1 /* 2 * Block driver for media (i.e., flash cards) 3 * 4 * Copyright 2002 Hewlett-Packard Company 5 * Copyright 2005-2008 Pierre Ossman 6 * 7 * Use consistent with the GNU GPL is permitted, 8 * provided that this copyright notice is 9 * preserved in its entirety in all copies and derived works. 10 * 11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 13 * FITNESS FOR ANY PARTICULAR PURPOSE. 14 * 15 * Many thanks to Alessandro Rubini and Jonathan Corbet! 16 * 17 * Author: Andrew Christian 18 * 28 May 2002 19 */ 20 #include <linux/moduleparam.h> 21 #include <linux/module.h> 22 #include <linux/init.h> 23 24 #include <linux/kernel.h> 25 #include <linux/fs.h> 26 #include <linux/slab.h> 27 #include <linux/errno.h> 28 #include <linux/hdreg.h> 29 #include <linux/kdev_t.h> 30 #include <linux/blkdev.h> 31 #include <linux/cdev.h> 32 #include <linux/mutex.h> 33 #include <linux/scatterlist.h> 34 #include <linux/string_helpers.h> 35 #include <linux/delay.h> 36 #include <linux/capability.h> 37 #include <linux/compat.h> 38 #include <linux/pm_runtime.h> 39 #include <linux/idr.h> 40 #include <linux/debugfs.h> 41 42 #include <linux/mmc/ioctl.h> 43 #include <linux/mmc/card.h> 44 #include <linux/mmc/host.h> 45 #include <linux/mmc/mmc.h> 46 #include <linux/mmc/sd.h> 47 48 #include <linux/uaccess.h> 49 50 #include "queue.h" 51 #include "block.h" 52 #include "core.h" 53 #include "card.h" 54 #include "host.h" 55 #include "bus.h" 56 #include "mmc_ops.h" 57 #include "quirks.h" 58 #include "sd_ops.h" 59 60 MODULE_ALIAS("mmc:block"); 61 #ifdef MODULE_PARAM_PREFIX 62 #undef MODULE_PARAM_PREFIX 63 #endif 64 #define MODULE_PARAM_PREFIX "mmcblk." 65 66 /* 67 * Set a 10 second timeout for polling write request busy state. Note, mmc core 68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 69 * second software timer to timeout the whole request, so 10 seconds should be 70 * ample. 71 */ 72 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 73 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 74 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 75 76 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 77 (rq_data_dir(req) == WRITE)) 78 static DEFINE_MUTEX(block_mutex); 79 80 /* 81 * The defaults come from config options but can be overriden by module 82 * or bootarg options. 83 */ 84 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 85 86 /* 87 * We've only got one major, so number of mmcblk devices is 88 * limited to (1 << 20) / number of minors per device. It is also 89 * limited by the MAX_DEVICES below. 90 */ 91 static int max_devices; 92 93 #define MAX_DEVICES 256 94 95 static DEFINE_IDA(mmc_blk_ida); 96 static DEFINE_IDA(mmc_rpmb_ida); 97 98 /* 99 * There is one mmc_blk_data per slot. 100 */ 101 struct mmc_blk_data { 102 struct device *parent; 103 struct gendisk *disk; 104 struct mmc_queue queue; 105 struct list_head part; 106 struct list_head rpmbs; 107 108 unsigned int flags; 109 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 110 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 111 112 unsigned int usage; 113 unsigned int read_only; 114 unsigned int part_type; 115 unsigned int reset_done; 116 #define MMC_BLK_READ BIT(0) 117 #define MMC_BLK_WRITE BIT(1) 118 #define MMC_BLK_DISCARD BIT(2) 119 #define MMC_BLK_SECDISCARD BIT(3) 120 #define MMC_BLK_CQE_RECOVERY BIT(4) 121 122 /* 123 * Only set in main mmc_blk_data associated 124 * with mmc_card with dev_set_drvdata, and keeps 125 * track of the current selected device partition. 126 */ 127 unsigned int part_curr; 128 struct device_attribute force_ro; 129 struct device_attribute power_ro_lock; 130 int area_type; 131 132 /* debugfs files (only in main mmc_blk_data) */ 133 struct dentry *status_dentry; 134 struct dentry *ext_csd_dentry; 135 }; 136 137 /* Device type for RPMB character devices */ 138 static dev_t mmc_rpmb_devt; 139 140 /* Bus type for RPMB character devices */ 141 static struct bus_type mmc_rpmb_bus_type = { 142 .name = "mmc_rpmb", 143 }; 144 145 /** 146 * struct mmc_rpmb_data - special RPMB device type for these areas 147 * @dev: the device for the RPMB area 148 * @chrdev: character device for the RPMB area 149 * @id: unique device ID number 150 * @part_index: partition index (0 on first) 151 * @md: parent MMC block device 152 * @node: list item, so we can put this device on a list 153 */ 154 struct mmc_rpmb_data { 155 struct device dev; 156 struct cdev chrdev; 157 int id; 158 unsigned int part_index; 159 struct mmc_blk_data *md; 160 struct list_head node; 161 }; 162 163 static DEFINE_MUTEX(open_lock); 164 165 module_param(perdev_minors, int, 0444); 166 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 167 168 static inline int mmc_blk_part_switch(struct mmc_card *card, 169 unsigned int part_type); 170 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 171 struct mmc_card *card, 172 int disable_multi, 173 struct mmc_queue *mq); 174 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 175 176 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 177 { 178 struct mmc_blk_data *md; 179 180 mutex_lock(&open_lock); 181 md = disk->private_data; 182 if (md && md->usage == 0) 183 md = NULL; 184 if (md) 185 md->usage++; 186 mutex_unlock(&open_lock); 187 188 return md; 189 } 190 191 static inline int mmc_get_devidx(struct gendisk *disk) 192 { 193 int devidx = disk->first_minor / perdev_minors; 194 return devidx; 195 } 196 197 static void mmc_blk_put(struct mmc_blk_data *md) 198 { 199 mutex_lock(&open_lock); 200 md->usage--; 201 if (md->usage == 0) { 202 int devidx = mmc_get_devidx(md->disk); 203 blk_put_queue(md->queue.queue); 204 ida_simple_remove(&mmc_blk_ida, devidx); 205 put_disk(md->disk); 206 kfree(md); 207 } 208 mutex_unlock(&open_lock); 209 } 210 211 static ssize_t power_ro_lock_show(struct device *dev, 212 struct device_attribute *attr, char *buf) 213 { 214 int ret; 215 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 216 struct mmc_card *card = md->queue.card; 217 int locked = 0; 218 219 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 