xref: /linux/drivers/mmc/core/block.c (revision 39f75da7bcc829ddc4d40bb60d0e95520de7898b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 /*
102  * There is one mmc_blk_data per slot.
103  */
104 struct mmc_blk_data {
105 	struct device	*parent;
106 	struct gendisk	*disk;
107 	struct mmc_queue queue;
108 	struct list_head part;
109 	struct list_head rpmbs;
110 
111 	unsigned int	flags;
112 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
113 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
114 
115 	struct kref	kref;
116 	unsigned int	read_only;
117 	unsigned int	part_type;
118 	unsigned int	reset_done;
119 #define MMC_BLK_READ		BIT(0)
120 #define MMC_BLK_WRITE		BIT(1)
121 #define MMC_BLK_DISCARD		BIT(2)
122 #define MMC_BLK_SECDISCARD	BIT(3)
123 #define MMC_BLK_CQE_RECOVERY	BIT(4)
124 
125 	/*
126 	 * Only set in main mmc_blk_data associated
127 	 * with mmc_card with dev_set_drvdata, and keeps
128 	 * track of the current selected device partition.
129 	 */
130 	unsigned int	part_curr;
131 	struct device_attribute force_ro;
132 	struct device_attribute power_ro_lock;
133 	int	area_type;
134 
135 	/* debugfs files (only in main mmc_blk_data) */
136 	struct dentry *status_dentry;
137 	struct dentry *ext_csd_dentry;
138 };
139 
140 /* Device type for RPMB character devices */
141 static dev_t mmc_rpmb_devt;
142 
143 /* Bus type for RPMB character devices */
144 static struct bus_type mmc_rpmb_bus_type = {
145 	.name = "mmc_rpmb",
146 };
147 
148 /**
149  * struct mmc_rpmb_data - special RPMB device type for these areas
150  * @dev: the device for the RPMB area
151  * @chrdev: character device for the RPMB area
152  * @id: unique device ID number
153  * @part_index: partition index (0 on first)
154  * @md: parent MMC block device
155  * @node: list item, so we can put this device on a list
156  */
157 struct mmc_rpmb_data {
158 	struct device dev;
159 	struct cdev chrdev;
160 	int id;
161 	unsigned int part_index;
162 	struct mmc_blk_data *md;
163 	struct list_head node;
164 };
165 
166 static DEFINE_MUTEX(open_lock);
167 
168 module_param(perdev_minors, int, 0444);
169 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
170 
171 static inline int mmc_blk_part_switch(struct mmc_card *card,
172 				      unsigned int part_type);
173 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
174 			       struct mmc_card *card,
175 			       int disable_multi,
176 			       struct mmc_queue *mq);
177 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
178 
179 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
180 {
181 	struct mmc_blk_data *md;
182 
183 	mutex_lock(&open_lock);
184 	md = disk->private_data;
185 	if (md && !kref_get_unless_zero(&md->kref))
186 		md = NULL;
187 	mutex_unlock(&open_lock);
188 
189 	return md;
190 }
191 
192 static inline int mmc_get_devidx(struct gendisk *disk)
193 {
194 	int devidx = disk->first_minor / perdev_minors;
195 	return devidx;
196 }
197 
198 static void mmc_blk_kref_release(struct kref *ref)
199 {
200 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
201 	int devidx;
202 
203 	devidx = mmc_get_devidx(md->disk);
204 	ida_simple_remove(&mmc_blk_ida, devidx);
205 
206 	mutex_lock(&open_lock);
207 	md->disk->private_data = NULL;
208 	mutex_unlock(&open_lock);
209 
210 	put_disk(md->disk);
211 	kfree(md);
212 }
213 
214 static void mmc_blk_put(struct mmc_blk_data *md)
215 {
216 	kref_put(&md->kref, mmc_blk_kref_release);
217 }
218 
219 static ssize_t power_ro_lock_show(struct device *dev,
220 		struct device_attribute *attr, char *buf)
221 {
222 	int ret;
223 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
224 	struct mmc_card *card = md->queue.card;
225 	int locked = 0;
226 
227 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
228 		locked = 2;
229 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
230 		locked = 1;
231 
232 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
233 
234 	mmc_blk_put(md);
235 
236 	return ret;
237 }
238 
239 static ssize_t power_ro_lock_store(struct device *dev,
240 		struct device_attribute *attr, const char *buf, size_t count)
241 {
242 	int ret;
243 	struct mmc_blk_data *md, *part_md;
244 	struct mmc_queue *mq;
245 	struct request *req;
246 	unsigned long set;
247 
248 	if (kstrtoul(buf, 0, &set))
249 		return -EINVAL;
250 
251 	if (set != 1)
252 		return count;
253 
254 	md = mmc_blk_get(dev_to_disk(dev));
255 	mq = &md->queue;
256 
257 	/* Dispatch locking to the block layer */
258 	req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
259 	if (IS_ERR(req)) {
260 		count = PTR_ERR(req);
261 		goto out_put;
262 	}
263 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
264 	blk_execute_rq(NULL, req, 0);
265 	ret = req_to_mmc_queue_req(req)->drv_op_result;
266 	blk_put_request(req);
267 
268 	if (!ret) {
269 		pr_info("%s: Locking boot partition ro until next power on\n",
270 			md->disk->disk_name);
271 		set_disk_ro(md->disk, 1);
272 
273 		list_for_each_entry(part_md, &md->part, part)
274 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
275 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
276 				set_disk_ro(part_md->disk, 1);
277 			}
278 	}
279 out_put:
280 	mmc_blk_put(md);
281 	return count;
282 }
283 
284 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
285 			     char *buf)
286 {
287 	int ret;
288 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
289 
290 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
291 		       get_disk_ro(dev_to_disk(dev)) ^
292 		       md->read_only);
293 	mmc_blk_put(md);
294 	return ret;
295 }
296 
297 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
298 			      const char *buf, size_t count)
299 {
300 	int ret;
301 	char *end;
302 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
303 	unsigned long set = simple_strtoul(buf, &end, 0);
304 	if (end == buf) {
305 		ret = -EINVAL;
306 		goto out;
307 	}
308 
309 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
310 	ret = count;
311 out:
312 	mmc_blk_put(md);
313 	return ret;
314 }
315 
316 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
317 {
318 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
319 	int ret = -ENXIO;
320 
321 	mutex_lock(&block_mutex);
322 	if (md) {
323 		ret = 0;
324 		if ((mode & FMODE_WRITE) && md->read_only) {
325 			mmc_blk_put(md);
326 			ret = -EROFS;
327 		}
328 	}
329 	mutex_unlock(&block_mutex);
330 
331 	return ret;
332 }
333 
334 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
335 {
336 	struct mmc_blk_data *md = disk->private_data;
337 
338 	mutex_lock(&block_mutex);
339 	mmc_blk_put(md);
340 	mutex_unlock(&block_mutex);
341 }
342 
343 static int
344 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
345 {
346 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
347 	geo->heads = 4;
348 	geo->sectors = 16;
349 	return 0;
350 }
351 
352 struct mmc_blk_ioc_data {
353 	struct mmc_ioc_cmd ic;
354 	unsigned char *buf;
355 	u64 buf_bytes;
356 	struct mmc_rpmb_data *rpmb;
357 };
358 
359 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
360 	struct mmc_ioc_cmd __user *user)
361 {
362 	struct mmc_blk_ioc_data *idata;
363 	int err;
364 
365 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
366 	if (!idata) {
367 		err = -ENOMEM;
368 		goto out;
369 	}
370 
371 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
372 		err = -EFAULT;
373 		goto idata_err;
374 	}
375 
376 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
377 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
378 		err = -EOVERFLOW;
379 		goto idata_err;
380 	}
381 
382 	if (!idata->buf_bytes) {
383 		idata->buf = NULL;
384 		return idata;
385 	}
386 
387 	idata->buf = memdup_user((void __user *)(unsigned long)
388 				 idata->ic.data_ptr, idata->buf_bytes);
389 	if (IS_ERR(idata->buf)) {
390 		err = PTR_ERR(idata->buf);
391 		goto idata_err;
392 	}
393 
394 	return idata;
395 
396 idata_err:
397 	kfree(idata);
398 out:
399 	return ERR_PTR(err);
400 }
401 
402 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
403 				      struct mmc_blk_ioc_data *idata)
404 {
405 	struct mmc_ioc_cmd *ic = &idata->ic;
406 
407 	if (copy_to_user(&(ic_ptr->response), ic->response,
408 			 sizeof(ic->response)))
409 		return -EFAULT;
410 
411 	if (!idata->ic.write_flag) {
412 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
413 				 idata->buf, idata->buf_bytes))
414 			return -EFAULT;
415 	}
416 
417 	return 0;
418 }
419 
420 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
421 			    u32 *resp_errs)
422 {
423 	unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
424 	int err = 0;
425 	u32 status;
426 
427 	do {
428 		bool done = time_after(jiffies, timeout);
429 
430 		err = __mmc_send_status(card, &status, 5);
431 		if (err) {
432 			dev_err(mmc_dev(card->host),
433 				"error %d requesting status\n", err);
434 			return err;
435 		}
436 
437 		/* Accumulate any response error bits seen */
438 		if (resp_errs)
439 			*resp_errs |= status;
440 
441 		/*
442 		 * Timeout if the device never becomes ready for data and never
443 		 * leaves the program state.
444 		 */
445 		if (done) {
446 			dev_err(mmc_dev(card->host),
447 				"Card stuck in wrong state! %s status: %#x\n",
448 				 __func__, status);
449 			return -ETIMEDOUT;
450 		}
451 	} while (!mmc_ready_for_data(status));
452 
453 	return err;
454 }
455 
456 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
457 			       struct mmc_blk_ioc_data *idata)
458 {
459 	struct mmc_command cmd = {}, sbc = {};
460 	struct mmc_data data = {};
461 	struct mmc_request mrq = {};
462 	struct scatterlist sg;
463 	int err;
464 	unsigned int target_part;
465 
466 	if (!card || !md || !idata)
467 		return -EINVAL;
468 
469 	/*
470 	 * The RPMB accesses comes in from the character device, so we
471 	 * need to target these explicitly. Else we just target the
472 	 * partition type for the block device the ioctl() was issued
473 	 * on.
