1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/mutex.h> 32 #include <linux/scatterlist.h> 33 #include <linux/string_helpers.h> 34 #include <linux/delay.h> 35 #include <linux/capability.h> 36 #include <linux/compat.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/idr.h> 39 40 #include <linux/mmc/ioctl.h> 41 #include <linux/mmc/card.h> 42 #include <linux/mmc/host.h> 43 #include <linux/mmc/mmc.h> 44 #include <linux/mmc/sd.h> 45 46 #include <linux/uaccess.h> 47 48 #include "queue.h" 49 #include "block.h" 50 51 MODULE_ALIAS("mmc:block"); 52 #ifdef MODULE_PARAM_PREFIX 53 #undef MODULE_PARAM_PREFIX 54 #endif 55 #define MODULE_PARAM_PREFIX "mmcblk." 56 57 #define INAND_CMD38_ARG_EXT_CSD 113 58 #define INAND_CMD38_ARG_ERASE 0x00 59 #define INAND_CMD38_ARG_TRIM 0x01 60 #define INAND_CMD38_ARG_SECERASE 0x80 61 #define INAND_CMD38_ARG_SECTRIM1 0x81 62 #define INAND_CMD38_ARG_SECTRIM2 0x88 63 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */ 64 #define MMC_SANITIZE_REQ_TIMEOUT 240000 65 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 66 67 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 68 (rq_data_dir(req) == WRITE)) 69 static DEFINE_MUTEX(block_mutex); 70 71 /* 72 * The defaults come from config options but can be overriden by module 73 * or bootarg options. 74 */ 75 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 76 77 /* 78 * We've only got one major, so number of mmcblk devices is 79 * limited to (1 << 20) / number of minors per device. It is also 80 * limited by the MAX_DEVICES below. 81 */ 82 static int max_devices; 83 84 #define MAX_DEVICES 256 85 86 static DEFINE_IDA(mmc_blk_ida); 87 static DEFINE_SPINLOCK(mmc_blk_lock); 88 89 /* 90 * There is one mmc_blk_data per slot. 91 */ 92 struct mmc_blk_data { 93 spinlock_t lock; 94 struct device *parent; 95 struct gendisk *disk; 96 struct mmc_queue queue; 97 struct list_head part; 98 99 unsigned int flags; 100 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 101 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 102 103 unsigned int usage; 104 unsigned int read_only; 105 unsigned int part_type; 106 unsigned int reset_done; 107 #define MMC_BLK_READ BIT(0) 108 #define MMC_BLK_WRITE BIT(1) 109 #define MMC_BLK_DISCARD BIT(2) 110 #define MMC_BLK_SECDISCARD BIT(3) 111 112 /* 113 * Only set in main mmc_blk_data associated 114 * with mmc_card with dev_set_drvdata, and keeps 115 * track of the current selected device partition. 116 */ 117 unsigned int part_curr; 118 struct device_attribute force_ro; 119 struct device_attribute power_ro_lock; 120 int area_type; 121 }; 122 123 static DEFINE_MUTEX(open_lock); 124 125 module_param(perdev_minors, int, 0444); 126 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 127 128 static inline int mmc_blk_part_switch(struct mmc_card *card, 129 struct mmc_blk_data *md); 130 static int get_card_status(struct mmc_card *card, u32 *status, int retries); 131 132 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 133 { 134 struct mmc_blk_data *md; 135 136 mutex_lock(&open_lock); 137 md = disk->private_data; 138 if (md && md->usage == 0) 139 md = NULL; 140 if (md) 141 md->usage++; 142 mutex_unlock(&open_lock); 143 144 return md; 145 } 146 147 static inline int mmc_get_devidx(struct gendisk *disk) 148 { 149 int devidx = disk->first_minor / perdev_minors; 150 return devidx; 151 } 152 153 static void mmc_blk_put(struct mmc_blk_data *md) 154 { 155 mutex_lock(&open_lock); 156 md->usage--; 157 if (md->usage == 0) { 158 int devidx = mmc_get_devidx(md->disk); 159 blk_cleanup_queue(md->queue.queue); 160 161 spin_lock(&mmc_blk_lock); 162 ida_remove(&mmc_blk_ida, devidx); 163 spin_unlock(&mmc_blk_lock); 164 165 put_disk(md->disk); 166 kfree(md); 167 } 168 mutex_unlock(&open_lock); 169 } 170 171 static ssize_t power_ro_lock_show(struct device *dev, 172 struct device_attribute *attr, char *buf) 173 { 174 int ret; 175 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 176 struct mmc_card *card = md->queue.card; 177 int locked = 0; 178 179 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 180 locked = 2; 181 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 182 locked = 1; 183 184 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 185 186 mmc_blk_put(md); 187 188 return ret; 189 } 190 191 static ssize_t power_ro_lock_store(struct device *dev, 192 struct device_attribute *attr, const char *buf, size_t count) 193 { 194 int ret; 195 struct mmc_blk_data *md, *part_md; 196 struct mmc_card *card; 197 unsigned long set; 198 199 if (kstrtoul(buf, 0, &set)) 200 return -EINVAL; 201 202 if (set != 1) 203 return count; 204 205 md = mmc_blk_get(dev_to_disk(dev)); 206 card = md->queue.card; 207 208 mmc_get_card(card); 209 210 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 211 card->ext_csd.boot_ro_lock | 212 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 213 card->ext_csd.part_time); 214 if (ret) 215 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", md->disk->disk_name, ret); 216 else 217 card->ext_csd.boot_ro_lock |= EXT_CSD_BOOT_WP_B_PWR_WP_EN; 218 219 mmc_put_card(card); 220 221 if (!ret) { 222 pr_info("%s: Locking boot partition ro until next power on\n", 223 md->disk->disk_name); 224 set_disk_ro(md->disk, 1); 225 226 list_for_each_entry(part_md, &md->part, part) 227 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 228 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 229 set_disk_ro(part_md->disk, 1); 230 } 231 } 232 233 mmc_blk_put(md); 234 return count; 235 } 236 237 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 238 char *buf) 239 { 240 int ret; 241 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 242 243 ret = snprintf(buf, PAGE_SIZE, "%d\n", 244 get_disk_ro(dev_to_disk(dev)) ^ 245 md->read_only); 246 mmc_blk_put(md); 247 return ret; 248 } 249 250 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 251 const char *buf, size_t count) 252 { 253 int ret; 254 char *end; 255 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 256 unsigned long set = simple_strtoul(buf, &end, 0); 257 if (end == buf) { 258 ret = -EINVAL; 259 goto out; 260 } 261 262 set_disk_ro(dev_to_disk(dev), set || md->read_only); 263 ret = count; 264 out: 265 mmc_blk_put(md); 266 return ret; 267 } 268 269 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 270 { 271 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 272 int ret = -ENXIO; 273 274 mutex_lock(&block_mutex); 275 if (md) { 276 if (md->usage == 2) 277 check_disk_change(bdev); 278 ret = 0; 279 280 if ((mode & FMODE_WRITE) && md->read_only) { 281 mmc_blk_put(md); 282 ret = -EROFS; 283 } 284 } 285 mutex_unlock(&block_mutex); 286 287 return ret; 288 } 289 290 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 291 { 292 struct mmc_blk_data *md = disk->private_data; 293 294 mutex_lock(&block_mutex); 295 mmc_blk_put(md); 296 mutex_unlock(&block_mutex); 297 } 298 299 static int 300 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 301 { 302 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 303 geo->heads = 4; 304 geo->sectors = 16; 305 return 0; 306 } 307 308 struct mmc_blk_ioc_data { 309 struct mmc_ioc_cmd ic; 310 unsigned char *buf; 311 u64 buf_bytes; 312 }; 313 314 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 315 struct mmc_ioc_cmd __user *user) 316 { 317 struct mmc_blk_ioc_data *idata; 318 int err; 319 320 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 321 if (!idata) { 322 err = -ENOMEM; 323 goto out; 324 } 325 326 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 327 err = -EFAULT; 328 goto idata_err; 329 } 330 331 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 332 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 333 err = -EOVERFLOW; 334 goto idata_err; 335 } 336 337 if (!idata->buf_bytes) { 338 idata->buf = NULL; 339 return idata; 340 } 341 342 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL); 343 if (!idata->buf) { 344 err = -ENOMEM; 345 goto idata_err; 346 } 347 348 if (copy_from_user(idata->buf, (void __user *)(unsigned long) 349 idata->ic.data_ptr, idata->buf_bytes)) { 350 err = -EFAULT; 351 goto copy_err; 352 } 353 354 return idata; 355 356 copy_err: 357 kfree(idata->buf); 358 idata_err: 359 kfree(idata); 360 out: 361 return ERR_PTR(err); 362 } 363 364 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 365 struct mmc_blk_ioc_data *idata) 366 { 367 struct mmc_ioc_cmd *ic = &idata->ic; 368 369 if (copy_to_user(&(ic_ptr->response), ic->response, 370 sizeof(ic->response))) 371 return -EFAULT; 372 373 if (!idata->ic.write_flag) { 374 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 375 idata->buf, idata->buf_bytes)) 376 return -EFAULT; 377 } 378 379 return 0; 380 } 381 382 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status, 383 u32 retries_max) 384 { 385 int err; 386 u32 retry_count = 0; 387 388 if (!status || !retries_max) 389 return -EINVAL; 390 391 do { 392 err = get_card_status(card, status, 5); 393 if (err) 394 break; 395 396 if (!R1_STATUS(*status) && 397 (R1_CURRENT_STATE(*status) != R1_STATE_PRG)) 398 break; /* RPMB programming operation complete */ 399 400 /* 401 * Rechedule to give the MMC device a chance to continue 402 * processing the previous command without being polled too 403 * frequently. 