220 locked = 2; 221 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 222 locked = 1; 223 224 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 225 226 mmc_blk_put(md); 227 228 return ret; 229 } 230 231 static ssize_t power_ro_lock_store(struct device *dev, 232 struct device_attribute *attr, const char *buf, size_t count) 233 { 234 int ret; 235 struct mmc_blk_data *md, *part_md; 236 struct mmc_queue *mq; 237 struct request *req; 238 unsigned long set; 239 240 if (kstrtoul(buf, 0, &set)) 241 return -EINVAL; 242 243 if (set != 1) 244 return count; 245 246 md = mmc_blk_get(dev_to_disk(dev)); 247 mq = &md->queue; 248 249 /* Dispatch locking to the block layer */ 250 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 251 if (IS_ERR(req)) { 252 count = PTR_ERR(req); 253 goto out_put; 254 } 255 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 256 blk_execute_rq(mq->queue, NULL, req, 0); 257 ret = req_to_mmc_queue_req(req)->drv_op_result; 258 blk_put_request(req); 259 260 if (!ret) { 261 pr_info("%s: Locking boot partition ro until next power on\n", 262 md->disk->disk_name); 263 set_disk_ro(md->disk, 1); 264 265 list_for_each_entry(part_md, &md->part, part) 266 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 267 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 268 set_disk_ro(part_md->disk, 1); 269 } 270 } 271 out_put: 272 mmc_blk_put(md); 273 return count; 274 } 275 276 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 277 char *buf) 278 { 279 int ret; 280 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 281 282 ret = snprintf(buf, PAGE_SIZE, "%d\n", 283 get_disk_ro(dev_to_disk(dev)) ^ 284 md->read_only); 285 mmc_blk_put(md); 286 return ret; 287 } 288 289 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int ret; 293 char *end; 294 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 295 unsigned long set = simple_strtoul(buf, &end, 0); 296 if (end == buf) { 297 ret = -EINVAL; 298 goto out; 299 } 300 301 set_disk_ro(dev_to_disk(dev), set || md->read_only); 302 ret = count; 303 out: 304 mmc_blk_put(md); 305 return ret; 306 } 307 308 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 309 { 310 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 311 int ret = -ENXIO; 312 313 mutex_lock(&block_mutex); 314 if (md) { 315 if (md->usage == 2) 316 check_disk_change(bdev); 317 ret = 0; 318 319 if ((mode & FMODE_WRITE) && md->read_only) { 320 mmc_blk_put(md); 321 ret = -EROFS; 322 } 323 } 324 mutex_unlock(&block_mutex); 325 326 return ret; 327 } 328 329 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 330 { 331 struct mmc_blk_data *md = disk->private_data; 332 333 mutex_lock(&block_mutex); 334 mmc_blk_put(md); 335 mutex_unlock(&block_mutex); 336 } 337 338 static int 339 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 340 { 341 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 342 geo->heads = 4; 343 geo->sectors = 16; 344 return 0; 345 } 346 347 struct mmc_blk_ioc_data { 348 struct mmc_ioc_cmd ic; 349 unsigned char *buf; 350 u64 buf_bytes; 351 struct mmc_rpmb_data *rpmb; 352 }; 353 354 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 355 struct mmc_ioc_cmd __user *user) 356 { 357 struct mmc_blk_ioc_data *idata; 358 int err; 359 360 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 361 if (!idata) { 362 err = -ENOMEM; 363 goto out; 364 } 365 366 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 367 err = -EFAULT; 368 goto idata_err; 369 } 370 371 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 372 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 373 err = -EOVERFLOW; 374 goto idata_err; 375 } 376 377 if (!idata->buf_bytes) { 378 idata->buf = NULL; 379 return idata; 380 } 381 382 idata->buf = memdup_user((void __user *)(unsigned long) 383 idata->ic.data_ptr, idata->buf_bytes); 384 if (IS_ERR(idata->buf)) { 385 err = PTR_ERR(idata->buf); 386 goto idata_err; 387 } 388 389 return idata; 390 391 idata_err: 392 kfree(idata); 393 out: 394 return ERR_PTR(err); 395 } 396 397 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 398 struct mmc_blk_ioc_data *idata) 399 { 400 struct mmc_ioc_cmd *ic = &idata->ic; 401 402 if (copy_to_user(&(ic_ptr->response), ic->response, 403 sizeof(ic->response))) 404 return -EFAULT; 405 406 if (!idata->ic.write_flag) { 407 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 408 idata->buf, idata->buf_bytes)) 409 return -EFAULT; 410 } 411 412 return 0; 413 } 414 415 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 416 u32 *resp_errs) 417 { 418 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 419 int err = 0; 420 u32 status; 421 422 do { 423 bool done = time_after(jiffies, timeout); 424 425 err = __mmc_send_status(card, &status, 5); 426 if (err) { 427 dev_err(mmc_dev(card->host), 428 "error %d requesting status\n", err); 429 return err; 430 } 431 432 /* Accumulate any response error bits seen */ 433 if (resp_errs) 434 *resp_errs |= status; 435 436 /* 437 * Timeout if the device never becomes ready for data and never 438 * leaves the program state. 439 */ 440 if (done) { 441 dev_err(mmc_dev(card->host), 442 "Card stuck in wrong state! %s status: %#x\n", 443 __func__, status); 444 return -ETIMEDOUT; 445 } 446 } while (!mmc_ready_for_data(status)); 447 448 return err; 449 } 450 451 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 452 struct mmc_blk_ioc_data *idata) 453 { 454 struct mmc_command cmd = {}, sbc = {}; 455 struct mmc_data data = {}; 456 struct mmc_request mrq = {}; 457 struct scatterlist sg; 458 int err; 459 unsigned int target_part; 460 461 if (!card || !md || !idata) 462 return -EINVAL; 463 464 /* 465 * The RPMB accesses comes in from the character device, so we 466 * need to target these explicitly. Else we just target the 467 * partition type for the block device the ioctl() was issued 468 * on. 469 */ 470 if (idata->rpmb) { 471 /* Support multiple RPMB partitions */ 472 target_part = idata->rpmb->part_index; 473 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 474 } else { 475 target_part = md->part_type; 