1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 static DEFINE_MUTEX(block_mutex); 80 81 /* 82 * The defaults come from config options but can be overriden by module 83 * or bootarg options. 84 */ 85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 86 87 /* 88 * We've only got one major, so number of mmcblk devices is 89 * limited to (1 << 20) / number of minors per device. It is also 90 * limited by the MAX_DEVICES below. 91 */ 92 static int max_devices; 93 94 #define MAX_DEVICES 256 95 96 static DEFINE_IDA(mmc_blk_ida); 97 static DEFINE_IDA(mmc_rpmb_ida); 98 99 struct mmc_blk_busy_data { 100 struct mmc_card *card; 101 u32 status; 102 }; 103 104 /* 105 * There is one mmc_blk_data per slot. 106 */ 107 struct mmc_blk_data { 108 struct device *parent; 109 struct gendisk *disk; 110 struct mmc_queue queue; 111 struct list_head part; 112 struct list_head rpmbs; 113 114 unsigned int flags; 115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 117 118 struct kref kref; 119 unsigned int read_only; 120 unsigned int part_type; 121 unsigned int reset_done; 122 #define MMC_BLK_READ BIT(0) 123 #define MMC_BLK_WRITE BIT(1) 124 #define MMC_BLK_DISCARD BIT(2) 125 #define MMC_BLK_SECDISCARD BIT(3) 126 #define MMC_BLK_CQE_RECOVERY BIT(4) 127 #define MMC_BLK_TRIM BIT(5) 128 129 /* 130 * Only set in main mmc_blk_data associated 131 * with mmc_card with dev_set_drvdata, and keeps 132 * track of the current selected device partition. 133 */ 134 unsigned int part_curr; 135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 136 int area_type; 137 138 /* debugfs files (only in main mmc_blk_data) */ 139 struct dentry *status_dentry; 140 struct dentry *ext_csd_dentry; 141 }; 142 143 /* Device type for RPMB character devices */ 144 static dev_t mmc_rpmb_devt; 145 146 /* Bus type for RPMB character devices */ 147 static struct bus_type mmc_rpmb_bus_type = { 148 .name = "mmc_rpmb", 149 }; 150 151 /** 152 * struct mmc_rpmb_data - special RPMB device type for these areas 153 * @dev: the device for the RPMB area 154 * @chrdev: character device for the RPMB area 155 * @id: unique device ID number 156 * @part_index: partition index (0 on first) 157 * @md: parent MMC block device 158 * @node: list item, so we can put this device on a list 159 */ 160 struct mmc_rpmb_data { 161 struct device dev; 162 struct cdev chrdev; 163 int id; 164 unsigned int part_index; 165 struct mmc_blk_data *md; 166 struct list_head node; 167 }; 168 169 static DEFINE_MUTEX(open_lock); 170 171 module_param(perdev_minors, int, 0444); 172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 173 174 static inline int mmc_blk_part_switch(struct mmc_card *card, 175 unsigned int part_type); 176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 177 struct mmc_card *card, 178 int recovery_mode, 179 struct mmc_queue *mq); 180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 181 182 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 183 { 184 struct mmc_blk_data *md; 185 186 mutex_lock(&open_lock); 187 md = disk->private_data; 188 if (md && !kref_get_unless_zero(&md->kref)) 189 md = NULL; 190 mutex_unlock(&open_lock); 191 192 return md; 193 } 194 195 static inline int mmc_get_devidx(struct gendisk *disk) 196 { 197 int devidx = disk->first_minor / perdev_minors; 198 return devidx; 199 } 200 201 static void mmc_blk_kref_release(struct kref *ref) 202 { 203 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 204 int devidx; 205 206 devidx = mmc_get_devidx(md->disk); 207 ida_simple_remove(&mmc_blk_ida, devidx); 208 209 mutex_lock(&open_lock); 210 md->disk->private_data = NULL; 211 mutex_unlock(&open_lock); 212 213 put_disk(md->disk); 214 kfree(md); 215 } 216 217 static void mmc_blk_put(struct mmc_blk_data *md) 218 { 219 kref_put(&md->kref, mmc_blk_kref_release); 220 } 221 222 static ssize_t power_ro_lock_show(struct device *dev, 223 struct device_attribute *attr, char *buf) 224 { 225 int ret; 226 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 227 struct mmc_card *card = md->queue.card; 228 int locked = 0; 229 230 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 231 locked = 2; 232 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 233 locked = 1; 234 235 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 236 237 mmc_blk_put(md); 238 239 return ret; 240 } 241 242 static ssize_t power_ro_lock_store(struct device *dev, 243 struct device_attribute *attr, const char *buf, size_t count) 244 { 245 int ret; 246 struct mmc_blk_data *md, *part_md; 247 struct mmc_queue *mq; 248 struct request *req; 249 unsigned long set; 250 251 if (kstrtoul(buf, 0, &set)) 252 return -EINVAL; 253 254 if (set != 1) 255 return count; 256 257 md = mmc_blk_get(dev_to_disk(dev)); 258 mq = &md->queue; 259 260 /* Dispatch locking to the block layer */ 261 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 262 if (IS_ERR(req)) { 263 count = PTR_ERR(req); 264 goto out_put; 265 } 266 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 267 blk_execute_rq(req, false); 268 ret = req_to_mmc_queue_req(req)->drv_op_result; 269 blk_mq_free_request(req); 270 271 if (!ret) { 272 pr_info("%s: Locking boot partition ro until next power on\n", 273 md->disk->disk_name); 274 set_disk_ro(md->disk, 1); 275 276 list_for_each_entry(part_md, &md->part, part) 277 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 278 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 279 set_disk_ro(part_md->disk, 1); 280 } 281 } 282 out_put: 283 mmc_blk_put(md); 284 return count; 285 } 286 287 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 288 power_ro_lock_show, power_ro_lock_store); 289 290 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 291 char *buf) 292 { 293 int ret; 294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 295 296 ret = snprintf(buf, PAGE_SIZE, "%d\n", 297 get_disk_ro(dev_to_disk(dev)) ^ 298 md->read_only); 299 mmc_blk_put(md); 300 return ret; 301 } 302 303 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 304 const char *buf, size_t count) 305 { 306 int ret; 307 char *end; 308 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 309 unsigned long set = simple_strtoul(buf, &end, 0); 310 if (end == buf) { 311 ret = -EINVAL; 312 goto out; 313 } 314 315 set_disk_ro(dev_to_disk(dev), set || md->read_only); 316 ret = count; 317 out: 318 mmc_blk_put(md); 319 return ret; 320 } 321 322 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 323 324 static struct attribute *mmc_disk_attrs[] = { 325 &dev_attr_force_ro.attr, 326 &dev_attr_ro_lock_until_next_power_on.attr, 327 NULL, 328 }; 329 330 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 331 struct attribute *a, int n) 332 { 333 struct device *dev = kobj_to_dev(kobj); 334 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 335 umode_t mode = a->mode; 336 337 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 338 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 339 md->queue.card->ext_csd.boot_ro_lockable) { 340 mode = S_IRUGO; 341 if (!(md->queue.card->ext_csd.boot_ro_lock & 342 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 343 mode |= S_IWUSR; 344 } 345 346 mmc_blk_put(md); 347 return mode; 348 } 349 350 static const struct attribute_group mmc_disk_attr_group = { 351 .is_visible = mmc_disk_attrs_is_visible, 352 .attrs = mmc_disk_attrs, 353 }; 354 355 static const struct attribute_group *mmc_disk_attr_groups[] = { 356 &mmc_disk_attr_group, 357 NULL, 358 }; 359 360 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 361 { 362 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 363 int ret = -ENXIO; 364 365 mutex_lock(&block_mutex); 366 if (md) { 367 ret = 0; 368 if ((mode & FMODE_WRITE) && md->read_only) { 369 mmc_blk_put(md); 370 ret = -EROFS; 371 } 372 } 373 mutex_unlock(&block_mutex); 374 375 return ret; 376 } 377 378 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 379 { 380 struct mmc_blk_data *md = disk->private_data; 381 382 mutex_lock(&block_mutex); 383 mmc_blk_put(md); 384 mutex_unlock(&block_mutex); 385 } 386 387 static int 388 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 389 { 390 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 391 geo->heads = 4; 392 geo->sectors = 16; 393 return 0; 394 } 395 396 struct mmc_blk_ioc_data { 397 struct mmc_ioc_cmd ic; 398 unsigned char *buf; 399 u64 buf_bytes; 400 struct mmc_rpmb_data *rpmb; 401 }; 402 403 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 404 struct mmc_ioc_cmd __user *user) 405 { 406 struct mmc_blk_ioc_data *idata; 407 int err; 408 409 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 410 if (!idata) { 411 err = -ENOMEM; 412 goto out; 413 } 414 415 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 416 err = -EFAULT; 417 goto idata_err; 418 } 419 420 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 421 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 422 err = -EOVERFLOW; 423 goto idata_err; 424 } 425 426 if (!idata->buf_bytes) { 427 idata->buf = NULL; 428 return idata; 429 } 430 431 idata->buf = memdup_user((void __user *)(unsigned long) 432 idata->ic.data_ptr, idata->buf_bytes); 433 if (IS_ERR(idata->buf)) { 434 err = PTR_ERR(idata->buf); 435 goto idata_err; 436 } 437 438 return idata; 439 440 idata_err: 441 kfree(idata); 442 out: 443 return ERR_PTR(err); 444 } 445 446 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 447 struct mmc_blk_ioc_data *idata) 448 { 449 struct mmc_ioc_cmd *ic = &idata->ic; 450 451 if (copy_to_user(&(ic_ptr->response), ic->response, 452 sizeof(ic->response))) 453 return -EFAULT; 454 455 if (!idata->ic.write_flag) { 456 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 457 idata->buf, idata->buf_bytes)) 458 return -EFAULT; 459 } 460 461 return 0; 462 } 463 464 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 465 struct mmc_blk_ioc_data *idata) 466 { 467 struct mmc_command cmd = {}, sbc = {}; 468 struct mmc_data data = {}; 469 struct mmc_request mrq = {}; 470 struct scatterlist sg; 471 bool r1b_resp, use_r1b_resp = false; 472 unsigned int busy_timeout_ms; 473 int err; 474 unsigned int target_part; 475 476 if (!card || !md || !idata) 477 return -EINVAL; 478 479 /* 480 * The RPMB accesses comes in from the character device, so we 481 * need to target these explicitly. Else we just target the 482 * partition type for the block device the ioctl() was issued 483 * on. 484 */ 485 if (idata->rpmb) { 486 /* Support multiple RPMB partitions */ 487 target_part = idata->rpmb->part_index; 488 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 489 } else { 490 target_part = md->part_type; 491 } 492 493 cmd.opcode = idata->ic.opcode; 494 cmd.arg = idata->ic.arg; 495 cmd.flags = idata->ic.flags; 