474 	 */
475 	if (idata->rpmb) {
476 		/* Support multiple RPMB partitions */
477 		target_part = idata->rpmb->part_index;
478 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
479 	} else {
480 		target_part = md->part_type;
481 	}
482 
483 	cmd.opcode = idata->ic.opcode;
484 	cmd.arg = idata->ic.arg;
485 	cmd.flags = idata->ic.flags;
486 
487 	if (idata->buf_bytes) {
488 		data.sg = &sg;
489 		data.sg_len = 1;
490 		data.blksz = idata->ic.blksz;
491 		data.blocks = idata->ic.blocks;
492 
493 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
494 
495 		if (idata->ic.write_flag)
496 			data.flags = MMC_DATA_WRITE;
497 		else
498 			data.flags = MMC_DATA_READ;
499 
500 		/* data.flags must already be set before doing this. */
501 		mmc_set_data_timeout(&data, card);
502 
503 		/* Allow overriding the timeout_ns for empirical tuning. */
504 		if (idata->ic.data_timeout_ns)
505 			data.timeout_ns = idata->ic.data_timeout_ns;
506 
507 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
508 			/*
509 			 * Pretend this is a data transfer and rely on the
510 			 * host driver to compute timeout.  When all host
511 			 * drivers support cmd.cmd_timeout for R1B, this
512 			 * can be changed to:
513 			 *
514 			 *     mrq.data = NULL;
515 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
516 			 */
517 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
518 		}
519 
520 		mrq.data = &data;
521 	}
522 
523 	mrq.cmd = &cmd;
524 
525 	err = mmc_blk_part_switch(card, target_part);
526 	if (err)
527 		return err;
528 
529 	if (idata->ic.is_acmd) {
530 		err = mmc_app_cmd(card->host, card);
531 		if (err)
532 			return err;
533 	}
534 
535 	if (idata->rpmb) {
536 		sbc.opcode = MMC_SET_BLOCK_COUNT;
537 		/*
538 		 * We don't do any blockcount validation because the max size
539 		 * may be increased by a future standard. We just copy the
540 		 * 'Reliable Write' bit here.
541 		 */
542 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
543 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
544 		mrq.sbc = &sbc;
545 	}
546 
547 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
548 	    (cmd.opcode == MMC_SWITCH))
549 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
550 
551 	mmc_wait_for_req(card->host, &mrq);
552 
553 	if (cmd.error) {
554 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
555 						__func__, cmd.error);
556 		return cmd.error;
557 	}
558 	if (data.error) {
559 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
560 						__func__, data.error);
561 		return data.error;
562 	}
563 
564 	/*
565 	 * Make sure the cache of the PARTITION_CONFIG register and
566 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
567 	 * changed it successfully.
568 	 */
569 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
570 	    (cmd.opcode == MMC_SWITCH)) {
571 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
572 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
573 
574 		/*
575 		 * Update cache so the next mmc_blk_part_switch call operates
576 		 * on up-to-date data.
577 		 */
578 		card->ext_csd.part_config = value;
579 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
580 	}
581 
582 	/*
583 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
584 	 * will get turned back on if the card is re-initialized, e.g.
585 	 * suspend/resume or hw reset in recovery.
586 	 */
587 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
588 	    (cmd.opcode == MMC_SWITCH)) {
589 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
590 
591 		card->ext_csd.cache_ctrl = value;
592 	}
593 
594 	/*
595 	 * According to the SD specs, some commands require a delay after
596 	 * issuing the command.
597 	 */
598 	if (idata->ic.postsleep_min_us)
599 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
600 
601 	memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
602 
603 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
604 		/*
605 		 * Ensure RPMB/R1B command has completed by polling CMD13
606 		 * "Send Status".
607 		 */
608 		err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL);
609 	}
610 
611 	return err;
612 }
613 
614 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
615 			     struct mmc_ioc_cmd __user *ic_ptr,
616 			     struct mmc_rpmb_data *rpmb)
617 {
618 	struct mmc_blk_ioc_data *idata;
619 	struct mmc_blk_ioc_data *idatas[1];
620 	struct mmc_queue *mq;
621 	struct mmc_card *card;
622 	int err = 0, ioc_err = 0;
623 	struct request *req;
624 
625 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
626 	if (IS_ERR(idata))
627 		return PTR_ERR(idata);
628 	/* This will be NULL on non-RPMB ioctl():s */
629 	idata->rpmb = rpmb;
630 
631 	card = md->queue.card;
632 	if (IS_ERR(card)) {
633 		err = PTR_ERR(card);
634 		goto cmd_done;
635 	}
636 
637 	/*
638 	 * Dispatch the ioctl() into the block request queue.
639 	 */
640 	mq = &md->queue;
641 	req = blk_get_request(mq->queue,
642 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
643 	if (IS_ERR(req)) {
644 		err = PTR_ERR(req);
645 		goto cmd_done;
646 	}
647 	idatas[0] = idata;
648 	req_to_mmc_queue_req(req)->drv_op =
649 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
650 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
651 	req_to_mmc_queue_req(req)->ioc_count = 1;
652 	blk_execute_rq(NULL, req, 0);
653 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
654 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
655 	blk_put_request(req);
656 
657 cmd_done:
658 	kfree(idata->buf);
659 	kfree(idata);
660 	return ioc_err ? ioc_err : err;
661 }
662 
663 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
664 				   struct mmc_ioc_multi_cmd __user *user,
665 				   struct mmc_rpmb_data *rpmb)
666 {
667 	struct mmc_blk_ioc_data **idata = NULL;
668 	struct mmc_ioc_cmd __user *cmds = user->cmds;
669 	struct mmc_card *card;
670 	struct mmc_queue *mq;
671 	int i, err = 0, ioc_err = 0;
672 	__u64 num_of_cmds;
673 	struct request *req;
674 
675 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
676 			   sizeof(num_of_cmds)))
677 		return -EFAULT;
678 
679 	if (!num_of_cmds)
680 		return 0;
681 
682 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
683 		return -EINVAL;
684 
685 	idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
686 	if (!idata)
687 		return -ENOMEM;
688 
689 	for (i = 0; i < num_of_cmds; i++) {
690 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
691 		if (IS_ERR(idata[i])) {
692 			err = PTR_ERR(idata[i]);
693 			num_of_cmds = i;
694 			goto cmd_err;
695 		}
696 		/* This will be NULL on non-RPMB ioctl():s */
697 		idata[i]->rpmb = rpmb;
698 	}
699 
700 	card = md->queue.card;
701 	if (IS_ERR(card)) {
702 		err = PTR_ERR(card);
703 		goto cmd_err;
704 	}
705 
706 
707 	/*
708 	 * Dispatch the ioctl()s into the block request queue.
709 	 */
710 	mq = &md->queue;
711 	req = blk_get_request(mq->queue,
712 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
713 	if (IS_ERR(req)) {
714 		err = PTR_ERR(req);
715 		goto cmd_err;
716 	}
717 	req_to_mmc_queue_req(req)->drv_op =
718 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
719 	req_to_mmc_queue_req(req)->drv_op_data = idata;
720 	req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
721 	blk_execute_rq(NULL, req, 0);
722 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
723 
724 	/* copy to user if data and response */
725 	for (i = 0; i < num_of_cmds && !err; i++)
726 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
727 
728 	blk_put_request(req);
729 
730 cmd_err:
731 	for (i = 0; i < num_of_cmds; i++) {
732 		kfree(idata[i]->buf);
733 		kfree(idata[i]);
734 	}
735 	kfree(idata);
736 	return ioc_err ? ioc_err : err;
737 }
738 
739 static int mmc_blk_check_blkdev(struct block_device *bdev)
740 {
741 	/*
742 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
743 	 * whole block device, not on a partition.  This prevents overspray
744 	 * between sibling partitions.
745 	 */
746 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
747 		return -EPERM;
748 	return 0;
749 }
750 
751 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
752 	unsigned int cmd, unsigned long arg)
753 {
754 	struct mmc_blk_data *md;
755 	int ret;
756 
757 	switch (cmd) {
758 	case MMC_IOC_CMD:
759 		ret = mmc_blk_check_blkdev(bdev);
760 		if (ret)
761 			return ret;
762 		md = mmc_blk_get(bdev->bd_disk);
763 		if (!md)
764 			return -EINVAL;
765 		ret = mmc_blk_ioctl_cmd(md,
766 					(struct mmc_ioc_cmd __user *)arg,
767 					NULL);
768 		mmc_blk_put(md);
769 		return ret;
770 	case MMC_IOC_MULTI_CMD:
771 		ret = mmc_blk_check_blkdev(bdev);
772 		if (ret)
773 			return ret;
774 		md = mmc_blk_get(bdev->bd_disk);
775 		if (!md)
776 			return -EINVAL;
777 		ret = mmc_blk_ioctl_multi_cmd(md,
778 					(struct mmc_ioc_multi_cmd __user *)arg,
779 					NULL);
780 		mmc_blk_put(md);
781 		return ret;
782 	default:
783 		return -EINVAL;
784 	}
785 }
786 
787 #ifdef CONFIG_COMPAT
788 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
789 	unsigned int cmd, unsigned long arg)
790 {
791 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
792 }
793 #endif
794 
795 static const struct block_device_operations mmc_bdops = {
796 	.open			= mmc_blk_open,
797 	.release		= mmc_blk_release,
798 	.getgeo			= mmc_blk_getgeo,
799 	.owner			= THIS_MODULE,
800 	.ioctl			= mmc_blk_ioctl,
801 #ifdef CONFIG_COMPAT
802 	.compat_ioctl		= mmc_blk_compat_ioctl,
803 #endif
804 };
805 
806 static int mmc_blk_part_switch_pre(struct mmc_card *card,
807 				   unsigned int part_type)
808 {
809 	int ret = 0;
810 
811 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
812 		if (card->ext_csd.cmdq_en) {
813 			ret = mmc_cmdq_disable(card);
814 			if (ret)
815 				return ret;
816 		}
817 		mmc_retune_pause(card->host);
818 	}
819 
820 	return ret;
821 }
822 
823 static int mmc_blk_part_switch_post(struct mmc_card *card,
824 				    unsigned int part_type)
825 {
826 	int ret = 0;
827 
828 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
829 		mmc_retune_unpause(card->host);
830 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
831 			ret = mmc_cmdq_enable(card);
832 	}
833 
834 	return ret;
835 }
836 
837 static inline int mmc_blk_part_switch(struct mmc_card *card,
838 				      unsigned int part_type)
839 {
840 	int ret = 0;
841 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
842 
843 	if (main_md->part_curr == part_type)
844 		return 0;
845 
846 	if (mmc_card_mmc(card)) {
847 		u8 part_config = card->ext_csd.part_config;
848 
849 		ret = mmc_blk_part_switch_pre(card, part_type);
850 		if (ret)
851 			return ret;
852 
853 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
854 		part_config |= part_type;
855 
856 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
857 				 EXT_CSD_PART_CONFIG, part_config,
858 				 card->ext_csd.part_time);
859 		if (ret) {
860 			mmc_blk_part_switch_post(card, part_type);
861 			return ret;
862 		}
863 
864 		card->ext_csd.part_config = part_config;
865 
866 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
867 	}
868 
869 	main_md->part_curr = part_type;
870 	return ret;
871 }
872 
873 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
874 {
875 	int err;
876 	u32 result;
877 	__be32 *blocks;
878 
879 	struct mmc_request mrq = {};
880 	struct mmc_command cmd = {};
881 	struct mmc_data data = {};
882 
883 	struct scatterlist sg;
884 
885 	cmd.opcode = MMC_APP_CMD;
886 	cmd.arg = card->rca << 16;
887 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
888 
889 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
890 	if (err)
891 		return err;
892 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
893 		return -EIO;
894 
895 	memset(&cmd, 0, sizeof(struct mmc_command));
896 
897 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
898 	cmd.arg = 0;
899 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
900 
901 	data.blksz = 4;
902 	data.blocks = 1;
903 	data.flags = MMC_DATA_READ;
904 	data.sg = &sg;
905 	data.sg_len = 1;
906 	mmc_set_data_timeout(&data, card);
907 
908 	mrq.cmd = &cmd;
909 	mrq.data = &data;
910 
911 	blocks = kmalloc(4, GFP_KERNEL);
912 	if (!blocks)
913 		return -ENOMEM;
914 
915 	sg_init_one(&sg, blocks, 4);
916 
917 	mmc_wait_for_req(card->host, &mrq);
918 
919 	result = ntohl(*blocks);
920 	kfree(blocks);
921 
922 	if (cmd.error || data.error)
923 		return -EIO;
924 
925 	*written_blocks = result;
926 
927 	return 0;
928 }
929 
930 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
931 {
932 	if (host->actual_clock)
933 		return host->actual_clock / 1000;
934 
935 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
936 	if (host->ios.clock)
937 		return host->ios.clock / 2000;
938 
939 	/* How can there be no clock */
940 	WARN_ON_ONCE(1);
941 	return 100; /* 100 kHz is minimum possible value */
942 }
943 
944 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
945 					    struct mmc_data *data)
946 {
947 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
948 	unsigned int khz;
949 
950 	if (data->timeout_clks) {
951 		khz = mmc_blk_clock_khz(host);
952 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
953 	}
954 
955 	return ms;
956 }
957 
958 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
959 			 int type)
960 {
961 	int err;
962 
963 	if (md->reset_done & type)
964 		return -EEXIST;
965 
966 	md->reset_done |= type;
967 	err = mmc_hw_reset(host);
968 	/* Ensure we switch back to the correct partition */
969 	if (err) {
970 		struct mmc_blk_data *main_md =
971 			dev_get_drvdata(&host->card->dev);
972 		int part_err;
973 
974 		main_md->part_curr = main_md->part_type;
975 		part_err = mmc_blk_part_switch(host->card, md->part_type);
976 		if (part_err) {
977 			/*
978 			 * We have failed to get back into the correct
979 			 * partition, so we need to abort the whole request.