476 } 477 478 cmd.opcode = idata->ic.opcode; 479 cmd.arg = idata->ic.arg; 480 cmd.flags = idata->ic.flags; 481 482 if (idata->buf_bytes) { 483 data.sg = &sg; 484 data.sg_len = 1; 485 data.blksz = idata->ic.blksz; 486 data.blocks = idata->ic.blocks; 487 488 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 489 490 if (idata->ic.write_flag) 491 data.flags = MMC_DATA_WRITE; 492 else 493 data.flags = MMC_DATA_READ; 494 495 /* data.flags must already be set before doing this. */ 496 mmc_set_data_timeout(&data, card); 497 498 /* Allow overriding the timeout_ns for empirical tuning. */ 499 if (idata->ic.data_timeout_ns) 500 data.timeout_ns = idata->ic.data_timeout_ns; 501 502 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 503 /* 504 * Pretend this is a data transfer and rely on the 505 * host driver to compute timeout. When all host 506 * drivers support cmd.cmd_timeout for R1B, this 507 * can be changed to: 508 * 509 * mrq.data = NULL; 510 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 511 */ 512 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 513 } 514 515 mrq.data = &data; 516 } 517 518 mrq.cmd = &cmd; 519 520 err = mmc_blk_part_switch(card, target_part); 521 if (err) 522 return err; 523 524 if (idata->ic.is_acmd) { 525 err = mmc_app_cmd(card->host, card); 526 if (err) 527 return err; 528 } 529 530 if (idata->rpmb) { 531 sbc.opcode = MMC_SET_BLOCK_COUNT; 532 /* 533 * We don't do any blockcount validation because the max size 534 * may be increased by a future standard. We just copy the 535 * 'Reliable Write' bit here. 536 */ 537 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 538 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 539 mrq.sbc = &sbc; 540 } 541 542 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 543 (cmd.opcode == MMC_SWITCH)) 544 return mmc_sanitize(card); 545 546 mmc_wait_for_req(card->host, &mrq); 547 548 if (cmd.error) { 549 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 550 __func__, cmd.error); 551 return cmd.error; 552 } 553 if (data.error) { 554 dev_err(mmc_dev(card->host), "%s: data error %d\n", 555 __func__, data.error); 556 return data.error; 557 } 558 559 /* 560 * Make sure the cache of the PARTITION_CONFIG register and 561 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 562 * changed it successfully. 563 */ 564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 565 (cmd.opcode == MMC_SWITCH)) { 566 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 567 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 568 569 /* 570 * Update cache so the next mmc_blk_part_switch call operates 571 * on up-to-date data. 572 */ 573 card->ext_csd.part_config = value; 574 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 575 } 576 577 /* 578 * According to the SD specs, some commands require a delay after 579 * issuing the command. 580 */ 581 if (idata->ic.postsleep_min_us) 582 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 583 584 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 585 586 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B)) { 587 /* 588 * Ensure RPMB/R1B command has completed by polling CMD13 589 * "Send Status". 590 */ 591 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 592 } 593 594 return err; 595 } 596 597 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 598 struct mmc_ioc_cmd __user *ic_ptr, 599 struct mmc_rpmb_data *rpmb) 600 { 601 struct mmc_blk_ioc_data *idata; 602 struct mmc_blk_ioc_data *idatas[1]; 603 struct mmc_queue *mq; 604 struct mmc_card *card; 605 int err = 0, ioc_err = 0; 606 struct request *req; 607 608 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 609 if (IS_ERR(idata)) 610 return PTR_ERR(idata); 611 /* This will be NULL on non-RPMB ioctl():s */ 612 idata->rpmb = rpmb; 613 614 card = md->queue.card; 615 if (IS_ERR(card)) { 616 err = PTR_ERR(card); 617 goto cmd_done; 618 } 619 620 /* 621 * Dispatch the ioctl() into the block request queue. 622 */ 623 mq = &md->queue; 624 req = blk_get_request(mq->queue, 625 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 626 if (IS_ERR(req)) { 627 err = PTR_ERR(req); 628 goto cmd_done; 629 } 630 idatas[0] = idata; 631 req_to_mmc_queue_req(req)->drv_op = 632 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 633 req_to_mmc_queue_req(req)->drv_op_data = idatas; 634 req_to_mmc_queue_req(req)->ioc_count = 1; 635 blk_execute_rq(mq->queue, NULL, req, 0); 636 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 637 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 638 blk_put_request(req); 639 640 cmd_done: 641 kfree(idata->buf); 642 kfree(idata); 643 return ioc_err ? ioc_err : err; 644 } 645 646 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 647 struct mmc_ioc_multi_cmd __user *user, 648 struct mmc_rpmb_data *rpmb) 649 { 650 struct mmc_blk_ioc_data **idata = NULL; 651 struct mmc_ioc_cmd __user *cmds = user->cmds; 652 struct mmc_card *card; 653 struct mmc_queue *mq; 654 int i, err = 0, ioc_err = 0; 655 __u64 num_of_cmds; 656 struct request *req; 657 658 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 659 sizeof(num_of_cmds))) 660 return -EFAULT; 661 662 if (!num_of_cmds) 663 return 0; 664 665 if (num_of_cmds > MMC_IOC_MAX_CMDS) 666 return -EINVAL; 667 668 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 669 if (!idata) 670 return -ENOMEM; 671 672 for (i = 0; i < num_of_cmds; i++) { 673 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 674 if (IS_ERR(idata[i])) { 675 err = PTR_ERR(idata[i]); 676 num_of_cmds = i; 677 goto cmd_err; 678 } 679 /* This will be NULL on non-RPMB ioctl():s */ 680 idata[i]->rpmb = rpmb; 681 } 682 683 card = md->queue.card; 684 if (IS_ERR(card)) { 685 err = PTR_ERR(card); 686 goto cmd_err; 687 } 688 689 690 /* 691 * Dispatch the ioctl()s into the block request queue. 