1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_SANITIZE_REQ_TIMEOUT 240000 74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 76 77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 78 (rq_data_dir(req) == WRITE)) 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 /* 100 * There is one mmc_blk_data per slot. 101 */ 102 struct mmc_blk_data { 103 struct device *parent; 104 struct gendisk *disk; 105 struct mmc_queue queue; 106 struct list_head part; 107 struct list_head rpmbs; 108 109 unsigned int flags; 110 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 111 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 112 113 unsigned int usage; 114 unsigned int read_only; 115 unsigned int part_type; 116 unsigned int reset_done; 117 #define MMC_BLK_READ BIT(0) 118 #define MMC_BLK_WRITE BIT(1) 119 #define MMC_BLK_DISCARD BIT(2) 120 #define MMC_BLK_SECDISCARD BIT(3) 121 #define MMC_BLK_CQE_RECOVERY BIT(4) 122 123 /* 124 * Only set in main mmc_blk_data associated 125 * with mmc_card with dev_set_drvdata, and keeps 126 * track of the current selected device partition. 127 */ 128 unsigned int part_curr; 129 struct device_attribute force_ro; 130 struct device_attribute power_ro_lock; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 172 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 173 { 174 struct mmc_blk_data *md; 175 176 mutex_lock(&open_lock); 177 md = disk->private_data; 178 if (md && md->usage == 0) 179 md = NULL; 180 if (md) 181 md->usage++; 182 mutex_unlock(&open_lock); 183 184 return md; 185 } 186 187 static inline int mmc_get_devidx(struct gendisk *disk) 188 { 189 int devidx = disk->first_minor / perdev_minors; 190 return devidx; 191 } 192 193 static void mmc_blk_put(struct mmc_blk_data *md) 194 { 195 mutex_lock(&open_lock); 196 md->usage--; 197 if (md->usage == 0) { 198 int devidx = mmc_get_devidx(md->disk); 199 blk_put_queue(md->queue.queue); 200 ida_simple_remove(&mmc_blk_ida, devidx); 201 put_disk(md->disk); 202 kfree(md); 203 } 204 mutex_unlock(&open_lock); 205 } 206 207 static ssize_t power_ro_lock_show(struct device *dev, 208 struct device_attribute *attr, char *buf) 209 { 210 int ret; 211 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 212 struct mmc_card *card = md->queue.card; 213 int locked = 0; 214 215 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 216 locked = 2; 217 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 218 locked = 1; 219 220 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 221 222 mmc_blk_put(md); 223 224 return ret; 225 } 226 227 static ssize_t power_ro_lock_store(struct device *dev, 228 struct device_attribute *attr, const char *buf, size_t count) 229 { 230 int ret; 231 struct mmc_blk_data *md, *part_md; 232 struct mmc_queue *mq; 233 struct request *req; 234 unsigned long set; 235 236 if (kstrtoul(buf, 0, &set)) 237 return -EINVAL; 238 239 if (set != 1) 240 return count; 241 242 md = mmc_blk_get(dev_to_disk(dev)); 243 mq = &md->queue; 244 245 /* Dispatch locking to the block layer */ 246 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 247 if (IS_ERR(req)) { 248 count = PTR_ERR(req); 249 goto out_put; 250 } 251 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 252 blk_execute_rq(mq->queue, NULL, req, 0); 253 ret = req_to_mmc_queue_req(req)->drv_op_result; 254 blk_put_request(req); 255 256 if (!ret) { 257 pr_info("%s: Locking boot partition ro until next power on\n", 258 md->disk->disk_name); 259 set_disk_ro(md->disk, 1); 260 261 list_for_each_entry(part_md, &md->part, part) 262 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 263 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 264 set_disk_ro(part_md->disk, 1); 265 } 266 } 267 out_put: 268 mmc_blk_put(md); 269 return count; 270 } 271 272 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 273 char *buf) 274 { 275 int ret; 276 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 277 278 ret = snprintf(buf, PAGE_SIZE, "%d\n", 279 get_disk_ro(dev_to_disk(dev)) ^ 280 md->read_only); 281 mmc_blk_put(md); 282 return ret; 283 } 284 285 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int ret; 289 char *end; 290 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 291 unsigned long set = simple_strtoul(buf, &end, 0); 292 if (end == buf) { 293 ret = -EINVAL; 294 goto out; 295 } 296 297 set_disk_ro(dev_to_disk(dev), set || md->read_only); 298 ret = count; 299 out: 300 mmc_blk_put(md); 301 return ret; 302 } 303 304 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 305 { 306 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 307 int ret = -ENXIO; 308 309 mutex_lock(&block_mutex); 310 if (md) { 311 if (md->usage == 2) 312 check_disk_change(bdev); 313 ret = 0; 314 315 if ((mode & FMODE_WRITE) && md->read_only) { 316 mmc_blk_put(md); 317 ret = -EROFS; 318 } 319 } 320 mutex_unlock(&block_mutex); 321 322 return ret; 323 } 324 325 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 326 { 327 struct mmc_blk_data *md = disk->private_data; 328 329 mutex_lock(&block_mutex); 330 mmc_blk_put(md); 331 mutex_unlock(&block_mutex); 332 } 333 334 static int 335 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 336 { 337 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 338 geo->heads = 4; 339 geo->sectors = 16; 340 return 0; 341 } 342 343 struct mmc_blk_ioc_data { 344 struct mmc_ioc_cmd ic; 345 unsigned char *buf; 346 u64 buf_bytes; 347 struct mmc_rpmb_data *rpmb; 348 }; 349 350 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 351 struct mmc_ioc_cmd __user *user) 352 { 353 struct mmc_blk_ioc_data *idata; 354 int err; 355 356 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 357 if (!idata) { 358 err = -ENOMEM; 359 goto out; 360 } 361 362 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 363 err = -EFAULT; 364 goto idata_err; 365 } 366 367 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 368 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 369 err = -EOVERFLOW; 370 goto idata_err; 371 } 372 373 if (!idata->buf_bytes) { 374 idata->buf = NULL; 375 return idata; 376 } 377 378 idata->buf = memdup_user((void __user *)(unsigned long) 379 idata->ic.data_ptr, idata->buf_bytes); 380 if (IS_ERR(idata->buf)) { 381 err = PTR_ERR(idata->buf); 382 goto idata_err; 383 } 384 385 return idata; 386 387 idata_err: 388 kfree(idata); 389 out: 390 return ERR_PTR(err); 391 } 392 393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 394 struct mmc_blk_ioc_data *idata) 395 { 396 struct mmc_ioc_cmd *ic = &idata->ic; 397 398 if (copy_to_user(&(ic_ptr->response), ic->response, 399 sizeof(ic->response))) 400 return -EFAULT; 401 402 if (!idata->ic.write_flag) { 403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 404 idata->buf, idata->buf_bytes)) 405 return -EFAULT; 406 } 407 408 return 0; 409 } 410 411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 412 u32 retries_max) 413 { 414 int err; 415 u32 retry_count = 0; 416 417 if (!status || !retries_max) 418 return -EINVAL; 419 420 do { 421 err = __mmc_send_status(card, status, 5); 422 if (err) 423 break; 424 425 if (!R1_STATUS(*status) && 426 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 427 break; /* RPMB programming operation complete */ 428 429 /* 430 * Rechedule to give the MMC device a chance to continue 431 * processing the previous command without being polled too 432 * frequently. 433 */ 434 usleep_range(1000, 5000); 435 } while (++retry_count < retries_max); 436 437 if (retry_count == retries_max) 438 err = -EPERM; 439 440 return err; 441 } 442 443 static int ioctl_do_sanitize(struct mmc_card *card) 444 { 445 int err; 446 447 if (!mmc_can_sanitize(card)) { 448 pr_warn("%s: %s - SANITIZE is not supported\n", 449 mmc_hostname(card->host), __func__); 450 err = -EOPNOTSUPP; 451 goto out; 452 } 453 454 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 455 mmc_hostname(card->host), __func__); 456 457 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 458 EXT_CSD_SANITIZE_START, 1, 459 MMC_SANITIZE_REQ_TIMEOUT); 460 461 if (err) 462 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 463 mmc_hostname(card->host), __func__, err); 464 465 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 466 __func__); 467 out: 468 return err; 469 } 470 471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 472 struct mmc_blk_ioc_data *idata) 473 { 474 struct mmc_command cmd = {}, sbc = {}; 475 struct mmc_data data = {}; 476 struct mmc_request mrq = {}; 477 struct scatterlist sg; 478 int err; 479 unsigned int target_part; 480 u32 status = 0; 481 482 if (!card || !md || !idata) 483 return -EINVAL; 484 485 /* 486 * The RPMB accesses comes in from the character device, so we 487 * need to target these explicitly. Else we just target the 488 * partition type for the block device the ioctl() was issued 489 * on. 490 */ 491 if (idata->rpmb) { 492 /* Support multiple RPMB partitions */ 493 target_part = idata->rpmb->part_index; 494 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 495 } else { 496 target_part = md->part_type; 497 } 498 499 cmd.opcode = idata->ic.opcode; 500 cmd.arg = idata->ic.arg; 501 cmd.flags = idata->ic.flags; 502 503 if (idata->buf_bytes) { 504 data.sg = &sg; 505 data.sg_len = 1; 506 data.blksz = idata->ic.blksz; 507 data.blocks = idata->ic.blocks; 508 509 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 510 511 if (idata->ic.write_flag) 512 data.flags = MMC_DATA_WRITE; 513 else 514 data.flags = MMC_DATA_READ; 515 516 /* data.flags must already be set before doing this. */ 517 mmc_set_data_timeout(&data, card); 518 519 /* Allow overriding the timeout_ns for empirical tuning. */ 520 if (idata->ic.data_timeout_ns) 521 data.timeout_ns = idata->ic.data_timeout_ns; 522 523 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 524 /* 525 * Pretend this is a data transfer and rely on the 526 * host driver to compute timeout. When all host 527 * drivers support cmd.cmd_timeout for R1B, this 528 * can be changed to: 529 * 530 * mrq.data = NULL; 531 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 532 */ 533 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 534 } 535 536 mrq.data = &data; 537 } 538 539 mrq.cmd = &cmd; 540 541 err = mmc_blk_part_switch(card, target_part); 542 if (err) 543 return err; 544 545 if (idata->ic.is_acmd) { 546 err = mmc_app_cmd(card->host, card); 547 if (err) 548 return err; 549 } 550 551 if (idata->rpmb) { 552 sbc.opcode = MMC_SET_BLOCK_COUNT; 553 /* 554 * We don't do any blockcount validation because the max size 555 * may be increased by a future standard. We just copy the 556 * 'Reliable Write' bit here. 557 */ 558 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 559 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 560 mrq.sbc = &sbc; 561 } 562 563 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 564 (cmd.opcode == MMC_SWITCH)) { 565 err = ioctl_do_sanitize(card); 566 567 if (err) 568 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 569 __func__, err); 570 571 return err; 572 } 573 574 mmc_wait_for_req(card->host, &mrq); 575 576 if (cmd.error) { 577 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 578 __func__, cmd.error); 579 return cmd.error; 580 } 581 if (data.error) { 582 dev_err(mmc_dev(card->host), "%s: data error %d\n", 583 __func__, data.error); 584 return data.error; 585 } 586 587 /* 588 * Make sure the cache of the PARTITION_CONFIG register and 589 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 590 * changed it successfully. 