404 */ 405 usleep_range(1000, 5000); 406 } while (++retry_count < retries_max); 407 408 if (retry_count == retries_max) 409 err = -EPERM; 410 411 return err; 412 } 413 414 static int ioctl_do_sanitize(struct mmc_card *card) 415 { 416 int err; 417 418 if (!mmc_can_sanitize(card)) { 419 pr_warn("%s: %s - SANITIZE is not supported\n", 420 mmc_hostname(card->host), __func__); 421 err = -EOPNOTSUPP; 422 goto out; 423 } 424 425 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n", 426 mmc_hostname(card->host), __func__); 427 428 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 429 EXT_CSD_SANITIZE_START, 1, 430 MMC_SANITIZE_REQ_TIMEOUT); 431 432 if (err) 433 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n", 434 mmc_hostname(card->host), __func__, err); 435 436 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host), 437 __func__); 438 out: 439 return err; 440 } 441 442 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 443 struct mmc_blk_ioc_data *idata) 444 { 445 struct mmc_command cmd = {}; 446 struct mmc_data data = {}; 447 struct mmc_request mrq = {}; 448 struct scatterlist sg; 449 int err; 450 int is_rpmb = false; 451 u32 status = 0; 452 453 if (!card || !md || !idata) 454 return -EINVAL; 455 456 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 457 is_rpmb = true; 458 459 cmd.opcode = idata->ic.opcode; 460 cmd.arg = idata->ic.arg; 461 cmd.flags = idata->ic.flags; 462 463 if (idata->buf_bytes) { 464 data.sg = &sg; 465 data.sg_len = 1; 466 data.blksz = idata->ic.blksz; 467 data.blocks = idata->ic.blocks; 468 469 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 470 471 if (idata->ic.write_flag) 472 data.flags = MMC_DATA_WRITE; 473 else 474 data.flags = MMC_DATA_READ; 475 476 /* data.flags must already be set before doing this. */ 477 mmc_set_data_timeout(&data, card); 478 479 /* Allow overriding the timeout_ns for empirical tuning. */ 480 if (idata->ic.data_timeout_ns) 481 data.timeout_ns = idata->ic.data_timeout_ns; 482 483 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 484 /* 485 * Pretend this is a data transfer and rely on the 486 * host driver to compute timeout. When all host 487 * drivers support cmd.cmd_timeout for R1B, this 488 * can be changed to: 489 * 490 * mrq.data = NULL; 491 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 492 */ 493 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 494 } 495 496 mrq.data = &data; 497 } 498 499 mrq.cmd = &cmd; 500 501 err = mmc_blk_part_switch(card, md); 502 if (err) 503 return err; 504 505 if (idata->ic.is_acmd) { 506 err = mmc_app_cmd(card->host, card); 507 if (err) 508 return err; 509 } 510 511 if (is_rpmb) { 512 err = mmc_set_blockcount(card, data.blocks, 513 idata->ic.write_flag & (1 << 31)); 514 if (err) 515 return err; 516 } 517 518 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 519 (cmd.opcode == MMC_SWITCH)) { 520 err = ioctl_do_sanitize(card); 521 522 if (err) 523 pr_err("%s: ioctl_do_sanitize() failed. err = %d", 524 __func__, err); 525 526 return err; 527 } 528 529 mmc_wait_for_req(card->host, &mrq); 530 531 if (cmd.error) { 532 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 533 __func__, cmd.error); 534 return cmd.error; 535 } 536 if (data.error) { 537 dev_err(mmc_dev(card->host), "%s: data error %d\n", 538 __func__, data.error); 539 return data.error; 540 } 541 542 /* 543 * According to the SD specs, some commands require a delay after 544 * issuing the command. 545 */ 546 if (idata->ic.postsleep_min_us) 547 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 548 549 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 550 551 if (is_rpmb) { 552 /* 553 * Ensure RPMB command has completed by polling CMD13 554 * "Send Status". 555 */ 556 err = ioctl_rpmb_card_status_poll(card, &status, 5); 557 if (err) 558 dev_err(mmc_dev(card->host), 559 "%s: Card Status=0x%08X, error %d\n", 560 __func__, status, err); 561 } 562 563 return err; 564 } 565 566 static int mmc_blk_ioctl_cmd(struct block_device *bdev, 567 struct mmc_ioc_cmd __user *ic_ptr) 568 { 569 struct mmc_blk_ioc_data *idata; 570 struct mmc_blk_data *md; 571 struct mmc_card *card; 572 int err = 0, ioc_err = 0; 573 574 /* 575 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 576 * whole block device, not on a partition. This prevents overspray 577 * between sibling partitions. 578 */ 579 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 580 return -EPERM; 581 582 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 583 if (IS_ERR(idata)) 584 return PTR_ERR(idata); 585 586 md = mmc_blk_get(bdev->bd_disk); 587 if (!md) { 588 err = -EINVAL; 589 goto cmd_err; 590 } 591 592 card = md->queue.card; 593 if (IS_ERR(card)) { 594 err = PTR_ERR(card); 595 goto cmd_done; 596 } 597 598 mmc_get_card(card); 599 600 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata); 601 602 /* Always switch back to main area after RPMB access */ 603 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 604 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev)); 605 606 mmc_put_card(card); 607 608 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 609 610 cmd_done: 611 mmc_blk_put(md); 612 cmd_err: 613 kfree(idata->buf); 614 kfree(idata); 615 return ioc_err ? ioc_err : err; 616 } 617 618 static int mmc_blk_ioctl_multi_cmd(struct block_device *bdev, 619 struct mmc_ioc_multi_cmd __user *user) 620 { 621 struct mmc_blk_ioc_data **idata = NULL; 622 struct mmc_ioc_cmd __user *cmds = user->cmds; 623 struct mmc_card *card; 624 struct mmc_blk_data *md; 625 int i, err = 0, ioc_err = 0; 626 __u64 num_of_cmds; 627 628 /* 629 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 630 * whole block device, not on a partition. This prevents overspray 631 * between sibling partitions. 