692 */ 693 mq = &md->queue; 694 req = blk_get_request(mq->queue, 695 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 696 if (IS_ERR(req)) { 697 err = PTR_ERR(req); 698 goto cmd_err; 699 } 700 req_to_mmc_queue_req(req)->drv_op = 701 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 702 req_to_mmc_queue_req(req)->drv_op_data = idata; 703 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 704 blk_execute_rq(mq->queue, NULL, req, 0); 705 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 706 707 /* copy to user if data and response */ 708 for (i = 0; i < num_of_cmds && !err; i++) 709 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 710 711 blk_put_request(req); 712 713 cmd_err: 714 for (i = 0; i < num_of_cmds; i++) { 715 kfree(idata[i]->buf); 716 kfree(idata[i]); 717 } 718 kfree(idata); 719 return ioc_err ? ioc_err : err; 720 } 721 722 static int mmc_blk_check_blkdev(struct block_device *bdev) 723 { 724 /* 725 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 726 * whole block device, not on a partition. This prevents overspray 727 * between sibling partitions. 728 */ 729 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains)) 730 return -EPERM; 731 return 0; 732 } 733 734 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 735 unsigned int cmd, unsigned long arg) 736 { 737 struct mmc_blk_data *md; 738 int ret; 739 740 switch (cmd) { 741 case MMC_IOC_CMD: 742 ret = mmc_blk_check_blkdev(bdev); 743 if (ret) 744 return ret; 745 md = mmc_blk_get(bdev->bd_disk); 746 if (!md) 747 return -EINVAL; 748 ret = mmc_blk_ioctl_cmd(md, 749 (struct mmc_ioc_cmd __user *)arg, 750 NULL); 751 mmc_blk_put(md); 752 return ret; 753 case MMC_IOC_MULTI_CMD: 754 ret = mmc_blk_check_blkdev(bdev); 755 if (ret) 756 return ret; 757 md = mmc_blk_get(bdev->bd_disk); 758 if (!md) 759 return -EINVAL; 760 ret = mmc_blk_ioctl_multi_cmd(md, 761 (struct mmc_ioc_multi_cmd __user *)arg, 762 NULL); 763 mmc_blk_put(md); 764 return ret; 765 default: 766 return -EINVAL; 767 } 768 } 769 770 #ifdef CONFIG_COMPAT 771 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 772 unsigned int cmd, unsigned long arg) 773 { 774 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 775 } 776 #endif 777 778 static const struct block_device_operations mmc_bdops = { 779 .open = mmc_blk_open, 780 .release = mmc_blk_release, 781 .getgeo = mmc_blk_getgeo, 782 .owner = THIS_MODULE, 783 .ioctl = mmc_blk_ioctl, 784 #ifdef CONFIG_COMPAT 785 .compat_ioctl = mmc_blk_compat_ioctl, 786 #endif 787 }; 788 789 static int mmc_blk_part_switch_pre(struct mmc_card *card, 790 unsigned int part_type) 791 { 792 int ret = 0; 793 794 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 795 if (card->ext_csd.cmdq_en) { 796 ret = mmc_cmdq_disable(card); 797 if (ret) 798 return ret; 799 } 800 mmc_retune_pause(card->host); 801 } 802 803 return ret; 804 } 805 806 static int mmc_blk_part_switch_post(struct mmc_card *card, 807 unsigned int part_type) 808 { 809 int ret = 0; 810 811 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 812 mmc_retune_unpause(card->host); 813 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 814 ret = mmc_cmdq_enable(card); 815 } 816 817 return ret; 818 } 819 820 static inline int mmc_blk_part_switch(struct mmc_card *card, 821 unsigned int part_type) 822 { 823 int ret = 0; 824 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 825 826 if (main_md->part_curr == part_type) 827 return 0; 828 829 if (mmc_card_mmc(card)) { 830 u8 part_config = card->ext_csd.part_config; 831 832 ret = mmc_blk_part_switch_pre(card, part_type); 833 if (ret) 834 return ret; 835 836 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 837 part_config |= part_type; 838 839 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 840 EXT_CSD_PART_CONFIG, part_config, 841 card->ext_csd.part_time); 842 if (ret) { 843 mmc_blk_part_switch_post(card, part_type); 844 return ret; 845 } 846 847 card->ext_csd.part_config = part_config; 848 849 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 850 } 851 852 main_md->part_curr = part_type; 853 return ret; 854 } 855 856 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 857 { 858 int err; 859 u32 result; 860 __be32 *blocks; 861 862 struct mmc_request mrq = {}; 863 struct mmc_command cmd = {}; 864 struct mmc_data data = {}; 865 866 struct scatterlist sg; 867 868 cmd.opcode = MMC_APP_CMD; 869 cmd.arg = card->rca << 16; 870 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 871 872 err = mmc_wait_for_cmd(card->host, &cmd, 0); 873 if (err) 874 return err; 875 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 876 return -EIO; 877 878 memset(&cmd, 0, sizeof(struct mmc_command)); 879 880 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 881 cmd.arg = 0; 882 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 883 884 data.blksz = 4; 885 data.blocks = 1; 886 data.flags = MMC_DATA_READ; 887 data.sg = &sg; 888 data.sg_len = 1; 889 mmc_set_data_timeout(&data, card); 890 891 mrq.cmd = &cmd; 892 mrq.data = &data; 893 894 blocks = kmalloc(4, GFP_KERNEL); 895 if (!blocks) 896 return -ENOMEM; 897 898 sg_init_one(&sg, blocks, 4); 899 900 mmc_wait_for_req(card->host, &mrq); 901 902 result = ntohl(*blocks); 903 kfree(blocks); 904 905 if (cmd.error || data.error) 906 return -EIO; 907 908 *written_blocks = result; 909 910 return 0; 911 } 912 913 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 914 { 915 if (host->actual_clock) 916 return host->actual_clock / 1000; 917 918 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 919 if (host->ios.clock) 920 return host->ios.clock / 2000; 921 922 /* How can there be no clock */ 923 WARN_ON_ONCE(1); 924 return 100; /* 100 kHz is minimum possible value */ 925 } 926 927 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 928 struct mmc_data *data) 929 { 930 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 931 unsigned int khz; 932 933 if (data->timeout_clks) { 934 khz = mmc_blk_clock_khz(host); 935 ms += DIV_ROUND_UP(data->timeout_clks, khz); 936 } 937 938 return ms; 939 } 940 941 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 942 int type) 943 { 944 int err; 945 946 if (md->reset_done & type) 947 return -EEXIST; 948 949 md->reset_done |= type; 950 err = mmc_hw_reset(host); 951 /* Ensure we switch back to the correct partition */ 952 if (err != -EOPNOTSUPP) { 953 struct mmc_blk_data *main_md = 954 dev_get_drvdata(&host->card->dev); 955 int part_err; 956 957 main_md->part_curr = main_md->part_type; 958 part_err = mmc_blk_part_switch(host->card, md->part_type); 959 if (part_err) { 960 /* 961 * We have failed to get back into the correct 962 * partition, so we need to abort the whole request. 