980 			 */
981 			return -ENODEV;
982 		}
983 	}
984 	return err;
985 }
986 
987 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
988 {
989 	md->reset_done &= ~type;
990 }
991 
992 /*
993  * The non-block commands come back from the block layer after it queued it and
994  * processed it with all other requests and then they get issued in this
995  * function.
996  */
997 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
998 {
999 	struct mmc_queue_req *mq_rq;
1000 	struct mmc_card *card = mq->card;
1001 	struct mmc_blk_data *md = mq->blkdata;
1002 	struct mmc_blk_ioc_data **idata;
1003 	bool rpmb_ioctl;
1004 	u8 **ext_csd;
1005 	u32 status;
1006 	int ret;
1007 	int i;
1008 
1009 	mq_rq = req_to_mmc_queue_req(req);
1010 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1011 
1012 	switch (mq_rq->drv_op) {
1013 	case MMC_DRV_OP_IOCTL:
1014 		if (card->ext_csd.cmdq_en) {
1015 			ret = mmc_cmdq_disable(card);
1016 			if (ret)
1017 				break;
1018 		}
1019 		fallthrough;
1020 	case MMC_DRV_OP_IOCTL_RPMB:
1021 		idata = mq_rq->drv_op_data;
1022 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1023 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1024 			if (ret)
1025 				break;
1026 		}
1027 		/* Always switch back to main area after RPMB access */
1028 		if (rpmb_ioctl)
1029 			mmc_blk_part_switch(card, 0);
1030 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1031 			mmc_cmdq_enable(card);
1032 		break;
1033 	case MMC_DRV_OP_BOOT_WP:
1034 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1035 				 card->ext_csd.boot_ro_lock |
1036 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1037 				 card->ext_csd.part_time);
1038 		if (ret)
1039 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1040 			       md->disk->disk_name, ret);
1041 		else
1042 			card->ext_csd.boot_ro_lock |=
1043 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1044 		break;
1045 	case MMC_DRV_OP_GET_CARD_STATUS:
1046 		ret = mmc_send_status(card, &status);
1047 		if (!ret)
1048 			ret = status;
1049 		break;
1050 	case MMC_DRV_OP_GET_EXT_CSD:
1051 		ext_csd = mq_rq->drv_op_data;
1052 		ret = mmc_get_ext_csd(card, ext_csd);
1053 		break;
1054 	default:
1055 		pr_err("%s: unknown driver specific operation\n",
1056 		       md->disk->disk_name);
1057 		ret = -EINVAL;
1058 		break;
1059 	}
1060 	mq_rq->drv_op_result = ret;
1061 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1062 }
1063 
1064 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1065 {
1066 	struct mmc_blk_data *md = mq->blkdata;
1067 	struct mmc_card *card = md->queue.card;
1068 	unsigned int from, nr;
1069 	int err = 0, type = MMC_BLK_DISCARD;
1070 	blk_status_t status = BLK_STS_OK;
1071 
1072 	if (!mmc_can_erase(card)) {
1073 		status = BLK_STS_NOTSUPP;
1074 		goto fail;
1075 	}
1076 
1077 	from = blk_rq_pos(req);
1078 	nr = blk_rq_sectors(req);
1079 
1080 	do {
1081 		err = 0;
1082 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1083 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1084 					 INAND_CMD38_ARG_EXT_CSD,
1085 					 card->erase_arg == MMC_TRIM_ARG ?
1086 					 INAND_CMD38_ARG_TRIM :
1087 					 INAND_CMD38_ARG_ERASE,
1088 					 card->ext_csd.generic_cmd6_time);
1089 		}
1090 		if (!err)
1091 			err = mmc_erase(card, from, nr, card->erase_arg);
1092 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1093 	if (err)
1094 		status = BLK_STS_IOERR;
1095 	else
1096 		mmc_blk_reset_success(md, type);
1097 fail:
1098 	blk_mq_end_request(req, status);
1099 }
1100 
1101 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1102 				       struct request *req)
1103 {
1104 	struct mmc_blk_data *md = mq->blkdata;
1105 	struct mmc_card *card = md->queue.card;
1106 	unsigned int from, nr, arg;
1107 	int err = 0, type = MMC_BLK_SECDISCARD;
1108 	blk_status_t status = BLK_STS_OK;
1109 
1110 	if (!(mmc_can_secure_erase_trim(card))) {
1111 		status = BLK_STS_NOTSUPP;
1112 		goto out;
1113 	}
1114 
1115 	from = blk_rq_pos(req);
1116 	nr = blk_rq_sectors(req);
1117 
1118 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1119 		arg = MMC_SECURE_TRIM1_ARG;
1120 	else
1121 		arg = MMC_SECURE_ERASE_ARG;
1122 
1123 retry:
1124 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1125 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1126 				 INAND_CMD38_ARG_EXT_CSD,
1127 				 arg == MMC_SECURE_TRIM1_ARG ?
1128 				 INAND_CMD38_ARG_SECTRIM1 :
1129 				 INAND_CMD38_ARG_SECERASE,
1130 				 card->ext_csd.generic_cmd6_time);
1131 		if (err)
1132 			goto out_retry;
1133 	}
1134 
1135 	err = mmc_erase(card, from, nr, arg);
1136 	if (err == -EIO)
1137 		goto out_retry;
1138 	if (err) {
1139 		status = BLK_STS_IOERR;
1140 		goto out;
1141 	}
1142 
1143 	if (arg == MMC_SECURE_TRIM1_ARG) {
1144 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1145 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1146 					 INAND_CMD38_ARG_EXT_CSD,
1147 					 INAND_CMD38_ARG_SECTRIM2,
1148 					 card->ext_csd.generic_cmd6_time);
1149 			if (err)
1150 				goto out_retry;
1151 		}
1152 
1153 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1154 		if (err == -EIO)
1155 			goto out_retry;
1156 		if (err) {
1157 			status = BLK_STS_IOERR;
1158 			goto out;
1159 		}
1160 	}
1161 
1162 out_retry:
1163 	if (err && !mmc_blk_reset(md, card->host, type))
1164 		goto retry;
1165 	if (!err)
1166 		mmc_blk_reset_success(md, type);
1167 out:
1168 	blk_mq_end_request(req, status);
1169 }
1170 
1171 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1172 {
1173 	struct mmc_blk_data *md = mq->blkdata;
1174 	struct mmc_card *card = md->queue.card;
1175 	int ret = 0;
1176 
1177 	ret = mmc_flush_cache(card->host);
1178 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1179 }
1180 
1181 /*
1182  * Reformat current write as a reliable write, supporting
1183  * both legacy and the enhanced reliable write MMC cards.
1184  * In each transfer we'll handle only as much as a single
1185  * reliable write can handle, thus finish the request in
1186  * partial completions.
1187  */
1188 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1189 				    struct mmc_card *card,
1190 				    struct request *req)
1191 {
1192 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1193 		/* Legacy mode imposes restrictions on transfers. */
1194 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1195 			brq->data.blocks = 1;
1196 
1197 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1198 			brq->data.blocks = card->ext_csd.rel_sectors;
1199 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1200 			brq->data.blocks = 1;
1201 	}
1202 }
1203 
1204 #define CMD_ERRORS_EXCL_OOR						\
1205 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1206 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1207 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1208 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1209 	 R1_CC_ERROR |		/* Card controller error */		\
1210 	 R1_ERROR)		/* General/unknown error */
1211 
1212 #define CMD_ERRORS							\
1213 	(CMD_ERRORS_EXCL_OOR |						\
1214 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1215 
1216 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1217 {
1218 	u32 val;
1219 
1220 	/*
1221 	 * Per the SD specification(physical layer version 4.10)[1],
1222 	 * section 4.3.3, it explicitly states that "When the last
1223 	 * block of user area is read using CMD18, the host should
1224 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1225 	 * is correct". And JESD84-B51 for eMMC also has a similar
1226 	 * statement on section 6.8.3.
1227 	 *
1228 	 * Multiple block read/write could be done by either predefined
1229 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1230 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1231 	 *
1232 	 * However the spec[1] doesn't tell us whether we should also
1233 	 * ignore that for predefined method. But per the spec[1], section
1234 	 * 4.15 Set Block Count Command, it says"If illegal block count
1235 	 * is set, out of range error will be indicated during read/write
1236 	 * operation (For example, data transfer is stopped at user area
1237 	 * boundary)." In another word, we could expect a out of range error
1238 	 * in the response for the following CMD18/25. And if argument of
1239 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1240 	 * we could also expect to get a -ETIMEDOUT or any error number from
1241 	 * the host drivers due to missing data response(for write)/data(for
1242 	 * read), as the cards will stop the data transfer by itself per the
1243 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1244 	 */
1245 
1246 	if (!brq->stop.error) {
1247 		bool oor_with_open_end;
1248 		/* If there is no error yet, check R1 response */
1249 
1250 		val = brq->stop.resp[0] & CMD_ERRORS;
1251 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1252 
1253 		if (val && !oor_with_open_end)
1254 			brq->stop.error = -EIO;
1255 	}
1256 }
1257 
1258 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1259 			      int disable_multi, bool *do_rel_wr_p,
1260 			      bool *do_data_tag_p)
1261 {
1262 	struct mmc_blk_data *md = mq->blkdata;
1263 	struct mmc_card *card = md->queue.card;
1264 	struct mmc_blk_request *brq = &mqrq->brq;
1265 	struct request *req = mmc_queue_req_to_req(mqrq);
1266 	bool do_rel_wr, do_data_tag;
1267 
1268 	/*
1269 	 * Reliable writes are used to implement Forced Unit Access and
1270 	 * are supported only on MMCs.