591 */ 592 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 593 (cmd.opcode == MMC_SWITCH)) { 594 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 595 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 596 597 /* 598 * Update cache so the next mmc_blk_part_switch call operates 599 * on up-to-date data. 600 */ 601 card->ext_csd.part_config = value; 602 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 603 } 604 605 /* 606 * According to the SD specs, some commands require a delay after 607 * issuing the command. 608 */ 609 if (idata->ic.postsleep_min_us) 610 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 611 612 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 613 614 if (idata->rpmb) { 615 /* 616 * Ensure RPMB command has completed by polling CMD13 617 * "Send Status". 618 */ 619 err = ioctl_rpmb_card_status_poll(card, &status, 5); 620 if (err) 621 dev_err(mmc_dev(card->host), 622 "%s: Card Status=0x%08X, error %d\n", 623 __func__, status, err); 624 } 625 626 return err; 627 } 628 629 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 630 struct mmc_ioc_cmd __user *ic_ptr, 631 struct mmc_rpmb_data *rpmb) 632 { 633 struct mmc_blk_ioc_data *idata; 634 struct mmc_blk_ioc_data *idatas[1]; 635 struct mmc_queue *mq; 636 struct mmc_card *card; 637 int err = 0, ioc_err = 0; 638 struct request *req; 639 640 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 641 if (IS_ERR(idata)) 642 return PTR_ERR(idata); 643 /* This will be NULL on non-RPMB ioctl():s */ 644 idata->rpmb = rpmb; 645 646 card = md->queue.card; 647 if (IS_ERR(card)) { 648 err = PTR_ERR(card); 649 goto cmd_done; 650 } 651 652 /* 653 * Dispatch the ioctl() into the block request queue. 654 */ 655 mq = &md->queue; 656 req = blk_get_request(mq->queue, 657 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 658 if (IS_ERR(req)) { 659 err = PTR_ERR(req); 660 goto cmd_done; 661 } 662 idatas[0] = idata; 663 req_to_mmc_queue_req(req)->drv_op = 664 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 665 req_to_mmc_queue_req(req)->drv_op_data = idatas; 666 req_to_mmc_queue_req(req)->ioc_count = 1; 667 blk_execute_rq(mq->queue, NULL, req, 0); 668 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 669 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 670 blk_put_request(req); 671 672 cmd_done: 673 kfree(idata->buf); 674 kfree(idata); 675 return ioc_err ? ioc_err : err; 676 } 677 678 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 679 struct mmc_ioc_multi_cmd __user *user, 680 struct mmc_rpmb_data *rpmb) 681 { 682 struct mmc_blk_ioc_data **idata = NULL; 683 struct mmc_ioc_cmd __user *cmds = user->cmds; 684 struct mmc_card *card; 685 struct mmc_queue *mq; 686 int i, err = 0, ioc_err = 0; 687 __u64 num_of_cmds; 688 struct request *req; 689 690 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 691 sizeof(num_of_cmds))) 692 return -EFAULT; 693 694 if (!num_of_cmds) 695 return 0; 696 697 if (num_of_cmds > MMC_IOC_MAX_CMDS) 698 return -EINVAL; 699 700 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 701 if (!idata) 702 return -ENOMEM; 703 704 for (i = 0; i < num_of_cmds; i++) { 705 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 706 if (IS_ERR(idata[i])) { 707 err = PTR_ERR(idata[i]); 708 num_of_cmds = i; 709 goto cmd_err; 710 } 711 /* This will be NULL on non-RPMB ioctl():s */ 712 idata[i]->rpmb = rpmb; 713 } 714 715 card = md->queue.card; 716 if (IS_ERR(card)) { 717 err = PTR_ERR(card); 718 goto cmd_err; 719 } 720 721 722 /* 723 * Dispatch the ioctl()s into the block request queue. 724 */ 725 mq = &md->queue; 726 req = blk_get_request(mq->queue, 727 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 728 if (IS_ERR(req)) { 729 err = PTR_ERR(req); 730 goto cmd_err; 731 } 732 req_to_mmc_queue_req(req)->drv_op = 733 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 734 req_to_mmc_queue_req(req)->drv_op_data = idata; 735 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 736 blk_execute_rq(mq->queue, NULL, req, 0); 737 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 738 739 /* copy to user if data and response */ 740 for (i = 0; i < num_of_cmds && !err; i++) 741 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 742 743 blk_put_request(req); 744 745 cmd_err: 746 for (i = 0; i < num_of_cmds; i++) { 747 kfree(idata[i]->buf); 748 kfree(idata[i]); 749 } 750 kfree(idata); 751 return ioc_err ? ioc_err : err; 752 } 753 754 static int mmc_blk_check_blkdev(struct block_device *bdev) 755 { 756 /* 757 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 758 * whole block device, not on a partition. This prevents overspray 759 * between sibling partitions. 760 */ 761 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 762 return -EPERM; 763 return 0; 764 } 765 766 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 767 unsigned int cmd, unsigned long arg) 768 { 769 struct mmc_blk_data *md; 770 int ret; 771 772 switch (cmd) { 773 case MMC_IOC_CMD: 774 ret = mmc_blk_check_blkdev(bdev); 775 if (ret) 776 return ret; 777 md = mmc_blk_get(bdev->bd_disk); 778 if (!md) 779 return -EINVAL; 780 ret = mmc_blk_ioctl_cmd(md, 781 (struct mmc_ioc_cmd __user *)arg, 782 NULL); 783 mmc_blk_put(md); 784 return ret; 785 case MMC_IOC_MULTI_CMD: 786 ret = mmc_blk_check_blkdev(bdev); 787 if (ret) 788 return ret; 789 md = mmc_blk_get(bdev->bd_disk); 790 if (!md) 791 return -EINVAL; 792 ret = mmc_blk_ioctl_multi_cmd(md, 793 (struct mmc_ioc_multi_cmd __user *)arg, 794 NULL); 795 mmc_blk_put(md); 796 return ret; 797 default: 798 return -EINVAL; 799 } 800 } 801 802 #ifdef CONFIG_COMPAT 803 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 804 unsigned int cmd, unsigned long arg) 805 { 806 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 807 } 808 #endif 809 810 static const struct block_device_operations mmc_bdops = { 811 .open = mmc_blk_open, 812 .release = mmc_blk_release, 813 .getgeo = mmc_blk_getgeo, 814 .owner = THIS_MODULE, 815 .ioctl = mmc_blk_ioctl, 816 #ifdef CONFIG_COMPAT 817 .compat_ioctl = mmc_blk_compat_ioctl, 818 #endif 819 }; 820 821 static int mmc_blk_part_switch_pre(struct mmc_card *card, 822 unsigned int part_type) 823 { 824 int ret = 0; 825 826 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 827 if (card->ext_csd.cmdq_en) { 828 ret = mmc_cmdq_disable(card); 829 if (ret) 830 return ret; 831 } 832 mmc_retune_pause(card->host); 833 } 834 835 return ret; 836 } 837 838 static int mmc_blk_part_switch_post(struct mmc_card *card, 839 unsigned int part_type) 840 { 841 int ret = 0; 842 843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 844 mmc_retune_unpause(card->host); 845 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 846 ret = mmc_cmdq_enable(card); 847 } 848 849 return ret; 850 } 851 852 static inline int mmc_blk_part_switch(struct mmc_card *card, 853 unsigned int part_type) 854 { 855 int ret = 0; 856 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 857 858 if (main_md->part_curr == part_type) 859 return 0; 860 861 if (mmc_card_mmc(card)) { 862 u8 part_config = card->ext_csd.part_config; 863 864 ret = mmc_blk_part_switch_pre(card, part_type); 865 if (ret) 866 return ret; 867 868 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 869 part_config |= part_type; 870 871 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 872 EXT_CSD_PART_CONFIG, part_config, 873 card->ext_csd.part_time); 874 if (ret) { 875 mmc_blk_part_switch_post(card, part_type); 876 return ret; 877 } 878 879 card->ext_csd.part_config = part_config; 880 881 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 882 } 883 884 main_md->part_curr = part_type; 885 return ret; 886 } 887 888 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 889 { 890 int err; 891 u32 result; 892 __be32 *blocks; 893 894 struct mmc_request mrq = {}; 895 struct mmc_command cmd = {}; 896 struct mmc_data data = {}; 897 898 struct scatterlist sg; 899 900 cmd.opcode = MMC_APP_CMD; 901 cmd.arg = card->rca << 16; 902 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 903 904 err = mmc_wait_for_cmd(card->host, &cmd, 0); 905 if (err) 906 return err; 907 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 908 return -EIO; 909 910 memset(&cmd, 0, sizeof(struct mmc_command)); 911 912 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 913 cmd.arg = 0; 914 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 915 916 data.blksz = 4; 917 data.blocks = 1; 918 data.flags = MMC_DATA_READ; 919 data.sg = &sg; 920 data.sg_len = 1; 921 mmc_set_data_timeout(&data, card); 922 923 mrq.cmd = &cmd; 924 mrq.data = &data; 925 926 blocks = kmalloc(4, GFP_KERNEL); 927 if (!blocks) 928 return -ENOMEM; 929 930 sg_init_one(&sg, blocks, 4); 931 932 mmc_wait_for_req(card->host, &mrq); 933 934 result = ntohl(*blocks); 935 kfree(blocks); 936 937 if (cmd.error || data.error) 938 return -EIO; 939 940 *written_blocks = result; 941 942 return 0; 943 } 944 945 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 946 { 947 if (host->actual_clock) 948 return host->actual_clock / 1000; 949 950 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 951 if (host->ios.clock) 952 return host->ios.clock / 2000; 953 954 /* How can there be no clock */ 955 WARN_ON_ONCE(1); 956 return 100; /* 100 kHz is minimum possible value */ 957 } 958 959 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 960 struct mmc_data *data) 961 { 962 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 963 unsigned int khz; 964 965 if (data->timeout_clks) { 966 khz = mmc_blk_clock_khz(host); 967 ms += DIV_ROUND_UP(data->timeout_clks, khz); 968 } 969 970 return ms; 971 } 972 973 static inline bool mmc_blk_in_tran_state(u32 status) 974 { 975 /* 976 * Some cards mishandle the status bits, so make sure to check both the 977 * busy indication and the card state. 