	case RPMB_GET_WRITE_COUNTER:
2908 		if (req_len != sizeof(struct rpmb_frame) ||
2909 		    resp_len != sizeof(struct rpmb_frame))
2910 			return -EINVAL;
2911 		write = false;
2912 		break;
2913 	case RPMB_WRITE_DATA:
2914 		if (req_len % sizeof(struct rpmb_frame) ||
2915 		    resp_len != sizeof(struct rpmb_frame))
2916 			return -EINVAL;
2917 		write = true;
2918 		break;
2919 	case RPMB_READ_DATA:
2920 		if (req_len != sizeof(struct rpmb_frame) ||
2921 		    resp_len % sizeof(struct rpmb_frame))
2922 			return -EINVAL;
2923 		write = false;
2924 		break;
2925 	default:
2926 		return -EINVAL;
2927 	}
2928 
2929 	if (write)
2930 		cmd_count = 3;
2931 	else
2932 		cmd_count = 2;
2933 
2934 	idata = alloc_idata(rpmb, cmd_count);
2935 	if (!idata)
2936 		return -ENOMEM;
2937 
2938 	if (write) {
2939 		struct rpmb_frame *frm = (struct rpmb_frame *)resp;
2940 
2941 		/* Send write request frame(s) */
2942 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK,
2943 			  1 | MMC_CMD23_ARG_REL_WR, req, req_len);
2944 
2945 		/* Send result request frame */
2946 		memset(frm, 0, sizeof(*frm));
2947 		frm->req_resp = cpu_to_be16(RPMB_RESULT_READ);
2948 		set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp,
2949 			  resp_len);
2950 
2951 		/* Read response frame */
2952 		set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2953 	} else {
2954 		/* Send write request frame(s) */
2955 		set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len);
2956 
2957 		/* Read response frame */
2958 		set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len);
2959 	}
2960 
2961 	rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0);
2962 	if (IS_ERR(rq)) {
2963 		ret = PTR_ERR(rq);
2964 		goto out;
2965 	}
2966 
2967 	mq_rq = req_to_mmc_queue_req(rq);
2968 	mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB;
2969 	mq_rq->drv_op_result = -EIO;
2970 	mq_rq->drv_op_data = idata;
2971 	mq_rq->ioc_count = cmd_count;
2972 	blk_execute_rq(rq, false);
2973 	ret = req_to_mmc_queue_req(rq)->drv_op_result;
2974 
2975 	blk_mq_free_request(rq);
2976 
2977 out:
2978 	free_idata(idata, cmd_count);
2979 	return ret;
2980 }
2981 
2982 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2983 				   struct mmc_blk_data *md,
2984 				   unsigned int part_index,
2985 				   sector_t size,
2986 				   const char *subname)
2987 {
2988 	int devidx, ret;
2989 	char rpmb_name[DISK_NAME_LEN];
2990 	char cap_str[10];
2991 	struct mmc_rpmb_data *rpmb;
2992 
2993 	/* This creates the minor number for the RPMB char device */
2994 	devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL);
2995 	if (devidx < 0)
2996 		return devidx;
2997 
2998 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2999 	if (!rpmb) {
3000 		ida_free(&mmc_rpmb_ida, devidx);
3001 		return -ENOMEM;
3002 	}
3003 
3004 	snprintf(rpmb_name, sizeof(rpmb_name),
3005 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
3006 
3007 	rpmb->id = devidx;
3008 	rpmb->part_index = part_index;
3009 	rpmb->dev.init_name = rpmb_name;
3010 	rpmb->dev.bus = &mmc_rpmb_bus_type;
3011 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
3012 	rpmb->dev.parent = &card->dev;
3013 	rpmb->dev.release = mmc_blk_rpmb_device_release;
3014 	device_initialize(&rpmb->dev);
3015 	dev_set_drvdata(&rpmb->dev, rpmb);
3016 	mmc_blk_get(md->disk);
3017 	rpmb->md = md;
3018 
3019 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
3020 	rpmb->chrdev.owner = THIS_MODULE;
3021 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
3022 	if (ret) {
3023 		pr_err("%s: could not add character device\n", rpmb_name);
3024 		goto out_put_device;
3025 	}
3026 
3027 	list_add(&rpmb->node, &md->rpmbs);
3028 
3029 	string_get_size((u64)size, 512, STRING_UNITS_2,
3030 			cap_str, sizeof(cap_str));
3031 
3032 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
3033 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
3034 		MAJOR(mmc_rpmb_devt), rpmb->id);
3035 
3036 	return 0;
3037 
3038 out_put_device:
3039 	put_device(&rpmb->dev);
3040 	return ret;
3041 }
3042 
3043 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
3044 
3045 {
3046 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
3047 	put_device(&rpmb->dev);
3048 }
3049 
3050 /* MMC Physical partitions consist of two boot partitions and
3051  * up to four general purpose partitions.