1271 	 */
1272 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1273 		    rq_data_dir(req) == WRITE &&
1274 		    (md->flags & MMC_BLK_REL_WR);
1275 
1276 	memset(brq, 0, sizeof(struct mmc_blk_request));
1277 
1278 	mmc_crypto_prepare_req(mqrq);
1279 
1280 	brq->mrq.data = &brq->data;
1281 	brq->mrq.tag = req->tag;
1282 
1283 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1284 	brq->stop.arg = 0;
1285 
1286 	if (rq_data_dir(req) == READ) {
1287 		brq->data.flags = MMC_DATA_READ;
1288 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1289 	} else {
1290 		brq->data.flags = MMC_DATA_WRITE;
1291 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1292 	}
1293 
1294 	brq->data.blksz = 512;
1295 	brq->data.blocks = blk_rq_sectors(req);
1296 	brq->data.blk_addr = blk_rq_pos(req);
1297 
1298 	/*
1299 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1300 	 * The eMMC will give "high" priority tasks priority over "simple"
1301 	 * priority tasks. Here we always set "simple" priority by not setting
1302 	 * MMC_DATA_PRIO.
1303 	 */
1304 
1305 	/*
1306 	 * The block layer doesn't support all sector count
1307 	 * restrictions, so we need to be prepared for too big
1308 	 * requests.
1309 	 */
1310 	if (brq->data.blocks > card->host->max_blk_count)
1311 		brq->data.blocks = card->host->max_blk_count;
1312 
1313 	if (brq->data.blocks > 1) {
1314 		/*
1315 		 * Some SD cards in SPI mode return a CRC error or even lock up
1316 		 * completely when trying to read the last block using a
1317 		 * multiblock read command.
1318 		 */
1319 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1320 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1321 		     get_capacity(md->disk)))
1322 			brq->data.blocks--;
1323 
1324 		/*
1325 		 * After a read error, we redo the request one sector
1326 		 * at a time in order to accurately determine which
1327 		 * sectors can be read successfully.
1328 		 */
1329 		if (disable_multi)
1330 			brq->data.blocks = 1;
1331 
1332 		/*
1333 		 * Some controllers have HW issues while operating
1334 		 * in multiple I/O mode
1335 		 */
1336 		if (card->host->ops->multi_io_quirk)
1337 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1338 						(rq_data_dir(req) == READ) ?
1339 						MMC_DATA_READ : MMC_DATA_WRITE,
1340 						brq->data.blocks);
1341 	}
1342 
1343 	if (do_rel_wr) {
1344 		mmc_apply_rel_rw(brq, card, req);
1345 		brq->data.flags |= MMC_DATA_REL_WR;
1346 	}
1347 
1348 	/*
1349 	 * Data tag is used only during writing meta data to speed
1350 	 * up write and any subsequent read of this meta data
1351 	 */
1352 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1353 		      (req->cmd_flags & REQ_META) &&
1354 		      (rq_data_dir(req) == WRITE) &&
1355 		      ((brq->data.blocks * brq->data.blksz) >=
1356 		       card->ext_csd.data_tag_unit_size);
1357 
1358 	if (do_data_tag)
1359 		brq->data.flags |= MMC_DATA_DAT_TAG;
1360 
1361 	mmc_set_data_timeout(&brq->data, card);
1362 
1363 	brq->data.sg = mqrq->sg;
1364 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1365 
1366 	/*
1367 	 * Adjust the sg list so it is the same size as the
1368 	 * request.
1369 	 */
1370 	if (brq->data.blocks != blk_rq_sectors(req)) {
1371 		int i, data_size = brq->data.blocks << 9;
1372 		struct scatterlist *sg;
1373 
1374 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1375 			data_size -= sg->length;
1376 			if (data_size <= 0) {
1377 				sg->length += data_size;
1378 				i++;
1379 				break;
1380 			}
1381 		}
1382 		brq->data.sg_len = i;
1383 	}
1384 
1385 	if (do_rel_wr_p)
1386 		*do_rel_wr_p = do_rel_wr;
1387 
1388 	if (do_data_tag_p)
1389 		*do_data_tag_p = do_data_tag;
1390 }
1391 
1392 #define MMC_CQE_RETRIES 2
1393 
1394 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1395 {
1396 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1397 	struct mmc_request *mrq = &mqrq->brq.mrq;
1398 	struct request_queue *q = req->q;
1399 	struct mmc_host *host = mq->card->host;
1400 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1401 	unsigned long flags;
1402 	bool put_card;
1403 	int err;
1404 
1405 	mmc_cqe_post_req(host, mrq);
1406 
1407 	if (mrq->cmd && mrq->cmd->error)
1408 		err = mrq->cmd->error;
1409 	else if (mrq->data && mrq->data->error)
1410 		err = mrq->data->error;
1411 	else
1412 		err = 0;
1413 
1414 	if (err) {
1415 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1416 			blk_mq_requeue_request(req, true);
1417 		else
1418 			blk_mq_end_request(req, BLK_STS_IOERR);
1419 	} else if (mrq->data) {
1420 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1421 			blk_mq_requeue_request(req, true);
1422 		else
1423 			__blk_mq_end_request(req, BLK_STS_OK);
1424 	} else {
1425 		blk_mq_end_request(req, BLK_STS_OK);
1426 	}
1427 
1428 	spin_lock_irqsave(&mq->lock, flags);
1429 
1430 	mq->in_flight[issue_type] -= 1;
1431 
1432 	put_card = (mmc_tot_in_flight(mq) == 0);
1433 
1434 	mmc_cqe_check_busy(mq);
1435 
1436 	spin_unlock_irqrestore(&mq->lock, flags);
1437 
1438 	if (!mq->cqe_busy)
1439 		blk_mq_run_hw_queues(q, true);
1440 
1441 	if (put_card)
1442 		mmc_put_card(mq->card, &mq->ctx);
1443 }
1444 
1445 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1446 {
1447 	struct mmc_card *card = mq->card;
1448 	struct mmc_host *host = card->host;
1449 	int err;
1450 
1451 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1452 
1453 	err = mmc_cqe_recovery(host);
1454 	if (err)
1455 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1456 	else
1457 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1458 
1459 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1460 }
1461 
1462 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1463 {
1464 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1465 						  brq.mrq);
1466 	struct request *req = mmc_queue_req_to_req(mqrq);
1467 	struct request_queue *q = req->q;
1468 	struct mmc_queue *mq = q->queuedata;
1469 
1470 	/*
1471 	 * Block layer timeouts race with completions which means the normal
1472 	 * completion path cannot be used during recovery.
1473 	 */
1474 	if (mq->in_recovery)
1475 		mmc_blk_cqe_complete_rq(mq, req);
1476 	else if (likely(!blk_should_fake_timeout(req->q)))
1477 		blk_mq_complete_request(req);
1478 }
1479 
1480 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1481 {
1482 	mrq->done		= mmc_blk_cqe_req_done;
1483 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1484 
1485 	return mmc_cqe_start_req(host, mrq);
1486 }
1487 
1488 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1489 						 struct request *req)
1490 {
1491 	struct mmc_blk_request *brq = &mqrq->brq;
1492 
1493 	memset(brq, 0, sizeof(*brq));
1494 
1495 	brq->mrq.cmd = &brq->cmd;
1496 	brq->mrq.tag = req->tag;
1497 
1498 	return &brq->mrq;
1499 }
1500 
1501 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1502 {
1503 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1504 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1505 
1506 	mrq->cmd->opcode = MMC_SWITCH;
1507 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1508 			(EXT_CSD_FLUSH_CACHE << 16) |
1509 			(1 << 8) |
1510 			EXT_CSD_CMD_SET_NORMAL;
1511 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1512 
1513 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1514 }
1515 
1516 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1517 {
1518 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1519 	struct mmc_host *host = mq->card->host;
1520 	int err;
1521 
1522 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1523 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1524 	mmc_pre_req(host, &mqrq->brq.mrq);
1525 
1526 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1527 	if (err)
1528 		mmc_post_req(host, &mqrq->brq.mrq, err);
1529 
1530 	return err;
1531 }
1532 
1533 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1534 {
1535 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1536 	struct mmc_host *host = mq->card->host;
1537 
1538 	if (host->hsq_enabled)
1539 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1540 
1541 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1542 
1543 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1544 }
1545 
1546 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1547 			       struct mmc_card *card,
1548 			       int disable_multi,
1549 			       struct mmc_queue *mq)
1550 {
1551 	u32 readcmd, writecmd;
1552 	struct mmc_blk_request *brq = &mqrq->brq;
1553 	struct request *req = mmc_queue_req_to_req(mqrq);
1554 	struct mmc_blk_data *md = mq->blkdata;
1555 	bool do_rel_wr, do_data_tag;
1556 
1557 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1558 
1559 	brq->mrq.cmd = &brq->cmd;
1560 
1561 	brq->cmd.arg = blk_rq_pos(req);
1562 	if (!mmc_card_blockaddr(card))
1563 		brq->cmd.arg <<= 9;
1564 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1565 
1566 	if (brq->data.blocks > 1 || do_rel_wr) {
1567 		/* SPI multiblock writes terminate using a special
1568 		 * token, not a STOP_TRANSMISSION request.
1569 		 */
1570 		if (!mmc_host_is_spi(card->host) ||
1571 		    rq_data_dir(req) == READ)
1572 			brq->mrq.stop = &brq->stop;
1573 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1574 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1575 	} else {
1576 		brq->mrq.stop = NULL;
1577 		readcmd = MMC_READ_SINGLE_BLOCK;
1578 		writecmd = MMC_WRITE_BLOCK;
1579 	}
1580 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1581 
1582 	/*
1583 	 * Pre-defined multi-block transfers are preferable to
1584 	 * open ended-ones (and necessary for reliable writes).
1585 	 * However, it is not sufficient to just send CMD23,
1586 	 * and avoid the final CMD12, as on an error condition
1587 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1588 	 * with Auto-CMD23 enhancements provided by some
1589 	 * hosts, means that the complexity of dealing
1590 	 * with this is best left to the host. If CMD23 is
1591 	 * supported by card and host, we'll fill sbc in and let
1592 	 * the host deal with handling it correctly. This means
1593 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1594 	 * change of behavior will be observed.
1595 	 *
1596 	 * N.B: Some MMC cards experience perf degradation.
1597 	 * We'll avoid using CMD23-bounded multiblock writes for
1598 	 * these, while retaining features like reliable writes.