978 */ 979 return status & R1_READY_FOR_DATA && 980 (R1_CURRENT_STATE(status) == R1_STATE_TRAN); 981 } 982 983 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 984 struct request *req, u32 *resp_errs) 985 { 986 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 987 int err = 0; 988 u32 status; 989 990 do { 991 bool done = time_after(jiffies, timeout); 992 993 err = __mmc_send_status(card, &status, 5); 994 if (err) { 995 pr_err("%s: error %d requesting status\n", 996 req->rq_disk->disk_name, err); 997 return err; 998 } 999 1000 /* Accumulate any response error bits seen */ 1001 if (resp_errs) 1002 *resp_errs |= status; 1003 1004 /* 1005 * Timeout if the device never becomes ready for data and never 1006 * leaves the program state. 1007 */ 1008 if (done) { 1009 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n", 1010 mmc_hostname(card->host), 1011 req->rq_disk->disk_name, __func__, status); 1012 return -ETIMEDOUT; 1013 } 1014 1015 /* 1016 * Some cards mishandle the status bits, 1017 * so make sure to check both the busy 1018 * indication and the card state. 1019 */ 1020 } while (!mmc_blk_in_tran_state(status)); 1021 1022 return err; 1023 } 1024 1025 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1026 int type) 1027 { 1028 int err; 1029 1030 if (md->reset_done & type) 1031 return -EEXIST; 1032 1033 md->reset_done |= type; 1034 err = mmc_hw_reset(host); 1035 /* Ensure we switch back to the correct partition */ 1036 if (err != -EOPNOTSUPP) { 1037 struct mmc_blk_data *main_md = 1038 dev_get_drvdata(&host->card->dev); 1039 int part_err; 1040 1041 main_md->part_curr = main_md->part_type; 1042 part_err = mmc_blk_part_switch(host->card, md->part_type); 1043 if (part_err) { 1044 /* 1045 * We have failed to get back into the correct 1046 * partition, so we need to abort the whole request. 1047 */ 1048 return -ENODEV; 1049 } 1050 } 1051 return err; 1052 } 1053 1054 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1055 { 1056 md->reset_done &= ~type; 1057 } 1058 1059 /* 1060 * The non-block commands come back from the block layer after it queued it and 1061 * processed it with all other requests and then they get issued in this 1062 * function. 1063 */ 1064 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1065 { 1066 struct mmc_queue_req *mq_rq; 1067 struct mmc_card *card = mq->card; 1068 struct mmc_blk_data *md = mq->blkdata; 1069 struct mmc_blk_ioc_data **idata; 1070 bool rpmb_ioctl; 1071 u8 **ext_csd; 1072 u32 status; 1073 int ret; 1074 int i; 1075 1076 mq_rq = req_to_mmc_queue_req(req); 1077 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1078 1079 switch (mq_rq->drv_op) { 1080 case MMC_DRV_OP_IOCTL: 1081 case MMC_DRV_OP_IOCTL_RPMB: 1082 idata = mq_rq->drv_op_data; 1083 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1084 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1085 if (ret) 1086 break; 1087 } 1088 /* Always switch back to main area after RPMB access */ 1089 if (rpmb_ioctl) 1090 mmc_blk_part_switch(card, 0); 1091 break; 1092 case MMC_DRV_OP_BOOT_WP: 1093 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1094 card->ext_csd.boot_ro_lock | 1095 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1096 card->ext_csd.part_time); 1097 if (ret) 1098 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1099 md->disk->disk_name, ret); 1100 else 1101 card->ext_csd.boot_ro_lock |= 1102 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1103 break; 1104 case MMC_DRV_OP_GET_CARD_STATUS: 1105 ret = mmc_send_status(card, &status); 1106 if (!ret) 1107 ret = status; 1108 break; 1109 case MMC_DRV_OP_GET_EXT_CSD: 1110 ext_csd = mq_rq->drv_op_data; 1111 ret = mmc_get_ext_csd(card, ext_csd); 1112 break; 1113 default: 1114 pr_err("%s: unknown driver specific operation\n", 1115 md->disk->disk_name); 1116 ret = -EINVAL; 1117 break; 1118 } 1119 mq_rq->drv_op_result = ret; 1120 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1121 } 1122 1123 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1124 { 1125 struct mmc_blk_data *md = mq->blkdata; 1126 struct mmc_card *card = md->queue.card; 1127 unsigned int from, nr; 1128 int err = 0, type = MMC_BLK_DISCARD; 1129 blk_status_t status = BLK_STS_OK; 1130 1131 if (!mmc_can_erase(card)) { 1132 status = BLK_STS_NOTSUPP; 1133 goto fail; 1134 } 1135 1136 from = blk_rq_pos(req); 1137 nr = blk_rq_sectors(req); 1138 1139 do { 1140 err = 0; 1141 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1142 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1143 INAND_CMD38_ARG_EXT_CSD, 1144 card->erase_arg == MMC_TRIM_ARG ? 1145 INAND_CMD38_ARG_TRIM : 1146 INAND_CMD38_ARG_ERASE, 1147 0); 1148 } 1149 if (!err) 1150 err = mmc_erase(card, from, nr, card->erase_arg); 1151 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1152 if (err) 1153 status = BLK_STS_IOERR; 1154 else 1155 mmc_blk_reset_success(md, type); 1156 fail: 1157 blk_mq_end_request(req, status); 1158 } 1159 1160 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1161 struct request *req) 1162 { 1163 struct mmc_blk_data *md = mq->blkdata; 1164 struct mmc_card *card = md->queue.card; 1165 unsigned int from, nr, arg; 1166 int err = 0, type = MMC_BLK_SECDISCARD; 1167 blk_status_t status = BLK_STS_OK; 1168 1169 if (!(mmc_can_secure_erase_trim(card))) { 1170 status = BLK_STS_NOTSUPP; 1171 goto out; 1172 } 1173 1174 from = blk_rq_pos(req); 1175 nr = blk_rq_sectors(req); 1176 1177 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1178 arg = MMC_SECURE_TRIM1_ARG; 1179 else 1180 arg = MMC_SECURE_ERASE_ARG; 1181 1182 retry: 1183 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1184 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1185 INAND_CMD38_ARG_EXT_CSD, 1186 arg == MMC_SECURE_TRIM1_ARG ? 1187 INAND_CMD38_ARG_SECTRIM1 : 1188 INAND_CMD38_ARG_SECERASE, 1189 0); 1190 if (err) 1191 goto out_retry; 1192 } 1193 1194 err = mmc_erase(card, from, nr, arg); 1195 if (err == -EIO) 1196 goto out_retry; 1197 if (err) { 1198 status = BLK_STS_IOERR; 1199 goto out; 1200 } 1201 1202 if (arg == MMC_SECURE_TRIM1_ARG) { 1203 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1204 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1205 INAND_CMD38_ARG_EXT_CSD, 1206 INAND_CMD38_ARG_SECTRIM2, 1207 0); 1208 if (err) 1209 goto out_retry; 1210 } 1211 1212 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1213 if (err == -EIO) 1214 goto out_retry; 1215 if (err) { 1216 status = BLK_STS_IOERR; 1217 goto out; 1218 } 1219 } 1220 1221 out_retry: 1222 if (err && !mmc_blk_reset(md, card->host, type)) 1223 goto retry; 1224 if (!err) 1225 mmc_blk_reset_success(md, type); 1226 out: 1227 blk_mq_end_request(req, status); 1228 } 1229 1230 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1231 { 1232 struct mmc_blk_data *md = mq->blkdata; 1233 struct mmc_card *card = md->queue.card; 1234 int ret = 0; 1235 1236 ret = mmc_flush_cache(card); 1237 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1238 } 1239 1240 /* 1241 * Reformat current write as a reliable write, supporting 1242 * both legacy and the enhanced reliable write MMC cards. 1243 * In each transfer we'll handle only as much as a single 1244 * reliable write can handle, thus finish the request in 1245 * partial completions. 1246 */ 1247 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1248 struct mmc_card *card, 1249 struct request *req) 1250 { 1251 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1252 /* Legacy mode imposes restrictions on transfers. */ 1253 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1254 brq->data.blocks = 1; 1255 1256 if (brq->data.blocks > card->ext_csd.rel_sectors) 1257 brq->data.blocks = card->ext_csd.rel_sectors; 1258 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1259 brq->data.blocks = 1; 1260 } 1261 } 1262 1263 #define CMD_ERRORS_EXCL_OOR \ 1264 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1265 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1266 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1267 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1268 R1_CC_ERROR | /* Card controller error */ \ 1269 R1_ERROR) /* General/unknown error */ 1270 1271 #define CMD_ERRORS \ 1272 (CMD_ERRORS_EXCL_OOR | \ 1273 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1274 1275 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1276 { 1277 u32 val; 1278 1279 /* 1280 * Per the SD specification(physical layer version 4.10)[1], 1281 * section 4.3.3, it explicitly states that "When the last 1282 * block of user area is read using CMD18, the host should 1283 * ignore OUT_OF_RANGE error that may occur even the sequence 1284 * is correct". And JESD84-B51 for eMMC also has a similar 1285 * statement on section 6.8.3. 