632 */ 633 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 634 return -EPERM; 635 636 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 637 sizeof(num_of_cmds))) 638 return -EFAULT; 639 640 if (num_of_cmds > MMC_IOC_MAX_CMDS) 641 return -EINVAL; 642 643 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 644 if (!idata) 645 return -ENOMEM; 646 647 for (i = 0; i < num_of_cmds; i++) { 648 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 649 if (IS_ERR(idata[i])) { 650 err = PTR_ERR(idata[i]); 651 num_of_cmds = i; 652 goto cmd_err; 653 } 654 } 655 656 md = mmc_blk_get(bdev->bd_disk); 657 if (!md) { 658 err = -EINVAL; 659 goto cmd_err; 660 } 661 662 card = md->queue.card; 663 if (IS_ERR(card)) { 664 err = PTR_ERR(card); 665 goto cmd_done; 666 } 667 668 mmc_get_card(card); 669 670 for (i = 0; i < num_of_cmds && !ioc_err; i++) 671 ioc_err = __mmc_blk_ioctl_cmd(card, md, idata[i]); 672 673 /* Always switch back to main area after RPMB access */ 674 if (md->area_type & MMC_BLK_DATA_AREA_RPMB) 675 mmc_blk_part_switch(card, dev_get_drvdata(&card->dev)); 676 677 mmc_put_card(card); 678 679 /* copy to user if data and response */ 680 for (i = 0; i < num_of_cmds && !err; i++) 681 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 682 683 cmd_done: 684 mmc_blk_put(md); 685 cmd_err: 686 for (i = 0; i < num_of_cmds; i++) { 687 kfree(idata[i]->buf); 688 kfree(idata[i]); 689 } 690 kfree(idata); 691 return ioc_err ? ioc_err : err; 692 } 693 694 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 695 unsigned int cmd, unsigned long arg) 696 { 697 switch (cmd) { 698 case MMC_IOC_CMD: 699 return mmc_blk_ioctl_cmd(bdev, 700 (struct mmc_ioc_cmd __user *)arg); 701 case MMC_IOC_MULTI_CMD: 702 return mmc_blk_ioctl_multi_cmd(bdev, 703 (struct mmc_ioc_multi_cmd __user *)arg); 704 default: 705 return -EINVAL; 706 } 707 } 708 709 #ifdef CONFIG_COMPAT 710 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 711 unsigned int cmd, unsigned long arg) 712 { 713 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 714 } 715 #endif 716 717 static const struct block_device_operations mmc_bdops = { 718 .open = mmc_blk_open, 719 .release = mmc_blk_release, 720 .getgeo = mmc_blk_getgeo, 721 .owner = THIS_MODULE, 722 .ioctl = mmc_blk_ioctl, 723 #ifdef CONFIG_COMPAT 724 .compat_ioctl = mmc_blk_compat_ioctl, 725 #endif 726 }; 727 728 static inline int mmc_blk_part_switch(struct mmc_card *card, 729 struct mmc_blk_data *md) 730 { 731 int ret; 732 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 733 734 if (main_md->part_curr == md->part_type) 735 return 0; 736 737 if (mmc_card_mmc(card)) { 738 u8 part_config = card->ext_csd.part_config; 739 740 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) 741 mmc_retune_pause(card->host); 742 743 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 744 part_config |= md->part_type; 745 746 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 747 EXT_CSD_PART_CONFIG, part_config, 748 card->ext_csd.part_time); 749 if (ret) { 750 if (md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) 751 mmc_retune_unpause(card->host); 752 return ret; 753 } 754 755 card->ext_csd.part_config = part_config; 756 757 if (main_md->part_curr == EXT_CSD_PART_CONFIG_ACC_RPMB) 758 mmc_retune_unpause(card->host); 759 } 760 761 main_md->part_curr = md->part_type; 762 return 0; 763 } 764 765 static u32 mmc_sd_num_wr_blocks(struct mmc_card *card) 766 { 767 int err; 768 u32 result; 769 __be32 *blocks; 770 771 struct mmc_request mrq = {}; 772 struct mmc_command cmd = {}; 773 struct mmc_data data = {}; 774 775 struct scatterlist sg; 776 777 cmd.opcode = MMC_APP_CMD; 778 cmd.arg = card->rca << 16; 779 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 780 781 err = mmc_wait_for_cmd(card->host, &cmd, 0); 782 if (err) 783 return (u32)-1; 784 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 785 return (u32)-1; 786 787 memset(&cmd, 0, sizeof(struct mmc_command)); 788 789 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 790 cmd.arg = 0; 791 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 792 793 data.blksz = 4; 794 data.blocks = 1; 795 data.flags = MMC_DATA_READ; 796 data.sg = &sg; 797 data.sg_len = 1; 798 mmc_set_data_timeout(&data, card); 799 800 mrq.cmd = &cmd; 801 mrq.data = &data; 802 803 blocks = kmalloc(4, GFP_KERNEL); 804 if (!blocks) 805 return (u32)-1; 806 807 sg_init_one(&sg, blocks, 4); 808 809 mmc_wait_for_req(card->host, &mrq); 810 811 result = ntohl(*blocks); 812 kfree(blocks); 813 814 if (cmd.error || data.error) 815 result = (u32)-1; 816 817 return result; 818 } 819 820 static int get_card_status(struct mmc_card *card, u32 *status, int retries) 821 { 822 struct mmc_command cmd = {}; 823 int err; 824 825 cmd.opcode = MMC_SEND_STATUS; 826 if (!mmc_host_is_spi(card->host)) 827 cmd.arg = card->rca << 16; 828 cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC; 829 err = mmc_wait_for_cmd(card->host, &cmd, retries); 830 if (err == 0) 831 *status = cmd.resp[0]; 832 return err; 833 } 834 835 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 836 bool hw_busy_detect, struct request *req, bool *gen_err) 837 { 838 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 839 int err = 0; 840 u32 status; 841 842 do { 843 err = get_card_status(card, &status, 5); 844 if (err) { 845 pr_err("%s: error %d requesting status\n", 846 req->rq_disk->disk_name, err); 847 return err; 848 } 849 850 if (status & R1_ERROR) { 851 pr_err("%s: %s: error sending status cmd, status %#x\n", 852 req->rq_disk->disk_name, __func__, status); 853 *gen_err = true; 854 } 855 856 /* We may rely on the host hw to handle busy detection.*/ 857 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && 858 hw_busy_detect) 859 break; 860 861 /* 862 * Timeout if the device never becomes ready for data and never 863 * leaves the program state. 864 */ 865 if (time_after(jiffies, timeout)) { 866 pr_err("%s: Card stuck in programming state! %s %s\n", 867 mmc_hostname(card->host), 868 req->rq_disk->disk_name, __func__); 869 return -ETIMEDOUT; 870 } 871 872 /* 873 * Some cards mishandle the status bits, 874 * so make sure to check both the busy 875 * indication and the card state. 876 */ 877 } while (!(status & R1_READY_FOR_DATA) || 878 (R1_CURRENT_STATE(status) == R1_STATE_PRG)); 879 880 return err; 881 } 882 883 static int send_stop(struct mmc_card *card, unsigned int timeout_ms, 884 struct request *req, bool *gen_err, u32 *stop_status) 885 { 886 struct mmc_host *host = card->host; 887 struct mmc_command cmd = {}; 888 int err; 889 bool use_r1b_resp = rq_data_dir(req) == WRITE; 890 891 /* 892 * Normally we use R1B responses for WRITE, but in cases where the host 893 * has specified a max_busy_timeout we need to validate it. A failure 894 * means we need to prevent the host from doing hw busy detection, which 895 * is done by converting to a R1 response instead. 896 */ 897 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) 898 use_r1b_resp = false; 899 900 cmd.opcode = MMC_STOP_TRANSMISSION; 901 if (use_r1b_resp) { 902 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 903 cmd.busy_timeout = timeout_ms; 904 } else { 905 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 906 } 907 908 err = mmc_wait_for_cmd(host, &cmd, 5); 909 if (err) 910 return err; 911 912 *stop_status = cmd.resp[0]; 913 914 /* No need to check card status in case of READ. */ 915 if (rq_data_dir(req) == READ) 916 return 0; 917 918 if (!mmc_host_is_spi(host) && 919 (*stop_status & R1_ERROR)) { 920 pr_err("%s: %s: general error sending stop command, resp %#x\n", 921 req->rq_disk->disk_name, __func__, *stop_status); 922 *gen_err = true; 923 } 924 925 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err); 926 } 927 928 #define ERR_NOMEDIUM 3 929 #define ERR_RETRY 2 930 #define ERR_ABORT 1 931 #define ERR_CONTINUE 0 932 933 static int mmc_blk_cmd_error(struct request *req, const char *name, int error, 934 bool status_valid, u32 status) 935 { 936 switch (error) { 937 case -EILSEQ: 938 /* response crc error, retry the r/w cmd */ 939 pr_err("%s: %s sending %s command, card status %#x\n", 940 req->rq_disk->disk_name, "response CRC error", 941 name, status); 942 return ERR_RETRY; 943 944 case -ETIMEDOUT: 945 pr_err("%s: %s sending %s command, card status %#x\n", 946 req->rq_disk->disk_name, "timed out", name, status); 947 948 /* If the status cmd initially failed, retry the r/w cmd */ 949 if (!status_valid) { 950 pr_err("%s: status not valid, retrying timeout\n", 951 req->rq_disk->disk_name); 952 return ERR_RETRY; 953 } 954 955 /* 956 * If it was a r/w cmd crc error, or illegal command 957 * (eg, issued in wrong state) then retry - we should 958 * have corrected the state problem above. 959 */ 960 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) { 961 pr_err("%s: command error, retrying timeout\n", 962 req->rq_disk->disk_name); 963 return ERR_RETRY; 964 } 965 966 /* Otherwise abort the command */ 967 return ERR_ABORT; 968 969 default: 970 /* We don't understand the error code the driver gave us */ 971 pr_err("%s: unknown error %d sending read/write command, card status %#x\n", 972 req->rq_disk->disk_name, error, status); 973 return ERR_ABORT; 974 } 975 } 976 977 /* 978 * Initial r/w and stop cmd error recovery. 