963 */ 964 return -ENODEV; 965 } 966 } 967 return err; 968 } 969 970 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 971 { 972 md->reset_done &= ~type; 973 } 974 975 /* 976 * The non-block commands come back from the block layer after it queued it and 977 * processed it with all other requests and then they get issued in this 978 * function. 979 */ 980 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 981 { 982 struct mmc_queue_req *mq_rq; 983 struct mmc_card *card = mq->card; 984 struct mmc_blk_data *md = mq->blkdata; 985 struct mmc_blk_ioc_data **idata; 986 bool rpmb_ioctl; 987 u8 **ext_csd; 988 u32 status; 989 int ret; 990 int i; 991 992 mq_rq = req_to_mmc_queue_req(req); 993 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 994 995 switch (mq_rq->drv_op) { 996 case MMC_DRV_OP_IOCTL: 997 case MMC_DRV_OP_IOCTL_RPMB: 998 idata = mq_rq->drv_op_data; 999 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1000 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1001 if (ret) 1002 break; 1003 } 1004 /* Always switch back to main area after RPMB access */ 1005 if (rpmb_ioctl) 1006 mmc_blk_part_switch(card, 0); 1007 break; 1008 case MMC_DRV_OP_BOOT_WP: 1009 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1010 card->ext_csd.boot_ro_lock | 1011 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1012 card->ext_csd.part_time); 1013 if (ret) 1014 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1015 md->disk->disk_name, ret); 1016 else 1017 card->ext_csd.boot_ro_lock |= 1018 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1019 break; 1020 case MMC_DRV_OP_GET_CARD_STATUS: 1021 ret = mmc_send_status(card, &status); 1022 if (!ret) 1023 ret = status; 1024 break; 1025 case MMC_DRV_OP_GET_EXT_CSD: 1026 ext_csd = mq_rq->drv_op_data; 1027 ret = mmc_get_ext_csd(card, ext_csd); 1028 break; 1029 default: 1030 pr_err("%s: unknown driver specific operation\n", 1031 md->disk->disk_name); 1032 ret = -EINVAL; 1033 break; 1034 } 1035 mq_rq->drv_op_result = ret; 1036 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1037 } 1038 1039 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1040 { 1041 struct mmc_blk_data *md = mq->blkdata; 1042 struct mmc_card *card = md->queue.card; 1043 unsigned int from, nr; 1044 int err = 0, type = MMC_BLK_DISCARD; 1045 blk_status_t status = BLK_STS_OK; 1046 1047 if (!mmc_can_erase(card)) { 1048 status = BLK_STS_NOTSUPP; 1049 goto fail; 1050 } 1051 1052 from = blk_rq_pos(req); 1053 nr = blk_rq_sectors(req); 1054 1055 do { 1056 err = 0; 1057 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1058 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1059 INAND_CMD38_ARG_EXT_CSD, 1060 card->erase_arg == MMC_TRIM_ARG ? 1061 INAND_CMD38_ARG_TRIM : 1062 INAND_CMD38_ARG_ERASE, 1063 card->ext_csd.generic_cmd6_time); 1064 } 1065 if (!err) 1066 err = mmc_erase(card, from, nr, card->erase_arg); 1067 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1068 if (err) 1069 status = BLK_STS_IOERR; 1070 else 1071 mmc_blk_reset_success(md, type); 1072 fail: 1073 blk_mq_end_request(req, status); 1074 } 1075 1076 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1077 struct request *req) 1078 { 1079 struct mmc_blk_data *md = mq->blkdata; 1080 struct mmc_card *card = md->queue.card; 1081 unsigned int from, nr, arg; 1082 int err = 0, type = MMC_BLK_SECDISCARD; 1083 blk_status_t status = BLK_STS_OK; 1084 1085 if (!(mmc_can_secure_erase_trim(card))) { 1086 status = BLK_STS_NOTSUPP; 1087 goto out; 1088 } 1089 1090 from = blk_rq_pos(req); 1091 nr = blk_rq_sectors(req); 1092 1093 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1094 arg = MMC_SECURE_TRIM1_ARG; 1095 else 1096 arg = MMC_SECURE_ERASE_ARG; 1097 1098 retry: 1099 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1100 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1101 INAND_CMD38_ARG_EXT_CSD, 1102 arg == MMC_SECURE_TRIM1_ARG ? 1103 INAND_CMD38_ARG_SECTRIM1 : 1104 INAND_CMD38_ARG_SECERASE, 1105 card->ext_csd.generic_cmd6_time); 1106 if (err) 1107 goto out_retry; 1108 } 1109 1110 err = mmc_erase(card, from, nr, arg); 1111 if (err == -EIO) 1112 goto out_retry; 1113 if (err) { 1114 status = BLK_STS_IOERR; 1115 goto out; 1116 } 1117 1118 if (arg == MMC_SECURE_TRIM1_ARG) { 1119 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1120 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1121 INAND_CMD38_ARG_EXT_CSD, 1122 INAND_CMD38_ARG_SECTRIM2, 1123 card->ext_csd.generic_cmd6_time); 1124 if (err) 1125 goto out_retry; 1126 } 1127 1128 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1129 if (err == -EIO) 1130 goto out_retry; 1131 if (err) { 1132 status = BLK_STS_IOERR; 1133 goto out; 1134 } 1135 } 1136 1137 out_retry: 1138 if (err && !mmc_blk_reset(md, card->host, type)) 1139 goto retry; 1140 if (!err) 1141 mmc_blk_reset_success(md, type); 1142 out: 1143 blk_mq_end_request(req, status); 1144 } 1145 1146 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1147 { 1148 struct mmc_blk_data *md = mq->blkdata; 1149 struct mmc_card *card = md->queue.card; 1150 int ret = 0; 1151 1152 ret = mmc_flush_cache(card); 1153 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1154 } 1155 1156 /* 1157 * Reformat current write as a reliable write, supporting 1158 * both legacy and the enhanced reliable write MMC cards. 1159 * In each transfer we'll handle only as much as a single 1160 * reliable write can handle, thus finish the request in 1161 * partial completions. 