1286 * 1287 * Multiple block read/write could be done by either predefined 1288 * method, namely CMD23, or open-ending mode. For open-ending mode, 1289 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1290 * 1291 * However the spec[1] doesn't tell us whether we should also 1292 * ignore that for predefined method. But per the spec[1], section 1293 * 4.15 Set Block Count Command, it says"If illegal block count 1294 * is set, out of range error will be indicated during read/write 1295 * operation (For example, data transfer is stopped at user area 1296 * boundary)." In another word, we could expect a out of range error 1297 * in the response for the following CMD18/25. And if argument of 1298 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1299 * we could also expect to get a -ETIMEDOUT or any error number from 1300 * the host drivers due to missing data response(for write)/data(for 1301 * read), as the cards will stop the data transfer by itself per the 1302 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1303 */ 1304 1305 if (!brq->stop.error) { 1306 bool oor_with_open_end; 1307 /* If there is no error yet, check R1 response */ 1308 1309 val = brq->stop.resp[0] & CMD_ERRORS; 1310 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1311 1312 if (val && !oor_with_open_end) 1313 brq->stop.error = -EIO; 1314 } 1315 } 1316 1317 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1318 int disable_multi, bool *do_rel_wr_p, 1319 bool *do_data_tag_p) 1320 { 1321 struct mmc_blk_data *md = mq->blkdata; 1322 struct mmc_card *card = md->queue.card; 1323 struct mmc_blk_request *brq = &mqrq->brq; 1324 struct request *req = mmc_queue_req_to_req(mqrq); 1325 bool do_rel_wr, do_data_tag; 1326 1327 /* 1328 * Reliable writes are used to implement Forced Unit Access and 1329 * are supported only on MMCs. 1330 */ 1331 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1332 rq_data_dir(req) == WRITE && 1333 (md->flags & MMC_BLK_REL_WR); 1334 1335 memset(brq, 0, sizeof(struct mmc_blk_request)); 1336 1337 brq->mrq.data = &brq->data; 1338 brq->mrq.tag = req->tag; 1339 1340 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1341 brq->stop.arg = 0; 1342 1343 if (rq_data_dir(req) == READ) { 1344 brq->data.flags = MMC_DATA_READ; 1345 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1346 } else { 1347 brq->data.flags = MMC_DATA_WRITE; 1348 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1349 } 1350 1351 brq->data.blksz = 512; 1352 brq->data.blocks = blk_rq_sectors(req); 1353 brq->data.blk_addr = blk_rq_pos(req); 1354 1355 /* 1356 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1357 * The eMMC will give "high" priority tasks priority over "simple" 1358 * priority tasks. Here we always set "simple" priority by not setting 1359 * MMC_DATA_PRIO. 1360 */ 1361 1362 /* 1363 * The block layer doesn't support all sector count 1364 * restrictions, so we need to be prepared for too big 1365 * requests. 1366 */ 1367 if (brq->data.blocks > card->host->max_blk_count) 1368 brq->data.blocks = card->host->max_blk_count; 1369 1370 if (brq->data.blocks > 1) { 1371 /* 1372 * Some SD cards in SPI mode return a CRC error or even lock up 1373 * completely when trying to read the last block using a 1374 * multiblock read command. 1375 */ 1376 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1377 (blk_rq_pos(req) + blk_rq_sectors(req) == 1378 get_capacity(md->disk))) 1379 brq->data.blocks--; 1380 1381 /* 1382 * After a read error, we redo the request one sector 1383 * at a time in order to accurately determine which 1384 * sectors can be read successfully. 1385 */ 1386 if (disable_multi) 1387 brq->data.blocks = 1; 1388 1389 /* 1390 * Some controllers have HW issues while operating 1391 * in multiple I/O mode 1392 */ 1393 if (card->host->ops->multi_io_quirk) 1394 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1395 (rq_data_dir(req) == READ) ? 1396 MMC_DATA_READ : MMC_DATA_WRITE, 1397 brq->data.blocks); 1398 } 1399 1400 if (do_rel_wr) { 1401 mmc_apply_rel_rw(brq, card, req); 1402 brq->data.flags |= MMC_DATA_REL_WR; 1403 } 1404 1405 /* 1406 * Data tag is used only during writing meta data to speed 1407 * up write and any subsequent read of this meta data 1408 */ 1409 do_data_tag = card->ext_csd.data_tag_unit_size && 1410 (req->cmd_flags & REQ_META) && 1411 (rq_data_dir(req) == WRITE) && 1412 ((brq->data.blocks * brq->data.blksz) >= 1413 card->ext_csd.data_tag_unit_size); 1414 1415 if (do_data_tag) 1416 brq->data.flags |= MMC_DATA_DAT_TAG; 1417 1418 mmc_set_data_timeout(&brq->data, card); 1419 1420 brq->data.sg = mqrq->sg; 1421 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1422 1423 /* 1424 * Adjust the sg list so it is the same size as the 1425 * request. 1426 */ 1427 if (brq->data.blocks != blk_rq_sectors(req)) { 1428 int i, data_size = brq->data.blocks << 9; 1429 struct scatterlist *sg; 1430 1431 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1432 data_size -= sg->length; 1433 if (data_size <= 0) { 1434 sg->length += data_size; 1435 i++; 1436 break; 1437 } 1438 } 1439 brq->data.sg_len = i; 1440 } 1441 1442 if (do_rel_wr_p) 1443 *do_rel_wr_p = do_rel_wr; 1444 1445 if (do_data_tag_p) 1446 *do_data_tag_p = do_data_tag; 1447 } 1448 1449 #define MMC_CQE_RETRIES 2 1450 1451 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1452 { 1453 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1454 struct mmc_request *mrq = &mqrq->brq.mrq; 1455 struct request_queue *q = req->q; 1456 struct mmc_host *host = mq->card->host; 1457 unsigned long flags; 1458 bool put_card; 1459 int err; 1460 1461 mmc_cqe_post_req(host, mrq); 1462 1463 if (mrq->cmd && mrq->cmd->error) 1464 err = mrq->cmd->error; 1465 else if (mrq->data && mrq->data->error) 1466 err = mrq->data->error; 1467 else 1468 err = 0; 1469 1470 if (err) { 1471 if (mqrq->retries++ < MMC_CQE_RETRIES) 1472 blk_mq_requeue_request(req, true); 1473 else 1474 blk_mq_end_request(req, BLK_STS_IOERR); 1475 } else if (mrq->data) { 1476 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1477 blk_mq_requeue_request(req, true); 1478 else 1479 __blk_mq_end_request(req, BLK_STS_OK); 1480 } else { 1481 blk_mq_end_request(req, BLK_STS_OK); 1482 } 1483 1484 spin_lock_irqsave(&mq->lock, flags); 1485 1486 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1487 1488 put_card = (mmc_tot_in_flight(mq) == 0); 1489 1490 mmc_cqe_check_busy(mq); 1491 1492 spin_unlock_irqrestore(&mq->lock, flags); 1493 1494 if (!mq->cqe_busy) 1495 blk_mq_run_hw_queues(q, true); 1496 1497 if (put_card) 1498 mmc_put_card(mq->card, &mq->ctx); 1499 } 1500 1501 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1502 { 1503 struct mmc_card *card = mq->card; 1504 struct mmc_host *host = card->host; 1505 int err; 1506 1507 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1508 1509 err = mmc_cqe_recovery(host); 1510 if (err) 1511 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1512 else 1513 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1514 1515 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1516 } 1517 1518 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1519 { 1520 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1521 brq.mrq); 1522 struct request *req = mmc_queue_req_to_req(mqrq); 1523 struct request_queue *q = req->q; 1524 struct mmc_queue *mq = q->queuedata; 1525 1526 /* 1527 * Block layer timeouts race with completions which means the normal 1528 * completion path cannot be used during recovery. 1529 */ 1530 if (mq->in_recovery) 1531 mmc_blk_cqe_complete_rq(mq, req); 1532 else 1533 blk_mq_complete_request(req); 1534 } 1535 1536 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1537 { 1538 mrq->done = mmc_blk_cqe_req_done; 1539 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1540 1541 return mmc_cqe_start_req(host, mrq); 1542 } 1543 1544 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1545 struct request *req) 1546 { 1547 struct mmc_blk_request *brq = &mqrq->brq; 1548 1549 memset(brq, 0, sizeof(*brq)); 1550 1551 brq->mrq.cmd = &brq->cmd; 1552 brq->mrq.tag = req->tag; 1553 1554 return &brq->mrq; 1555 } 1556 1557 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1558 { 1559 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1560 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1561 1562 mrq->cmd->opcode = MMC_SWITCH; 1563 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1564 (EXT_CSD_FLUSH_CACHE << 16) | 1565 (1 << 8) | 1566 EXT_CSD_CMD_SET_NORMAL; 1567 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1568 1569 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1570 } 1571 1572 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1573 { 1574 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1575 1576 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1577 1578 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1579 } 1580 1581 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1582 struct mmc_card *card, 1583 int disable_multi, 1584 struct mmc_queue *mq) 1585 { 1586 u32 readcmd, writecmd; 1587 struct mmc_blk_request *brq = &mqrq->brq; 1588 struct request *req = mmc_queue_req_to_req(mqrq); 1589 struct mmc_blk_data *md = mq->blkdata; 1590 bool do_rel_wr, do_data_tag; 1591 1592 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1593 1594 brq->mrq.cmd = &brq->cmd; 1595 1596 brq->cmd.arg = blk_rq_pos(req); 1597 if (!mmc_card_blockaddr(card)) 1598 brq->cmd.arg <<= 9; 1599 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1600 1601 if (brq->data.blocks > 1 || do_rel_wr) { 1602 /* SPI multiblock writes terminate using a special 1603 * token, not a STOP_TRANSMISSION request. 1604 */ 1605 if (!mmc_host_is_spi(card->host) || 1606 rq_data_dir(req) == READ) 1607 brq->mrq.stop = &brq->stop; 1608 readcmd = MMC_READ_MULTIPLE_BLOCK; 1609 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1610 } else { 1611 brq->mrq.stop = NULL; 1612 readcmd = MMC_READ_SINGLE_BLOCK; 1613 writecmd = MMC_WRITE_BLOCK; 1614 } 1615 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1616 1617 /* 1618 * Pre-defined multi-block transfers are preferable to 1619 * open ended-ones (and necessary for reliable writes). 1620 * However, it is not sufficient to just send CMD23, 1621 * and avoid the final CMD12, as on an error condition 1622 * CMD12 (stop) needs to be sent anyway. This, coupled 1623 * with Auto-CMD23 enhancements provided by some 1624 * hosts, means that the complexity of dealing 1625 * with this is best left to the host. If CMD23 is 1626 * supported by card and host, we'll fill sbc in and let 1627 * the host deal with handling it correctly. This means 1628 * that for hosts that don't expose MMC_CAP_CMD23, no 1629 * change of behavior will be observed. 1630 * 1631 * N.B: Some MMC cards experience perf degradation. 1632 * We'll avoid using CMD23-bounded multiblock writes for 1633 * these, while retaining features like reliable writes. 