496 497 if (idata->buf_bytes) { 498 data.sg = &sg; 499 data.sg_len = 1; 500 data.blksz = idata->ic.blksz; 501 data.blocks = idata->ic.blocks; 502 503 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 504 505 if (idata->ic.write_flag) 506 data.flags = MMC_DATA_WRITE; 507 else 508 data.flags = MMC_DATA_READ; 509 510 /* data.flags must already be set before doing this. */ 511 mmc_set_data_timeout(&data, card); 512 513 /* Allow overriding the timeout_ns for empirical tuning. */ 514 if (idata->ic.data_timeout_ns) 515 data.timeout_ns = idata->ic.data_timeout_ns; 516 517 mrq.data = &data; 518 } 519 520 mrq.cmd = &cmd; 521 522 err = mmc_blk_part_switch(card, target_part); 523 if (err) 524 return err; 525 526 if (idata->ic.is_acmd) { 527 err = mmc_app_cmd(card->host, card); 528 if (err) 529 return err; 530 } 531 532 if (idata->rpmb) { 533 sbc.opcode = MMC_SET_BLOCK_COUNT; 534 /* 535 * We don't do any blockcount validation because the max size 536 * may be increased by a future standard. We just copy the 537 * 'Reliable Write' bit here. 538 */ 539 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 540 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 541 mrq.sbc = &sbc; 542 } 543 544 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 545 (cmd.opcode == MMC_SWITCH)) 546 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 547 548 /* If it's an R1B response we need some more preparations. */ 549 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 550 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 551 if (r1b_resp) 552 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, 553 busy_timeout_ms); 554 555 mmc_wait_for_req(card->host, &mrq); 556 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 557 558 if (cmd.error) { 559 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 560 __func__, cmd.error); 561 return cmd.error; 562 } 563 if (data.error) { 564 dev_err(mmc_dev(card->host), "%s: data error %d\n", 565 __func__, data.error); 566 return data.error; 567 } 568 569 /* 570 * Make sure the cache of the PARTITION_CONFIG register and 571 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 572 * changed it successfully. 573 */ 574 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 575 (cmd.opcode == MMC_SWITCH)) { 576 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 577 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 578 579 /* 580 * Update cache so the next mmc_blk_part_switch call operates 581 * on up-to-date data. 582 */ 583 card->ext_csd.part_config = value; 584 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 585 } 586 587 /* 588 * Make sure to update CACHE_CTRL in case it was changed. The cache 589 * will get turned back on if the card is re-initialized, e.g. 590 * suspend/resume or hw reset in recovery. 591 */ 592 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 593 (cmd.opcode == MMC_SWITCH)) { 594 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 595 596 card->ext_csd.cache_ctrl = value; 597 } 598 599 /* 600 * According to the SD specs, some commands require a delay after 601 * issuing the command. 602 */ 603 if (idata->ic.postsleep_min_us) 604 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 605 606 /* No need to poll when using HW busy detection. */ 607 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp) 608 return 0; 609 610 /* Ensure RPMB/R1B command has completed by polling with CMD13. */ 611 if (idata->rpmb || r1b_resp) 612 err = mmc_poll_for_busy(card, busy_timeout_ms, false, 613 MMC_BUSY_IO); 614 615 return err; 616 } 617 618 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 619 struct mmc_ioc_cmd __user *ic_ptr, 620 struct mmc_rpmb_data *rpmb) 621 { 622 struct mmc_blk_ioc_data *idata; 623 struct mmc_blk_ioc_data *idatas[1]; 624 struct mmc_queue *mq; 625 struct mmc_card *card; 626 int err = 0, ioc_err = 0; 627 struct request *req; 628 629 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 630 if (IS_ERR(idata)) 631 return PTR_ERR(idata); 632 /* This will be NULL on non-RPMB ioctl():s */ 633 idata->rpmb = rpmb; 634 635 card = md->queue.card; 636 if (IS_ERR(card)) { 637 err = PTR_ERR(card); 638 goto cmd_done; 639 } 640 641 /* 642 * Dispatch the ioctl() into the block request queue. 643 */ 644 mq = &md->queue; 645 req = blk_mq_alloc_request(mq->queue, 646 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 647 if (IS_ERR(req)) { 648 err = PTR_ERR(req); 649 goto cmd_done; 650 } 651 idatas[0] = idata; 652 req_to_mmc_queue_req(req)->drv_op = 653 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 654 req_to_mmc_queue_req(req)->drv_op_data = idatas; 655 req_to_mmc_queue_req(req)->ioc_count = 1; 656 blk_execute_rq(req, false); 657 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 658 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 659 blk_mq_free_request(req); 660 661 cmd_done: 662 kfree(idata->buf); 663 kfree(idata); 664 return ioc_err ? ioc_err : err; 665 } 666 667 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 668 struct mmc_ioc_multi_cmd __user *user, 669 struct mmc_rpmb_data *rpmb) 670 { 671 struct mmc_blk_ioc_data **idata = NULL; 672 struct mmc_ioc_cmd __user *cmds = user->cmds; 673 struct mmc_card *card; 674 struct mmc_queue *mq; 675 int err = 0, ioc_err = 0; 676 __u64 num_of_cmds; 677 unsigned int i, n; 678 struct request *req; 679 680 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 681 sizeof(num_of_cmds))) 682 return -EFAULT; 683 684 if (!num_of_cmds) 685 return 0; 686 687 if (num_of_cmds > MMC_IOC_MAX_CMDS) 688 return -EINVAL; 689 690 n = num_of_cmds; 691 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 692 if (!idata) 693 return -ENOMEM; 694 695 for (i = 0; i < n; i++) { 696 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 697 if (IS_ERR(idata[i])) { 698 err = PTR_ERR(idata[i]); 699 n = i; 700 goto cmd_err; 701 } 702 /* This will be NULL on non-RPMB ioctl():s */ 703 idata[i]->rpmb = rpmb; 704 } 705 706 card = md->queue.card; 707 if (IS_ERR(card)) { 708 err = PTR_ERR(card); 709 goto cmd_err; 710 } 711 712 713 /* 714 * Dispatch the ioctl()s into the block request queue. 715 */ 716 mq = &md->queue; 717 req = blk_mq_alloc_request(mq->queue, 718 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 719 if (IS_ERR(req)) { 720 err = PTR_ERR(req); 721 goto cmd_err; 722 } 723 req_to_mmc_queue_req(req)->drv_op = 724 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 725 req_to_mmc_queue_req(req)->drv_op_data = idata; 726 req_to_mmc_queue_req(req)->ioc_count = n; 727 blk_execute_rq(req, false); 728 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 729 730 /* copy to user if data and response */ 731 for (i = 0; i < n && !err; i++) 732 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 733 734 blk_mq_free_request(req); 735 736 cmd_err: 737 for (i = 0; i < n; i++) { 738 kfree(idata[i]->buf); 739 kfree(idata[i]); 740 } 741 kfree(idata); 742 return ioc_err ? ioc_err : err; 743 } 744 745 static int mmc_blk_check_blkdev(struct block_device *bdev) 746 { 747 /* 748 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 749 * whole block device, not on a partition. This prevents overspray 750 * between sibling partitions. 751 */ 752 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 753 return -EPERM; 754 return 0; 755 } 756 757 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 758 unsigned int cmd, unsigned long arg) 759 { 760 struct mmc_blk_data *md; 761 int ret; 762 763 switch (cmd) { 764 case MMC_IOC_CMD: 765 ret = mmc_blk_check_blkdev(bdev); 766 if (ret) 767 return ret; 768 md = mmc_blk_get(bdev->bd_disk); 769 if (!md) 770 return -EINVAL; 771 ret = mmc_blk_ioctl_cmd(md, 772 (struct mmc_ioc_cmd __user *)arg, 773 NULL); 774 mmc_blk_put(md); 775 return ret; 776 case MMC_IOC_MULTI_CMD: 777 ret = mmc_blk_check_blkdev(bdev); 778 if (ret) 779 return ret; 780 md = mmc_blk_get(bdev->bd_disk); 781 if (!md) 782 return -EINVAL; 783 ret = mmc_blk_ioctl_multi_cmd(md, 784 (struct mmc_ioc_multi_cmd __user *)arg, 785 NULL); 786 mmc_blk_put(md); 787 return ret; 788 default: 789 return -EINVAL; 790 } 791 } 792 793 #ifdef CONFIG_COMPAT 794 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 795 unsigned int cmd, unsigned long arg) 796 { 797 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 798 } 799 #endif 800 801 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 802 sector_t *sector) 803 { 804 struct mmc_blk_data *md; 805 int ret; 806 807 md = mmc_blk_get(disk); 808 if (!md) 809 return -EINVAL; 810 811 if (md->queue.card) 812 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 813 else 814 ret = -ENODEV; 815 816 mmc_blk_put(md); 817 818 return ret; 819 } 820 821 static const struct block_device_operations mmc_bdops = { 822 .open = mmc_blk_open, 823 .release = mmc_blk_release, 824 .getgeo = mmc_blk_getgeo, 825 .owner = THIS_MODULE, 826 .ioctl = mmc_blk_ioctl, 827 #ifdef CONFIG_COMPAT 828 .compat_ioctl = mmc_blk_compat_ioctl, 829 #endif 830 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 831 }; 832 833 static int mmc_blk_part_switch_pre(struct mmc_card *card, 834 unsigned int part_type) 835 { 836 int ret = 0; 837 838 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 839 if (card->ext_csd.cmdq_en) { 840 ret = mmc_cmdq_disable(card); 841 if (ret) 842 return ret; 843 } 844 mmc_retune_pause(card->host); 845 } 846 847 return ret; 848 } 849 850 static int mmc_blk_part_switch_post(struct mmc_card *card, 851 unsigned int part_type) 852 { 853 int ret = 0; 854 855 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 856 mmc_retune_unpause(card->host); 857 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 858 ret = mmc_cmdq_enable(card); 859 } 860 861 return ret; 862 } 863 864 static inline int mmc_blk_part_switch(struct mmc_card *card, 865 unsigned int part_type) 866 { 867 int ret = 0; 868 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 869 870 if (main_md->part_curr == part_type) 871 return 0; 872 873 if (mmc_card_mmc(card)) { 874 u8 part_config = card->ext_csd.part_config; 875 876 ret = mmc_blk_part_switch_pre(card, part_type); 877 if (ret) 878 return ret; 879 880 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 881 part_config |= part_type; 882 883 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 884 EXT_CSD_PART_CONFIG, part_config, 885 card->ext_csd.part_time); 886 if (ret) { 887 mmc_blk_part_switch_post(card, part_type); 888 return ret; 889 } 890 891 card->ext_csd.part_config = part_config; 892 893 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 894 } 895 896 main_md->part_curr = part_type; 897 return ret; 898 } 899 900 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 901 { 902 int