1162 */ 1163 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1164 struct mmc_card *card, 1165 struct request *req) 1166 { 1167 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1168 /* Legacy mode imposes restrictions on transfers. */ 1169 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1170 brq->data.blocks = 1; 1171 1172 if (brq->data.blocks > card->ext_csd.rel_sectors) 1173 brq->data.blocks = card->ext_csd.rel_sectors; 1174 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1175 brq->data.blocks = 1; 1176 } 1177 } 1178 1179 #define CMD_ERRORS_EXCL_OOR \ 1180 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1181 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1182 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1183 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1184 R1_CC_ERROR | /* Card controller error */ \ 1185 R1_ERROR) /* General/unknown error */ 1186 1187 #define CMD_ERRORS \ 1188 (CMD_ERRORS_EXCL_OOR | \ 1189 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1190 1191 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1192 { 1193 u32 val; 1194 1195 /* 1196 * Per the SD specification(physical layer version 4.10)[1], 1197 * section 4.3.3, it explicitly states that "When the last 1198 * block of user area is read using CMD18, the host should 1199 * ignore OUT_OF_RANGE error that may occur even the sequence 1200 * is correct". And JESD84-B51 for eMMC also has a similar 1201 * statement on section 6.8.3. 1202 * 1203 * Multiple block read/write could be done by either predefined 1204 * method, namely CMD23, or open-ending mode. For open-ending mode, 1205 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1206 * 1207 * However the spec[1] doesn't tell us whether we should also 1208 * ignore that for predefined method. But per the spec[1], section 1209 * 4.15 Set Block Count Command, it says"If illegal block count 1210 * is set, out of range error will be indicated during read/write 1211 * operation (For example, data transfer is stopped at user area 1212 * boundary)." In another word, we could expect a out of range error 1213 * in the response for the following CMD18/25. And if argument of 1214 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1215 * we could also expect to get a -ETIMEDOUT or any error number from 1216 * the host drivers due to missing data response(for write)/data(for 1217 * read), as the cards will stop the data transfer by itself per the 1218 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1219 */ 1220 1221 if (!brq->stop.error) { 1222 bool oor_with_open_end; 1223 /* If there is no error yet, check R1 response */ 1224 1225 val = brq->stop.resp[0] & CMD_ERRORS; 1226 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1227 1228 if (val && !oor_with_open_end) 1229 brq->stop.error = -EIO; 1230 } 1231 } 1232 1233 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1234 int disable_multi, bool *do_rel_wr_p, 1235 bool *do_data_tag_p) 1236 { 1237 struct mmc_blk_data *md = mq->blkdata; 1238 struct mmc_card *card = md->queue.card; 1239 struct mmc_blk_request *brq = &mqrq->brq; 1240 struct request *req = mmc_queue_req_to_req(mqrq); 1241 bool do_rel_wr, do_data_tag; 1242 1243 /* 1244 * Reliable writes are used to implement Forced Unit Access and 1245 * are supported only on MMCs. 1246 */ 1247 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1248 rq_data_dir(req) == WRITE && 1249 (md->flags & MMC_BLK_REL_WR); 1250 1251 memset(brq, 0, sizeof(struct mmc_blk_request)); 1252 1253 brq->mrq.data = &brq->data; 1254 brq->mrq.tag = req->tag; 1255 1256 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1257 brq->stop.arg = 0; 1258 1259 if (rq_data_dir(req) == READ) { 1260 brq->data.flags = MMC_DATA_READ; 1261 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1262 } else { 1263 brq->data.flags = MMC_DATA_WRITE; 1264 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1265 } 1266 1267 brq->data.blksz = 512; 1268 brq->data.blocks = blk_rq_sectors(req); 1269 brq->data.blk_addr = blk_rq_pos(req); 1270 1271 /* 1272 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1273 * The eMMC will give "high" priority tasks priority over "simple" 1274 * priority tasks. Here we always set "simple" priority by not setting 1275 * MMC_DATA_PRIO. 1276 */ 1277 1278 /* 1279 * The block layer doesn't support all sector count 1280 * restrictions, so we need to be prepared for too big 1281 * requests. 1282 */ 1283 if (brq->data.blocks > card->host->max_blk_count) 1284 brq->data.blocks = card->host->max_blk_count; 1285 1286 if (brq->data.blocks > 1) { 1287 /* 1288 * Some SD cards in SPI mode return a CRC error or even lock up 1289 * completely when trying to read the last block using a 1290 * multiblock read command. 1291 */ 1292 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1293 (blk_rq_pos(req) + blk_rq_sectors(req) == 1294 get_capacity(md->disk))) 1295 brq->data.blocks--; 1296 1297 /* 1298 * After a read error, we redo the request one sector 1299 * at a time in order to accurately determine which 1300 * sectors can be read successfully. 1301 */ 1302 if (disable_multi) 1303 brq->data.blocks = 1; 1304 1305 /* 1306 * Some controllers have HW issues while operating 1307 * in multiple I/O mode 1308 */ 1309 if (card->host->ops->multi_io_quirk) 1310 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1311 (rq_data_dir(req) == READ) ? 1312 MMC_DATA_READ : MMC_DATA_WRITE, 1313 brq->data.blocks); 1314 } 1315 1316 if (do_rel_wr) { 1317 mmc_apply_rel_rw(brq, card, req); 1318 brq->data.flags |= MMC_DATA_REL_WR; 1319 } 1320 1321 /* 1322 * Data tag is used only during writing meta data to speed 1323 * up write and any subsequent read of this meta data 1324 */ 1325 do_data_tag = card->ext_csd.data_tag_unit_size && 1326 (req->cmd_flags & REQ_META) && 1327 (rq_data_dir(req) == WRITE) && 1328 ((brq->data.blocks * brq->data.blksz) >= 1329 card->ext_csd.data_tag_unit_size); 1330 1331 if (do_data_tag) 1332 brq->data.flags |= MMC_DATA_DAT_TAG; 1333 1334 mmc_set_data_timeout(&brq->data, card); 1335 1336 brq->data.sg = mqrq->sg; 1337 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1338 1339 /* 1340 * Adjust the sg list so it is the same size as the 1341 * request. 