1634 */ 1635 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1636 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1637 do_data_tag)) { 1638 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1639 brq->sbc.arg = brq->data.blocks | 1640 (do_rel_wr ? (1 << 31) : 0) | 1641 (do_data_tag ? (1 << 29) : 0); 1642 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1643 brq->mrq.sbc = &brq->sbc; 1644 } 1645 } 1646 1647 #define MMC_MAX_RETRIES 5 1648 #define MMC_DATA_RETRIES 2 1649 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1650 1651 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1652 { 1653 struct mmc_command cmd = { 1654 .opcode = MMC_STOP_TRANSMISSION, 1655 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1656 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1657 .busy_timeout = timeout, 1658 }; 1659 1660 return mmc_wait_for_cmd(card->host, &cmd, 5); 1661 } 1662 1663 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1664 { 1665 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1666 struct mmc_blk_request *brq = &mqrq->brq; 1667 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1668 int err; 1669 1670 mmc_retune_hold_now(card->host); 1671 1672 mmc_blk_send_stop(card, timeout); 1673 1674 err = card_busy_detect(card, timeout, req, NULL); 1675 1676 mmc_retune_release(card->host); 1677 1678 return err; 1679 } 1680 1681 #define MMC_READ_SINGLE_RETRIES 2 1682 1683 /* Single sector read during recovery */ 1684 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1685 { 1686 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1687 struct mmc_request *mrq = &mqrq->brq.mrq; 1688 struct mmc_card *card = mq->card; 1689 struct mmc_host *host = card->host; 1690 blk_status_t error = BLK_STS_OK; 1691 int retries = 0; 1692 1693 do { 1694 u32 status; 1695 int err; 1696 1697 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1698 1699 mmc_wait_for_req(host, mrq); 1700 1701 err = mmc_send_status(card, &status); 1702 if (err) 1703 goto error_exit; 1704 1705 if (!mmc_host_is_spi(host) && 1706 !mmc_blk_in_tran_state(status)) { 1707 err = mmc_blk_fix_state(card, req); 1708 if (err) 1709 goto error_exit; 1710 } 1711 1712 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1713 continue; 1714 1715 retries = 0; 1716 1717 if (mrq->cmd->error || 1718 mrq->data->error || 1719 (!mmc_host_is_spi(host) && 1720 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1721 error = BLK_STS_IOERR; 1722 else 1723 error = BLK_STS_OK; 1724 1725 } while (blk_update_request(req, error, 512)); 1726 1727 return; 1728 1729 error_exit: 1730 mrq->data->bytes_xfered = 0; 1731 blk_update_request(req, BLK_STS_IOERR, 512); 1732 /* Let it try the remaining request again */ 1733 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1734 mqrq->retries = MMC_MAX_RETRIES - 1; 1735 } 1736 1737 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1738 { 1739 return !!brq->mrq.sbc; 1740 } 1741 1742 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1743 { 1744 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1745 } 1746 1747 /* 1748 * Check for errors the host controller driver might not have seen such as 1749 * response mode errors or invalid card state. 1750 */ 1751 static bool mmc_blk_status_error(struct request *req, u32 status) 1752 { 1753 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1754 struct mmc_blk_request *brq = &mqrq->brq; 1755 struct mmc_queue *mq = req->q->queuedata; 1756 u32 stop_err_bits; 1757 1758 if (mmc_host_is_spi(mq->card->host)) 1759 return false; 1760 1761 stop_err_bits = mmc_blk_stop_err_bits(brq); 1762 1763 return brq->cmd.resp[0] & CMD_ERRORS || 1764 brq->stop.resp[0] & stop_err_bits || 1765 status & stop_err_bits || 1766 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status)); 1767 } 1768 1769 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1770 { 1771 return !brq->sbc.error && !brq->cmd.error && 1772 !(brq->cmd.resp[0] & CMD_ERRORS); 1773 } 1774 1775 /* 1776 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1777 * policy: 1778 * 1. A request that has transferred at least some data is considered 1779 * successful and will be requeued if there is remaining data to 1780 * transfer. 1781 * 2. Otherwise the number of retries is incremented and the request 1782 * will be requeued if there are remaining retries. 1783 * 3. Otherwise the request will be errored out. 1784 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1785 * mqrq->retries. So there are only 4 possible actions here: 1786 * 1. do not accept the bytes_xfered value i.e. set it to zero 1787 * 2. change mqrq->retries to determine the number of retries 1788 * 3. try to reset the card 1789 * 4. read one sector at a time 1790 */ 1791 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1792 { 1793 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1794 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1795 struct mmc_blk_request *brq = &mqrq->brq; 1796 struct mmc_blk_data *md = mq->blkdata; 1797 struct mmc_card *card = mq->card; 1798 u32 status; 1799 u32 blocks; 1800 int err; 1801 1802 /* 1803 * Some errors the host driver might not have seen. Set the number of 1804 * bytes transferred to zero in that case. 1805 */ 1806 err = __mmc_send_status(card, &status, 0); 1807 if (err || mmc_blk_status_error(req, status)) 1808 brq->data.bytes_xfered = 0; 1809 1810 mmc_retune_release(card->host); 1811 1812 /* 1813 * Try again to get the status. This also provides an opportunity for 1814 * re-tuning. 1815 */ 1816 if (err) 1817 err = __mmc_send_status(card, &status, 0); 1818 1819 /* 1820 * Nothing more to do after the number of bytes transferred has been 1821 * updated and there is no card. 1822 */ 1823 if (err && mmc_detect_card_removed(card->host)) 1824 return; 1825 1826 /* Try to get back to "tran" state */ 1827 if (!mmc_host_is_spi(mq->card->host) && 1828 (err || !mmc_blk_in_tran_state(status))) 1829 err = mmc_blk_fix_state(mq->card, req); 1830 1831 /* 1832 * Special case for SD cards where the card might record the number of 1833 * blocks written. 1834 */ 1835 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1836 rq_data_dir(req) == WRITE) { 1837 if (mmc_sd_num_wr_blocks(card, &blocks)) 1838 brq->data.bytes_xfered = 0; 1839 else 1840 brq->data.bytes_xfered = blocks << 9; 1841 } 1842 1843 /* Reset if the card is in a bad state */ 1844 if (!mmc_host_is_spi(mq->card->host) && 1845 err && mmc_blk_reset(md, card->host, type)) { 1846 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1847 mqrq->retries = MMC_NO_RETRIES; 1848 return; 1849 } 1850 1851 /* 1852 * If anything was done, just return and if there is anything remaining 1853 * on the request it will get requeued. 1854 */ 1855 if (brq->data.bytes_xfered) 1856 return; 1857 1858 /* Reset before last retry */ 1859 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1860 mmc_blk_reset(md, card->host, type); 1861 1862 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1863 if (brq->sbc.error || brq->cmd.error) 1864 return; 1865 1866 /* Reduce the remaining retries for data errors */ 1867 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1868 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1869 return; 1870 } 1871 1872 /* FIXME: Missing single sector read for large sector size */ 1873 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1874 brq->data.blocks > 1) { 1875 /* Read one sector at a time */ 1876 mmc_blk_read_single(mq, req); 1877 return; 1878 } 1879 } 1880 1881 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1882 { 1883 mmc_blk_eval_resp_error(brq); 1884 1885 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1886 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1887 } 1888 1889 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1890 { 1891 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1892 u32 status = 0; 1893 int err; 1894 1895 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1896 return 0; 1897 1898 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status); 1899 1900 /* 1901 * Do not assume data transferred correctly if there are any error bits 1902 * set. 1903 */ 1904 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1905 mqrq->brq.data.bytes_xfered = 0; 1906 err = err ? err : -EIO; 1907 } 1908 1909 /* Copy the exception bit so it will be seen later on */ 1910 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1911 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1912 1913 return err; 1914 } 1915 1916 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1917 struct request *req) 1918 { 1919 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1920 1921 mmc_blk_reset_success(mq->blkdata, type); 1922 } 1923 1924 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1925 { 1926 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1927 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1928 1929 if (nr_bytes) { 1930 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1931 blk_mq_requeue_request(req, true); 1932 else 1933 __blk_mq_end_request(req, BLK_STS_OK); 1934 } else if (!blk_rq_bytes(req)) { 1935 __blk_mq_end_request(req, BLK_STS_IOERR); 1936 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1937 blk_mq_requeue_request(req, true); 1938 } else { 1939 if (mmc_card_removed(mq->card)) 1940 req->rq_flags |= RQF_QUIET; 1941 blk_mq_end_request(req, BLK_STS_IOERR); 1942 } 1943 } 1944 1945 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1946 struct mmc_queue_req *mqrq) 1947 { 1948 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1949 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1950 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1951 } 1952 1953 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1954 struct mmc_queue_req *mqrq) 1955 { 1956 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1957 mmc_run_bkops(mq->card); 1958 } 1959 1960 void mmc_blk_mq_complete(struct request *req) 1961 { 1962 struct mmc_queue *mq = req->q->queuedata; 1963 1964 if (mq->use_cqe) 1965 mmc_blk_cqe_complete_rq(mq, req); 1966 else 1967 mmc_blk_mq_complete_rq(mq, req); 1968 } 1969 1970 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1971 struct request *req) 1972 { 1973 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1974 struct mmc_host *host = mq->card->host; 1975 1976 if (mmc_blk_rq_error(&mqrq->brq) || 1977 mmc_blk_card_busy(mq->card, req)) { 1978 mmc_blk_mq_rw_recovery(mq, req); 1979 } else { 1980 mmc_blk_rw_reset_success(mq, req); 1981 mmc_retune_release(host); 1982 } 1983 1984 mmc_blk_urgent_bkops(mq, mqrq); 1985 } 1986 1987 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1988 { 1989 unsigned long flags; 1990 bool put_card; 1991 1992 spin_lock_irqsave(&mq->lock, flags); 1993 1994 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1995 1996 put_card = (mmc_tot_in_flight(mq) == 0); 1997 1998 spin_unlock_irqrestore(&mq->lock, flags); 1999 2000 if (put_card) 2001 mmc_put_card(mq->card, &mq->ctx); 2002 } 2003 2004 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2005 { 2006 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2007 struct mmc_request *mrq = &mqrq->brq.mrq; 2008 struct mmc_host *host = mq->card->host; 2009 2010 mmc_post_req(host, mrq, 0); 2011 2012 /* 2013 * Block layer timeouts race with completions which means the normal 2014 * completion path cannot be used during recovery. 