979 * We don't know whether the card received the r/w cmd or not, so try to 980 * restore things back to a sane state. Essentially, we do this as follows: 981 * - Obtain card status. If the first attempt to obtain card status fails, 982 * the status word will reflect the failed status cmd, not the failed 983 * r/w cmd. If we fail to obtain card status, it suggests we can no 984 * longer communicate with the card. 985 * - Check the card state. If the card received the cmd but there was a 986 * transient problem with the response, it might still be in a data transfer 987 * mode. Try to send it a stop command. If this fails, we can't recover. 988 * - If the r/w cmd failed due to a response CRC error, it was probably 989 * transient, so retry the cmd. 990 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry. 991 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or 992 * illegal cmd, retry. 993 * Otherwise we don't understand what happened, so abort. 994 */ 995 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req, 996 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err) 997 { 998 bool prev_cmd_status_valid = true; 999 u32 status, stop_status = 0; 1000 int err, retry; 1001 1002 if (mmc_card_removed(card)) 1003 return ERR_NOMEDIUM; 1004 1005 /* 1006 * Try to get card status which indicates both the card state 1007 * and why there was no response. If the first attempt fails, 1008 * we can't be sure the returned status is for the r/w command. 1009 */ 1010 for (retry = 2; retry >= 0; retry--) { 1011 err = get_card_status(card, &status, 0); 1012 if (!err) 1013 break; 1014 1015 /* Re-tune if needed */ 1016 mmc_retune_recheck(card->host); 1017 1018 prev_cmd_status_valid = false; 1019 pr_err("%s: error %d sending status command, %sing\n", 1020 req->rq_disk->disk_name, err, retry ? "retry" : "abort"); 1021 } 1022 1023 /* We couldn't get a response from the card. Give up. */ 1024 if (err) { 1025 /* Check if the card is removed */ 1026 if (mmc_detect_card_removed(card->host)) 1027 return ERR_NOMEDIUM; 1028 return ERR_ABORT; 1029 } 1030 1031 /* Flag ECC errors */ 1032 if ((status & R1_CARD_ECC_FAILED) || 1033 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) || 1034 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED)) 1035 *ecc_err = true; 1036 1037 /* Flag General errors */ 1038 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) 1039 if ((status & R1_ERROR) || 1040 (brq->stop.resp[0] & R1_ERROR)) { 1041 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n", 1042 req->rq_disk->disk_name, __func__, 1043 brq->stop.resp[0], status); 1044 *gen_err = true; 1045 } 1046 1047 /* 1048 * Check the current card state. If it is in some data transfer 1049 * mode, tell it to stop (and hopefully transition back to TRAN.) 1050 */ 1051 if (R1_CURRENT_STATE(status) == R1_STATE_DATA || 1052 R1_CURRENT_STATE(status) == R1_STATE_RCV) { 1053 err = send_stop(card, 1054 DIV_ROUND_UP(brq->data.timeout_ns, 1000000), 1055 req, gen_err, &stop_status); 1056 if (err) { 1057 pr_err("%s: error %d sending stop command\n", 1058 req->rq_disk->disk_name, err); 1059 /* 1060 * If the stop cmd also timed out, the card is probably 1061 * not present, so abort. Other errors are bad news too. 1062 */ 1063 return ERR_ABORT; 1064 } 1065 1066 if (stop_status & R1_CARD_ECC_FAILED) 1067 *ecc_err = true; 1068 } 1069 1070 /* Check for set block count errors */ 1071 if (brq->sbc.error) 1072 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error, 1073 prev_cmd_status_valid, status); 1074 1075 /* Check for r/w command errors */ 1076 if (brq->cmd.error) 1077 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error, 1078 prev_cmd_status_valid, status); 1079 1080 /* Data errors */ 1081 if (!brq->stop.error) 1082 return ERR_CONTINUE; 1083 1084 /* Now for stop errors. These aren't fatal to the transfer. */ 1085 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n", 1086 req->rq_disk->disk_name, brq->stop.error, 1087 brq->cmd.resp[0], status); 1088 1089 /* 1090 * Subsitute in our own stop status as this will give the error 1091 * state which happened during the execution of the r/w command. 1092 */ 1093 if (stop_status) { 1094 brq->stop.resp[0] = stop_status; 1095 brq->stop.error = 0; 1096 } 1097 return ERR_CONTINUE; 1098 } 1099 1100 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1101 int type) 1102 { 1103 int err; 1104 1105 if (md->reset_done & type) 1106 return -EEXIST; 1107 1108 md->reset_done |= type; 1109 err = mmc_hw_reset(host); 1110 /* Ensure we switch back to the correct partition */ 1111 if (err != -EOPNOTSUPP) { 1112 struct mmc_blk_data *main_md = 1113 dev_get_drvdata(&host->card->dev); 1114 int part_err; 1115 1116 main_md->part_curr = main_md->part_type; 1117 part_err = mmc_blk_part_switch(host->card, md); 1118 if (part_err) { 1119 /* 1120 * We have failed to get back into the correct 1121 * partition, so we need to abort the whole request. 1122 */ 1123 return -ENODEV; 1124 } 1125 } 1126 return err; 1127 } 1128 1129 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1130 { 1131 md->reset_done &= ~type; 1132 } 1133 1134 int mmc_access_rpmb(struct mmc_queue *mq) 1135 { 1136 struct mmc_blk_data *md = mq->blkdata; 1137 /* 1138 * If this is a RPMB partition access, return ture 1139 */ 1140 if (md && md->part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) 1141 return true; 1142 1143 return false; 1144 } 1145 1146 static int mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1147 { 1148 struct mmc_blk_data *md = mq->blkdata; 1149 struct mmc_card *card = md->queue.card; 1150 unsigned int from, nr, arg; 1151 int err = 0, type = MMC_BLK_DISCARD; 1152 1153 if (!mmc_can_erase(card)) { 1154 err = -EOPNOTSUPP; 1155 goto fail; 1156 } 1157 1158 from = blk_rq_pos(req); 1159 nr = blk_rq_sectors(req); 1160 1161 if (mmc_can_discard(card)) 1162 arg = MMC_DISCARD_ARG; 1163 else if (mmc_can_trim(card)) 1164 arg = MMC_TRIM_ARG; 1165 else 1166 arg = MMC_ERASE_ARG; 1167 do { 1168 err = 0; 1169 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1170 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1171 INAND_CMD38_ARG_EXT_CSD, 1172 arg == MMC_TRIM_ARG ? 1173 INAND_CMD38_ARG_TRIM : 1174 INAND_CMD38_ARG_ERASE, 1175 0); 1176 } 1177 if (!err) 1178 err = mmc_erase(card, from, nr, arg); 1179 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1180 if (!err) 1181 mmc_blk_reset_success(md, type); 1182 fail: 1183 blk_end_request(req, err, blk_rq_bytes(req)); 1184 1185 return err ? 0 : 1; 1186 } 1187 1188 static int mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1189 struct request *req) 1190 { 1191 struct mmc_blk_data *md = mq->blkdata; 1192 struct mmc_card *card = md->queue.card; 1193 unsigned int from, nr, arg; 1194 int err = 0, type = MMC_BLK_SECDISCARD; 1195 1196 if (!(mmc_can_secure_erase_trim(card))) { 1197 err = -EOPNOTSUPP; 1198 goto out; 1199 } 1200 1201 from = blk_rq_pos(req); 1202 nr = blk_rq_sectors(req); 1203 1204 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1205 arg = MMC_SECURE_TRIM1_ARG; 1206 else 1207 arg = MMC_SECURE_ERASE_ARG; 1208 1209 retry: 1210 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1211 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1212 INAND_CMD38_ARG_EXT_CSD, 1213 arg == MMC_SECURE_TRIM1_ARG ? 1214 INAND_CMD38_ARG_SECTRIM1 : 1215 INAND_CMD38_ARG_SECERASE, 1216 0); 1217 if (err) 1218 goto out_retry; 1219 } 1220 1221 err = mmc_erase(card, from, nr, arg); 1222 if (err == -EIO) 1223 goto out_retry; 1224 if (err) 1225 goto out; 1226 1227 if (arg == MMC_SECURE_TRIM1_ARG) { 1228 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1229 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1230 INAND_CMD38_ARG_EXT_CSD, 1231 INAND_CMD38_ARG_SECTRIM2, 1232 0); 1233 if (err) 1234 goto out_retry; 1235 } 1236 1237 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1238 if (err == -EIO) 1239 goto out_retry; 1240 if (err) 1241 goto out; 1242 } 1243 1244 out_retry: 1245 if (err && !mmc_blk_reset(md, card->host, type)) 1246 goto retry; 1247 if (!err) 1248 mmc_blk_reset_success(md, type); 1249 out: 1250 blk_end_request(req, err, blk_rq_bytes(req)); 1251 1252 return err ? 