3052  * For each partition enabled in EXT_CSD a block device will be allocatedi
3053  * to provide access to the partition.
3054  */
3055 
3056 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
3057 {
3058 	int idx, ret;
3059 
3060 	if (!mmc_card_mmc(card))
3061 		return 0;
3062 
3063 	for (idx = 0; idx < card->nr_parts; idx++) {
3064 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
3065 			/*
3066 			 * RPMB partitions does not provide block access, they
3067 			 * are only accessed using ioctl():s. Thus create
3068 			 * special RPMB block devices that do not have a
3069 			 * backing block queue for these.
3070 			 */
3071 			ret = mmc_blk_alloc_rpmb_part(card, md,
3072 				card->part[idx].part_cfg,
3073 				card->part[idx].size >> 9,
3074 				card->part[idx].name);
3075 			if (ret)
3076 				return ret;
3077 		} else if (card->part[idx].size) {
3078 			ret = mmc_blk_alloc_part(card, md,
3079 				card->part[idx].part_cfg,
3080 				card->part[idx].size >> 9,
3081 				card->part[idx].force_ro,
3082 				card->part[idx].name,
3083 				card->part[idx].area_type);
3084 			if (ret)
3085 				return ret;
3086 		}
3087 	}
3088 
3089 	return 0;
3090 }
3091 
3092 static void mmc_blk_remove_req(struct mmc_blk_data *md)
3093 {
3094 	/*
3095 	 * Flush remaining requests and free queues. It is freeing the queue
3096 	 * that stops new requests from being accepted.
3097 	 */
3098 	del_gendisk(md->disk);
3099 	mmc_cleanup_queue(&md->queue);
3100 	mmc_blk_put(md);
3101 }
3102 
3103 static void mmc_blk_remove_parts(struct mmc_card *card,
3104 				 struct mmc_blk_data *md)
3105 {
3106 	struct list_head *pos, *q;
3107 	struct mmc_blk_data *part_md;
3108 	struct mmc_rpmb_data *rpmb;
3109 
3110 	/* Remove RPMB partitions */
3111 	list_for_each_safe(pos, q, &md->rpmbs) {
3112 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
3113 		list_del(pos);
3114 		mmc_blk_remove_rpmb_part(rpmb);
3115 	}
3116 	/* Remove block partitions */
3117 	list_for_each_safe(pos, q, &md->part) {
3118 		part_md = list_entry(pos, struct mmc_blk_data, part);
3119 		list_del(pos);
3120 		mmc_blk_remove_req(part_md);
3121 	}
3122 }
3123 
3124 #ifdef CONFIG_DEBUG_FS
3125 
3126 static int mmc_dbg_card_status_get(void *data, u64 *val)
3127 {
3128 	struct mmc_card *card = data;
3129 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3130 	struct mmc_queue *mq = &md->queue;
3131 	struct request *req;
3132 	int ret;
3133 
3134 	/* Ask the block layer about the card status */
3135 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3136 	if (IS_ERR(req))
3137 		return PTR_ERR(req);
3138 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
3139 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3140 	blk_execute_rq(req, false);
3141 	ret = req_to_mmc_queue_req(req)->drv_op_result;
3142 	if (ret >= 0) {
3143 		*val = ret;
3144 		ret = 0;
3145 	}
3146 	blk_mq_free_request(req);
3147 
3148 	return ret;
3149 }
3150 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
3151 			 NULL, "%08llx\n");
3152 
3153 /* That is two digits * 512 + 1 for newline */
3154 #define EXT_CSD_STR_LEN 1025
3155 
3156 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
3157 {
3158 	struct mmc_card *card = inode->i_private;
3159 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3160 	struct mmc_queue *mq = &md->queue;
3161 	struct request *req;
3162 	char *buf;
3163 	ssize_t n = 0;
3164 	u8 *ext_csd;
3165 	int err, i;
3166 
3167 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
3168 	if (!buf)
3169 		return -ENOMEM;
3170 
3171 	/* Ask the block layer for the EXT CSD */
3172 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
3173 	if (IS_ERR(req)) {
3174 		err = PTR_ERR(req);
3175 		goto out_free;
3176 	}
3177 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
3178 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
3179 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
3180 	blk_execute_rq(req, false);
3181 	err = req_to_mmc_queue_req(req)->drv_op_result;
3182 	blk_mq_free_request(req);
3183 	if (err) {
3184 		pr_err("FAILED %d\n", err);
3185 		goto out_free;
3186 	}
3187 
3188 	for (i = 0; i < 512; i++)
3189 		n += sprintf(buf + n, "%02x", ext_csd[i]);
3190 	n += sprintf(buf + n, "\n");
3191 
3192 	if (n != EXT_CSD_STR_LEN) {