2015 */ 2016 if (mq->in_recovery) 2017 mmc_blk_mq_complete_rq(mq, req); 2018 else 2019 blk_mq_complete_request(req); 2020 2021 mmc_blk_mq_dec_in_flight(mq, req); 2022 } 2023 2024 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2025 { 2026 struct request *req = mq->recovery_req; 2027 struct mmc_host *host = mq->card->host; 2028 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2029 2030 mq->recovery_req = NULL; 2031 mq->rw_wait = false; 2032 2033 if (mmc_blk_rq_error(&mqrq->brq)) { 2034 mmc_retune_hold_now(host); 2035 mmc_blk_mq_rw_recovery(mq, req); 2036 } 2037 2038 mmc_blk_urgent_bkops(mq, mqrq); 2039 2040 mmc_blk_mq_post_req(mq, req); 2041 } 2042 2043 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2044 struct request **prev_req) 2045 { 2046 if (mmc_host_done_complete(mq->card->host)) 2047 return; 2048 2049 mutex_lock(&mq->complete_lock); 2050 2051 if (!mq->complete_req) 2052 goto out_unlock; 2053 2054 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2055 2056 if (prev_req) 2057 *prev_req = mq->complete_req; 2058 else 2059 mmc_blk_mq_post_req(mq, mq->complete_req); 2060 2061 mq->complete_req = NULL; 2062 2063 out_unlock: 2064 mutex_unlock(&mq->complete_lock); 2065 } 2066 2067 void mmc_blk_mq_complete_work(struct work_struct *work) 2068 { 2069 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2070 complete_work); 2071 2072 mmc_blk_mq_complete_prev_req(mq, NULL); 2073 } 2074 2075 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2076 { 2077 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2078 brq.mrq); 2079 struct request *req = mmc_queue_req_to_req(mqrq); 2080 struct request_queue *q = req->q; 2081 struct mmc_queue *mq = q->queuedata; 2082 struct mmc_host *host = mq->card->host; 2083 unsigned long flags; 2084 2085 if (!mmc_host_done_complete(host)) { 2086 bool waiting; 2087 2088 /* 2089 * We cannot complete the request in this context, so record 2090 * that there is a request to complete, and that a following 2091 * request does not need to wait (although it does need to 2092 * complete complete_req first). 2093 */ 2094 spin_lock_irqsave(&mq->lock, flags); 2095 mq->complete_req = req; 2096 mq->rw_wait = false; 2097 waiting = mq->waiting; 2098 spin_unlock_irqrestore(&mq->lock, flags); 2099 2100 /* 2101 * If 'waiting' then the waiting task will complete this 2102 * request, otherwise queue a work to do it. Note that 2103 * complete_work may still race with the dispatch of a following 2104 * request. 2105 */ 2106 if (waiting) 2107 wake_up(&mq->wait); 2108 else 2109 queue_work(mq->card->complete_wq, &mq->complete_work); 2110 2111 return; 2112 } 2113 2114 /* Take the recovery path for errors or urgent background operations */ 2115 if (mmc_blk_rq_error(&mqrq->brq) || 2116 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2117 spin_lock_irqsave(&mq->lock, flags); 2118 mq->recovery_needed = true; 2119 mq->recovery_req = req; 2120 spin_unlock_irqrestore(&mq->lock, flags); 2121 wake_up(&mq->wait); 2122 schedule_work(&mq->recovery_work); 2123 return; 2124 } 2125 2126 mmc_blk_rw_reset_success(mq, req); 2127 2128 mq->rw_wait = false; 2129 wake_up(&mq->wait); 2130 2131 mmc_blk_mq_post_req(mq, req); 2132 } 2133 2134 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2135 { 2136 unsigned long flags; 2137 bool done; 2138 2139 /* 2140 * Wait while there is another request in progress, but not if recovery 2141 * is needed. Also indicate whether there is a request waiting to start. 2142 */ 2143 spin_lock_irqsave(&mq->lock, flags); 2144 if (mq->recovery_needed) { 2145 *err = -EBUSY; 2146 done = true; 2147 } else { 2148 done = !mq->rw_wait; 2149 } 2150 mq->waiting = !done; 2151 spin_unlock_irqrestore(&mq->lock, flags); 2152 2153 return done; 2154 } 2155 2156 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2157 { 2158 int err = 0; 2159 2160 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2161 2162 /* Always complete the previous request if there is one */ 2163 mmc_blk_mq_complete_prev_req(mq, prev_req); 2164 2165 return err; 2166 } 2167 2168 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2169 struct request *req) 2170 { 2171 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2172 struct mmc_host *host = mq->card->host; 2173 struct request *prev_req = NULL; 2174 int err = 0; 2175 2176 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2177 2178 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2179 2180 mmc_pre_req(host, &mqrq->brq.mrq); 2181 2182 err = mmc_blk_rw_wait(mq, &prev_req); 2183 if (err) 2184 goto out_post_req; 2185 2186 mq->rw_wait = true; 2187 2188 err = mmc_start_request(host, &mqrq->brq.mrq); 2189 2190 if (prev_req) 2191 mmc_blk_mq_post_req(mq, prev_req); 2192 2193 if (err) 2194 mq->rw_wait = false; 2195 2196 /* Release re-tuning here where there is no synchronization required */ 2197 if (err || mmc_host_done_complete(host)) 2198 mmc_retune_release(host); 2199 2200 out_post_req: 2201 if (err) 2202 mmc_post_req(host, &mqrq->brq.mrq, err); 2203 2204 return err; 2205 } 2206 2207 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2208 { 2209 if (mq->use_cqe) 2210 return host->cqe_ops->cqe_wait_for_idle(host); 2211 2212 return mmc_blk_rw_wait(mq, NULL); 2213 } 2214 2215 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2216 { 2217 struct mmc_blk_data *md = mq->blkdata; 2218 struct mmc_card *card = md->queue.card; 2219 struct mmc_host *host = card->host; 2220 int ret; 2221 2222 ret = mmc_blk_part_switch(card, md->part_type); 2223 if (ret) 2224 return MMC_REQ_FAILED_TO_START; 2225 2226 switch (mmc_issue_type(mq, req)) { 2227 case MMC_ISSUE_SYNC: 2228 ret = mmc_blk_wait_for_idle(mq, host); 2229 if (ret) 2230 return MMC_REQ_BUSY; 2231 switch (req_op(req)) { 2232 case REQ_OP_DRV_IN: 2233 case REQ_OP_DRV_OUT: 2234 mmc_blk_issue_drv_op(mq, req); 2235 break; 2236 case REQ_OP_DISCARD: 2237 mmc_blk_issue_discard_rq(mq, req); 2238 break; 2239 case REQ_OP_SECURE_ERASE: 2240 mmc_blk_issue_secdiscard_rq(mq, req); 2241 break; 2242 case REQ_OP_FLUSH: 2243 mmc_blk_issue_flush(mq, req); 2244 break; 2245 default: 2246 WARN_ON_ONCE(1); 2247 return MMC_REQ_FAILED_TO_START; 2248 } 2249 return MMC_REQ_FINISHED; 2250 case MMC_ISSUE_DCMD: 2251 case MMC_ISSUE_ASYNC: 2252 switch (req_op(req)) { 2253 case REQ_OP_FLUSH: 2254 ret = mmc_blk_cqe_issue_flush(mq, req); 2255 break; 2256 case REQ_OP_READ: 2257 case REQ_OP_WRITE: 2258 if (mq->use_cqe) 2259 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2260 else 2261 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2262 break; 2263 default: 2264 WARN_ON_ONCE(1); 2265 ret = -EINVAL; 2266 } 2267 if (!ret) 2268 return MMC_REQ_STARTED; 2269 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2270 default: 2271 WARN_ON_ONCE(1); 2272 return MMC_REQ_FAILED_TO_START; 2273 } 2274 } 2275 2276 static inline int mmc_blk_readonly(struct mmc_card *card) 2277 { 2278 return mmc_card_readonly(card) || 2279 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2280 } 2281 2282 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2283 struct device *parent, 2284 sector_t size, 2285 bool default_ro, 2286 const char *subname, 2287 int area_type) 2288 { 2289 struct mmc_blk_data *md; 2290 int devidx, ret; 2291 2292 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2293 if (devidx < 0) { 2294 /* 2295 * We get -ENOSPC because there are no more any available 2296 * devidx. The reason may be that, either userspace haven't yet 2297 * unmounted the partitions, which postpones mmc_blk_release() 2298 * from being called, or the device has more partitions than 2299 * what we support. 2300 */ 2301 if (devidx == -ENOSPC) 2302 dev_err(mmc_dev(card->host), 2303 "no more device IDs available\n"); 2304 2305 return ERR_PTR(devidx); 2306 } 2307 2308 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2309 if (!md) { 2310 ret = -ENOMEM; 2311 goto out; 2312 } 2313 2314 md->area_type = area_type; 2315 2316 /* 2317 * Set the read-only status based on the supported commands 2318 * and the write protect switch. 2319 */ 2320 md->read_only = mmc_blk_readonly(card); 2321 2322 md->disk = alloc_disk(perdev_minors); 2323 if (md->disk == NULL) { 2324 ret = -ENOMEM; 2325 goto err_kfree; 2326 } 2327 2328 INIT_LIST_HEAD(&md->part); 2329 INIT_LIST_HEAD(&md->rpmbs); 2330 md->usage = 1; 2331 2332 ret = mmc_init_queue(&md->queue, card); 2333 if (ret) 2334 goto err_putdisk; 2335 2336 md->queue.blkdata = md; 2337 2338 /* 2339 * Keep an extra reference to the queue so that we can shutdown the 2340 * queue (i.e. call blk_cleanup_queue()) while there are still 2341 * references to the 'md'. The corresponding blk_put_queue() is in 2342 * mmc_blk_put(). 