err; 903 u32 result; 904 __be32 *blocks; 905 906 struct mmc_request mrq = {}; 907 struct mmc_command cmd = {}; 908 struct mmc_data data = {}; 909 910 struct scatterlist sg; 911 912 cmd.opcode = MMC_APP_CMD; 913 cmd.arg = card->rca << 16; 914 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 915 916 err = mmc_wait_for_cmd(card->host, &cmd, 0); 917 if (err) 918 return err; 919 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 920 return -EIO; 921 922 memset(&cmd, 0, sizeof(struct mmc_command)); 923 924 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 925 cmd.arg = 0; 926 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 927 928 data.blksz = 4; 929 data.blocks = 1; 930 data.flags = MMC_DATA_READ; 931 data.sg = &sg; 932 data.sg_len = 1; 933 mmc_set_data_timeout(&data, card); 934 935 mrq.cmd = &cmd; 936 mrq.data = &data; 937 938 blocks = kmalloc(4, GFP_KERNEL); 939 if (!blocks) 940 return -ENOMEM; 941 942 sg_init_one(&sg, blocks, 4); 943 944 mmc_wait_for_req(card->host, &mrq); 945 946 result = ntohl(*blocks); 947 kfree(blocks); 948 949 if (cmd.error || data.error) 950 return -EIO; 951 952 *written_blocks = result; 953 954 return 0; 955 } 956 957 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 958 { 959 if (host->actual_clock) 960 return host->actual_clock / 1000; 961 962 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 963 if (host->ios.clock) 964 return host->ios.clock / 2000; 965 966 /* How can there be no clock */ 967 WARN_ON_ONCE(1); 968 return 100; /* 100 kHz is minimum possible value */ 969 } 970 971 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 972 struct mmc_data *data) 973 { 974 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 975 unsigned int khz; 976 977 if (data->timeout_clks) { 978 khz = mmc_blk_clock_khz(host); 979 ms += DIV_ROUND_UP(data->timeout_clks, khz); 980 } 981 982 return ms; 983 } 984 985 /* 986 * Attempts to reset the card and get back to the requested partition. 987 * Therefore any error here must result in cancelling the block layer 988 * request, it must not be reattempted without going through the mmc_blk 989 * partition sanity checks. 990 */ 991 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 992 int type) 993 { 994 int err; 995 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 996 997 if (md->reset_done & type) 998 return -EEXIST; 999 1000 md->reset_done |= type; 1001 err = mmc_hw_reset(host->card); 1002 /* 1003 * A successful reset will leave the card in the main partition, but 1004 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1005 * in that case. 1006 */ 1007 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1008 if (err) 1009 return err; 1010 /* Ensure we switch back to the correct partition */ 1011 if (mmc_blk_part_switch(host->card, md->part_type)) 1012 /* 1013 * We have failed to get back into the correct 1014 * partition, so we need to abort the whole request. 1015 */ 1016 return -ENODEV; 1017 return 0; 1018 } 1019 1020 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1021 { 1022 md->reset_done &= ~type; 1023 } 1024 1025 /* 1026 * The non-block commands come back from the block layer after it queued it and 1027 * processed it with all other requests and then they get issued in this 1028 * function. 1029 */ 1030 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1031 { 1032 struct mmc_queue_req *mq_rq; 1033 struct mmc_card *card = mq->card; 1034 struct mmc_blk_data *md = mq->blkdata; 1035 struct mmc_blk_ioc_data **idata; 1036 bool rpmb_ioctl; 1037 u8 **ext_csd; 1038 u32 status; 1039 int ret; 1040 int i; 1041 1042 mq_rq = req_to_mmc_queue_req(req); 1043 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1044 1045 switch (mq_rq->drv_op) { 1046 case MMC_DRV_OP_IOCTL: 1047 if (card->ext_csd.cmdq_en) { 1048 ret = mmc_cmdq_disable(card); 1049 if (ret) 1050 break; 1051 } 1052 fallthrough; 1053 case MMC_DRV_OP_IOCTL_RPMB: 1054 idata = mq_rq->drv_op_data; 1055 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1056 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1057 if (ret) 1058 break; 1059 } 1060 /* Always switch back to main area after RPMB access */ 1061 if (rpmb_ioctl) 1062 mmc_blk_part_switch(card, 0); 1063 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1064 mmc_cmdq_enable(card); 1065 break; 1066 case MMC_DRV_OP_BOOT_WP: 1067 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1068 card->ext_csd.boot_ro_lock | 1069 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1070 card->ext_csd.part_time); 1071 if (ret) 1072 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1073 md->disk->disk_name, ret); 1074 else 1075 card->ext_csd.boot_ro_lock |= 1076 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1077 break; 1078 case MMC_DRV_OP_GET_CARD_STATUS: 1079 ret = mmc_send_status(card, &status); 1080 if (!ret) 1081 ret = status; 1082 break; 1083 case MMC_DRV_OP_GET_EXT_CSD: 1084 ext_csd = mq_rq->drv_op_data; 1085 ret = mmc_get_ext_csd(card, ext_csd); 1086 break; 1087 default: 1088 pr_err("%s: unknown driver specific operation\n", 1089 md->disk->disk_name); 1090 ret = -EINVAL; 1091 break; 1092 } 1093 mq_rq->drv_op_result = ret; 1094 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1095 } 1096 1097 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1098 int type, unsigned int erase_arg) 1099 { 1100 struct mmc_blk_data *md = mq->blkdata; 1101 struct mmc_card *card = md->queue.card; 1102 unsigned int from, nr; 1103 int err = 0; 1104 blk_status_t status = BLK_STS_OK; 1105 1106 if (!mmc_can_erase(card)) { 1107 status = BLK_STS_NOTSUPP; 1108 goto fail; 1109 } 1110 1111 from = blk_rq_pos(req); 1112 nr = blk_rq_sectors(req); 1113 1114 do { 1115 err = 0; 1116 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1117 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1118 INAND_CMD38_ARG_EXT_CSD, 1119 erase_arg == MMC_TRIM_ARG ? 1120 INAND_CMD38_ARG_TRIM : 1121 INAND_CMD38_ARG_ERASE, 1122 card->ext_csd.generic_cmd6_time); 1123 } 1124 if (!err) 1125 err = mmc_erase(card, from, nr, erase_arg); 1126 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1127 if (err) 1128 status = BLK_STS_IOERR; 1129 else 1130 mmc_blk_reset_success(md, type); 1131 fail: 1132 blk_mq_end_request(req, status); 1133 } 1134 1135 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1136 { 1137 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1138 } 1139 1140 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1141 { 1142 struct mmc_blk_data *md = mq->blkdata; 1143 struct mmc_card *card = md->queue.card; 1144 unsigned int arg = card->erase_arg; 1145 1146 if (mmc_card_broken_sd_discard(card)) 1147 arg = SD_ERASE_ARG; 1148 1149 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1150 } 1151 1152 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1153 struct request *req) 1154 { 1155 struct mmc_blk_data *md = mq->blkdata; 1156 struct mmc_card *card = md->queue.card; 1157 unsigned int from, nr, arg; 1158 int err = 0, type = MMC_BLK_SECDISCARD; 1159 blk_status_t status = BLK_STS_OK; 1160 1161 if (!(mmc_can_secure_erase_trim(card))) { 1162 status = BLK_STS_NOTSUPP; 1163 goto out; 1164 } 1165 1166 from = blk_rq_pos(req); 1167 nr = blk_rq_sectors(req); 1168 1169 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1170 arg = MMC_SECURE_TRIM1_ARG; 1171 else 1172 arg = MMC_SECURE_ERASE_ARG; 1173 1174 retry: 1175 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1176 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1177 INAND_CMD38_ARG_EXT_CSD, 1178 arg == MMC_SECURE_TRIM1_ARG ? 1179 INAND_CMD38_ARG_SECTRIM1 : 1180 INAND_CMD38_ARG_SECERASE, 1181 card->ext_csd.generic_cmd6_time); 1182 if (err) 1183 goto out_retry; 1184 } 1185 1186 err = mmc_erase(card, from, nr, arg); 1187 if (err == -EIO) 1188 goto out_retry; 1189 if (err) { 1190 status = BLK_STS_IOERR; 1191 goto out; 1192 } 1193 1194 if (arg == MMC_SECURE_TRIM1_ARG) { 1195 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1196 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1197 INAND_CMD38_ARG_EXT_CSD, 1198 INAND_CMD38_ARG_SECTRIM2, 1199 card->ext_csd.generic_cmd6_time); 1200 if (err) 1201 goto out_retry; 1202 } 1203 1204 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1205 if (err == -EIO) 1206 goto out_retry; 1207 if (err) { 1208 status = BLK_STS_IOERR; 1209 goto out; 1210 } 1211 } 1212 1213 out_retry: 1214 if (err && !mmc_blk_reset(md, card->host, type)) 1215 goto retry; 1216 if (!err) 1217 mmc_blk_reset_success(md, type); 1218 out: 1219 blk_mq_end_request(req, status); 1220 } 1221 1222 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1223 { 1224 struct mmc_blk_data *md = mq->blkdata; 1225 struct mmc_card *card = md->queue.card; 1226 int ret = 0; 1227 1228 ret = mmc_flush_cache(card->host); 1229 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1230 } 1231 1232 /* 1233 * Reformat current write as a reliable write, supporting 1234 * both legacy and the enhanced reliable write MMC cards. 1235 * In each transfer we'll handle only as much as a single 1236 * reliable write can handle, thus finish the request in 1237 * partial completions. 1238 */ 1239 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1240 struct mmc_card *card, 1241 struct request *req) 1242 { 1243 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1244 /* Legacy mode imposes restrictions on transfers. */ 1245 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1246 brq->data.blocks = 1; 1247 1248 if (brq->data.blocks > card->ext_csd.rel_sectors) 1249 brq->data.blocks = card->ext_csd.rel_sectors; 1250 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1251 brq->data.blocks = 1; 1252 } 1253 } 1254 1255 #define CMD_ERRORS_EXCL_OOR \ 1256 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1257 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1258 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1259 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1260 R1_CC_ERROR | /* Card controller error */ \ 1261 R1_ERROR) /* General/unknown error */ 1262 1263 #define CMD_ERRORS \ 1264 (CMD_ERRORS_EXCL_OOR | \ 1265 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1266 1267 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1268 { 1269 u32 val; 1270 1271 /* 1272 * Per the SD specification(physical layer version 4.10)[1], 1273 * section 4.3.3, it explicitly states that "When the last 1274 * block of user area is read using CMD18, the host should 1275 * ignore OUT_OF_RANGE error that may occur even the sequence 1276 * is correct". And JESD84-B51 for eMMC also has a similar 1277 * statement on section 6.8.3. 