0 : 1; 1253 } 1254 1255 static int mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1256 { 1257 struct mmc_blk_data *md = mq->blkdata; 1258 struct mmc_card *card = md->queue.card; 1259 int ret = 0; 1260 1261 ret = mmc_flush_cache(card); 1262 if (ret) 1263 ret = -EIO; 1264 1265 blk_end_request_all(req, ret); 1266 1267 return ret ? 0 : 1; 1268 } 1269 1270 /* 1271 * Reformat current write as a reliable write, supporting 1272 * both legacy and the enhanced reliable write MMC cards. 1273 * In each transfer we'll handle only as much as a single 1274 * reliable write can handle, thus finish the request in 1275 * partial completions. 1276 */ 1277 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1278 struct mmc_card *card, 1279 struct request *req) 1280 { 1281 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1282 /* Legacy mode imposes restrictions on transfers. */ 1283 if (!IS_ALIGNED(brq->cmd.arg, card->ext_csd.rel_sectors)) 1284 brq->data.blocks = 1; 1285 1286 if (brq->data.blocks > card->ext_csd.rel_sectors) 1287 brq->data.blocks = card->ext_csd.rel_sectors; 1288 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1289 brq->data.blocks = 1; 1290 } 1291 } 1292 1293 #define CMD_ERRORS \ 1294 (R1_OUT_OF_RANGE | /* Command argument out of range */ \ 1295 R1_ADDRESS_ERROR | /* Misaligned address */ \ 1296 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1297 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1298 R1_CC_ERROR | /* Card controller error */ \ 1299 R1_ERROR) /* General/unknown error */ 1300 1301 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card, 1302 struct mmc_async_req *areq) 1303 { 1304 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req, 1305 mmc_active); 1306 struct mmc_blk_request *brq = &mq_mrq->brq; 1307 struct request *req = mq_mrq->req; 1308 int need_retune = card->host->need_retune; 1309 bool ecc_err = false; 1310 bool gen_err = false; 1311 1312 /* 1313 * sbc.error indicates a problem with the set block count 1314 * command. No data will have been transferred. 1315 * 1316 * cmd.error indicates a problem with the r/w command. No 1317 * data will have been transferred. 1318 * 1319 * stop.error indicates a problem with the stop command. Data 1320 * may have been transferred, or may still be transferring. 1321 */ 1322 if (brq->sbc.error || brq->cmd.error || brq->stop.error || 1323 brq->data.error) { 1324 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) { 1325 case ERR_RETRY: 1326 return MMC_BLK_RETRY; 1327 case ERR_ABORT: 1328 return MMC_BLK_ABORT; 1329 case ERR_NOMEDIUM: 1330 return MMC_BLK_NOMEDIUM; 1331 case ERR_CONTINUE: 1332 break; 1333 } 1334 } 1335 1336 /* 1337 * Check for errors relating to the execution of the 1338 * initial command - such as address errors. No data 1339 * has been transferred. 1340 */ 1341 if (brq->cmd.resp[0] & CMD_ERRORS) { 1342 pr_err("%s: r/w command failed, status = %#x\n", 1343 req->rq_disk->disk_name, brq->cmd.resp[0]); 1344 return MMC_BLK_ABORT; 1345 } 1346 1347 /* 1348 * Everything else is either success, or a data error of some 1349 * kind. If it was a write, we may have transitioned to 1350 * program mode, which we have to wait for it to complete. 1351 */ 1352 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) { 1353 int err; 1354 1355 /* Check stop command response */ 1356 if (brq->stop.resp[0] & R1_ERROR) { 1357 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n", 1358 req->rq_disk->disk_name, __func__, 1359 brq->stop.resp[0]); 1360 gen_err = true; 1361 } 1362 1363 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req, 1364 &gen_err); 1365 if (err) 1366 return MMC_BLK_CMD_ERR; 1367 } 1368 1369 /* if general error occurs, retry the write operation. */ 1370 if (gen_err) { 1371 pr_warn("%s: retrying write for general error\n", 1372 req->rq_disk->disk_name); 1373 return MMC_BLK_RETRY; 1374 } 1375 1376 if (brq->data.error) { 1377 if (need_retune && !brq->retune_retry_done) { 1378 pr_debug("%s: retrying because a re-tune was needed\n", 1379 req->rq_disk->disk_name); 1380 brq->retune_retry_done = 1; 1381 return MMC_BLK_RETRY; 1382 } 1383 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n", 1384 req->rq_disk->disk_name, brq->data.error, 1385 (unsigned)blk_rq_pos(req), 1386 (unsigned)blk_rq_sectors(req), 1387 brq->cmd.resp[0], brq->stop.resp[0]); 1388 1389 if (rq_data_dir(req) == READ) { 1390 if (ecc_err) 1391 return MMC_BLK_ECC_ERR; 1392 return MMC_BLK_DATA_ERR; 1393 } else { 1394 return MMC_BLK_CMD_ERR; 1395 } 1396 } 1397 1398 if (!brq->data.bytes_xfered) 1399 return MMC_BLK_RETRY; 1400 1401 if (blk_rq_bytes(req) != brq->data.bytes_xfered) 1402 return MMC_BLK_PARTIAL; 1403 1404 return MMC_BLK_SUCCESS; 1405 } 1406 1407 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1408 struct mmc_card *card, 1409 int disable_multi, 1410 struct mmc_queue *mq) 1411 { 1412 u32 readcmd, writecmd; 1413 struct mmc_blk_request *brq = &mqrq->brq; 1414 struct request *req = mqrq->req; 1415 struct mmc_blk_data *md = mq->blkdata; 1416 bool do_data_tag; 1417 1418 /* 1419 * Reliable writes are used to implement Forced Unit Access and 1420 * are supported only on MMCs. 1421 */ 1422 bool do_rel_wr = (req->cmd_flags & REQ_FUA) && 1423 (rq_data_dir(req) == WRITE) && 1424 (md->flags & MMC_BLK_REL_WR); 1425 1426 memset(brq, 0, sizeof(struct mmc_blk_request)); 1427 brq->mrq.cmd = &brq->cmd; 1428 brq->mrq.data = &brq->data; 1429 1430 brq->cmd.arg = blk_rq_pos(req); 1431 if (!mmc_card_blockaddr(card)) 1432 brq->cmd.arg <<= 9; 1433 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1434 brq->data.blksz = 512; 1435 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1436 brq->stop.arg = 0; 1437 brq->data.blocks = blk_rq_sectors(req); 1438 1439 /* 1440 * The block layer doesn't support all sector count 1441 * restrictions, so we need to be prepared for too big 1442 * requests. 1443 */ 1444 if (brq->data.blocks > card->host->max_blk_count) 1445 brq->data.blocks = card->host->max_blk_count; 1446 1447 if (brq->data.blocks > 1) { 1448 /* 1449 * After a read error, we redo the request one sector 1450 * at a time in order to accurately determine which 1451 * sectors can be read successfully. 1452 */ 1453 if (disable_multi) 1454 brq->data.blocks = 1; 1455 1456 /* 1457 * Some controllers have HW issues while operating 1458 * in multiple I/O mode 1459 */ 1460 if (card->host->ops->multi_io_quirk) 1461 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1462 (rq_data_dir(req) == READ) ? 1463 MMC_DATA_READ : MMC_DATA_WRITE, 1464 brq->data.blocks); 1465 } 1466 1467 if (brq->data.blocks > 1 || do_rel_wr) { 1468 /* SPI multiblock writes terminate using a special 1469 * token, not a STOP_TRANSMISSION request. 1470 */ 1471 if (!mmc_host_is_spi(card->host) || 1472 rq_data_dir(req) == READ) 1473 brq->mrq.stop = &brq->stop; 1474 readcmd = MMC_READ_MULTIPLE_BLOCK; 1475 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1476 } else { 1477 brq->mrq.stop = NULL; 1478 readcmd = MMC_READ_SINGLE_BLOCK; 1479 writecmd = MMC_WRITE_BLOCK; 1480 } 1481 if (rq_data_dir(req) == READ) { 1482 brq->cmd.opcode = readcmd; 1483 brq->data.flags = MMC_DATA_READ; 1484 if (brq->mrq.stop) 1485 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | 1486 MMC_CMD_AC; 1487 } else { 1488 brq->cmd.opcode = writecmd; 1489 brq->data.flags = MMC_DATA_WRITE; 1490 if (brq->mrq.stop) 1491 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | 1492 MMC_CMD_AC; 1493 } 1494 1495 if (do_rel_wr) 1496 mmc_apply_rel_rw(brq, card, req); 1497 1498 /* 1499 * Data tag is used only during writing meta data to speed 1500 * up write and any subsequent read of this meta data 1501 */ 1502 do_data_tag = (card->ext_csd.data_tag_unit_size) && 1503 (req->cmd_flags & REQ_META) && 1504 (rq_data_dir(req) == WRITE) && 1505 ((brq->data.blocks * brq->data.blksz) >= 1506 card->ext_csd.data_tag_unit_size); 1507 1508 /* 1509 * Pre-defined multi-block transfers are preferable to 1510 * open ended-ones (and necessary for reliable writes). 