1599 	 */
1600 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1601 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1602 	     do_data_tag)) {
1603 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1604 		brq->sbc.arg = brq->data.blocks |
1605 			(do_rel_wr ? (1 << 31) : 0) |
1606 			(do_data_tag ? (1 << 29) : 0);
1607 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1608 		brq->mrq.sbc = &brq->sbc;
1609 	}
1610 }
1611 
1612 #define MMC_MAX_RETRIES		5
1613 #define MMC_DATA_RETRIES	2
1614 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1615 
1616 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1617 {
1618 	struct mmc_command cmd = {
1619 		.opcode = MMC_STOP_TRANSMISSION,
1620 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1621 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1622 		.busy_timeout = timeout,
1623 	};
1624 
1625 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1626 }
1627 
1628 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1629 {
1630 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1631 	struct mmc_blk_request *brq = &mqrq->brq;
1632 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1633 	int err;
1634 
1635 	mmc_retune_hold_now(card->host);
1636 
1637 	mmc_blk_send_stop(card, timeout);
1638 
1639 	err = card_busy_detect(card, timeout, NULL);
1640 
1641 	mmc_retune_release(card->host);
1642 
1643 	return err;
1644 }
1645 
1646 #define MMC_READ_SINGLE_RETRIES	2
1647 
1648 /* Single sector read during recovery */
1649 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1650 {
1651 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1652 	struct mmc_request *mrq = &mqrq->brq.mrq;
1653 	struct mmc_card *card = mq->card;
1654 	struct mmc_host *host = card->host;
1655 	blk_status_t error = BLK_STS_OK;
1656 	int retries = 0;
1657 
1658 	do {
1659 		u32 status;
1660 		int err;
1661 
1662 		mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1663 
1664 		mmc_wait_for_req(host, mrq);
1665 
1666 		err = mmc_send_status(card, &status);
1667 		if (err)
1668 			goto error_exit;
1669 
1670 		if (!mmc_host_is_spi(host) &&
1671 		    !mmc_ready_for_data(status)) {
1672 			err = mmc_blk_fix_state(card, req);
1673 			if (err)
1674 				goto error_exit;
1675 		}
1676 
1677 		if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1678 			continue;
1679 
1680 		retries = 0;
1681 
1682 		if (mrq->cmd->error ||
1683 		    mrq->data->error ||
1684 		    (!mmc_host_is_spi(host) &&
1685 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1686 			error = BLK_STS_IOERR;
1687 		else
1688 			error = BLK_STS_OK;
1689 
1690 	} while (blk_update_request(req, error, 512));
1691 
1692 	return;
1693 
1694 error_exit:
1695 	mrq->data->bytes_xfered = 0;
1696 	blk_update_request(req, BLK_STS_IOERR, 512);
1697 	/* Let it try the remaining request again */
1698 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1699 		mqrq->retries = MMC_MAX_RETRIES - 1;
1700 }
1701 
1702 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1703 {
1704 	return !!brq->mrq.sbc;
1705 }
1706 
1707 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1708 {
1709 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1710 }
1711 
1712 /*
1713  * Check for errors the host controller driver might not have seen such as
1714  * response mode errors or invalid card state.
1715  */
1716 static bool mmc_blk_status_error(struct request *req, u32 status)
1717 {
1718 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1719 	struct mmc_blk_request *brq = &mqrq->brq;
1720 	struct mmc_queue *mq = req->q->queuedata;
1721 	u32 stop_err_bits;
1722 
1723 	if (mmc_host_is_spi(mq->card->host))
1724 		return false;
1725 
1726 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1727 
1728 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1729 	       brq->stop.resp[0] & stop_err_bits ||
1730 	       status            & stop_err_bits ||
1731 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1732 }
1733 
1734 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1735 {
1736 	return !brq->sbc.error && !brq->cmd.error &&
1737 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1738 }
1739 
1740 /*
1741  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1742  * policy:
1743  * 1. A request that has transferred at least some data is considered
1744  * successful and will be requeued if there is remaining data to
1745  * transfer.
1746  * 2. Otherwise the number of retries is incremented and the request
1747  * will be requeued if there are remaining retries.
1748  * 3. Otherwise the request will be errored out.
1749  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1750  * mqrq->retries. So there are only 4 possible actions here:
1751  *	1. do not accept the bytes_xfered value i.e. set it to zero
1752  *	2. change mqrq->retries to determine the number of retries
1753  *	3. try to reset the card
1754  *	4. read one sector at a time
1755  */
1756 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1757 {
1758 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1759 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1760 	struct mmc_blk_request *brq = &mqrq->brq;
1761 	struct mmc_blk_data *md = mq->blkdata;
1762 	struct mmc_card *card = mq->card;
1763 	u32 status;
1764 	u32 blocks;
1765 	int err;
1766 
1767 	/*
1768 	 * Some errors the host driver might not have seen. Set the number of
1769 	 * bytes transferred to zero in that case.
1770 	 */
1771 	err = __mmc_send_status(card, &status, 0);
1772 	if (err || mmc_blk_status_error(req, status))
1773 		brq->data.bytes_xfered = 0;
1774 
1775 	mmc_retune_release(card->host);
1776 
1777 	/*
1778 	 * Try again to get the status. This also provides an opportunity for
1779 	 * re-tuning.
1780 	 */
1781 	if (err)
1782 		err = __mmc_send_status(card, &status, 0);
1783 
1784 	/*
1785 	 * Nothing more to do after the number of bytes transferred has been
1786 	 * updated and there is no card.
1787 	 */
1788 	if (err && mmc_detect_card_removed(card->host))
1789 		return;
1790 
1791 	/* Try to get back to "tran" state */
1792 	if (!mmc_host_is_spi(mq->card->host) &&
1793 	    (err || !mmc_ready_for_data(status)))
1794 		err = mmc_blk_fix_state(mq->card, req);
1795 
1796 	/*
1797 	 * Special case for SD cards where the card might record the number of
1798 	 * blocks written.
1799 	 */
1800 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1801 	    rq_data_dir(req) == WRITE) {
1802 		if (mmc_sd_num_wr_blocks(card, &blocks))
1803 			brq->data.bytes_xfered = 0;
1804 		else
1805 			brq->data.bytes_xfered = blocks << 9;
1806 	}
1807 
1808 	/* Reset if the card is in a bad state */
1809 	if (!mmc_host_is_spi(mq->card->host) &&
1810 	    err && mmc_blk_reset(md, card->host, type)) {
1811 		pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1812 		mqrq->retries = MMC_NO_RETRIES;
1813 		return;
1814 	}
1815 
1816 	/*
1817 	 * If anything was done, just return and if there is anything remaining
1818 	 * on the request it will get requeued.
1819 	 */
1820 	if (brq->data.bytes_xfered)
1821 		return;
1822 
1823 	/* Reset before last retry */
1824 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1825 		mmc_blk_reset(md, card->host, type);
1826 
1827 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1828 	if (brq->sbc.error || brq->cmd.error)
1829 		return;
1830 
1831 	/* Reduce the remaining retries for data errors */
1832 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1833 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1834 		return;
1835 	}
1836 
1837 	/* FIXME: Missing single sector read for large sector size */
1838 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1839 	    brq->data.blocks > 1) {
1840 		/* Read one sector at a time */
1841 		mmc_blk_read_single(mq, req);
1842 		return;
1843 	}
1844 }
1845 
1846 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1847 {
1848 	mmc_blk_eval_resp_error(brq);
1849 
1850 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1851 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1852 }
1853 
1854 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1855 {
1856 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1857 	u32 status = 0;
1858 	int err;
1859 
1860 	if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1861 		return 0;
1862 
1863 	err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status);
1864 
1865 	/*
1866 	 * Do not assume data transferred correctly if there are any error bits
1867 	 * set.
1868 	 */
1869 	if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1870 		mqrq->brq.data.bytes_xfered = 0;
1871 		err = err ? err : -EIO;
1872 	}
1873 
1874 	/* Copy the exception bit so it will be seen later on */
1875 	if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1876 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1877 
1878 	return err;
1879 }
1880 
1881 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1882 					    struct request *req)
1883 {
1884 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1885 
1886 	mmc_blk_reset_success(mq->blkdata, type);
1887 }
1888 
1889 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1890 {
1891 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1892 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1893 
1894 	if (nr_bytes) {
1895 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1896 			blk_mq_requeue_request(req, true);
1897 		else
1898 			__blk_mq_end_request(req, BLK_STS_OK);
1899 	} else if (!blk_rq_bytes(req)) {
1900 		__blk_mq_end_request(req, BLK_STS_IOERR);
1901 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1902 		blk_mq_requeue_request(req, true);
1903 	} else {
1904 		if (mmc_card_removed(mq->card))
1905 			req->rq_flags |= RQF_QUIET;
1906 		blk_mq_end_request(req, BLK_STS_IOERR);
1907 	}
1908 }
1909 
1910 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1911 					struct mmc_queue_req *mqrq)
1912 {
1913 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1914 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1915 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1916 }
1917 
1918 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1919 				 struct mmc_queue_req *mqrq)
1920 {
1921 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1922 		mmc_run_bkops(mq->card);
1923 }
1924 
1925 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
1926 {
1927 	struct mmc_queue_req *mqrq =
1928 		container_of(mrq, struct mmc_queue_req, brq.mrq);
1929 	struct request *req = mmc_queue_req_to_req(mqrq);
1930 	struct request_queue *q = req->q;
1931 	struct mmc_queue *mq = q->queuedata;
1932 	struct mmc_host *host = mq->card->host;
1933 	unsigned long flags;
1934 
1935 	if (mmc_blk_rq_error(&mqrq->brq) ||
1936 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
1937 		spin_lock_irqsave(&mq->lock, flags);
1938 		mq->recovery_needed = true;
1939 		mq->recovery_req = req;
1940 		spin_unlock_irqrestore(&mq->lock, flags);
1941 
1942 		host->cqe_ops->cqe_recovery_start(host);
1943 
1944 		schedule_work(&mq->recovery_work);
1945 		return;
1946 	}
1947 
1948 	mmc_blk_rw_reset_success(mq, req);
1949 
1950 	/*
1951 	 * Block layer timeouts race with completions which means the normal
1952 	 * completion path cannot be used during recovery.
1953 	 */
1954 	if (mq->in_recovery)
1955 		mmc_blk_cqe_complete_rq(mq, req);
1956 	else if (likely(!blk_should_fake_timeout(req->q)))
1957 		blk_mq_complete_request(req);
1958 }
1959 
1960 void mmc_blk_mq_complete(struct request *req)
1961 {
1962 	struct mmc_queue *mq = req->q->queuedata;
1963 	struct mmc_host *host = mq->card->host;
1964 
1965 	if (host->cqe_enabled)
1966 		mmc_blk_cqe_complete_rq(mq, req);
1967 	else if (likely(!blk_should_fake_timeout(req->q)))
1968 		mmc_blk_mq_complete_rq(mq, req);
1969 }
1970 
1971 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1972 				       struct request *req)
1973 {
1974 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1975 	struct mmc_host *host = mq->card->host;
1976 
1977 	if (mmc_blk_rq_error(&mqrq->brq) ||
1978 	    mmc_blk_card_busy(mq->card, req)) {
1979 		mmc_blk_mq_rw_recovery(mq, req);
1980 	} else {
1981 		mmc_blk_rw_reset_success(mq, req);
1982 		mmc_retune_release(host);
1983 	}
1984 
1985 	mmc_blk_urgent_bkops(mq, mqrq);
1986 }
1987 
1988 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1989 {
1990 	unsigned long flags;
1991 	bool put_card;
1992 
1993 	spin_lock_irqsave(&mq->lock, flags);
1994 
1995 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1996 
1997 	put_card = (mmc_tot_in_flight(mq) == 0);
1998 
1999 	spin_unlock_irqrestore(&mq->lock, flags);
2000 
2001 	if (put_card)
2002 		mmc_put_card(mq->card, &mq->ctx);
2003 }
2004 
2005 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2006 {
2007 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2008 	struct mmc_request *mrq = &mqrq->brq.mrq;
2009 	struct mmc_host *host = mq->card->host;
2010 
2011 	mmc_post_req(host, mrq, 0);
2012 
2013 	/*
2014 	 * Block layer timeouts race with completions which means the normal
2015 	 * completion path cannot be used during recovery.