1278 * 1279 * Multiple block read/write could be done by either predefined 1280 * method, namely CMD23, or open-ending mode. For open-ending mode, 1281 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1282 * 1283 * However the spec[1] doesn't tell us whether we should also 1284 * ignore that for predefined method. But per the spec[1], section 1285 * 4.15 Set Block Count Command, it says"If illegal block count 1286 * is set, out of range error will be indicated during read/write 1287 * operation (For example, data transfer is stopped at user area 1288 * boundary)." In another word, we could expect a out of range error 1289 * in the response for the following CMD18/25. And if argument of 1290 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1291 * we could also expect to get a -ETIMEDOUT or any error number from 1292 * the host drivers due to missing data response(for write)/data(for 1293 * read), as the cards will stop the data transfer by itself per the 1294 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1295 */ 1296 1297 if (!brq->stop.error) { 1298 bool oor_with_open_end; 1299 /* If there is no error yet, check R1 response */ 1300 1301 val = brq->stop.resp[0] & CMD_ERRORS; 1302 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1303 1304 if (val && !oor_with_open_end) 1305 brq->stop.error = -EIO; 1306 } 1307 } 1308 1309 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1310 int recovery_mode, bool *do_rel_wr_p, 1311 bool *do_data_tag_p) 1312 { 1313 struct mmc_blk_data *md = mq->blkdata; 1314 struct mmc_card *card = md->queue.card; 1315 struct mmc_blk_request *brq = &mqrq->brq; 1316 struct request *req = mmc_queue_req_to_req(mqrq); 1317 bool do_rel_wr, do_data_tag; 1318 1319 /* 1320 * Reliable writes are used to implement Forced Unit Access and 1321 * are supported only on MMCs. 1322 */ 1323 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1324 rq_data_dir(req) == WRITE && 1325 (md->flags & MMC_BLK_REL_WR); 1326 1327 memset(brq, 0, sizeof(struct mmc_blk_request)); 1328 1329 mmc_crypto_prepare_req(mqrq); 1330 1331 brq->mrq.data = &brq->data; 1332 brq->mrq.tag = req->tag; 1333 1334 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1335 brq->stop.arg = 0; 1336 1337 if (rq_data_dir(req) == READ) { 1338 brq->data.flags = MMC_DATA_READ; 1339 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1340 } else { 1341 brq->data.flags = MMC_DATA_WRITE; 1342 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1343 } 1344 1345 brq->data.blksz = 512; 1346 brq->data.blocks = blk_rq_sectors(req); 1347 brq->data.blk_addr = blk_rq_pos(req); 1348 1349 /* 1350 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1351 * The eMMC will give "high" priority tasks priority over "simple" 1352 * priority tasks. Here we always set "simple" priority by not setting 1353 * MMC_DATA_PRIO. 1354 */ 1355 1356 /* 1357 * The block layer doesn't support all sector count 1358 * restrictions, so we need to be prepared for too big 1359 * requests. 1360 */ 1361 if (brq->data.blocks > card->host->max_blk_count) 1362 brq->data.blocks = card->host->max_blk_count; 1363 1364 if (brq->data.blocks > 1) { 1365 /* 1366 * Some SD cards in SPI mode return a CRC error or even lock up 1367 * completely when trying to read the last block using a 1368 * multiblock read command. 1369 */ 1370 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1371 (blk_rq_pos(req) + blk_rq_sectors(req) == 1372 get_capacity(md->disk))) 1373 brq->data.blocks--; 1374 1375 /* 1376 * After a read error, we redo the request one (native) sector 1377 * at a time in order to accurately determine which 1378 * sectors can be read successfully. 1379 */ 1380 if (recovery_mode) 1381 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1382 1383 /* 1384 * Some controllers have HW issues while operating 1385 * in multiple I/O mode 1386 */ 1387 if (card->host->ops->multi_io_quirk) 1388 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1389 (rq_data_dir(req) == READ) ? 1390 MMC_DATA_READ : MMC_DATA_WRITE, 1391 brq->data.blocks); 1392 } 1393 1394 if (do_rel_wr) { 1395 mmc_apply_rel_rw(brq, card, req); 1396 brq->data.flags |= MMC_DATA_REL_WR; 1397 } 1398 1399 /* 1400 * Data tag is used only during writing meta data to speed 1401 * up write and any subsequent read of this meta data 1402 */ 1403 do_data_tag = card->ext_csd.data_tag_unit_size && 1404 (req->cmd_flags & REQ_META) && 1405 (rq_data_dir(req) == WRITE) && 1406 ((brq->data.blocks * brq->data.blksz) >= 1407 card->ext_csd.data_tag_unit_size); 1408 1409 if (do_data_tag) 1410 brq->data.flags |= MMC_DATA_DAT_TAG; 1411 1412 mmc_set_data_timeout(&brq->data, card); 1413 1414 brq->data.sg = mqrq->sg; 1415 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1416 1417 /* 1418 * Adjust the sg list so it is the same size as the 1419 * request. 1420 */ 1421 if (brq->data.blocks != blk_rq_sectors(req)) { 1422 int i, data_size = brq->data.blocks << 9; 1423 struct scatterlist *sg; 1424 1425 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1426 data_size -= sg->length; 1427 if (data_size <= 0) { 1428 sg->length += data_size; 1429 i++; 1430 break; 1431 } 1432 } 1433 brq->data.sg_len = i; 1434 } 1435 1436 if (do_rel_wr_p) 1437 *do_rel_wr_p = do_rel_wr; 1438 1439 if (do_data_tag_p) 1440 *do_data_tag_p = do_data_tag; 1441 } 1442 1443 #define MMC_CQE_RETRIES 2 1444 1445 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1446 { 1447 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1448 struct mmc_request *mrq = &mqrq->brq.mrq; 1449 struct request_queue *q = req->q; 1450 struct mmc_host *host = mq->card->host; 1451 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1452 unsigned long flags; 1453 bool put_card; 1454 int err; 1455 1456 mmc_cqe_post_req(host, mrq); 1457 1458 if (mrq->cmd && mrq->cmd->error) 1459 err = mrq->cmd->error; 1460 else if (mrq->data && mrq->data->error) 1461 err = mrq->data->error; 1462 else 1463 err = 0; 1464 1465 if (err) { 1466 if (mqrq->retries++ < MMC_CQE_RETRIES) 1467 blk_mq_requeue_request(req, true); 1468 else 1469 blk_mq_end_request(req, BLK_STS_IOERR); 1470 } else if (mrq->data) { 1471 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1472 blk_mq_requeue_request(req, true); 1473 else 1474 __blk_mq_end_request(req, BLK_STS_OK); 1475 } else { 1476 blk_mq_end_request(req, BLK_STS_OK); 1477 } 1478 1479 spin_lock_irqsave(&mq->lock, flags); 1480 1481 mq->in_flight[issue_type] -= 1; 1482 1483 put_card = (mmc_tot_in_flight(mq) == 0); 1484 1485 mmc_cqe_check_busy(mq); 1486 1487 spin_unlock_irqrestore(&mq->lock, flags); 1488 1489 if (!mq->cqe_busy) 1490 blk_mq_run_hw_queues(q, true); 1491 1492 if (put_card) 1493 mmc_put_card(mq->card, &mq->ctx); 1494 } 1495 1496 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1497 { 1498 struct mmc_card *card = mq->card; 1499 struct mmc_host *host = card->host; 1500 int err; 1501 1502 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1503 1504 err = mmc_cqe_recovery(host); 1505 if (err) 1506 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1507 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1508 1509 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1510 } 1511 1512 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1513 { 1514 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1515 brq.mrq); 1516 struct request *req = mmc_queue_req_to_req(mqrq); 1517 struct request_queue *q = req->q; 1518 struct mmc_queue *mq = q->queuedata; 1519 1520 /* 1521 * Block layer timeouts race with completions which means the normal 1522 * completion path cannot be used during recovery. 1523 */ 1524 if (mq->in_recovery) 1525 mmc_blk_cqe_complete_rq(mq, req); 1526 else if (likely(!blk_should_fake_timeout(req->q))) 1527 blk_mq_complete_request(req); 1528 } 1529 1530 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1531 { 1532 mrq->done = mmc_blk_cqe_req_done; 1533 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1534 1535 return mmc_cqe_start_req(host, mrq); 1536 } 1537 1538 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1539 struct request *req) 1540 { 1541 struct mmc_blk_request *brq = &mqrq->brq; 1542 1543 memset(brq, 0, sizeof(*brq)); 1544 1545 brq->mrq.cmd = &brq->cmd; 1546 brq->mrq.tag = req->tag; 1547 1548 return &brq->mrq; 1549 } 1550 1551 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1552 { 1553 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1554 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1555 1556 mrq->cmd->opcode = MMC_SWITCH; 1557 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1558 (EXT_CSD_FLUSH_CACHE << 16) | 1559 (1 << 8) | 1560 EXT_CSD_CMD_SET_NORMAL; 1561 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1562 1563 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1564 } 1565 1566 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1567 { 1568 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1569 struct mmc_host *host = mq->card->host; 1570 int err; 1571 1572 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1573 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1574 mmc_pre_req(host, &mqrq->brq.mrq); 1575 1576 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1577 if (err) 1578 mmc_post_req(host, &mqrq->brq.mrq, err); 1579 1580 return err; 1581 } 1582 1583 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1584 { 1585 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1586 struct mmc_host *host = mq->card->host; 1587 1588 if (host->hsq_enabled) 1589 return mmc_blk_hsq_issue_rw_rq(mq, req); 1590 1591 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1592 1593 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1594 } 1595 1596 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1597 struct mmc_card *card, 1598 int recovery_mode, 1599 struct mmc_queue *mq) 1600 { 1601 u32 readcmd, writecmd; 1602 struct mmc_blk_request *brq = &mqrq->brq; 1603 struct request *req = mmc_queue_req_to_req(mqrq); 1604 struct mmc_blk_data *md = mq->blkdata; 1605 bool do_rel_wr, do_data_tag; 1606 1607 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1608 1609 brq->mrq.cmd = &brq->cmd; 1610 1611 brq->cmd.arg = blk_rq_pos(req); 1612 if (!mmc_card_blockaddr(card)) 1613 brq->cmd.arg <<= 9; 1614 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1615 1616 if (brq->data.blocks > 1 || do_rel_wr) { 1617 /* SPI multiblock writes terminate using a special 1618 * token, not a STOP_TRANSMISSION request. 1619 */ 1620 if (!mmc_host_is_spi(card->host) || 1621 rq_data_dir(req) == READ) 1622 brq->mrq.stop = &brq->stop; 1623 readcmd = MMC_READ_MULTIPLE_BLOCK; 1624 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1625 } else { 1626 brq->mrq.stop = NULL; 1627 readcmd = MMC_READ_SINGLE_BLOCK; 1628 writecmd = MMC_WRITE_BLOCK; 1629 } 1630 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1631 1632 /* 1633 * Pre-defined multi-block transfers are preferable to 1634 * open ended-ones (and necessary for reliable writes). 