1511 * However, it is not sufficient to just send CMD23, 1512 * and avoid the final CMD12, as on an error condition 1513 * CMD12 (stop) needs to be sent anyway. This, coupled 1514 * with Auto-CMD23 enhancements provided by some 1515 * hosts, means that the complexity of dealing 1516 * with this is best left to the host. If CMD23 is 1517 * supported by card and host, we'll fill sbc in and let 1518 * the host deal with handling it correctly. This means 1519 * that for hosts that don't expose MMC_CAP_CMD23, no 1520 * change of behavior will be observed. 1521 * 1522 * N.B: Some MMC cards experience perf degradation. 1523 * We'll avoid using CMD23-bounded multiblock writes for 1524 * these, while retaining features like reliable writes. 1525 */ 1526 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1527 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1528 do_data_tag)) { 1529 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1530 brq->sbc.arg = brq->data.blocks | 1531 (do_rel_wr ? (1 << 31) : 0) | 1532 (do_data_tag ? (1 << 29) : 0); 1533 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1534 brq->mrq.sbc = &brq->sbc; 1535 } 1536 1537 mmc_set_data_timeout(&brq->data, card); 1538 1539 brq->data.sg = mqrq->sg; 1540 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1541 1542 /* 1543 * Adjust the sg list so it is the same size as the 1544 * request. 1545 */ 1546 if (brq->data.blocks != blk_rq_sectors(req)) { 1547 int i, data_size = brq->data.blocks << 9; 1548 struct scatterlist *sg; 1549 1550 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1551 data_size -= sg->length; 1552 if (data_size <= 0) { 1553 sg->length += data_size; 1554 i++; 1555 break; 1556 } 1557 } 1558 brq->data.sg_len = i; 1559 } 1560 1561 mqrq->mmc_active.mrq = &brq->mrq; 1562 mqrq->mmc_active.err_check = mmc_blk_err_check; 1563 1564 mmc_queue_bounce_pre(mqrq); 1565 } 1566 1567 static int mmc_blk_cmd_err(struct mmc_blk_data *md, struct mmc_card *card, 1568 struct mmc_blk_request *brq, struct request *req, 1569 int ret) 1570 { 1571 struct mmc_queue_req *mq_rq; 1572 mq_rq = container_of(brq, struct mmc_queue_req, brq); 1573 1574 /* 1575 * If this is an SD card and we're writing, we can first 1576 * mark the known good sectors as ok. 1577 * 1578 * If the card is not SD, we can still ok written sectors 1579 * as reported by the controller (which might be less than 1580 * the real number of written sectors, but never more). 1581 */ 1582 if (mmc_card_sd(card)) { 1583 u32 blocks; 1584 1585 blocks = mmc_sd_num_wr_blocks(card); 1586 if (blocks != (u32)-1) { 1587 ret = blk_end_request(req, 0, blocks << 9); 1588 } 1589 } else { 1590 ret = blk_end_request(req, 0, brq->data.bytes_xfered); 1591 } 1592 return ret; 1593 } 1594 1595 static int mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *rqc) 1596 { 1597 struct mmc_blk_data *md = mq->blkdata; 1598 struct mmc_card *card = md->queue.card; 1599 struct mmc_blk_request *brq; 1600 int ret = 1, disable_multi = 0, retry = 0, type, retune_retry_done = 0; 1601 enum mmc_blk_status status; 1602 struct mmc_queue_req *mq_rq; 1603 struct request *req; 1604 struct mmc_async_req *areq; 1605 1606 if (!rqc && !mq->mqrq_prev->req) 1607 return 0; 1608 1609 do { 1610 if (rqc) { 1611 /* 1612 * When 4KB native sector is enabled, only 8 blocks 1613 * multiple read or write is allowed 1614 */ 1615 if (mmc_large_sector(card) && 1616 !IS_ALIGNED(blk_rq_sectors(rqc), 8)) { 1617 pr_err("%s: Transfer size is not 4KB sector size aligned\n", 1618 rqc->rq_disk->disk_name); 1619 mq_rq = mq->mqrq_cur; 1620 req = rqc; 1621 rqc = NULL; 1622 goto cmd_abort; 1623 } 1624 1625 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); 1626 areq = &mq->mqrq_cur->mmc_active; 1627 } else 1628 areq = NULL; 1629 areq = mmc_start_req(card->host, areq, &status); 1630 if (!areq) { 1631 if (status == MMC_BLK_NEW_REQUEST) 1632 mq->flags |= MMC_QUEUE_NEW_REQUEST; 1633 return 0; 1634 } 1635 1636 mq_rq = container_of(areq, struct mmc_queue_req, mmc_active); 1637 brq = &mq_rq->brq; 1638 req = mq_rq->req; 1639 type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1640 mmc_queue_bounce_post(mq_rq); 1641 1642 switch (status) { 1643 case MMC_BLK_SUCCESS: 1644 case MMC_BLK_PARTIAL: 1645 /* 1646 * A block was successfully transferred. 1647 */ 1648 mmc_blk_reset_success(md, type); 1649 1650 ret = blk_end_request(req, 0, 1651 brq->data.bytes_xfered); 1652 1653 /* 1654 * If the blk_end_request function returns non-zero even 1655 * though all data has been transferred and no errors 1656 * were returned by the host controller, it's a bug. 1657 */ 1658 if (status == MMC_BLK_SUCCESS && ret) { 1659 pr_err("%s BUG rq_tot %d d_xfer %d\n", 1660 __func__, blk_rq_bytes(req), 1661 brq->data.bytes_xfered); 1662 rqc = NULL; 1663 goto cmd_abort; 1664 } 1665 break; 1666 case MMC_BLK_CMD_ERR: 1667 ret = mmc_blk_cmd_err(md, card, brq, req, ret); 1668 if (mmc_blk_reset(md, card->host, type)) 1669 goto cmd_abort; 1670 if (!ret) 1671 goto start_new_req; 1672 break; 1673 case MMC_BLK_RETRY: 1674 retune_retry_done = brq->retune_retry_done; 1675 if (retry++ < 5) 1676 break; 1677 /* Fall through */ 1678 case MMC_BLK_ABORT: 1679 if (!mmc_blk_reset(md, card->host, type)) 1680 break; 1681 goto cmd_abort; 1682 case MMC_BLK_DATA_ERR: { 1683 int err; 1684 1685 err = mmc_blk_reset(md, card->host, type); 1686 if (!err) 1687 break; 1688 if (err == -ENODEV) 1689 goto cmd_abort; 1690 /* Fall through */ 1691 } 1692 case MMC_BLK_ECC_ERR: 1693 if (brq->data.blocks > 1) { 1694 /* Redo read one sector at a time */ 1695 pr_warn("%s: retrying using single block read\n", 1696 req->rq_disk->disk_name); 1697 disable_multi = 1; 1698 break; 1699 } 1700 /* 1701 * After an error, we redo I/O one sector at a 1702 * time, so we only reach here after trying to 1703 * read a single sector. 1704 */ 1705 ret = blk_end_request(req, -EIO, 1706 brq->data.blksz); 1707 if (!ret) 1708 goto start_new_req; 1709 break; 1710 case MMC_BLK_NOMEDIUM: 1711 goto cmd_abort; 1712 default: 1713 pr_err("%s: Unhandled return value (%d)", 1714 req->rq_disk->disk_name, status); 1715 goto cmd_abort; 1716 } 1717 1718 if (ret) { 1719 /* 1720 * In case of a incomplete request 1721 * prepare it again and resend. 1722 */ 1723 mmc_blk_rw_rq_prep(mq_rq, card, 1724 disable_multi, mq); 1725 mmc_start_req(card->host, 1726 &mq_rq->mmc_active, NULL); 1727 mq_rq->brq.retune_retry_done = retune_retry_done; 1728 } 1729 } while (ret); 1730 1731 return 1; 1732 1733 cmd_abort: 1734 if (mmc_card_removed(card)) 1735 req->rq_flags |= RQF_QUIET; 1736 while (ret) 1737 ret = blk_end_request(req, -EIO, 1738 blk_rq_cur_bytes(req)); 1739 1740 start_new_req: 1741 if (rqc) { 1742 if (mmc_card_removed(card)) { 1743 rqc->rq_flags |= RQF_QUIET; 1744 blk_end_request_all(rqc, -EIO); 1745 } else { 1746 mmc_blk_rw_rq_prep(mq->mqrq_cur, card, 0, mq); 1747 mmc_start_req(card->host, 1748 &mq->mqrq_cur->mmc_active, NULL); 1749 } 1750 } 1751 1752 return 0; 1753 } 1754 1755 int mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req) 1756 { 1757 int ret; 1758 struct mmc_blk_data *md = mq->blkdata; 1759 struct mmc_card *card = md->queue.card; 1760 bool req_is_special = mmc_req_is_special(req); 1761 1762 if (req && !mq->mqrq_prev->req) 1763 /* claim host only for the first request */ 1764 mmc_get_card(card); 1765 1766 ret = mmc_blk_part_switch(card, md); 1767 if (ret) { 1768 if (req) { 1769 blk_end_request_all(req, -EIO); 1770 } 1771 ret = 0; 1772 goto out; 1773 } 1774 1775 mq->flags &= ~MMC_QUEUE_NEW_REQUEST; 1776 if (req && req_op(req) == REQ_OP_DISCARD) { 1777 /* complete ongoing async transfer before issuing discard */ 1778 if (card->host->areq) 1779 mmc_blk_issue_rw_rq(mq, NULL); 1780 ret = mmc_blk_issue_discard_rq(mq, req); 1781 } else if (req && req_op(req) == REQ_OP_SECURE_ERASE) { 1782 /* complete ongoing async transfer before issuing secure erase*/ 1783 if (card->host->areq) 1784 mmc_blk_issue_rw_rq(mq, NULL); 1785 ret = mmc_blk_issue_secdiscard_rq(mq, req); 1786 } else if (req && req_op(req) == REQ_OP_FLUSH) { 1787 /* complete ongoing async transfer before issuing flush */ 1788 if (card->host->areq) 1789 mmc_blk_issue_rw_rq(mq, NULL); 1790 ret = mmc_blk_issue_flush(mq, req); 1791 } else { 1792 ret = mmc_blk_issue_rw_rq(mq, req); 1793 } 1794 1795 out: 1796 if ((!req && !