3193 		err = -EINVAL;
3194 		kfree(ext_csd);
3195 		goto out_free;
3196 	}
3197 
3198 	filp->private_data = buf;
3199 	kfree(ext_csd);
3200 	return 0;
3201 
3202 out_free:
3203 	kfree(buf);
3204 	return err;
3205 }
3206 
3207 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
3208 				size_t cnt, loff_t *ppos)
3209 {
3210 	char *buf = filp->private_data;
3211 
3212 	return simple_read_from_buffer(ubuf, cnt, ppos,
3213 				       buf, EXT_CSD_STR_LEN);
3214 }
3215 
3216 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
3217 {
3218 	kfree(file->private_data);
3219 	return 0;
3220 }
3221 
3222 static const struct file_operations mmc_dbg_ext_csd_fops = {
3223 	.open		= mmc_ext_csd_open,
3224 	.read		= mmc_ext_csd_read,
3225 	.release	= mmc_ext_csd_release,
3226 	.llseek		= default_llseek,
3227 };
3228 
3229 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3230 {
3231 	struct dentry *root;
3232 
3233 	if (!card->debugfs_root)
3234 		return;
3235 
3236 	root = card->debugfs_root;
3237 
3238 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
3239 		md->status_dentry =
3240 			debugfs_create_file_unsafe("status", 0400, root,
3241 						   card,
3242 						   &mmc_dbg_card_status_fops);
3243 	}
3244 
3245 	if (mmc_card_mmc(card)) {
3246 		md->ext_csd_dentry =
3247 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
3248 					    &mmc_dbg_ext_csd_fops);
3249 	}
3250 }
3251 
3252 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3253 				   struct mmc_blk_data *md)
3254 {
3255 	if (!card->debugfs_root)
3256 		return;
3257 
3258 	debugfs_remove(md->status_dentry);
3259 	md->status_dentry = NULL;
3260 
3261 	debugfs_remove(md->ext_csd_dentry);
3262 	md->ext_csd_dentry = NULL;
3263 }
3264 
3265 #else
3266 
3267 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
3268 {
3269 }
3270 
3271 static void mmc_blk_remove_debugfs(struct mmc_card *card,
3272 				   struct mmc_blk_data *md)
3273 {
3274 }
3275 
3276 #endif /* CONFIG_DEBUG_FS */
3277 
3278 static void mmc_blk_rpmb_add(struct mmc_card *card)
3279 {
3280 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3281 	struct mmc_rpmb_data *rpmb;
3282 	struct rpmb_dev *rdev;
3283 	unsigned int n;
3284 	u32 cid[4];
3285 	struct rpmb_descr descr = {
3286 		.type = RPMB_TYPE_EMMC,
3287 		.route_frames = mmc_route_rpmb_frames,
3288 		.reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ?
3289 				     2 : 32,
3290 		.capacity = card->ext_csd.raw_rpmb_size_mult,
3291 		.dev_id = (void *)cid,
3292 		.dev_id_len = sizeof(cid),
3293 	};
3294 
3295 	/*
3296 	 * Provice CID as an octet array. The CID needs to be interpreted
3297 	 * when used as input to derive the RPMB key since some fields
3298 	 * will change due to firmware updates.
3299 	 */
3300 	for (n = 0; n < 4; n++)
3301 		cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]);
3302 
3303 	list_for_each_entry(rpmb, &md->rpmbs, node) {
3304 		rdev = rpmb_dev_register(&rpmb->dev, &descr);
3305 		if (IS_ERR(rdev)) {
3306 			pr_warn("%s: could not register RPMB device\n",
3307 				dev_name(&rpmb->dev));
3308 			continue;
3309 		}
3310 		rpmb->rdev = rdev;
3311 	}
3312 }
3313 
3314 static int mmc_blk_probe(struct mmc_card *card)
3315 {
3316 	struct mmc_blk_data *md;
3317 	int ret = 0;
3318 
3319 	/*
3320 	 * Check that the card supports the command class(es) we need.
3321 	 */
3322 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3323 		return -ENODEV;
3324 
3325 	mmc_fixup_device(card, mmc_blk_fixups);
3326 
3327 	card->complete_wq = alloc_workqueue("mmc_complete",
3328 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3329 	if (!card->complete_wq) {
3330 		pr_err("Failed to create mmc completion workqueue");
3331 		return -ENOMEM;
3332 	}
3333 
3334 	md = mmc_blk_alloc(card);
3335 	if (IS_ERR(md)) {
3336 		ret = PTR_ERR(md);
3337 		goto out_free;
3338 	}
3339 
3340 	ret = mmc_blk_alloc_parts(card, md);
3341 	if (ret)
3342 		goto out;
3343 
3344 	/* Add two debugfs entries */
3345 	mmc_blk_add_debugfs(card, md);
3346 
3347 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3348 	pm_runtime_use_autosuspend(&card->dev);
3349 
3350 	/*
3351 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3352 	 * decision to be taken during the SDIO init sequence instead.