1635 * However, it is not sufficient to just send CMD23, 1636 * and avoid the final CMD12, as on an error condition 1637 * CMD12 (stop) needs to be sent anyway. This, coupled 1638 * with Auto-CMD23 enhancements provided by some 1639 * hosts, means that the complexity of dealing 1640 * with this is best left to the host. If CMD23 is 1641 * supported by card and host, we'll fill sbc in and let 1642 * the host deal with handling it correctly. This means 1643 * that for hosts that don't expose MMC_CAP_CMD23, no 1644 * change of behavior will be observed. 1645 * 1646 * N.B: Some MMC cards experience perf degradation. 1647 * We'll avoid using CMD23-bounded multiblock writes for 1648 * these, while retaining features like reliable writes. 1649 */ 1650 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1651 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1652 do_data_tag)) { 1653 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1654 brq->sbc.arg = brq->data.blocks | 1655 (do_rel_wr ? (1 << 31) : 0) | 1656 (do_data_tag ? (1 << 29) : 0); 1657 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1658 brq->mrq.sbc = &brq->sbc; 1659 } 1660 } 1661 1662 #define MMC_MAX_RETRIES 5 1663 #define MMC_DATA_RETRIES 2 1664 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1665 1666 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1667 { 1668 struct mmc_command cmd = { 1669 .opcode = MMC_STOP_TRANSMISSION, 1670 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1671 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1672 .busy_timeout = timeout, 1673 }; 1674 1675 return mmc_wait_for_cmd(card->host, &cmd, 5); 1676 } 1677 1678 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1679 { 1680 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1681 struct mmc_blk_request *brq = &mqrq->brq; 1682 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1683 int err; 1684 1685 mmc_retune_hold_now(card->host); 1686 1687 mmc_blk_send_stop(card, timeout); 1688 1689 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1690 1691 mmc_retune_release(card->host); 1692 1693 return err; 1694 } 1695 1696 #define MMC_READ_SINGLE_RETRIES 2 1697 1698 /* Single (native) sector read during recovery */ 1699 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1700 { 1701 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1702 struct mmc_request *mrq = &mqrq->brq.mrq; 1703 struct mmc_card *card = mq->card; 1704 struct mmc_host *host = card->host; 1705 blk_status_t error = BLK_STS_OK; 1706 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1707 1708 do { 1709 u32 status; 1710 int err; 1711 int retries = 0; 1712 1713 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1714 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1715 1716 mmc_wait_for_req(host, mrq); 1717 1718 err = mmc_send_status(card, &status); 1719 if (err) 1720 goto error_exit; 1721 1722 if (!mmc_host_is_spi(host) && 1723 !mmc_ready_for_data(status)) { 1724 err = mmc_blk_fix_state(card, req); 1725 if (err) 1726 goto error_exit; 1727 } 1728 1729 if (!mrq->cmd->error) 1730 break; 1731 } 1732 1733 if (mrq->cmd->error || 1734 mrq->data->error || 1735 (!mmc_host_is_spi(host) && 1736 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1737 error = BLK_STS_IOERR; 1738 else 1739 error = BLK_STS_OK; 1740 1741 } while (blk_update_request(req, error, bytes_per_read)); 1742 1743 return; 1744 1745 error_exit: 1746 mrq->data->bytes_xfered = 0; 1747 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1748 /* Let it try the remaining request again */ 1749 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1750 mqrq->retries = MMC_MAX_RETRIES - 1; 1751 } 1752 1753 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1754 { 1755 return !!brq->mrq.sbc; 1756 } 1757 1758 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1759 { 1760 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1761 } 1762 1763 /* 1764 * Check for errors the host controller driver might not have seen such as 1765 * response mode errors or invalid card state. 1766 */ 1767 static bool mmc_blk_status_error(struct request *req, u32 status) 1768 { 1769 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1770 struct mmc_blk_request *brq = &mqrq->brq; 1771 struct mmc_queue *mq = req->q->queuedata; 1772 u32 stop_err_bits; 1773 1774 if (mmc_host_is_spi(mq->card->host)) 1775 return false; 1776 1777 stop_err_bits = mmc_blk_stop_err_bits(brq); 1778 1779 return brq->cmd.resp[0] & CMD_ERRORS || 1780 brq->stop.resp[0] & stop_err_bits || 1781 status & stop_err_bits || 1782 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1783 } 1784 1785 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1786 { 1787 return !brq->sbc.error && !brq->cmd.error && 1788 !(brq->cmd.resp[0] & CMD_ERRORS); 1789 } 1790 1791 /* 1792 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1793 * policy: 1794 * 1. A request that has transferred at least some data is considered 1795 * successful and will be requeued if there is remaining data to 1796 * transfer. 1797 * 2. Otherwise the number of retries is incremented and the request 1798 * will be requeued if there are remaining retries. 1799 * 3. Otherwise the request will be errored out. 1800 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1801 * mqrq->retries. So there are only 4 possible actions here: 1802 * 1. do not accept the bytes_xfered value i.e. set it to zero 1803 * 2. change mqrq->retries to determine the number of retries 1804 * 3. try to reset the card 1805 * 4. read one sector at a time 1806 */ 1807 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1808 { 1809 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1810 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1811 struct mmc_blk_request *brq = &mqrq->brq; 1812 struct mmc_blk_data *md = mq->blkdata; 1813 struct mmc_card *card = mq->card; 1814 u32 status; 1815 u32 blocks; 1816 int err; 1817 1818 /* 1819 * Some errors the host driver might not have seen. Set the number of 1820 * bytes transferred to zero in that case. 1821 */ 1822 err = __mmc_send_status(card, &status, 0); 1823 if (err || mmc_blk_status_error(req, status)) 1824 brq->data.bytes_xfered = 0; 1825 1826 mmc_retune_release(card->host); 1827 1828 /* 1829 * Try again to get the status. This also provides an opportunity for 1830 * re-tuning. 1831 */ 1832 if (err) 1833 err = __mmc_send_status(card, &status, 0); 1834 1835 /* 1836 * Nothing more to do after the number of bytes transferred has been 1837 * updated and there is no card. 1838 */ 1839 if (err && mmc_detect_card_removed(card->host)) 1840 return; 1841 1842 /* Try to get back to "tran" state */ 1843 if (!mmc_host_is_spi(mq->card->host) && 1844 (err || !mmc_ready_for_data(status))) 1845 err = mmc_blk_fix_state(mq->card, req); 1846 1847 /* 1848 * Special case for SD cards where the card might record the number of 1849 * blocks written. 1850 */ 1851 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1852 rq_data_dir(req) == WRITE) { 1853 if (mmc_sd_num_wr_blocks(card, &blocks)) 1854 brq->data.bytes_xfered = 0; 1855 else 1856 brq->data.bytes_xfered = blocks << 9; 1857 } 1858 1859 /* Reset if the card is in a bad state */ 1860 if (!mmc_host_is_spi(mq->card->host) && 1861 err && mmc_blk_reset(md, card->host, type)) { 1862 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1863 mqrq->retries = MMC_NO_RETRIES; 1864 return; 1865 } 1866 1867 /* 1868 * If anything was done, just return and if there is anything remaining 1869 * on the request it will get requeued. 1870 */ 1871 if (brq->data.bytes_xfered) 1872 return; 1873 1874 /* Reset before last retry */ 1875 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 1876 mmc_blk_reset(md, card->host, type)) 1877 return; 1878 1879 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1880 if (brq->sbc.error || brq->cmd.error) 1881 return; 1882 1883 /* Reduce the remaining retries for data errors */ 1884 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1885 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1886 return; 1887 } 1888 1889 if (rq_data_dir(req) == READ && brq->data.blocks > 1890 queue_physical_block_size(mq->queue) >> 9) { 1891 /* Read one (native) sector at a time */ 1892 mmc_blk_read_single(mq, req); 1893 return; 1894 } 1895 } 1896 1897 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1898 { 1899 mmc_blk_eval_resp_error(brq); 1900 1901 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1902 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1903 } 1904 1905 static int mmc_spi_err_check(struct mmc_card *card) 1906 { 1907 u32 status = 0; 1908 int err; 1909 1910 /* 1911 * SPI does not have a TRAN state we have to wait on, instead the 1912 * card is ready again when it no longer holds the line LOW. 1913 * We still have to ensure two things here before we know the write 1914 * was successful: 1915 * 1. The card has not disconnected during busy and we actually read our 1916 * own pull-up, thinking it was still connected, so ensure it 1917 * still responds. 