(mq->flags & MMC_QUEUE_NEW_REQUEST)) || req_is_special) 1797 /* 1798 * Release host when there are no more requests 1799 * and after special request(discard, flush) is done. 1800 * In case sepecial request, there is no reentry to 1801 * the 'mmc_blk_issue_rq' with 'mqrq_prev->req'. 1802 */ 1803 mmc_put_card(card); 1804 return ret; 1805 } 1806 1807 static inline int mmc_blk_readonly(struct mmc_card *card) 1808 { 1809 return mmc_card_readonly(card) || 1810 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 1811 } 1812 1813 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 1814 struct device *parent, 1815 sector_t size, 1816 bool default_ro, 1817 const char *subname, 1818 int area_type) 1819 { 1820 struct mmc_blk_data *md; 1821 int devidx, ret; 1822 1823 again: 1824 if (!ida_pre_get(&mmc_blk_ida, GFP_KERNEL)) 1825 return ERR_PTR(-ENOMEM); 1826 1827 spin_lock(&mmc_blk_lock); 1828 ret = ida_get_new(&mmc_blk_ida, &devidx); 1829 spin_unlock(&mmc_blk_lock); 1830 1831 if (ret == -EAGAIN) 1832 goto again; 1833 else if (ret) 1834 return ERR_PTR(ret); 1835 1836 if (devidx >= max_devices) { 1837 ret = -ENOSPC; 1838 goto out; 1839 } 1840 1841 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 1842 if (!md) { 1843 ret = -ENOMEM; 1844 goto out; 1845 } 1846 1847 md->area_type = area_type; 1848 1849 /* 1850 * Set the read-only status based on the supported commands 1851 * and the write protect switch. 1852 */ 1853 md->read_only = mmc_blk_readonly(card); 1854 1855 md->disk = alloc_disk(perdev_minors); 1856 if (md->disk == NULL) { 1857 ret = -ENOMEM; 1858 goto err_kfree; 1859 } 1860 1861 spin_lock_init(&md->lock); 1862 INIT_LIST_HEAD(&md->part); 1863 md->usage = 1; 1864 1865 ret = mmc_init_queue(&md->queue, card, &md->lock, subname); 1866 if (ret) 1867 goto err_putdisk; 1868 1869 md->queue.blkdata = md; 1870 1871 md->disk->major = MMC_BLOCK_MAJOR; 1872 md->disk->first_minor = devidx * perdev_minors; 1873 md->disk->fops = &mmc_bdops; 1874 md->disk->private_data = md; 1875 md->disk->queue = md->queue.queue; 1876 md->parent = parent; 1877 set_disk_ro(md->disk, md->read_only || default_ro); 1878 md->disk->flags = GENHD_FL_EXT_DEVT; 1879 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 1880 md->disk->flags |= GENHD_FL_NO_PART_SCAN; 1881 1882 /* 1883 * As discussed on lkml, GENHD_FL_REMOVABLE should: 1884 * 1885 * - be set for removable media with permanent block devices 1886 * - be unset for removable block devices with permanent media 1887 * 1888 * Since MMC block devices clearly fall under the second 1889 * case, we do not set GENHD_FL_REMOVABLE. Userspace 1890 * should use the block device creation/destruction hotplug 1891 * messages to tell when the card is present. 1892 */ 1893 1894 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 1895 "mmcblk%u%s", card->host->index, subname ? subname : ""); 1896 1897 if (mmc_card_mmc(card)) 1898 blk_queue_logical_block_size(md->queue.queue, 1899 card->ext_csd.data_sector_size); 1900 else 1901 blk_queue_logical_block_size(md->queue.queue, 512); 1902 1903 set_capacity(md->disk, size); 1904 1905 if (mmc_host_cmd23(card->host)) { 1906 if ((mmc_card_mmc(card) && 1907 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 1908 (mmc_card_sd(card) && 1909 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 1910 md->flags |= MMC_BLK_CMD23; 1911 } 1912 1913 if (mmc_card_mmc(card) && 1914 md->flags & MMC_BLK_CMD23 && 1915 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 1916 card->ext_csd.rel_sectors)) { 1917 md->flags |= MMC_BLK_REL_WR; 1918 blk_queue_write_cache(md->queue.queue, true, true); 1919 } 1920 1921 return md; 1922 1923 err_putdisk: 1924 put_disk(md->disk); 1925 err_kfree: 1926 kfree(md); 1927 out: 1928 spin_lock(&mmc_blk_lock); 1929 ida_remove(&mmc_blk_ida, devidx); 1930 spin_unlock(&mmc_blk_lock); 1931 return ERR_PTR(ret); 1932 } 1933 1934 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 1935 { 1936 sector_t size; 1937 1938 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 1939 /* 1940 * The EXT_CSD sector count is in number or 512 byte 1941 * sectors. 1942 */ 1943 size = card->ext_csd.sectors; 1944 } else { 1945 /* 1946 * The CSD capacity field is in units of read_blkbits. 1947 * set_capacity takes units of 512 bytes. 1948 */ 1949 size = (typeof(sector_t))card->csd.capacity 1950 << (card->csd.read_blkbits - 9); 1951 } 1952 1953 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 1954 MMC_BLK_DATA_AREA_MAIN); 1955 } 1956 1957 static int mmc_blk_alloc_part(struct mmc_card *card, 1958 struct mmc_blk_data *md, 1959 unsigned int part_type, 1960 sector_t size, 1961 bool default_ro, 1962 const char *subname, 1963 int area_type) 1964 { 1965 char cap_str[10]; 1966 struct mmc_blk_data *part_md; 1967 1968 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 1969 subname, area_type); 1970 if (IS_ERR(part_md)) 1971 return PTR_ERR(part_md); 1972 part_md->part_type = part_type; 1973 list_add(&part_md->part, &md->part); 1974 1975 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 1976 cap_str, sizeof(cap_str)); 1977 pr_info("%s: %s %s partition %u %s\n", 1978 part_md->disk->disk_name, mmc_card_id(card), 1979 mmc_card_name(card), part_md->part_type, cap_str); 1980 return 0; 1981 } 1982 1983 /* MMC Physical partitions consist of two boot partitions and 1984 * up to four general purpose partitions. 1985 * For each partition enabled in EXT_CSD a block device will be allocatedi 1986 * to provide access to the partition. 1987 */ 1988 1989 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 1990 { 1991 int idx, ret = 0; 1992 1993 if (!mmc_card_mmc(card)) 1994 return 0; 1995 1996 for (idx = 0; idx < card->nr_parts; idx++) { 1997 if (card->part[idx].size) { 1998 ret = mmc_blk_alloc_part(card, md, 1999 card->part[idx].part_cfg, 2000 card->part[idx].size >> 9, 2001 card->part[idx].force_ro, 2002 card->part[idx].name, 2003 card->part[idx].area_type); 2004 if (ret) 2005 return ret; 2006 } 2007 } 2008 2009 return ret; 2010 } 2011 2012 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2013 { 2014 struct mmc_card *card; 2015 2016 if (md) { 2017 /* 2018 * Flush remaining requests and free queues. It 2019 * is freeing the queue that stops new requests 2020 * from being accepted. 2021 */ 2022 card = md->queue.card; 2023 mmc_cleanup_queue(&md->queue); 2024 if (md->disk->flags & GENHD_FL_UP) { 2025 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2026 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2027 card->ext_csd.boot_ro_lockable) 2028 device_remove_file(disk_to_dev(md->disk), 2029 &md->power_ro_lock); 2030 2031 del_gendisk(md->disk); 2032 } 2033 mmc_blk_put(md); 2034 } 2035 } 2036 2037 static void mmc_blk_remove_parts(struct mmc_card *card, 2038 struct mmc_blk_data *md) 2039 { 2040 struct list_head *pos, *q; 2041 struct mmc_blk_data *part_md; 2042 2043 list_for_each_safe(pos, q, &md->part) { 2044 part_md = list_entry(pos, struct mmc_blk_data, part); 2045 list_del(pos); 2046 mmc_blk_remove_req(part_md); 2047 } 2048 } 2049 2050 static int mmc_add_disk(struct mmc_blk_data *md) 2051 { 2052 int ret; 2053 struct mmc_card *card = md->queue.card; 2054 2055 device_add_disk(md->parent, md->disk); 2056 md->force_ro.show = force_ro_show; 2057 md->force_ro.store = force_ro_store; 2058 sysfs_attr_init(&md->force_ro.attr); 2059 md->force_ro.attr.name = "force_ro"; 2060 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2061 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2062 if (ret) 2063 goto force_ro_fail; 2064 2065 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2066 card->ext_csd.boot_ro_lockable) { 2067 umode_t mode; 2068 2069 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2070 mode = S_IRUGO; 2071 else 2072 mode = S_IRUGO | S_IWUSR; 2073 2074 md->power_ro_lock.show = power_ro_lock_show; 2075 md->power_ro_lock.store = power_ro_lock_store; 2076 sysfs_attr_init(&md->power_ro_lock.attr); 2077 md->power_ro_lock.attr.mode = mode; 2078 md->power_ro_lock.attr.name = 2079 "ro_lock_until_next_power_on"; 2080 ret = device_create_file(disk_to_dev(md->disk), 2081 &md->power_ro_lock); 2082 if (ret) 2083 goto power_ro_lock_fail; 2084 } 2085 return ret; 2086 2087 power_ro_lock_fail: 2088 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2089 force_ro_fail: 2090 del_gendisk(md->disk); 2091 2092 return ret; 2093 } 2094 2095 static const struct mmc_fixup blk_fixups[] = 2096 { 2097 MMC_FIXUP("SEM02G", CID_MANFID_SANDISK, 0x100, add_quirk, 2098 MMC_QUIRK_INAND_CMD38), 2099 MMC_FIXUP("SEM04G", CID_MANFID_SANDISK, 0x100, add_quirk, 2100 MMC_QUIRK_INAND_CMD38), 2101 MMC_FIXUP("SEM08G", CID_MANFID_SANDISK, 0x100, add_quirk, 2102 MMC_QUIRK_INAND_CMD38), 2103 MMC_FIXUP("SEM16G", CID_MANFID_SANDISK, 0x100, add_quirk, 2104 MMC_QUIRK_INAND_CMD38), 2105 MMC_FIXUP("SEM32G", CID_MANFID_SANDISK, 0x100, add_quirk, 2106 MMC_QUIRK_INAND_CMD38), 2107 2108 /* 2109 * Some MMC cards experience performance degradation with CMD23 2110 * instead of CMD12-bounded multiblock transfers. For now we'll 2111 * black list what's bad... 2112 * - Certain Toshiba cards. 2113 * 2114 * N.B. This doesn't affect SD cards. 2115 */ 2116 MMC_FIXUP("SDMB-32", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc, 2117 MMC_QUIRK_BLK_NO_CMD23), 2118 MMC_FIXUP("SDM032", CID_MANFID_SANDISK, CID_OEMID_ANY, add_quirk_mmc, 2119 MMC_QUIRK_BLK_NO_CMD23), 2120 MMC_FIXUP("MMC08G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2121 MMC_QUIRK_BLK_NO_CMD23), 2122 MMC_FIXUP("MMC16G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2123 MMC_QUIRK_BLK_NO_CMD23), 2124 MMC_FIXUP("MMC32G", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2125 MMC_QUIRK_BLK_NO_CMD23), 2126 2127 /* 2128 * Some MMC cards need longer data read timeout than indicated in CSD. 2129 */ 2130 MMC_FIXUP(CID_NAME_ANY, CID_MANFID_MICRON, 0x200, add_quirk_mmc, 2131 MMC_QUIRK_LONG_READ_TIME), 2132 MMC_FIXUP("008GE0", CID_MANFID_TOSHIBA, CID_OEMID_ANY, add_quirk_mmc, 2133 MMC_QUIRK_LONG_READ_TIME), 2134 2135 /* 2136 * On these Samsung MoviNAND parts, performing secure erase or 2137 * secure trim can result in unrecoverable corruption due to a 2138 * firmware bug. 2139 */ 2140 MMC_FIXUP("M8G2FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2141 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2142 MMC_FIXUP("MAG4FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2143 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2144 MMC_FIXUP("MBG8FA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2145 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2146 MMC_FIXUP("MCGAFA", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2147 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2148 MMC_FIXUP("VAL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2149 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2150 MMC_FIXUP("VYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2151 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2152 MMC_FIXUP("KYL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2153 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2154 MMC_FIXUP("VZL00M", CID_MANFID_SAMSUNG, CID_OEMID_ANY, add_quirk_mmc, 2155 MMC_QUIRK_SEC_ERASE_TRIM_BROKEN), 2156 2157 /* 2158 * On Some Kingston eMMCs, performing trim can result in 2159 * unrecoverable data conrruption occasionally due to a firmware bug. 2160 */ 2161 MMC_FIXUP("V10008", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc, 2162 MMC_QUIRK_TRIM_BROKEN), 2163 MMC_FIXUP("V10016", CID_MANFID_KINGSTON, CID_OEMID_ANY, add_quirk_mmc, 2164 MMC_QUIRK_TRIM_BROKEN), 2165 2166 END_FIXUP 2167 }; 2168 2169 static int mmc_blk_probe(struct mmc_card *card) 2170 { 2171 struct mmc_blk_data *md, *part_md; 2172 char cap_str[10]; 2173 2174 /* 2175 * Check that the card supports the command class(es) we need. 2176 */ 2177 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2178 return -ENODEV; 2179 2180 mmc_fixup_device(card, blk_fixups); 2181 2182 md = mmc_blk_alloc(card); 2183 if (IS_ERR(md)) 2184 return PTR_ERR(md); 2185 2186 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2187 cap_str, sizeof(cap_str)); 2188 pr_info("%s: %s %s %s %s\n", 2189 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2190 cap_str, md->read_only ? "(ro)" : ""); 2191 2192 if (mmc_blk_alloc_parts(card, md)) 2193 goto out; 2194 2195 dev_set_drvdata(&card->dev, md); 2196 2197 if (mmc_add_disk(md)) 2198 goto out; 2199 2200 list_for_each_entry(part_md, &md->part, part) { 2201 if (mmc_add_disk(part_md)) 2202 goto out; 2203 } 2204 2205 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2206 pm_runtime_use_autosuspend(&card->dev); 2207 2208 /* 2209 * Don't enable runtime PM for SD-combo cards here. Leave that 2210 * decision to be taken during the SDIO init sequence instead. 2211 */ 2212 if (card->type != MMC_TYPE_SD_COMBO) { 2213 pm_runtime_set_active(&card->dev); 2214 pm_runtime_enable(&card->dev); 2215 } 2216 2217 return 0; 2218 2219 out: 2220 mmc_blk_remove_parts(card, md); 2221 mmc_blk_remove_req(md); 2222 return 0; 2223 } 2224 2225 static void mmc_blk_remove(struct mmc_card *card) 2226 { 2227 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2228 2229 mmc_blk_remove_parts(card, md); 2230 pm_runtime_get_sync(&card->dev); 2231 mmc_claim_host(card->host); 2232 mmc_blk_part_switch(card, md); 2233 mmc_release_host(card->host); 2234 if (card->type != MMC_TYPE_SD_COMBO) 2235 pm_runtime_disable(&card->dev); 2236 pm_runtime_put_noidle(&card->dev); 2237 mmc_blk_remove_req(md); 2238 dev_set_drvdata(&card->dev, NULL); 2239 } 2240 2241 static int _mmc_blk_suspend(struct mmc_card *card) 2242 { 2243 struct mmc_blk_data *part_md; 2244 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2245 2246 if (md) { 2247 mmc_queue_suspend(&md->queue); 2248 list_for_each_entry(part_md, &md->part, part) { 2249 mmc_queue_suspend(&part_md->queue); 2250 } 2251 } 2252 return 0; 2253 } 2254 2255 static void mmc_blk_shutdown(struct mmc_card *card) 2256 { 2257 _mmc_blk_suspend(card); 2258 } 2259 2260 #ifdef CONFIG_PM_SLEEP 2261 static int mmc_blk_suspend(struct device *dev) 2262 { 2263 struct mmc_card *card = mmc_dev_to_card(dev); 2264 2265 return _mmc_blk_suspend(card); 2266 } 2267 2268 static int mmc_blk_resume(struct device *dev) 2269 { 2270 struct mmc_blk_data *part_md; 2271 struct mmc_blk_data *md = dev_get_drvdata(dev); 2272 2273 if (md) { 2274 /* 2275 * Resume involves the card going into idle state, 2276 * so current partition is always the main one. 2277 */ 2278 md->part_curr = md->part_type; 2279 mmc_queue_resume(&md->queue); 2280 list_for_each_entry(part_md, &md->part, part) { 2281 mmc_queue_resume(&part_md->queue); 2282 } 2283 } 2284 return 0; 2285 } 2286 #endif 2287 2288 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 2289 2290 static struct mmc_driver mmc_driver = { 2291 .drv = { 2292 .name = "mmcblk", 2293 .pm = &mmc_blk_pm_ops, 2294 }, 2295 .probe = mmc_blk_probe, 2296 .remove = mmc_blk_remove, 2297 .shutdown = mmc_blk_shutdown, 2298 }; 2299 2300 static int __init mmc_blk_init(void) 2301 { 2302 int res; 2303 2304 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 2305 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 2306 2307 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 2308 2309 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2310 if (res) 2311 goto out; 2312 2313 res = mmc_register_driver(&mmc_driver); 2314 if (res) 2315 goto out2; 2316 2317 return 0; 2318 out2: 2319 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2320 out: 2321 return res; 2322 } 2323 2324 static void __exit mmc_blk_exit(void) 2325 { 2326 mmc_unregister_driver(&mmc_driver); 2327 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 2328 } 2329 2330 module_init(mmc_blk_init); 2331 module_exit(mmc_blk_exit); 2332 2333 MODULE_LICENSE("GPL"); 2334 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 2335 2336