2016 	 */
2017 	if (mq->in_recovery)
2018 		mmc_blk_mq_complete_rq(mq, req);
2019 	else if (likely(!blk_should_fake_timeout(req->q)))
2020 		blk_mq_complete_request(req);
2021 
2022 	mmc_blk_mq_dec_in_flight(mq, req);
2023 }
2024 
2025 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2026 {
2027 	struct request *req = mq->recovery_req;
2028 	struct mmc_host *host = mq->card->host;
2029 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2030 
2031 	mq->recovery_req = NULL;
2032 	mq->rw_wait = false;
2033 
2034 	if (mmc_blk_rq_error(&mqrq->brq)) {
2035 		mmc_retune_hold_now(host);
2036 		mmc_blk_mq_rw_recovery(mq, req);
2037 	}
2038 
2039 	mmc_blk_urgent_bkops(mq, mqrq);
2040 
2041 	mmc_blk_mq_post_req(mq, req);
2042 }
2043 
2044 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2045 					 struct request **prev_req)
2046 {
2047 	if (mmc_host_done_complete(mq->card->host))
2048 		return;
2049 
2050 	mutex_lock(&mq->complete_lock);
2051 
2052 	if (!mq->complete_req)
2053 		goto out_unlock;
2054 
2055 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2056 
2057 	if (prev_req)
2058 		*prev_req = mq->complete_req;
2059 	else
2060 		mmc_blk_mq_post_req(mq, mq->complete_req);
2061 
2062 	mq->complete_req = NULL;
2063 
2064 out_unlock:
2065 	mutex_unlock(&mq->complete_lock);
2066 }
2067 
2068 void mmc_blk_mq_complete_work(struct work_struct *work)
2069 {
2070 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2071 					    complete_work);
2072 
2073 	mmc_blk_mq_complete_prev_req(mq, NULL);
2074 }
2075 
2076 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2077 {
2078 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2079 						  brq.mrq);
2080 	struct request *req = mmc_queue_req_to_req(mqrq);
2081 	struct request_queue *q = req->q;
2082 	struct mmc_queue *mq = q->queuedata;
2083 	struct mmc_host *host = mq->card->host;
2084 	unsigned long flags;
2085 
2086 	if (!mmc_host_done_complete(host)) {
2087 		bool waiting;
2088 
2089 		/*
2090 		 * We cannot complete the request in this context, so record
2091 		 * that there is a request to complete, and that a following
2092 		 * request does not need to wait (although it does need to
2093 		 * complete complete_req first).
2094 		 */
2095 		spin_lock_irqsave(&mq->lock, flags);
2096 		mq->complete_req = req;
2097 		mq->rw_wait = false;
2098 		waiting = mq->waiting;
2099 		spin_unlock_irqrestore(&mq->lock, flags);
2100 
2101 		/*
2102 		 * If 'waiting' then the waiting task will complete this
2103 		 * request, otherwise queue a work to do it. Note that
2104 		 * complete_work may still race with the dispatch of a following
2105 		 * request.
2106 		 */
2107 		if (waiting)
2108 			wake_up(&mq->wait);
2109 		else
2110 			queue_work(mq->card->complete_wq, &mq->complete_work);
2111 
2112 		return;
2113 	}
2114 
2115 	/* Take the recovery path for errors or urgent background operations */
2116 	if (mmc_blk_rq_error(&mqrq->brq) ||
2117 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2118 		spin_lock_irqsave(&mq->lock, flags);
2119 		mq->recovery_needed = true;
2120 		mq->recovery_req = req;
2121 		spin_unlock_irqrestore(&mq->lock, flags);
2122 		wake_up(&mq->wait);
2123 		schedule_work(&mq->recovery_work);
2124 		return;
2125 	}
2126 
2127 	mmc_blk_rw_reset_success(mq, req);
2128 
2129 	mq->rw_wait = false;
2130 	wake_up(&mq->wait);
2131 
2132 	mmc_blk_mq_post_req(mq, req);
2133 }
2134 
2135 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2136 {
2137 	unsigned long flags;
2138 	bool done;
2139 
2140 	/*
2141 	 * Wait while there is another request in progress, but not if recovery
2142 	 * is needed. Also indicate whether there is a request waiting to start.
2143 	 */
2144 	spin_lock_irqsave(&mq->lock, flags);
2145 	if (mq->recovery_needed) {
2146 		*err = -EBUSY;
2147 		done = true;
2148 	} else {
2149 		done = !mq->rw_wait;
2150 	}
2151 	mq->waiting = !done;
2152 	spin_unlock_irqrestore(&mq->lock, flags);
2153 
2154 	return done;
2155 }
2156 
2157 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2158 {
2159 	int err = 0;
2160 
2161 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2162 
2163 	/* Always complete the previous request if there is one */
2164 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2165 
2166 	return err;
2167 }
2168 
2169 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2170 				  struct request *req)
2171 {
2172 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2173 	struct mmc_host *host = mq->card->host;
2174 	struct request *prev_req = NULL;
2175 	int err = 0;
2176 
2177 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2178 
2179 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2180 
2181 	mmc_pre_req(host, &mqrq->brq.mrq);
2182 
2183 	err = mmc_blk_rw_wait(mq, &prev_req);
2184 	if (err)
2185 		goto out_post_req;
2186 
2187 	mq->rw_wait = true;
2188 
2189 	err = mmc_start_request(host, &mqrq->brq.mrq);
2190 
2191 	if (prev_req)
2192 		mmc_blk_mq_post_req(mq, prev_req);
2193 
2194 	if (err)
2195 		mq->rw_wait = false;
2196 
2197 	/* Release re-tuning here where there is no synchronization required */
2198 	if (err || mmc_host_done_complete(host))
2199 		mmc_retune_release(host);
2200 
2201 out_post_req:
2202 	if (err)
2203 		mmc_post_req(host, &mqrq->brq.mrq, err);
2204 
2205 	return err;
2206 }
2207 
2208 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2209 {
2210 	if (host->cqe_enabled)
2211 		return host->cqe_ops->cqe_wait_for_idle(host);
2212 
2213 	return mmc_blk_rw_wait(mq, NULL);
2214 }
2215 
2216 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2217 {
2218 	struct mmc_blk_data *md = mq->blkdata;
2219 	struct mmc_card *card = md->queue.card;
2220 	struct mmc_host *host = card->host;
2221 	int ret;
2222 
2223 	ret = mmc_blk_part_switch(card, md->part_type);
2224 	if (ret)
2225 		return MMC_REQ_FAILED_TO_START;
2226 
2227 	switch (mmc_issue_type(mq, req)) {
2228 	case MMC_ISSUE_SYNC:
2229 		ret = mmc_blk_wait_for_idle(mq, host);
2230 		if (ret)
2231 			return MMC_REQ_BUSY;
2232 		switch (req_op(req)) {
2233 		case REQ_OP_DRV_IN:
2234 		case REQ_OP_DRV_OUT:
2235 			mmc_blk_issue_drv_op(mq, req);
2236 			break;
2237 		case REQ_OP_DISCARD:
2238 			mmc_blk_issue_discard_rq(mq, req);
2239 			break;
2240 		case REQ_OP_SECURE_ERASE:
2241 			mmc_blk_issue_secdiscard_rq(mq, req);
2242 			break;
2243 		case REQ_OP_FLUSH:
2244 			mmc_blk_issue_flush(mq, req);
2245 			break;
2246 		default:
2247 			WARN_ON_ONCE(1);
2248 			return MMC_REQ_FAILED_TO_START;
2249 		}
2250 		return MMC_REQ_FINISHED;
2251 	case MMC_ISSUE_DCMD:
2252 	case MMC_ISSUE_ASYNC:
2253 		switch (req_op(req)) {
2254 		case REQ_OP_FLUSH:
2255 			if (!mmc_cache_enabled(host)) {
2256 				blk_mq_end_request(req, BLK_STS_OK);
2257 				return MMC_REQ_FINISHED;
2258 			}
2259 			ret = mmc_blk_cqe_issue_flush(mq, req);
2260 			break;
2261 		case REQ_OP_READ:
2262 		case REQ_OP_WRITE:
2263 			if (host->cqe_enabled)
2264 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2265 			else
2266 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2267 			break;
2268 		default:
2269 			WARN_ON_ONCE(1);
2270 			ret = -EINVAL;
2271 		}
2272 		if (!ret)
2273 			return MMC_REQ_STARTED;
2274 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2275 	default:
2276 		WARN_ON_ONCE(1);
2277 		return MMC_REQ_FAILED_TO_START;
2278 	}
2279 }
2280 
2281 static inline int mmc_blk_readonly(struct mmc_card *card)
2282 {
2283 	return mmc_card_readonly(card) ||
2284 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2285 }
2286 
2287 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2288 					      struct device *parent,
2289 					      sector_t size,
2290 					      bool default_ro,
2291 					      const char *subname,
2292 					      int area_type)
2293 {
2294 	struct mmc_blk_data *md;
2295 	int devidx, ret;
2296 	char cap_str[10];
2297 
2298 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2299 	if (devidx < 0) {
2300 		/*
2301 		 * We get -ENOSPC because there are no more any available
2302 		 * devidx. The reason may be that, either userspace haven't yet
2303 		 * unmounted the partitions, which postpones mmc_blk_release()
2304 		 * from being called, or the device has more partitions than
2305 		 * what we support.
2306 		 */
2307 		if (devidx == -ENOSPC)
2308 			dev_err(mmc_dev(card->host),
2309 				"no more device IDs available\n");
2310 
2311 		return ERR_PTR(devidx);
2312 	}
2313 
2314 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2315 	if (!md) {
2316 		ret = -ENOMEM;
2317 		goto out;
2318 	}
2319 
2320 	md->area_type = area_type;
2321 
2322 	/*
2323 	 * Set the read-only status based on the supported commands
2324 	 * and the write protect switch.
2325 	 */
2326 	md->read_only = mmc_blk_readonly(card);
2327 
2328 	md->disk = mmc_init_queue(&md->queue, card);
2329 	if (IS_ERR(md->disk)) {
2330 		ret = PTR_ERR(md->disk);
2331 		goto err_kfree;
2332 	}
2333 
2334 	INIT_LIST_HEAD(&md->part);
2335 	INIT_LIST_HEAD(&md->rpmbs);
2336 	kref_init(&md->kref);
2337 
2338 	md->queue.blkdata = md;
2339 
2340 	md->disk->major	= MMC_BLOCK_MAJOR;
2341 	md->disk->minors = perdev_minors;
2342 	md->disk->first_minor = devidx * perdev_minors;
2343 	md->disk->fops = &mmc_bdops;
2344 	md->disk->private_data = md;
2345 	md->parent = parent;
2346 	set_disk_ro(md->disk, md->read_only || default_ro);
2347 	md->disk->flags = GENHD_FL_EXT_DEVT;
2348 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2349 		md->disk->flags |= GENHD_FL_NO_PART_SCAN
2350 				   | GENHD_FL_SUPPRESS_PARTITION_INFO;
2351 
2352 	/*
2353 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2354 	 *
2355 	 * - be set for removable media with permanent block devices
2356 	 * - be unset for removable block devices with permanent media
2357 	 *
2358 	 * Since MMC block devices clearly fall under the second
2359 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2360 	 * should use the block device creation/destruction hotplug
2361 	 * messages to tell when the card is present.