1342 */ 1343 if (brq->data.blocks != blk_rq_sectors(req)) { 1344 int i, data_size = brq->data.blocks << 9; 1345 struct scatterlist *sg; 1346 1347 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1348 data_size -= sg->length; 1349 if (data_size <= 0) { 1350 sg->length += data_size; 1351 i++; 1352 break; 1353 } 1354 } 1355 brq->data.sg_len = i; 1356 } 1357 1358 if (do_rel_wr_p) 1359 *do_rel_wr_p = do_rel_wr; 1360 1361 if (do_data_tag_p) 1362 *do_data_tag_p = do_data_tag; 1363 } 1364 1365 #define MMC_CQE_RETRIES 2 1366 1367 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1368 { 1369 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1370 struct mmc_request *mrq = &mqrq->brq.mrq; 1371 struct request_queue *q = req->q; 1372 struct mmc_host *host = mq->card->host; 1373 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1374 unsigned long flags; 1375 bool put_card; 1376 int err; 1377 1378 mmc_cqe_post_req(host, mrq); 1379 1380 if (mrq->cmd && mrq->cmd->error) 1381 err = mrq->cmd->error; 1382 else if (mrq->data && mrq->data->error) 1383 err = mrq->data->error; 1384 else 1385 err = 0; 1386 1387 if (err) { 1388 if (mqrq->retries++ < MMC_CQE_RETRIES) 1389 blk_mq_requeue_request(req, true); 1390 else 1391 blk_mq_end_request(req, BLK_STS_IOERR); 1392 } else if (mrq->data) { 1393 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1394 blk_mq_requeue_request(req, true); 1395 else 1396 __blk_mq_end_request(req, BLK_STS_OK); 1397 } else { 1398 blk_mq_end_request(req, BLK_STS_OK); 1399 } 1400 1401 spin_lock_irqsave(&mq->lock, flags); 1402 1403 mq->in_flight[issue_type] -= 1; 1404 1405 put_card = (mmc_tot_in_flight(mq) == 0); 1406 1407 mmc_cqe_check_busy(mq); 1408 1409 spin_unlock_irqrestore(&mq->lock, flags); 1410 1411 if (!mq->cqe_busy) 1412 blk_mq_run_hw_queues(q, true); 1413 1414 if (put_card) 1415 mmc_put_card(mq->card, &mq->ctx); 1416 } 1417 1418 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1419 { 1420 struct mmc_card *card = mq->card; 1421 struct mmc_host *host = card->host; 1422 int err; 1423 1424 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1425 1426 err = mmc_cqe_recovery(host); 1427 if (err) 1428 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1429 else 1430 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1431 1432 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1433 } 1434 1435 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1436 { 1437 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1438 brq.mrq); 1439 struct request *req = mmc_queue_req_to_req(mqrq); 1440 struct request_queue *q = req->q; 1441 struct mmc_queue *mq = q->queuedata; 1442 1443 /* 1444 * Block layer timeouts race with completions which means the normal 1445 * completion path cannot be used during recovery. 1446 */ 1447 if (mq->in_recovery) 1448 mmc_blk_cqe_complete_rq(mq, req); 1449 else 1450 blk_mq_complete_request(req); 1451 } 1452 1453 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1454 { 1455 mrq->done = mmc_blk_cqe_req_done; 1456 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1457 1458 return mmc_cqe_start_req(host, mrq); 1459 } 1460 1461 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1462 struct request *req) 1463 { 1464 struct mmc_blk_request *brq = &mqrq->brq; 1465 1466 memset(brq, 0, sizeof(*brq)); 1467 1468 brq->mrq.cmd = &brq->cmd; 1469 brq->mrq.tag = req->tag; 1470 1471 return &brq->mrq; 1472 } 1473 1474 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1475 { 1476 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1477 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1478 1479 mrq->cmd->opcode = MMC_SWITCH; 1480 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1481 (EXT_CSD_FLUSH_CACHE << 16) | 1482 (1 << 8) | 1483 EXT_CSD_CMD_SET_NORMAL; 1484 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1485 1486 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1487 } 1488 1489 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1490 { 1491 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1492 struct mmc_host *host = mq->card->host; 1493 int err; 1494 1495 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1496 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1497 mmc_pre_req(host, &mqrq->brq.mrq); 1498 1499 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1500 if (err) 1501 mmc_post_req(host, &mqrq->brq.mrq, err); 1502 1503 return err; 1504 } 1505 1506 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1507 { 1508 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1509 struct mmc_host *host = mq->card->host; 1510 1511 if (host->hsq_enabled) 1512 return mmc_blk_hsq_issue_rw_rq(mq, req); 1513 1514 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1515 1516 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1517 } 1518 1519 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1520 struct mmc_card *card, 1521 int disable_multi, 1522 struct mmc_queue *mq) 1523 { 1524 u32 readcmd, writecmd; 1525 struct mmc_blk_request *brq = &mqrq->brq; 1526 struct request *req = mmc_queue_req_to_req(mqrq); 1527 struct mmc_blk_data *md = mq->blkdata; 1528 bool do_rel_wr, do_data_tag; 1529 1530 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1531 1532 brq->mrq.cmd = &brq->cmd; 1533 1534 brq->cmd.arg = blk_rq_pos(req); 1535 if (!mmc_card_blockaddr(card)) 1536 brq->cmd.arg <<= 9; 1537 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1538 1539 if (brq->data.blocks > 1 || do_rel_wr) { 1540 /* SPI multiblock writes terminate using a special 1541 * token, not a STOP_TRANSMISSION request. 1542 */ 1543 if (!mmc_host_is_spi(card->host) || 1544 rq_data_dir(req) == READ) 1545 brq->mrq.stop = &brq->stop; 1546 readcmd = MMC_READ_MULTIPLE_BLOCK; 1547 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1548 } else { 1549 brq->mrq.stop = NULL; 1550 readcmd = MMC_READ_SINGLE_BLOCK; 1551 writecmd = MMC_WRITE_BLOCK; 1552 } 1553 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1554 1555 /* 1556 * Pre-defined multi-block transfers are preferable to 1557 * open ended-ones (and necessary for reliable writes). 