1918 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 1919 * just reconnected card after being disconnected during busy. 1920 */ 1921 err = __mmc_send_status(card, &status, 0); 1922 if (err) 1923 return err; 1924 /* All R1 and R2 bits of SPI are errors in our case */ 1925 if (status) 1926 return -EIO; 1927 return 0; 1928 } 1929 1930 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 1931 { 1932 struct mmc_blk_busy_data *data = cb_data; 1933 u32 status = 0; 1934 int err; 1935 1936 err = mmc_send_status(data->card, &status); 1937 if (err) 1938 return err; 1939 1940 /* Accumulate response error bits. */ 1941 data->status |= status; 1942 1943 *busy = !mmc_ready_for_data(status); 1944 return 0; 1945 } 1946 1947 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1948 { 1949 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1950 struct mmc_blk_busy_data cb_data; 1951 int err; 1952 1953 if (rq_data_dir(req) == READ) 1954 return 0; 1955 1956 if (mmc_host_is_spi(card->host)) { 1957 err = mmc_spi_err_check(card); 1958 if (err) 1959 mqrq->brq.data.bytes_xfered = 0; 1960 return err; 1961 } 1962 1963 cb_data.card = card; 1964 cb_data.status = 0; 1965 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 1966 &mmc_blk_busy_cb, &cb_data); 1967 1968 /* 1969 * Do not assume data transferred correctly if there are any error bits 1970 * set. 1971 */ 1972 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1973 mqrq->brq.data.bytes_xfered = 0; 1974 err = err ? err : -EIO; 1975 } 1976 1977 /* Copy the exception bit so it will be seen later on */ 1978 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 1979 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1980 1981 return err; 1982 } 1983 1984 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1985 struct request *req) 1986 { 1987 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1988 1989 mmc_blk_reset_success(mq->blkdata, type); 1990 } 1991 1992 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1993 { 1994 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1995 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1996 1997 if (nr_bytes) { 1998 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1999 blk_mq_requeue_request(req, true); 2000 else 2001 __blk_mq_end_request(req, BLK_STS_OK); 2002 } else if (!blk_rq_bytes(req)) { 2003 __blk_mq_end_request(req, BLK_STS_IOERR); 2004 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2005 blk_mq_requeue_request(req, true); 2006 } else { 2007 if (mmc_card_removed(mq->card)) 2008 req->rq_flags |= RQF_QUIET; 2009 blk_mq_end_request(req, BLK_STS_IOERR); 2010 } 2011 } 2012 2013 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2014 struct mmc_queue_req *mqrq) 2015 { 2016 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2017 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2018 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2019 } 2020 2021 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2022 struct mmc_queue_req *mqrq) 2023 { 2024 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2025 mmc_run_bkops(mq->card); 2026 } 2027 2028 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2029 { 2030 struct mmc_queue_req *mqrq = 2031 container_of(mrq, struct mmc_queue_req, brq.mrq); 2032 struct request *req = mmc_queue_req_to_req(mqrq); 2033 struct request_queue *q = req->q; 2034 struct mmc_queue *mq = q->queuedata; 2035 struct mmc_host *host = mq->card->host; 2036 unsigned long flags; 2037 2038 if (mmc_blk_rq_error(&mqrq->brq) || 2039 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2040 spin_lock_irqsave(&mq->lock, flags); 2041 mq->recovery_needed = true; 2042 mq->recovery_req = req; 2043 spin_unlock_irqrestore(&mq->lock, flags); 2044 2045 host->cqe_ops->cqe_recovery_start(host); 2046 2047 schedule_work(&mq->recovery_work); 2048 return; 2049 } 2050 2051 mmc_blk_rw_reset_success(mq, req); 2052 2053 /* 2054 * Block layer timeouts race with completions which means the normal 2055 * completion path cannot be used during recovery. 2056 */ 2057 if (mq->in_recovery) 2058 mmc_blk_cqe_complete_rq(mq, req); 2059 else if (likely(!blk_should_fake_timeout(req->q))) 2060 blk_mq_complete_request(req); 2061 } 2062 2063 void mmc_blk_mq_complete(struct request *req) 2064 { 2065 struct mmc_queue *mq = req->q->queuedata; 2066 struct mmc_host *host = mq->card->host; 2067 2068 if (host->cqe_enabled) 2069 mmc_blk_cqe_complete_rq(mq, req); 2070 else if (likely(!blk_should_fake_timeout(req->q))) 2071 mmc_blk_mq_complete_rq(mq, req); 2072 } 2073 2074 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2075 struct request *req) 2076 { 2077 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2078 struct mmc_host *host = mq->card->host; 2079 2080 if (mmc_blk_rq_error(&mqrq->brq) || 2081 mmc_blk_card_busy(mq->card, req)) { 2082 mmc_blk_mq_rw_recovery(mq, req); 2083 } else { 2084 mmc_blk_rw_reset_success(mq, req); 2085 mmc_retune_release(host); 2086 } 2087 2088 mmc_blk_urgent_bkops(mq, mqrq); 2089 } 2090 2091 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2092 { 2093 unsigned long flags; 2094 bool put_card; 2095 2096 spin_lock_irqsave(&mq->lock, flags); 2097 2098 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2099 2100 put_card = (mmc_tot_in_flight(mq) == 0); 2101 2102 spin_unlock_irqrestore(&mq->lock, flags); 2103 2104 if (put_card) 2105 mmc_put_card(mq->card, &mq->ctx); 2106 } 2107 2108 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2109 bool can_sleep) 2110 { 2111 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2112 struct mmc_request *mrq = &mqrq->brq.mrq; 2113 struct mmc_host *host = mq->card->host; 2114 2115 mmc_post_req(host, mrq, 0); 2116 2117 /* 2118 * Block layer timeouts race with completions which means the normal 2119 * completion path cannot be used during recovery. 2120 */ 2121 if (mq->in_recovery) { 2122 mmc_blk_mq_complete_rq(mq, req); 2123 } else if (likely(!blk_should_fake_timeout(req->q))) { 2124 if (can_sleep) 2125 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2126 else 2127 blk_mq_complete_request(req); 2128 } 2129 2130 mmc_blk_mq_dec_in_flight(mq, req); 2131 } 2132 2133 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2134 { 2135 struct request *req = mq->recovery_req; 2136 struct mmc_host *host = mq->card->host; 2137 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2138 2139 mq->recovery_req = NULL; 2140 mq->rw_wait = false; 2141 2142 if (mmc_blk_rq_error(&mqrq->brq)) { 2143 mmc_retune_hold_now(host); 2144 mmc_blk_mq_rw_recovery(mq, req); 2145 } 2146 2147 mmc_blk_urgent_bkops(mq, mqrq); 2148 2149 mmc_blk_mq_post_req(mq, req, true); 2150 } 2151 2152 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2153 struct request **prev_req) 2154 { 2155 if (mmc_host_done_complete(mq->card->host)) 2156 return; 2157 2158 mutex_lock(&mq->complete_lock); 2159 2160 if (!mq->complete_req) 2161 goto out_unlock; 2162 2163 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2164 2165 if (prev_req) 2166 *prev_req = mq->complete_req; 2167 else 2168 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2169 2170 mq->complete_req = NULL; 2171 2172 out_unlock: 2173 mutex_unlock(&mq->complete_lock); 2174 } 2175 2176 void mmc_blk_mq_complete_work(struct work_struct *work) 2177 { 2178 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2179 complete_work); 2180 2181 mmc_blk_mq_complete_prev_req(mq, NULL); 2182 } 2183 2184 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2185 { 2186 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2187 brq.mrq); 2188 struct request *req = mmc_queue_req_to_req(mqrq); 2189 struct request_queue *q = req->q; 2190 struct mmc_queue *mq = q->queuedata; 2191 struct mmc_host *host = mq->card->host; 2192 unsigned long flags; 2193 2194 if (!mmc_host_done_complete(host)) { 2195 bool waiting; 2196 2197 /* 2198 * We cannot complete the request in this context, so record 2199 * that there is a request to complete, and that a following 2200 * request does not need to wait (although it does need to 2201 * complete complete_req first). 2202 */ 2203 spin_lock_irqsave(&mq->lock, flags); 2204 mq->complete_req = req; 2205 mq->rw_wait = false; 2206 waiting = mq->waiting; 2207 spin_unlock_irqrestore(&mq->lock, flags); 2208 2209 /* 2210 * If 'waiting' then the waiting task will complete this 2211 * request, otherwise queue a work to do it. Note that 2212 * complete_work may still race with the dispatch of a following 2213 * request. 2214 */ 2215 if (waiting) 2216 wake_up(&mq->wait); 2217 else 2218 queue_work(mq->card->complete_wq, &mq->complete_work); 2219 2220 return; 2221 } 2222 2223 /* Take the recovery path for errors or urgent background operations */ 2224 if (mmc_blk_rq_error(&mqrq->brq) || 2225 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2226 spin_lock_irqsave(&mq->lock, flags); 2227 mq->recovery_needed = true; 2228 mq->recovery_req = req; 2229 spin_unlock_irqrestore(&mq->lock, flags); 2230 wake_up(&mq->wait); 2231 schedule_work(&mq->recovery_work); 2232 return; 2233 } 2234 2235 mmc_blk_rw_reset_success(mq, req); 2236 2237 mq->rw_wait = false; 2238 wake_up(&mq->wait); 2239 2240 /* context unknown */ 2241 mmc_blk_mq_post_req(mq, req, false); 2242 } 2243 2244 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2245 { 2246 unsigned long flags; 2247 bool done; 2248 2249 /* 2250 * Wait while there is another request in progress, but not if recovery 2251 * is needed. Also indicate whether there is a request waiting to start. 2252 */ 2253 spin_lock_irqsave(&mq->lock, flags); 2254 if (mq->recovery_needed) { 2255 *err = -EBUSY; 2256 done = true; 2257 } else { 2258 done = !mq->rw_wait; 2259 } 2260 mq->waiting = !done; 2261 spin_unlock_irqrestore(&mq->lock, flags); 2262 2263 return done; 2264 } 2265 2266 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2267 { 2268 int err = 0; 2269 2270 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2271 2272 /* Always complete the previous request if there is one */ 2273 mmc_blk_mq_complete_prev_req(mq, prev_req); 2274 2275 return err; 2276 } 2277 2278 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2279 struct request *req) 2280 { 2281 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2282 struct mmc_host *host = mq->card->host; 2283 struct request *prev_req = NULL; 2284 int err = 0; 2285 2286 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2287 2288 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2289 2290 mmc_pre_req(host, &mqrq->brq.mrq); 2291 2292 err = mmc_blk_rw_wait(mq, &prev_req); 2293 if (err) 2294 goto out_post_req; 2295 2296 mq->rw_wait = true; 2297 2298 err = mmc_start_request(host, &mqrq->brq.mrq); 2299 2300 if (prev_req) 2301 mmc_blk_mq_post_req(mq, prev_req, true); 2302 2303 if (err) 2304 mq->rw_wait = false; 2305 2306 /* Release re-tuning here where there is no synchronization required */ 2307 if (err || mmc_host_done_complete(host)) 2308 mmc_retune_release(host); 2309 2310 out_post_req: 2311 if (err) 2312 mmc_post_req(host, &mqrq->brq.mrq, err); 2313 2314 return err; 2315 } 2316 2317 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2318 { 2319 if (host->cqe_enabled) 2320 return host->cqe_ops->cqe_wait_for_idle(host); 2321 2322 return mmc_blk_rw_wait(mq, NULL); 2323 } 2324 2325 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2326 { 2327 struct mmc_blk_data *md = mq->blkdata; 2328 struct mmc_card *card = md->queue.card; 2329 struct mmc_host *host = card->host; 2330 int ret; 2331 2332 ret = mmc_blk_part_switch(card, md->part_type); 2333 if (ret) 2334 return MMC_REQ_FAILED_TO_START; 2335 2336 switch (mmc_issue_type(mq, req)) { 2337 case MMC_ISSUE_SYNC: 2338 ret = mmc_blk_wait_for_idle(mq, host); 2339 if (ret) 2340 return MMC_REQ_BUSY; 2341 switch (req_op(req)) { 2342 case REQ_OP_DRV_IN: 2343 case REQ_OP_DRV_OUT: 2344 mmc_blk_issue_drv_op(mq, req); 2345 break; 2346 case REQ_OP_DISCARD: 2347 mmc_blk_issue_discard_rq(mq, req); 2348 break; 2349 case REQ_OP_SECURE_ERASE: 2350 mmc_blk_issue_secdiscard_rq(mq, req); 2351 break; 2352 case REQ_OP_WRITE_ZEROES: 2353 mmc_blk_issue_trim_rq(mq, req); 2354 break; 2355 case REQ_OP_FLUSH: 2356 