2362 	 */
2363 
2364 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2365 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2366 
2367 	set_capacity(md->disk, size);
2368 
2369 	if (mmc_host_cmd23(card->host)) {
2370 		if ((mmc_card_mmc(card) &&
2371 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2372 		    (mmc_card_sd(card) &&
2373 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2374 			md->flags |= MMC_BLK_CMD23;
2375 	}
2376 
2377 	if (mmc_card_mmc(card) &&
2378 	    md->flags & MMC_BLK_CMD23 &&
2379 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2380 	     card->ext_csd.rel_sectors)) {
2381 		md->flags |= MMC_BLK_REL_WR;
2382 		blk_queue_write_cache(md->queue.queue, true, true);
2383 	}
2384 
2385 	string_get_size((u64)size, 512, STRING_UNITS_2,
2386 			cap_str, sizeof(cap_str));
2387 	pr_info("%s: %s %s %s %s\n",
2388 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2389 		cap_str, md->read_only ? "(ro)" : "");
2390 
2391 	return md;
2392 
2393  err_kfree:
2394 	kfree(md);
2395  out:
2396 	ida_simple_remove(&mmc_blk_ida, devidx);
2397 	return ERR_PTR(ret);
2398 }
2399 
2400 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2401 {
2402 	sector_t size;
2403 
2404 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2405 		/*
2406 		 * The EXT_CSD sector count is in number or 512 byte
2407 		 * sectors.
2408 		 */
2409 		size = card->ext_csd.sectors;
2410 	} else {
2411 		/*
2412 		 * The CSD capacity field is in units of read_blkbits.
2413 		 * set_capacity takes units of 512 bytes.
2414 		 */
2415 		size = (typeof(sector_t))card->csd.capacity
2416 			<< (card->csd.read_blkbits - 9);
2417 	}
2418 
2419 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2420 					MMC_BLK_DATA_AREA_MAIN);
2421 }
2422 
2423 static int mmc_blk_alloc_part(struct mmc_card *card,
2424 			      struct mmc_blk_data *md,
2425 			      unsigned int part_type,
2426 			      sector_t size,
2427 			      bool default_ro,
2428 			      const char *subname,
2429 			      int area_type)
2430 {
2431 	struct mmc_blk_data *part_md;
2432 
2433 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2434 				    subname, area_type);
2435 	if (IS_ERR(part_md))
2436 		return PTR_ERR(part_md);
2437 	part_md->part_type = part_type;
2438 	list_add(&part_md->part, &md->part);
2439 
2440 	return 0;
2441 }
2442 
2443 /**
2444  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2445  * @filp: the character device file
2446  * @cmd: the ioctl() command
2447  * @arg: the argument from userspace
2448  *
2449  * This will essentially just redirect the ioctl()s coming in over to
2450  * the main block device spawning the RPMB character device.
2451  */
2452 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2453 			   unsigned long arg)
2454 {
2455 	struct mmc_rpmb_data *rpmb = filp->private_data;
2456 	int ret;
2457 
2458 	switch (cmd) {
2459 	case MMC_IOC_CMD:
2460 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2461 					(struct mmc_ioc_cmd __user *)arg,
2462 					rpmb);
2463 		break;
2464 	case MMC_IOC_MULTI_CMD:
2465 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2466 					(struct mmc_ioc_multi_cmd __user *)arg,
2467 					rpmb);
2468 		break;
2469 	default:
2470 		ret = -EINVAL;
2471 		break;
2472 	}
2473 
2474 	return ret;
2475 }
2476 
2477 #ifdef CONFIG_COMPAT
2478 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2479 			      unsigned long arg)
2480 {
2481 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2482 }
2483 #endif
2484 
2485 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2486 {
2487 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2488 						  struct mmc_rpmb_data, chrdev);
2489 
2490 	get_device(&rpmb->dev);
2491 	filp->private_data = rpmb;
2492 	mmc_blk_get(rpmb->md->disk);
2493 
2494 	return nonseekable_open(inode, filp);
2495 }
2496 
2497 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2498 {
2499 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2500 						  struct mmc_rpmb_data, chrdev);
2501 
2502 	mmc_blk_put(rpmb->md);
2503 	put_device(&rpmb->dev);
2504 
2505 	return 0;
2506 }
2507 
2508 static const struct file_operations mmc_rpmb_fileops = {
2509 	.release = mmc_rpmb_chrdev_release,
2510 	.open = mmc_rpmb_chrdev_open,
2511 	.owner = THIS_MODULE,
2512 	.llseek = no_llseek,
2513 	.unlocked_ioctl = mmc_rpmb_ioctl,
2514 #ifdef CONFIG_COMPAT
2515 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2516 #endif
2517 };
2518 
2519 static void mmc_blk_rpmb_device_release(struct device *dev)
2520 {
2521 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2522 
2523 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2524 	kfree(rpmb);
2525 }
2526 
2527 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2528 				   struct mmc_blk_data *md,
2529 				   unsigned int part_index,
2530 				   sector_t size,
2531 				   const char *subname)
2532 {
2533 	int devidx, ret;
2534 	char rpmb_name[DISK_NAME_LEN];
2535 	char cap_str[10];
2536 	struct mmc_rpmb_data *rpmb;
2537 
2538 	/* This creates the minor number for the RPMB char device */
2539 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2540 	if (devidx < 0)
2541 		return devidx;
2542 
2543 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2544 	if (!rpmb) {
2545 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2546 		return -ENOMEM;
2547 	}
2548 
2549 	snprintf(rpmb_name, sizeof(rpmb_name),
2550 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2551 
2552 	rpmb->id = devidx;
2553 	rpmb->part_index = part_index;
2554 	rpmb->dev.init_name = rpmb_name;
2555 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2556 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2557 	rpmb->dev.parent = &card->dev;
2558 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2559 	device_initialize(&rpmb->dev);
2560 	dev_set_drvdata(&rpmb->dev, rpmb);
2561 	rpmb->md = md;
2562 
2563 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2564 	rpmb->chrdev.owner = THIS_MODULE;
2565 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2566 	if (ret) {
2567 		pr_err("%s: could not add character device\n", rpmb_name);
2568 		goto out_put_device;
2569 	}
2570 
2571 	list_add(&rpmb->node, &md->rpmbs);
2572 
2573 	string_get_size((u64)size, 512, STRING_UNITS_2,
2574 			cap_str, sizeof(cap_str));
2575 
2576 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2577 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2578 		MAJOR(mmc_rpmb_devt), rpmb->id);
2579 
2580 	return 0;
2581 
2582 out_put_device:
2583 	put_device(&rpmb->dev);
2584 	return ret;
2585 }
2586 
2587 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2588 
2589 {
2590 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2591 	put_device(&rpmb->dev);
2592 }
2593 
2594 /* MMC Physical partitions consist of two boot partitions and
2595  * up to four general purpose partitions.
2596  * For each partition enabled in EXT_CSD a block device will be allocatedi
2597  * to provide access to the partition.
2598  */
2599 
2600 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2601 {
2602 	int idx, ret;
2603 
2604 	if (!mmc_card_mmc(card))
2605 		return 0;
2606 
2607 	for (idx = 0; idx < card->nr_parts; idx++) {
2608 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2609 			/*
2610 			 * RPMB partitions does not provide block access, they
2611 			 * are only accessed using ioctl():s. Thus create
2612 			 * special RPMB block devices that do not have a
2613 			 * backing block queue for these.
2614 			 */
2615 			ret = mmc_blk_alloc_rpmb_part(card, md,
2616 				card->part[idx].part_cfg,
2617 				card->part[idx].size >> 9,
2618 				card->part[idx].name);
2619 			if (ret)
2620 				return ret;
2621 		} else if (card->part[idx].size) {
2622 			ret = mmc_blk_alloc_part(card, md,
2623 				card->part[idx].part_cfg,
2624 				card->part[idx].size >> 9,
2625 				card->part[idx].force_ro,
2626 				card->part[idx].name,
2627 				card->part[idx].area_type);
2628 			if (ret)
2629 				return ret;
2630 		}
2631 	}
2632 
2633 	return 0;
2634 }
2635 
2636 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2637 {
2638 	struct mmc_card *card;
2639 
2640 	if (md) {
2641 		/*
2642 		 * Flush remaining requests and free queues. It
2643 		 * is freeing the queue that stops new requests
2644 		 * from being accepted.