2343 */ 2344 if (!blk_get_queue(md->queue.queue)) { 2345 mmc_cleanup_queue(&md->queue); 2346 ret = -ENODEV; 2347 goto err_putdisk; 2348 } 2349 2350 md->disk->major = MMC_BLOCK_MAJOR; 2351 md->disk->first_minor = devidx * perdev_minors; 2352 md->disk->fops = &mmc_bdops; 2353 md->disk->private_data = md; 2354 md->disk->queue = md->queue.queue; 2355 md->parent = parent; 2356 set_disk_ro(md->disk, md->read_only || default_ro); 2357 md->disk->flags = GENHD_FL_EXT_DEVT; 2358 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2359 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2360 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2361 2362 /* 2363 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2364 * 2365 * - be set for removable media with permanent block devices 2366 * - be unset for removable block devices with permanent media 2367 * 2368 * Since MMC block devices clearly fall under the second 2369 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2370 * should use the block device creation/destruction hotplug 2371 * messages to tell when the card is present. 2372 */ 2373 2374 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2375 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2376 2377 set_capacity(md->disk, size); 2378 2379 if (mmc_host_cmd23(card->host)) { 2380 if ((mmc_card_mmc(card) && 2381 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2382 (mmc_card_sd(card) && 2383 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2384 md->flags |= MMC_BLK_CMD23; 2385 } 2386 2387 if (mmc_card_mmc(card) && 2388 md->flags & MMC_BLK_CMD23 && 2389 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2390 card->ext_csd.rel_sectors)) { 2391 md->flags |= MMC_BLK_REL_WR; 2392 blk_queue_write_cache(md->queue.queue, true, true); 2393 } 2394 2395 return md; 2396 2397 err_putdisk: 2398 put_disk(md->disk); 2399 err_kfree: 2400 kfree(md); 2401 out: 2402 ida_simple_remove(&mmc_blk_ida, devidx); 2403 return ERR_PTR(ret); 2404 } 2405 2406 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2407 { 2408 sector_t size; 2409 2410 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2411 /* 2412 * The EXT_CSD sector count is in number or 512 byte 2413 * sectors. 2414 */ 2415 size = card->ext_csd.sectors; 2416 } else { 2417 /* 2418 * The CSD capacity field is in units of read_blkbits. 2419 * set_capacity takes units of 512 bytes. 2420 */ 2421 size = (typeof(sector_t))card->csd.capacity 2422 << (card->csd.read_blkbits - 9); 2423 } 2424 2425 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2426 MMC_BLK_DATA_AREA_MAIN); 2427 } 2428 2429 static int mmc_blk_alloc_part(struct mmc_card *card, 2430 struct mmc_blk_data *md, 2431 unsigned int part_type, 2432 sector_t size, 2433 bool default_ro, 2434 const char *subname, 2435 int area_type) 2436 { 2437 char cap_str[10]; 2438 struct mmc_blk_data *part_md; 2439 2440 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2441 subname, area_type); 2442 if (IS_ERR(part_md)) 2443 return PTR_ERR(part_md); 2444 part_md->part_type = part_type; 2445 list_add(&part_md->part, &md->part); 2446 2447 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2448 cap_str, sizeof(cap_str)); 2449 pr_info("%s: %s %s partition %u %s\n", 2450 part_md->disk->disk_name, mmc_card_id(card), 2451 mmc_card_name(card), part_md->part_type, cap_str); 2452 return 0; 2453 } 2454 2455 /** 2456 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2457 * @filp: the character device file 2458 * @cmd: the ioctl() command 2459 * @arg: the argument from userspace 2460 * 2461 * This will essentially just redirect the ioctl()s coming in over to 2462 * the main block device spawning the RPMB character device. 2463 */ 2464 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2465 unsigned long arg) 2466 { 2467 struct mmc_rpmb_data *rpmb = filp->private_data; 2468 int ret; 2469 2470 switch (cmd) { 2471 case MMC_IOC_CMD: 2472 ret = mmc_blk_ioctl_cmd(rpmb->md, 2473 (struct mmc_ioc_cmd __user *)arg, 2474 rpmb); 2475 break; 2476 case MMC_IOC_MULTI_CMD: 2477 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2478 (struct mmc_ioc_multi_cmd __user *)arg, 2479 rpmb); 2480 break; 2481 default: 2482 ret = -EINVAL; 2483 break; 2484 } 2485 2486 return ret; 2487 } 2488 2489 #ifdef CONFIG_COMPAT 2490 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2491 unsigned long arg) 2492 { 2493 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2494 } 2495 #endif 2496 2497 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2498 { 2499 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2500 struct mmc_rpmb_data, chrdev); 2501 2502 get_device(&rpmb->dev); 2503 filp->private_data = rpmb; 2504 mmc_blk_get(rpmb->md->disk); 2505 2506 return nonseekable_open(inode, filp); 2507 } 2508 2509 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2510 { 2511 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2512 struct mmc_rpmb_data, chrdev); 2513 2514 put_device(&rpmb->dev); 2515 mmc_blk_put(rpmb->md); 2516 2517 return 0; 2518 } 2519 2520 static const struct file_operations mmc_rpmb_fileops = { 2521 .release = mmc_rpmb_chrdev_release, 2522 .open = mmc_rpmb_chrdev_open, 2523 .owner = THIS_MODULE, 2524 .llseek = no_llseek, 2525 .unlocked_ioctl = mmc_rpmb_ioctl, 2526 #ifdef CONFIG_COMPAT 2527 .compat_ioctl = mmc_rpmb_ioctl_compat, 2528 #endif 2529 }; 2530 2531 static void mmc_blk_rpmb_device_release(struct device *dev) 2532 { 2533 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2534 2535 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2536 kfree(rpmb); 2537 } 2538 2539 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2540 struct mmc_blk_data *md, 2541 unsigned int part_index, 2542 sector_t size, 2543 const char *subname) 2544 { 2545 int devidx, ret; 2546 char rpmb_name[DISK_NAME_LEN]; 2547 char cap_str[10]; 2548 struct mmc_rpmb_data *rpmb; 2549 2550 /* This creates the minor number for the RPMB char device */ 2551 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2552 if (devidx < 0) 2553 return devidx; 2554 2555 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2556 if (!rpmb) { 2557 ida_simple_remove(&mmc_rpmb_ida, devidx); 2558 return -ENOMEM; 2559 } 2560 2561 snprintf(rpmb_name, sizeof(rpmb_name), 2562 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2563 2564 rpmb->id = devidx; 2565 rpmb->part_index = part_index; 2566 rpmb->dev.init_name = rpmb_name; 2567 rpmb->dev.bus = &mmc_rpmb_bus_type; 2568 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2569 rpmb->dev.parent = &card->dev; 2570 rpmb->dev.release = mmc_blk_rpmb_device_release; 2571 device_initialize(&rpmb->dev); 2572 dev_set_drvdata(&rpmb->dev, rpmb); 2573 rpmb->md = md; 2574 2575 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2576 rpmb->chrdev.owner = THIS_MODULE; 2577 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2578 if (ret) { 2579 pr_err("%s: could not add character device\n", rpmb_name); 2580 goto out_put_device; 2581 } 2582 2583 list_add(&rpmb->node, &md->rpmbs); 2584 2585 string_get_size((u64)size, 512, STRING_UNITS_2, 2586 cap_str, sizeof(cap_str)); 2587 2588 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2589 rpmb_name, mmc_card_id(card), 2590 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2591 MAJOR(mmc_rpmb_devt), rpmb->id); 2592 2593 return 0; 2594 2595 out_put_device: 2596 put_device(&rpmb->dev); 2597 return ret; 2598 } 2599 2600 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2601 2602 { 2603 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2604 put_device(&rpmb->dev); 2605 } 2606 2607 /* MMC Physical partitions consist of two boot partitions and 2608 * up to four general purpose partitions. 2609 * For each partition enabled in EXT_CSD a block device will be allocatedi 2610 * to provide access to the partition. 2611 */ 2612 2613 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2614 { 2615 int idx, ret; 2616 2617 if (!mmc_card_mmc(card)) 2618 return 0; 2619 2620 for (idx = 0; idx < card->nr_parts; idx++) { 2621 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2622 /* 2623 * RPMB partitions does not provide block access, they 2624 * are only accessed using ioctl():s. Thus create 2625 * special RPMB block devices that do not have a 2626 * backing block queue for these. 2627 */ 2628 ret = mmc_blk_alloc_rpmb_part(card, md, 2629 card->part[idx].part_cfg, 2630 card->part[idx].size >> 9, 2631 card->part[idx].name); 2632 if (ret) 2633 return ret; 2634 } else if (card->part[idx].size) { 2635 ret = mmc_blk_alloc_part(card, md, 2636 card->part[idx].part_cfg, 2637 card->part[idx].size >> 9, 2638 card->part[idx].force_ro, 2639 card->part[idx].name, 2640 card->part[idx].area_type); 2641 if (ret) 2642 return ret; 2643 } 2644 } 2645 2646 return 0; 2647 } 2648 2649 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2650 { 2651 struct mmc_card *card; 2652 2653 if (md) { 2654 /* 2655 * Flush remaining requests and free queues. It 2656 * is freeing the queue that stops new requests 2657 * from being accepted. 2658 */ 2659 card = md->queue.card; 2660 if (md->disk->flags & GENHD_FL_UP) { 2661 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2662 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2663 card->ext_csd.boot_ro_lockable) 2664 device_remove_file(disk_to_dev(md->disk), 2665 &md->power_ro_lock); 2666 2667 del_gendisk(md->disk); 2668 } 2669 mmc_cleanup_queue(&md->queue); 2670 mmc_blk_put(md); 2671 } 2672 } 2673 2674 static void mmc_blk_remove_parts(struct mmc_card *card, 2675 struct mmc_blk_data *md) 2676 { 2677 struct list_head *pos, *q; 2678 struct mmc_blk_data *part_md; 2679 struct mmc_rpmb_data *rpmb; 2680 2681 /* Remove RPMB partitions */ 2682 list_for_each_safe(pos, q, &md->rpmbs) { 2683 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2684 list_del(pos); 2685 mmc_blk_remove_rpmb_part(rpmb); 2686 } 2687 /* Remove block partitions */ 2688 list_for_each_safe(pos, q, &md->part) { 2689 part_md = list_entry(pos, struct mmc_blk_data, part); 2690 list_del(pos); 2691 mmc_blk_remove_req(part_md); 2692 } 2693 } 2694 2695 static int mmc_add_disk(struct mmc_blk_data *md) 2696 { 2697 int ret; 2698 struct mmc_card *card = md->queue.card; 2699 2700 device_add_disk(md->parent, md->disk, NULL); 2701 md->force_ro.show = force_ro_show; 2702 md->force_ro.store = force_ro_store; 2703 sysfs_attr_init(&md->force_ro.attr); 2704 md->force_ro.attr.name = "force_ro"; 2705 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2706 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2707 if (ret) 2708 goto force_ro_fail; 2709 2710 