3353 	 */
3354 	if (!mmc_card_sd_combo(card)) {
3355 		pm_runtime_set_active(&card->dev);
3356 		pm_runtime_enable(&card->dev);
3357 	}
3358 
3359 	mmc_blk_rpmb_add(card);
3360 
3361 	return 0;
3362 
3363 out:
3364 	mmc_blk_remove_parts(card, md);
3365 	mmc_blk_remove_req(md);
3366 out_free:
3367 	destroy_workqueue(card->complete_wq);
3368 	return ret;
3369 }
3370 
3371 static void mmc_blk_remove(struct mmc_card *card)
3372 {
3373 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3374 
3375 	mmc_blk_remove_debugfs(card, md);
3376 	mmc_blk_remove_parts(card, md);
3377 	pm_runtime_get_sync(&card->dev);
3378 	if (md->part_curr != md->part_type) {
3379 		mmc_claim_host(card->host);
3380 		mmc_blk_part_switch(card, md->part_type);
3381 		mmc_release_host(card->host);
3382 	}
3383 	if (!mmc_card_sd_combo(card))
3384 		pm_runtime_disable(&card->dev);
3385 	pm_runtime_put_noidle(&card->dev);
3386 	mmc_blk_remove_req(md);
3387 	destroy_workqueue(card->complete_wq);
3388 }
3389 
3390 static int _mmc_blk_suspend(struct mmc_card *card)
3391 {
3392 	struct mmc_blk_data *part_md;
3393 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3394 
3395 	if (md) {
3396 		mmc_queue_suspend(&md->queue);
3397 		list_for_each_entry(part_md, &md->part, part) {
3398 			mmc_queue_suspend(&part_md->queue);
3399 		}
3400 	}
3401 	return 0;
3402 }
3403 
3404 static void mmc_blk_shutdown(struct mmc_card *card)
3405 {
3406 	_mmc_blk_suspend(card);
3407 }
3408 
3409 #ifdef CONFIG_PM_SLEEP
3410 static int mmc_blk_suspend(struct device *dev)
3411 {
3412 	struct mmc_card *card = mmc_dev_to_card(dev);
3413 
3414 	return _mmc_blk_suspend(card);
3415 }
3416 
3417 static int mmc_blk_resume(struct device *dev)
3418 {
3419 	struct mmc_blk_data *part_md;
3420 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3421 
3422 	if (md) {
3423 		/*
3424 		 * Resume involves the card going into idle state,
3425 		 * so current partition is always the main one.
3426 		 */
3427 		md->part_curr = md->part_type;
3428 		mmc_queue_resume(&md->queue);
3429 		list_for_each_entry(part_md, &md->part, part) {
3430 			mmc_queue_resume(&part_md->queue);
3431 		}
3432 	}
3433 	return 0;
3434 }
3435 #endif
3436 
3437 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3438 
3439 static struct mmc_driver mmc_driver = {
3440 	.drv		= {
3441 		.name	= "mmcblk",
3442 		.pm	= &mmc_blk_pm_ops,
3443 	},
3444 	.probe		= mmc_blk_probe,
3445 	.remove		= mmc_blk_remove,
3446 	.shutdown	= mmc_blk_shutdown,
3447 };
3448 
3449 static int __init mmc_blk_init(void)
3450 {
3451 	int res;
3452 
3453 	res  = bus_register(&mmc_rpmb_bus_type);
3454 	if (res < 0) {
3455 		pr_err("mmcblk: could not register RPMB bus type\n");
3456 		return res;
3457 	}
3458 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3459 	if (res < 0) {
3460 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3461 		goto out_bus_unreg;
3462 	}
3463 
3464 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3465 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3466 
3467 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3468 
3469 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3470 	if (res)
3471 		goto out_chrdev_unreg;
3472 
3473 	res = mmc_register_driver(&mmc_driver);
3474 	if (res)
3475 		goto out_blkdev_unreg;
3476 
3477 	return 0;
3478 
3479 out_blkdev_unreg:
3480 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3481 out_chrdev_unreg:
3482 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3483 out_bus_unreg:
3484 	bus_unregister(&mmc_rpmb_bus_type);
3485 	return res;
3486 }
3487 
3488 static void __exit mmc_blk_exit(void)
3489 {
3490 	mmc_unregister_driver(&mmc_driver);
3491 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3492 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3493 	bus_unregister(&mmc_rpmb_bus_type);
3494 }
3495 
3496 module_init(mmc_blk_init);
3497 module_exit(mmc_blk_exit);
3498 
3499 MODULE_LICENSE("GPL");
3500 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3501