mmc_blk_issue_flush(mq, req); 2357 break; 2358 default: 2359 WARN_ON_ONCE(1); 2360 return MMC_REQ_FAILED_TO_START; 2361 } 2362 return MMC_REQ_FINISHED; 2363 case MMC_ISSUE_DCMD: 2364 case MMC_ISSUE_ASYNC: 2365 switch (req_op(req)) { 2366 case REQ_OP_FLUSH: 2367 if (!mmc_cache_enabled(host)) { 2368 blk_mq_end_request(req, BLK_STS_OK); 2369 return MMC_REQ_FINISHED; 2370 } 2371 ret = mmc_blk_cqe_issue_flush(mq, req); 2372 break; 2373 case REQ_OP_READ: 2374 case REQ_OP_WRITE: 2375 if (host->cqe_enabled) 2376 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2377 else 2378 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2379 break; 2380 default: 2381 WARN_ON_ONCE(1); 2382 ret = -EINVAL; 2383 } 2384 if (!ret) 2385 return MMC_REQ_STARTED; 2386 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2387 default: 2388 WARN_ON_ONCE(1); 2389 return MMC_REQ_FAILED_TO_START; 2390 } 2391 } 2392 2393 static inline int mmc_blk_readonly(struct mmc_card *card) 2394 { 2395 return mmc_card_readonly(card) || 2396 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2397 } 2398 2399 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2400 struct device *parent, 2401 sector_t size, 2402 bool default_ro, 2403 const char *subname, 2404 int area_type, 2405 unsigned int part_type) 2406 { 2407 struct mmc_blk_data *md; 2408 int devidx, ret; 2409 char cap_str[10]; 2410 bool cache_enabled = false; 2411 bool fua_enabled = false; 2412 2413 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2414 if (devidx < 0) { 2415 /* 2416 * We get -ENOSPC because there are no more any available 2417 * devidx. The reason may be that, either userspace haven't yet 2418 * unmounted the partitions, which postpones mmc_blk_release() 2419 * from being called, or the device has more partitions than 2420 * what we support. 2421 */ 2422 if (devidx == -ENOSPC) 2423 dev_err(mmc_dev(card->host), 2424 "no more device IDs available\n"); 2425 2426 return ERR_PTR(devidx); 2427 } 2428 2429 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2430 if (!md) { 2431 ret = -ENOMEM; 2432 goto out; 2433 } 2434 2435 md->area_type = area_type; 2436 2437 /* 2438 * Set the read-only status based on the supported commands 2439 * and the write protect switch. 2440 */ 2441 md->read_only = mmc_blk_readonly(card); 2442 2443 md->disk = mmc_init_queue(&md->queue, card); 2444 if (IS_ERR(md->disk)) { 2445 ret = PTR_ERR(md->disk); 2446 goto err_kfree; 2447 } 2448 2449 INIT_LIST_HEAD(&md->part); 2450 INIT_LIST_HEAD(&md->rpmbs); 2451 kref_init(&md->kref); 2452 2453 md->queue.blkdata = md; 2454 md->part_type = part_type; 2455 2456 md->disk->major = MMC_BLOCK_MAJOR; 2457 md->disk->minors = perdev_minors; 2458 md->disk->first_minor = devidx * perdev_minors; 2459 md->disk->fops = &mmc_bdops; 2460 md->disk->private_data = md; 2461 md->parent = parent; 2462 set_disk_ro(md->disk, md->read_only || default_ro); 2463 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2464 md->disk->flags |= GENHD_FL_NO_PART; 2465 2466 /* 2467 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2468 * 2469 * - be set for removable media with permanent block devices 2470 * - be unset for removable block devices with permanent media 2471 * 2472 * Since MMC block devices clearly fall under the second 2473 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2474 * should use the block device creation/destruction hotplug 2475 * messages to tell when the card is present. 2476 */ 2477 2478 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2479 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2480 2481 set_capacity(md->disk, size); 2482 2483 if (mmc_host_cmd23(card->host)) { 2484 if ((mmc_card_mmc(card) && 2485 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2486 (mmc_card_sd(card) && 2487 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2488 md->flags |= MMC_BLK_CMD23; 2489 } 2490 2491 if (md->flags & MMC_BLK_CMD23 && 2492 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2493 card->ext_csd.rel_sectors)) { 2494 md->flags |= MMC_BLK_REL_WR; 2495 fua_enabled = true; 2496 cache_enabled = true; 2497 } 2498 if (mmc_cache_enabled(card->host)) 2499 cache_enabled = true; 2500 2501 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled); 2502 2503 string_get_size((u64)size, 512, STRING_UNITS_2, 2504 cap_str, sizeof(cap_str)); 2505 pr_info("%s: %s %s %s %s\n", 2506 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2507 cap_str, md->read_only ? "(ro)" : ""); 2508 2509 /* used in ->open, must be set before add_disk: */ 2510 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2511 dev_set_drvdata(&card->dev, md); 2512 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2513 if (ret) 2514 goto err_put_disk; 2515 return md; 2516 2517 err_put_disk: 2518 put_disk(md->disk); 2519 blk_mq_free_tag_set(&md->queue.tag_set); 2520 err_kfree: 2521 kfree(md); 2522 out: 2523 ida_simple_remove(&mmc_blk_ida, devidx); 2524 return ERR_PTR(ret); 2525 } 2526 2527 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2528 { 2529 sector_t size; 2530 2531 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2532 /* 2533 * The EXT_CSD sector count is in number or 512 byte 2534 * sectors. 2535 */ 2536 size = card->ext_csd.sectors; 2537 } else { 2538 /* 2539 * The CSD capacity field is in units of read_blkbits. 2540 * set_capacity takes units of 512 bytes. 2541 */ 2542 size = (typeof(sector_t))card->csd.capacity 2543 << (card->csd.read_blkbits - 9); 2544 } 2545 2546 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2547 MMC_BLK_DATA_AREA_MAIN, 0); 2548 } 2549 2550 static int mmc_blk_alloc_part(struct mmc_card *card, 2551 struct mmc_blk_data *md, 2552 unsigned int part_type, 2553 sector_t size, 2554 bool default_ro, 2555 const char *subname, 2556 int area_type) 2557 { 2558 struct mmc_blk_data *part_md; 2559 2560 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2561 subname, area_type, part_type); 2562 if (IS_ERR(part_md)) 2563 return PTR_ERR(part_md); 2564 list_add(&part_md->part, &md->part); 2565 2566 return 0; 2567 } 2568 2569 /** 2570 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2571 * @filp: the character device file 2572 * @cmd: the ioctl() command 2573 * @arg: the argument from userspace 2574 * 2575 * This will essentially just redirect the ioctl()s coming in over to 2576 * the main block device spawning the RPMB character device. 2577 */ 2578 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2579 unsigned long arg) 2580 { 2581 struct mmc_rpmb_data *rpmb = filp->private_data; 2582 int ret; 2583 2584 switch (cmd) { 2585 case MMC_IOC_CMD: 2586 ret = mmc_blk_ioctl_cmd(rpmb->md, 2587 (struct mmc_ioc_cmd __user *)arg, 2588 rpmb); 2589 break; 2590 case MMC_IOC_MULTI_CMD: 2591 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2592 (struct mmc_ioc_multi_cmd __user *)arg, 2593 rpmb); 2594 break; 2595 default: 2596 ret = -EINVAL; 2597 break; 2598 } 2599 2600 return ret; 2601 } 2602 2603 #ifdef CONFIG_COMPAT 2604 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2605 unsigned long arg) 2606 { 2607 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2608 } 2609 #endif 2610 2611 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2612 { 2613 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2614 struct mmc_rpmb_data, chrdev); 2615 2616 get_device(&rpmb->dev); 2617 filp->private_data = rpmb; 2618 mmc_blk_get(rpmb->md->disk); 2619 2620 return nonseekable_open(inode, filp); 2621 } 2622 2623 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2624 { 2625 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2626 struct mmc_rpmb_data, chrdev); 2627 2628 mmc_blk_put(rpmb->md); 2629 put_device(&rpmb->dev); 2630 2631 return 0; 2632 } 2633 2634 static const struct file_operations mmc_rpmb_fileops = { 2635 .release = mmc_rpmb_chrdev_release, 2636 .open = mmc_rpmb_chrdev_open, 2637 .owner = THIS_MODULE, 2638 .llseek = no_llseek, 2639 .unlocked_ioctl = mmc_rpmb_ioctl, 2640 #ifdef CONFIG_COMPAT 2641 .compat_ioctl = mmc_rpmb_ioctl_compat, 2642 #endif 2643 }; 2644 2645 static void mmc_blk_rpmb_device_release(struct device *dev) 2646 { 2647 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2648 2649 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2650 kfree(rpmb); 2651 } 2652 2653 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2654 struct mmc_blk_data *md, 2655 unsigned int part_index, 2656 sector_t size, 2657 const char *subname) 2658 { 2659 int devidx, ret; 2660 char rpmb_name[DISK_NAME_LEN]; 2661 char cap_str[10]; 2662 struct mmc_rpmb_data *rpmb; 2663 2664 /* This creates the minor number for the RPMB char device */ 2665 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2666 if (devidx < 0) 2667 return devidx; 2668 2669 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2670 if (!rpmb) { 2671 ida_simple_remove(&mmc_rpmb_ida, devidx); 2672 return -ENOMEM; 2673 } 2674 2675 snprintf(rpmb_name, sizeof(rpmb_name), 2676 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2677 2678 rpmb->id = devidx; 2679 rpmb->part_index = part_index; 2680 rpmb->dev.init_name = rpmb_name; 2681 rpmb->dev.bus = &mmc_rpmb_bus_type; 2682 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2683 rpmb->dev.parent = &card->dev; 2684 rpmb->dev.release = mmc_blk_rpmb_device_release; 2685 device_initialize(&rpmb->dev); 2686 dev_set_drvdata(&rpmb->dev, rpmb); 2687 rpmb->md = md; 2688 2689 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2690 rpmb->chrdev.owner = THIS_MODULE; 2691 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2692 if (ret) { 2693 pr_err("%s: could not add character device\n", rpmb_name); 2694 goto out_put_device; 2695 } 2696 2697 list_add(&rpmb->node, &md->rpmbs); 2698 2699 string_get_size((u64)size, 512, STRING_UNITS_2, 2700 cap_str, sizeof(cap_str)); 2701 2702 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2703 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2704 MAJOR(mmc_rpmb_devt), rpmb->id); 2705 2706 return 0; 2707 2708 out_put_device: 2709 put_device(&rpmb->dev); 2710 return ret; 2711 } 2712 2713 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2714 2715 { 2716 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2717 put_device(&rpmb->dev); 2718 } 2719 2720 /* MMC Physical partitions consist of two boot partitions and 2721 * up to four general purpose partitions. 2722 * For each partition enabled in EXT_CSD a block device will be allocatedi 2723 * to provide access to the partition. 