2645 		 */
2646 		card = md->queue.card;
2647 		if (md->disk->flags & GENHD_FL_UP) {
2648 			device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2649 			if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2650 					card->ext_csd.boot_ro_lockable)
2651 				device_remove_file(disk_to_dev(md->disk),
2652 					&md->power_ro_lock);
2653 
2654 			del_gendisk(md->disk);
2655 		}
2656 		mmc_cleanup_queue(&md->queue);
2657 		mmc_blk_put(md);
2658 	}
2659 }
2660 
2661 static void mmc_blk_remove_parts(struct mmc_card *card,
2662 				 struct mmc_blk_data *md)
2663 {
2664 	struct list_head *pos, *q;
2665 	struct mmc_blk_data *part_md;
2666 	struct mmc_rpmb_data *rpmb;
2667 
2668 	/* Remove RPMB partitions */
2669 	list_for_each_safe(pos, q, &md->rpmbs) {
2670 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2671 		list_del(pos);
2672 		mmc_blk_remove_rpmb_part(rpmb);
2673 	}
2674 	/* Remove block partitions */
2675 	list_for_each_safe(pos, q, &md->part) {
2676 		part_md = list_entry(pos, struct mmc_blk_data, part);
2677 		list_del(pos);
2678 		mmc_blk_remove_req(part_md);
2679 	}
2680 }
2681 
2682 static int mmc_add_disk(struct mmc_blk_data *md)
2683 {
2684 	int ret;
2685 	struct mmc_card *card = md->queue.card;
2686 
2687 	device_add_disk(md->parent, md->disk, NULL);
2688 	md->force_ro.show = force_ro_show;
2689 	md->force_ro.store = force_ro_store;
2690 	sysfs_attr_init(&md->force_ro.attr);
2691 	md->force_ro.attr.name = "force_ro";
2692 	md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2693 	ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2694 	if (ret)
2695 		goto force_ro_fail;
2696 
2697 	if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2698 	     card->ext_csd.boot_ro_lockable) {
2699 		umode_t mode;
2700 
2701 		if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2702 			mode = S_IRUGO;
2703 		else
2704 			mode = S_IRUGO | S_IWUSR;
2705 
2706 		md->power_ro_lock.show = power_ro_lock_show;
2707 		md->power_ro_lock.store = power_ro_lock_store;
2708 		sysfs_attr_init(&md->power_ro_lock.attr);
2709 		md->power_ro_lock.attr.mode = mode;
2710 		md->power_ro_lock.attr.name =
2711 					"ro_lock_until_next_power_on";
2712 		ret = device_create_file(disk_to_dev(md->disk),
2713 				&md->power_ro_lock);
2714 		if (ret)
2715 			goto power_ro_lock_fail;
2716 	}
2717 	return ret;
2718 
2719 power_ro_lock_fail:
2720 	device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2721 force_ro_fail:
2722 	del_gendisk(md->disk);
2723 
2724 	return ret;
2725 }
2726 
2727 #ifdef CONFIG_DEBUG_FS
2728 
2729 static int mmc_dbg_card_status_get(void *data, u64 *val)
2730 {
2731 	struct mmc_card *card = data;
2732 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2733 	struct mmc_queue *mq = &md->queue;
2734 	struct request *req;
2735 	int ret;
2736 
2737 	/* Ask the block layer about the card status */
2738 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2739 	if (IS_ERR(req))
2740 		return PTR_ERR(req);
2741 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2742 	blk_execute_rq(NULL, req, 0);
2743 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2744 	if (ret >= 0) {
2745 		*val = ret;
2746 		ret = 0;
2747 	}
2748 	blk_put_request(req);
2749 
2750 	return ret;
2751 }
2752 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2753 			 NULL, "%08llx\n");
2754 
2755 /* That is two digits * 512 + 1 for newline */
2756 #define EXT_CSD_STR_LEN 1025
2757 
2758 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2759 {
2760 	struct mmc_card *card = inode->i_private;
2761 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2762 	struct mmc_queue *mq = &md->queue;
2763 	struct request *req;
2764 	char *buf;
2765 	ssize_t n = 0;
2766 	u8 *ext_csd;
2767 	int err, i;
2768 
2769 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2770 	if (!buf)
2771 		return -ENOMEM;
2772 
2773 	/* Ask the block layer for the EXT CSD */
2774 	req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2775 	if (IS_ERR(req)) {
2776 		err = PTR_ERR(req);
2777 		goto out_free;
2778 	}
2779 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2780 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2781 	blk_execute_rq(NULL, req, 0);
2782 	err = req_to_mmc_queue_req(req)->drv_op_result;
2783 	blk_put_request(req);
2784 	if (err) {
2785 		pr_err("FAILED %d\n", err);
2786 		goto out_free;
2787 	}
2788 
2789 	for (i = 0; i < 512; i++)
2790 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2791 	n += sprintf(buf + n, "\n");
2792 
2793 	if (n != EXT_CSD_STR_LEN) {
2794 		err = -EINVAL;
2795 		kfree(ext_csd);
2796 		goto out_free;
2797 	}
2798 
2799 	filp->private_data = buf;
2800 	kfree(ext_csd);
2801 	return 0;
2802 
2803 out_free:
2804 	kfree(buf);
2805 	return err;
2806 }
2807 
2808 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2809 				size_t cnt, loff_t *ppos)
2810 {
2811 	char *buf = filp->private_data;
2812 
2813 	return simple_read_from_buffer(ubuf, cnt, ppos,
2814 				       buf, EXT_CSD_STR_LEN);
2815 }
2816 
2817 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2818 {
2819 	kfree(file->private_data);
2820 	return 0;
2821 }
2822 
2823 static const struct file_operations mmc_dbg_ext_csd_fops = {
2824 	.open		= mmc_ext_csd_open,
2825 	.read		= mmc_ext_csd_read,
2826 	.release	= mmc_ext_csd_release,
2827 	.llseek		= default_llseek,
2828 };
2829 
2830 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2831 {
2832 	struct dentry *root;
2833 
2834 	if (!card->debugfs_root)
2835 		return 0;
2836 
2837 	root = card->debugfs_root;
2838 
2839 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2840 		md->status_dentry =
2841 			debugfs_create_file_unsafe("status", 0400, root,
2842 						   card,
2843 						   &mmc_dbg_card_status_fops);
2844 		if (!md->status_dentry)
2845 			return -EIO;
2846 	}
2847 
2848 	if (mmc_card_mmc(card)) {
2849 		md->ext_csd_dentry =
2850 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2851 					    &mmc_dbg_ext_csd_fops);
2852 		if (!md->ext_csd_dentry)
2853 			return -EIO;
2854 	}
2855 
2856 	return 0;
2857 }
2858 
2859 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2860 				   struct mmc_blk_data *md)
2861 {
2862 	if (!card->debugfs_root)
2863 		return;
2864 
2865 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2866 		debugfs_remove(md->status_dentry);
2867 		md->status_dentry = NULL;
2868 	}
2869 
2870 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2871 		debugfs_remove(md->ext_csd_dentry);
2872 		md->ext_csd_dentry = NULL;
2873 	}
2874 }
2875 
2876 #else
2877 
2878 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2879 {
2880 	return 0;
2881 }
2882 
2883 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2884 				   struct mmc_blk_data *md)
2885 {
2886 }
2887 
2888 #endif /* CONFIG_DEBUG_FS */
2889 
2890 static int mmc_blk_probe(struct mmc_card *card)
2891 {
2892 	struct mmc_blk_data *md, *part_md;
2893 	int ret = 0;
2894 
2895 	/*
2896 	 * Check that the card supports the command class(es) we need.
2897 	 */
2898 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2899 		return -ENODEV;
2900 
2901 	mmc_fixup_device(card, mmc_blk_fixups);
2902 
2903 	card->complete_wq = alloc_workqueue("mmc_complete",
2904 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2905 	if (!card->complete_wq) {
2906 		pr_err("Failed to create mmc completion workqueue");
2907 		return -ENOMEM;
2908 	}
2909 
2910 	md = mmc_blk_alloc(card);
2911 	if (IS_ERR(md)) {
2912 		ret = PTR_ERR(md);
2913 		goto out_free;
2914 	}
2915 
2916 	ret = mmc_blk_alloc_parts(card, md);
2917 	if (ret)
2918 		goto out;
2919 
2920 	dev_set_drvdata(&card->dev, md);
2921 
2922 	ret = mmc_add_disk(md);
2923 	if (ret)
2924 		goto out;
2925 
2926 	list_for_each_entry(part_md, &md->part, part) {
2927 		ret = mmc_add_disk(part_md);
2928 		if (ret)
2929 			goto out;
2930 	}
2931 
2932 	/* Add two debugfs entries */
2933 	mmc_blk_add_debugfs(card, md);
2934 
2935 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2936 	pm_runtime_use_autosuspend(&card->dev);
2937 
2938 	/*
2939 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2940 	 * decision to be taken during the SDIO init sequence instead.
2941 	 */
2942 	if (card->type != MMC_TYPE_SD_COMBO) {
2943 		pm_runtime_set_active(&card->dev);
2944 		pm_runtime_enable(&card->dev);
2945 	}
2946 
2947 	return 0;
2948 
2949 out:
2950 	mmc_blk_remove_parts(card, md);
2951 	mmc_blk_remove_req(md);
2952 out_free:
2953 	destroy_workqueue(card->complete_wq);
2954 	return ret;
2955 }
2956 
2957 static void mmc_blk_remove(struct mmc_card *card)
2958 {
2959 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2960 
2961 	mmc_blk_remove_debugfs(card, md);
2962 	mmc_blk_remove_parts(card, md);
2963 	pm_runtime_get_sync(&card->dev);
2964 	if (md->part_curr != md->part_type) {
2965 		mmc_claim_host(card->host);
2966 		mmc_blk_part_switch(card, md->part_type);
2967 		mmc_release_host(card->host);
2968 	}
2969 	if (card->type != MMC_TYPE_SD_COMBO)
2970 		pm_runtime_disable(&card->dev);
2971 	pm_runtime_put_noidle(&card->dev);
2972 	mmc_blk_remove_req(md);
2973 	dev_set_drvdata(&card->dev, NULL);
2974 	destroy_workqueue(card->complete_wq);
2975 }
2976 
2977 static int _mmc_blk_suspend(struct mmc_card *card)
2978 {
2979 	struct mmc_blk_data *part_md;
2980 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2981 
2982 	if (md) {
2983 		mmc_queue_suspend(&md->queue);
2984 		list_for_each_entry(part_md, &md->part, part) {
2985 			mmc_queue_suspend(&part_md->queue);
2986 		}
2987 	}
2988 	return 0;
2989 }
2990 
2991 static void mmc_blk_shutdown(struct mmc_card *card)
2992 {
2993 	_mmc_blk_suspend(card);
2994 }
2995 
2996 #ifdef CONFIG_PM_SLEEP
2997 static int mmc_blk_suspend(struct device *dev)
2998 {
2999 	struct mmc_card *card = mmc_dev_to_card(dev);
3000 
3001 	return _mmc_blk_suspend(card);
3002 }
3003 
3004 static int mmc_blk_resume(struct device *dev)
3005 {
3006 	struct mmc_blk_data *part_md;
3007 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3008 
3009 	if (md) {
3010 		/*
3011 		 * Resume involves the card going into idle state,
3012 		 * so current partition is always the main one.
3013 		 */
3014 		md->part_curr = md->part_type;
3015 		mmc_queue_resume(&md->queue);
3016 		list_for_each_entry(part_md, &md->part, part) {
3017 			mmc_queue_resume(&part_md->queue);
3018 		}
3019 	}
3020 	return 0;
3021 }
3022 #endif
3023 
3024 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3025 
3026 static struct mmc_driver mmc_driver = {
3027 	.drv		= {
3028 		.name	= "mmcblk",
3029 		.pm	= &mmc_blk_pm_ops,
3030 	},
3031 	.probe		= mmc_blk_probe,
3032 	.remove		= mmc_blk_remove,
3033 	.shutdown	= mmc_blk_shutdown,
3034 };
3035 
3036 static int __init mmc_blk_init(void)
3037 {
3038 	int res;
3039 
3040 	res  = bus_register(&mmc_rpmb_bus_type);
3041 	if (res < 0) {
3042 		pr_err("mmcblk: could not register RPMB bus type\n");
3043 		return res;
3044 	}
3045 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3046 	if (res < 0) {
3047 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3048 		goto out_bus_unreg;
3049 	}
3050 
3051 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3052 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3053 
3054 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3055 
3056 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3057 	if (res)
3058 		goto out_chrdev_unreg;
3059 
3060 	res = mmc_register_driver(&mmc_driver);
3061 	if (res)
3062 		goto out_blkdev_unreg;
3063 
3064 	return 0;
3065 
3066 out_blkdev_unreg:
3067 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3068 out_chrdev_unreg:
3069 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3070 out_bus_unreg:
3071 	bus_unregister(&mmc_rpmb_bus_type);
3072 	return res;
3073 }
3074 
3075 static void __exit mmc_blk_exit(void)
3076 {
3077 	mmc_unregister_driver(&mmc_driver);
3078 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3079 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3080 	bus_unregister(&mmc_rpmb_bus_type);
3081 }
3082 
3083 module_init(mmc_blk_init);
3084 module_exit(mmc_blk_exit);
3085 
3086 MODULE_LICENSE("GPL");
3087 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3088 
3089