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2711 card->ext_csd.boot_ro_lockable) { 2712 umode_t mode; 2713 2714 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2715 mode = S_IRUGO; 2716 else 2717 mode = S_IRUGO | S_IWUSR; 2718 2719 md->power_ro_lock.show = power_ro_lock_show; 2720 md->power_ro_lock.store = power_ro_lock_store; 2721 sysfs_attr_init(&md->power_ro_lock.attr); 2722 md->power_ro_lock.attr.mode = mode; 2723 md->power_ro_lock.attr.name = 2724 "ro_lock_until_next_power_on"; 2725 ret = device_create_file(disk_to_dev(md->disk), 2726 &md->power_ro_lock); 2727 if (ret) 2728 goto power_ro_lock_fail; 2729 } 2730 return ret; 2731 2732 power_ro_lock_fail: 2733 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2734 force_ro_fail: 2735 del_gendisk(md->disk); 2736 2737 return ret; 2738 } 2739 2740 #ifdef CONFIG_DEBUG_FS 2741 2742 static int mmc_dbg_card_status_get(void *data, u64 *val) 2743 { 2744 struct mmc_card *card = data; 2745 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2746 struct mmc_queue *mq = &md->queue; 2747 struct request *req; 2748 int ret; 2749 2750 /* Ask the block layer about the card status */ 2751 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2752 if (IS_ERR(req)) 2753 return PTR_ERR(req); 2754 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2755 blk_execute_rq(mq->queue, NULL, req, 0); 2756 ret = req_to_mmc_queue_req(req)->drv_op_result; 2757 if (ret >= 0) { 2758 *val = ret; 2759 ret = 0; 2760 } 2761 blk_put_request(req); 2762 2763 return ret; 2764 } 2765 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2766 NULL, "%08llx\n"); 2767 2768 /* That is two digits * 512 + 1 for newline */ 2769 #define EXT_CSD_STR_LEN 1025 2770 2771 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2772 { 2773 struct mmc_card *card = inode->i_private; 2774 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2775 struct mmc_queue *mq = &md->queue; 2776 struct request *req; 2777 char *buf; 2778 ssize_t n = 0; 2779 u8 *ext_csd; 2780 int err, i; 2781 2782 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2783 if (!buf) 2784 return -ENOMEM; 2785 2786 /* Ask the block layer for the EXT CSD */ 2787 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2788 if (IS_ERR(req)) { 2789 err = PTR_ERR(req); 2790 goto out_free; 2791 } 2792 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2793 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2794 blk_execute_rq(mq->queue, NULL, req, 0); 2795 err = req_to_mmc_queue_req(req)->drv_op_result; 2796 blk_put_request(req); 2797 if (err) { 2798 pr_err("FAILED %d\n", err); 2799 goto out_free; 2800 } 2801 2802 for (i = 0; i < 512; i++) 2803 n += sprintf(buf + n, "%02x", ext_csd[i]); 2804 n += sprintf(buf + n, "\n"); 2805 2806 if (n != EXT_CSD_STR_LEN) { 2807 err = -EINVAL; 2808 kfree(ext_csd); 2809 goto out_free; 2810 } 2811 2812 filp->private_data = buf; 2813 kfree(ext_csd); 2814 return 0; 2815 2816 out_free: 2817 kfree(buf); 2818 return err; 2819 } 2820 2821 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2822 size_t cnt, loff_t *ppos) 2823 { 2824 char *buf = filp->private_data; 2825 2826 return simple_read_from_buffer(ubuf, cnt, ppos, 2827 buf, EXT_CSD_STR_LEN); 2828 } 2829 2830 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2831 { 2832 kfree(file->private_data); 2833 return 0; 2834 } 2835 2836 static const struct file_operations mmc_dbg_ext_csd_fops = { 2837 .open = mmc_ext_csd_open, 2838 .read = mmc_ext_csd_read, 2839 .release = mmc_ext_csd_release, 2840 .llseek = default_llseek, 2841 }; 2842 2843 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2844 { 2845 struct dentry *root; 2846 2847 if (!card->debugfs_root) 2848 return 0; 2849 2850 root = card->debugfs_root; 2851 2852 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2853 md->status_dentry = 2854 debugfs_create_file_unsafe("status", 0400, root, 2855 card, 2856 &mmc_dbg_card_status_fops); 2857 if (!md->status_dentry) 2858 return -EIO; 2859 } 2860 2861 if (mmc_card_mmc(card)) { 2862 md->ext_csd_dentry = 2863 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2864 &mmc_dbg_ext_csd_fops); 2865 if (!md->ext_csd_dentry) 2866 return -EIO; 2867 } 2868 2869 return 0; 2870 } 2871 2872 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2873 struct mmc_blk_data *md) 2874 { 2875 if (!card->debugfs_root) 2876 return; 2877 2878 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2879 debugfs_remove(md->status_dentry); 2880 md->status_dentry = NULL; 2881 } 2882 2883 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2884 debugfs_remove(md->ext_csd_dentry); 2885 md->ext_csd_dentry = NULL; 2886 } 2887 } 2888 2889 #else 2890 2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2892 { 2893 return 0; 2894 } 2895 2896 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2897 struct mmc_blk_data *md) 2898 { 2899 } 2900 2901 #endif /* CONFIG_DEBUG_FS */ 2902 2903 static int mmc_blk_probe(struct mmc_card *card) 2904 { 2905 struct mmc_blk_data *md, *part_md; 2906 char cap_str[10]; 2907 2908 /* 2909 * Check that the card supports the command class(es) we need. 2910 */ 2911 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2912 return -ENODEV; 2913 2914 mmc_fixup_device(card, mmc_blk_fixups); 2915 2916 card->complete_wq = alloc_workqueue("mmc_complete", 2917 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2918 if (unlikely(!card->complete_wq)) { 2919 pr_err("Failed to create mmc completion workqueue"); 2920 return -ENOMEM; 2921 } 2922 2923 md = mmc_blk_alloc(card); 2924 if (IS_ERR(md)) 2925 return PTR_ERR(md); 2926 2927 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2928 cap_str, sizeof(cap_str)); 2929 pr_info("%s: %s %s %s %s\n", 2930 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2931 cap_str, md->read_only ? "(ro)" : ""); 2932 2933 if (mmc_blk_alloc_parts(card, md)) 2934 goto out; 2935 2936 dev_set_drvdata(&card->dev, md); 2937 2938 if (mmc_add_disk(md)) 2939 goto out; 2940 2941 list_for_each_entry(part_md, &md->part, part) { 2942 if (mmc_add_disk(part_md)) 2943 goto out; 2944 } 2945 2946 /* Add two debugfs entries */ 2947 mmc_blk_add_debugfs(card, md); 2948 2949 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2950 pm_runtime_use_autosuspend(&card->dev); 2951 2952 /* 2953 * Don't enable runtime PM for SD-combo cards here. Leave that 2954 * decision to be taken during the SDIO init sequence instead. 2955 */ 2956 if (card->type != MMC_TYPE_SD_COMBO) { 2957 pm_runtime_set_active(&card->dev); 2958 pm_runtime_enable(&card->dev); 2959 } 2960 2961 return 0; 2962 2963 out: 2964 mmc_blk_remove_parts(card, md); 2965 mmc_blk_remove_req(md); 2966 return 0; 2967 } 2968 2969 static void mmc_blk_remove(struct mmc_card *card) 2970 { 2971 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2972 2973 mmc_blk_remove_debugfs(card, md); 2974 mmc_blk_remove_parts(card, md); 2975 pm_runtime_get_sync(&card->dev); 2976 if (md->part_curr != md->part_type) { 2977 mmc_claim_host(card->host); 2978 mmc_blk_part_switch(card, md->part_type); 2979 mmc_release_host(card->host); 2980 } 2981 if (card->type != MMC_TYPE_SD_COMBO) 2982 pm_runtime_disable(&card->dev); 2983 pm_runtime_put_noidle(&card->dev); 2984 mmc_blk_remove_req(md); 2985 dev_set_drvdata(&card->dev, NULL); 2986 destroy_workqueue(card->complete_wq); 2987 } 2988 2989 static int _mmc_blk_suspend(struct mmc_card *card) 2990 { 2991 struct mmc_blk_data *part_md; 2992 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2993 2994 if (md) { 2995 mmc_queue_suspend(&md->queue); 2996 list_for_each_entry(part_md, &md->part, part) { 2997 mmc_queue_suspend(&part_md->queue); 2998 } 2999 } 3000 return 0; 3001 } 3002 3003 static void mmc_blk_shutdown(struct mmc_card *card) 3004 { 3005 _mmc_blk_suspend(card); 3006 } 3007 3008 #ifdef CONFIG_PM_SLEEP 3009 static int mmc_blk_suspend(struct device *dev) 3010 { 3011 struct mmc_card *card = mmc_dev_to_card(dev); 3012 3013 return _mmc_blk_suspend(card); 3014 } 3015 3016 static int mmc_blk_resume(struct device *dev) 3017 { 3018 struct mmc_blk_data *part_md; 3019 struct mmc_blk_data *md = dev_get_drvdata(dev); 3020 3021 if (md) { 3022 /* 3023 * Resume involves the card going into idle state, 3024 * so current partition is always the main one. 3025 */ 3026 md->part_curr = md->part_type; 3027 mmc_queue_resume(&md->queue); 3028 list_for_each_entry(part_md, &md->part, part) { 3029 mmc_queue_resume(&part_md->queue); 3030 } 3031 } 3032 return 0; 3033 } 3034 #endif 3035 3036 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3037 3038 static struct mmc_driver mmc_driver = { 3039 .drv = { 3040 .name = "mmcblk", 3041 .pm = &mmc_blk_pm_ops, 3042 }, 3043 .probe = mmc_blk_probe, 3044 .remove = mmc_blk_remove, 3045 .shutdown = mmc_blk_shutdown, 3046 }; 3047 3048 static int __init mmc_blk_init(void) 3049 { 3050 int res; 3051 3052 res = bus_register(&mmc_rpmb_bus_type); 3053 if (res < 0) { 3054 pr_err("mmcblk: could not register RPMB bus type\n"); 3055 return res; 3056 } 3057 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3058 if (res < 0) { 3059 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3060 goto out_bus_unreg; 3061 } 3062 3063 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3064 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3065 3066 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3067 3068 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3069 if (res) 3070 goto out_chrdev_unreg; 3071 3072 res = mmc_register_driver(&mmc_driver); 3073 if (res) 3074 goto out_blkdev_unreg; 3075 3076 return 0; 3077 3078 out_blkdev_unreg: 3079 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3080 out_chrdev_unreg: 3081 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3082 out_bus_unreg: 3083 bus_unregister(&mmc_rpmb_bus_type); 3084 return res; 3085 } 3086 3087 static void __exit mmc_blk_exit(void) 3088 { 3089 mmc_unregister_driver(&mmc_driver); 3090 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3091 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3092 bus_unregister(&mmc_rpmb_bus_type); 3093 } 3094 3095 module_init(mmc_blk_init); 3096 module_exit(mmc_blk_exit); 3097 3098 MODULE_LICENSE("GPL"); 3099 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3100 3101