2724 */ 2725 2726 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2727 { 2728 int idx, ret; 2729 2730 if (!mmc_card_mmc(card)) 2731 return 0; 2732 2733 for (idx = 0; idx < card->nr_parts; idx++) { 2734 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2735 /* 2736 * RPMB partitions does not provide block access, they 2737 * are only accessed using ioctl():s. Thus create 2738 * special RPMB block devices that do not have a 2739 * backing block queue for these. 2740 */ 2741 ret = mmc_blk_alloc_rpmb_part(card, md, 2742 card->part[idx].part_cfg, 2743 card->part[idx].size >> 9, 2744 card->part[idx].name); 2745 if (ret) 2746 return ret; 2747 } else if (card->part[idx].size) { 2748 ret = mmc_blk_alloc_part(card, md, 2749 card->part[idx].part_cfg, 2750 card->part[idx].size >> 9, 2751 card->part[idx].force_ro, 2752 card->part[idx].name, 2753 card->part[idx].area_type); 2754 if (ret) 2755 return ret; 2756 } 2757 } 2758 2759 return 0; 2760 } 2761 2762 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2763 { 2764 /* 2765 * Flush remaining requests and free queues. It is freeing the queue 2766 * that stops new requests from being accepted. 2767 */ 2768 del_gendisk(md->disk); 2769 mmc_cleanup_queue(&md->queue); 2770 mmc_blk_put(md); 2771 } 2772 2773 static void mmc_blk_remove_parts(struct mmc_card *card, 2774 struct mmc_blk_data *md) 2775 { 2776 struct list_head *pos, *q; 2777 struct mmc_blk_data *part_md; 2778 struct mmc_rpmb_data *rpmb; 2779 2780 /* Remove RPMB partitions */ 2781 list_for_each_safe(pos, q, &md->rpmbs) { 2782 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2783 list_del(pos); 2784 mmc_blk_remove_rpmb_part(rpmb); 2785 } 2786 /* Remove block partitions */ 2787 list_for_each_safe(pos, q, &md->part) { 2788 part_md = list_entry(pos, struct mmc_blk_data, part); 2789 list_del(pos); 2790 mmc_blk_remove_req(part_md); 2791 } 2792 } 2793 2794 #ifdef CONFIG_DEBUG_FS 2795 2796 static int mmc_dbg_card_status_get(void *data, u64 *val) 2797 { 2798 struct mmc_card *card = data; 2799 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2800 struct mmc_queue *mq = &md->queue; 2801 struct request *req; 2802 int ret; 2803 2804 /* Ask the block layer about the card status */ 2805 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2806 if (IS_ERR(req)) 2807 return PTR_ERR(req); 2808 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2809 blk_execute_rq(req, false); 2810 ret = req_to_mmc_queue_req(req)->drv_op_result; 2811 if (ret >= 0) { 2812 *val = ret; 2813 ret = 0; 2814 } 2815 blk_mq_free_request(req); 2816 2817 return ret; 2818 } 2819 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2820 NULL, "%08llx\n"); 2821 2822 /* That is two digits * 512 + 1 for newline */ 2823 #define EXT_CSD_STR_LEN 1025 2824 2825 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2826 { 2827 struct mmc_card *card = inode->i_private; 2828 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2829 struct mmc_queue *mq = &md->queue; 2830 struct request *req; 2831 char *buf; 2832 ssize_t n = 0; 2833 u8 *ext_csd; 2834 int err, i; 2835 2836 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2837 if (!buf) 2838 return -ENOMEM; 2839 2840 /* Ask the block layer for the EXT CSD */ 2841 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 2842 if (IS_ERR(req)) { 2843 err = PTR_ERR(req); 2844 goto out_free; 2845 } 2846 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2847 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2848 blk_execute_rq(req, false); 2849 err = req_to_mmc_queue_req(req)->drv_op_result; 2850 blk_mq_free_request(req); 2851 if (err) { 2852 pr_err("FAILED %d\n", err); 2853 goto out_free; 2854 } 2855 2856 for (i = 0; i < 512; i++) 2857 n += sprintf(buf + n, "%02x", ext_csd[i]); 2858 n += sprintf(buf + n, "\n"); 2859 2860 if (n != EXT_CSD_STR_LEN) { 2861 err = -EINVAL; 2862 kfree(ext_csd); 2863 goto out_free; 2864 } 2865 2866 filp->private_data = buf; 2867 kfree(ext_csd); 2868 return 0; 2869 2870 out_free: 2871 kfree(buf); 2872 return err; 2873 } 2874 2875 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2876 size_t cnt, loff_t *ppos) 2877 { 2878 char *buf = filp->private_data; 2879 2880 return simple_read_from_buffer(ubuf, cnt, ppos, 2881 buf, EXT_CSD_STR_LEN); 2882 } 2883 2884 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2885 { 2886 kfree(file->private_data); 2887 return 0; 2888 } 2889 2890 static const struct file_operations mmc_dbg_ext_csd_fops = { 2891 .open = mmc_ext_csd_open, 2892 .read = mmc_ext_csd_read, 2893 .release = mmc_ext_csd_release, 2894 .llseek = default_llseek, 2895 }; 2896 2897 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2898 { 2899 struct dentry *root; 2900 2901 if (!card->debugfs_root) 2902 return 0; 2903 2904 root = card->debugfs_root; 2905 2906 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2907 md->status_dentry = 2908 debugfs_create_file_unsafe("status", 0400, root, 2909 card, 2910 &mmc_dbg_card_status_fops); 2911 if (!md->status_dentry) 2912 return -EIO; 2913 } 2914 2915 if (mmc_card_mmc(card)) { 2916 md->ext_csd_dentry = 2917 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2918 &mmc_dbg_ext_csd_fops); 2919 if (!md->ext_csd_dentry) 2920 return -EIO; 2921 } 2922 2923 return 0; 2924 } 2925 2926 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2927 struct mmc_blk_data *md) 2928 { 2929 if (!card->debugfs_root) 2930 return; 2931 2932 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2933 debugfs_remove(md->status_dentry); 2934 md->status_dentry = NULL; 2935 } 2936 2937 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2938 debugfs_remove(md->ext_csd_dentry); 2939 md->ext_csd_dentry = NULL; 2940 } 2941 } 2942 2943 #else 2944 2945 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2946 { 2947 return 0; 2948 } 2949 2950 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2951 struct mmc_blk_data *md) 2952 { 2953 } 2954 2955 #endif /* CONFIG_DEBUG_FS */ 2956 2957 static int mmc_blk_probe(struct mmc_card *card) 2958 { 2959 struct mmc_blk_data *md; 2960 int ret = 0; 2961 2962 /* 2963 * Check that the card supports the command class(es) we need. 2964 */ 2965 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2966 return -ENODEV; 2967 2968 mmc_fixup_device(card, mmc_blk_fixups); 2969 2970 card->complete_wq = alloc_workqueue("mmc_complete", 2971 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2972 if (!card->complete_wq) { 2973 pr_err("Failed to create mmc completion workqueue"); 2974 return -ENOMEM; 2975 } 2976 2977 md = mmc_blk_alloc(card); 2978 if (IS_ERR(md)) { 2979 ret = PTR_ERR(md); 2980 goto out_free; 2981 } 2982 2983 ret = mmc_blk_alloc_parts(card, md); 2984 if (ret) 2985 goto out; 2986 2987 /* Add two debugfs entries */ 2988 mmc_blk_add_debugfs(card, md); 2989 2990 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2991 pm_runtime_use_autosuspend(&card->dev); 2992 2993 /* 2994 * Don't enable runtime PM for SD-combo cards here. Leave that 2995 * decision to be taken during the SDIO init sequence instead. 2996 */ 2997 if (!mmc_card_sd_combo(card)) { 2998 pm_runtime_set_active(&card->dev); 2999 pm_runtime_enable(&card->dev); 3000 } 3001 3002 return 0; 3003 3004 out: 3005 mmc_blk_remove_parts(card, md); 3006 mmc_blk_remove_req(md); 3007 out_free: 3008 destroy_workqueue(card->complete_wq); 3009 return ret; 3010 } 3011 3012 static void mmc_blk_remove(struct mmc_card *card) 3013 { 3014 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3015 3016 mmc_blk_remove_debugfs(card, md); 3017 mmc_blk_remove_parts(card, md); 3018 pm_runtime_get_sync(&card->dev); 3019 if (md->part_curr != md->part_type) { 3020 mmc_claim_host(card->host); 3021 mmc_blk_part_switch(card, md->part_type); 3022 mmc_release_host(card->host); 3023 } 3024 if (!mmc_card_sd_combo(card)) 3025 pm_runtime_disable(&card->dev); 3026 pm_runtime_put_noidle(&card->dev); 3027 mmc_blk_remove_req(md); 3028 dev_set_drvdata(&card->dev, NULL); 3029 destroy_workqueue(card->complete_wq); 3030 } 3031 3032 static int _mmc_blk_suspend(struct mmc_card *card) 3033 { 3034 struct mmc_blk_data *part_md; 3035 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3036 3037 if (md) { 3038 mmc_queue_suspend(&md->queue); 3039 list_for_each_entry(part_md, &md->part, part) { 3040 mmc_queue_suspend(&part_md->queue); 3041 } 3042 } 3043 return 0; 3044 } 3045 3046 static void mmc_blk_shutdown(struct mmc_card *card) 3047 { 3048 _mmc_blk_suspend(card); 3049 } 3050 3051 #ifdef CONFIG_PM_SLEEP 3052 static int mmc_blk_suspend(struct device *dev) 3053 { 3054 struct mmc_card *card = mmc_dev_to_card(dev); 3055 3056 return _mmc_blk_suspend(card); 3057 } 3058 3059 static int mmc_blk_resume(struct device *dev) 3060 { 3061 struct mmc_blk_data *part_md; 3062 struct mmc_blk_data *md = dev_get_drvdata(dev); 3063 3064 if (md) { 3065 /* 3066 * Resume involves the card going into idle state, 3067 * so current partition is always the main one. 3068 */ 3069 md->part_curr = md->part_type; 3070 mmc_queue_resume(&md->queue); 3071 list_for_each_entry(part_md, &md->part, part) { 3072 mmc_queue_resume(&part_md->queue); 3073 } 3074 } 3075 return 0; 3076 } 3077 #endif 3078 3079 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3080 3081 static struct mmc_driver mmc_driver = { 3082 .drv = { 3083 .name = "mmcblk", 3084 .pm = &mmc_blk_pm_ops, 3085 }, 3086 .probe = mmc_blk_probe, 3087 .remove = mmc_blk_remove, 3088 .shutdown = mmc_blk_shutdown, 3089 }; 3090 3091 static int __init mmc_blk_init(void) 3092 { 3093 int res; 3094 3095 res = bus_register(&mmc_rpmb_bus_type); 3096 if (res < 0) { 3097 pr_err("mmcblk: could not register RPMB bus type\n"); 3098 return res; 3099 } 3100 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3101 if (res < 0) { 3102 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3103 goto out_bus_unreg; 3104 } 3105 3106 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3107 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3108 3109 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3110 3111 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3112 if (res) 3113 goto out_chrdev_unreg; 3114 3115 res = mmc_register_driver(&mmc_driver); 3116 if (res) 3117 goto out_blkdev_unreg; 3118 3119 return 0; 3120 3121 out_blkdev_unreg: 3122 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3123 out_chrdev_unreg: 3124 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3125 out_bus_unreg: 3126 bus_unregister(&mmc_rpmb_bus_type); 3127 return res; 3128 } 3129 3130 static void __exit mmc_blk_exit(void) 3131 { 3132 mmc_unregister_driver(&mmc_driver); 3133 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3134 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3135 bus_unregister(&mmc_rpmb_bus_type); 3136 } 3137 3138 module_init(mmc_blk_init); 3139 module_exit(mmc_blk_exit); 3140 3141 MODULE_LICENSE("GPL"); 3142 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3143 3144