1558 * However, it is not sufficient to just send CMD23, 1559 * and avoid the final CMD12, as on an error condition 1560 * CMD12 (stop) needs to be sent anyway. This, coupled 1561 * with Auto-CMD23 enhancements provided by some 1562 * hosts, means that the complexity of dealing 1563 * with this is best left to the host. If CMD23 is 1564 * supported by card and host, we'll fill sbc in and let 1565 * the host deal with handling it correctly. This means 1566 * that for hosts that don't expose MMC_CAP_CMD23, no 1567 * change of behavior will be observed. 1568 * 1569 * N.B: Some MMC cards experience perf degradation. 1570 * We'll avoid using CMD23-bounded multiblock writes for 1571 * these, while retaining features like reliable writes. 1572 */ 1573 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1574 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1575 do_data_tag)) { 1576 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1577 brq->sbc.arg = brq->data.blocks | 1578 (do_rel_wr ? (1 << 31) : 0) | 1579 (do_data_tag ? (1 << 29) : 0); 1580 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1581 brq->mrq.sbc = &brq->sbc; 1582 } 1583 } 1584 1585 #define MMC_MAX_RETRIES 5 1586 #define MMC_DATA_RETRIES 2 1587 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1588 1589 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1590 { 1591 struct mmc_command cmd = { 1592 .opcode = MMC_STOP_TRANSMISSION, 1593 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1594 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1595 .busy_timeout = timeout, 1596 }; 1597 1598 return mmc_wait_for_cmd(card->host, &cmd, 5); 1599 } 1600 1601 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1602 { 1603 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1604 struct mmc_blk_request *brq = &mqrq->brq; 1605 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1606 int err; 1607 1608 mmc_retune_hold_now(card->host); 1609 1610 mmc_blk_send_stop(card, timeout); 1611 1612 err = card_busy_detect(card, timeout, NULL); 1613 1614 mmc_retune_release(card->host); 1615 1616 return err; 1617 } 1618 1619 #define MMC_READ_SINGLE_RETRIES 2 1620 1621 /* Single sector read during recovery */ 1622 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1623 { 1624 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1625 struct mmc_request *mrq = &mqrq->brq.mrq; 1626 struct mmc_card *card = mq->card; 1627 struct mmc_host *host = card->host; 1628 blk_status_t error = BLK_STS_OK; 1629 int retries = 0; 1630 1631 do { 1632 u32 status; 1633 int err; 1634 1635 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1636 1637 mmc_wait_for_req(host, mrq); 1638 1639 err = mmc_send_status(card, &status); 1640 if (err) 1641 goto error_exit; 1642 1643 if (!mmc_host_is_spi(host) && 1644 !mmc_ready_for_data(status)) { 1645 err = mmc_blk_fix_state(card, req); 1646 if (err) 1647 goto error_exit; 1648 } 1649 1650 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1651 continue; 1652 1653 retries = 0; 1654 1655 if (mrq->cmd->error || 1656 mrq->data->error || 1657 (!mmc_host_is_spi(host) && 1658 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1659 error = BLK_STS_IOERR; 1660 else 1661 error = BLK_STS_OK; 1662 1663 } while (blk_update_request(req, error, 512)); 1664 1665 return; 1666 1667 error_exit: 1668 mrq->data->bytes_xfered = 0; 1669 blk_update_request(req, BLK_STS_IOERR, 512); 1670 /* Let it try the remaining request again */ 1671 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1672 mqrq->retries = MMC_MAX_RETRIES - 1; 1673 } 1674 1675 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1676 { 1677 return !!brq->mrq.sbc; 1678 } 1679 1680 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1681 { 1682 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1683 } 1684 1685 /* 1686 * Check for errors the host controller driver might not have seen such as 1687 * response mode errors or invalid card state. 1688 */ 1689 static bool mmc_blk_status_error(struct request *req, u32 status) 1690 { 1691 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1692 struct mmc_blk_request *brq = &mqrq->brq; 1693 struct mmc_queue *mq = req->q->queuedata; 1694 u32 stop_err_bits; 1695 1696 if (mmc_host_is_spi(mq->card->host)) 1697 return false; 1698 1699 stop_err_bits = mmc_blk_stop_err_bits(brq); 1700 1701 return brq->cmd.resp[0] & CMD_ERRORS || 1702 brq->stop.resp[0] & stop_err_bits || 1703 status & stop_err_bits || 1704 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1705 } 1706 1707 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1708 { 1709 return !brq->sbc.error && !brq->cmd.error && 1710 !(brq->cmd.resp[0] & CMD_ERRORS); 1711 } 1712 1713 /* 1714 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1715 * policy: 1716 * 1. A request that has transferred at least some data is considered 1717 * successful and will be requeued if there is remaining data to 1718 * transfer. 1719 * 2. Otherwise the number of retries is incremented and the request 1720 * will be requeued if there are remaining retries. 1721 * 3. Otherwise the request will be errored out. 1722 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1723 * mqrq->retries. So there are only 4 possible actions here: 1724 * 1. do not accept the bytes_xfered value i.e. set it to zero 1725 * 2. change mqrq->retries to determine the number of retries 1726 * 3. try to reset the card 1727 * 4. read one sector at a time 1728 */ 1729 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1730 { 1731 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1732 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1733 struct mmc_blk_request *brq = &mqrq->brq; 1734 struct mmc_blk_data *md = mq->blkdata; 1735 struct mmc_card *card = mq->card; 1736 u32 status; 1737 u32 blocks; 1738 int err; 1739 1740 /* 1741 * Some errors the host driver might not have seen. Set the number of 1742 * bytes transferred to zero in that case. 1743 */ 1744 err = __mmc_send_status(card, &status, 0); 1745 if (err || mmc_blk_status_error(req, status)) 1746 brq->data.bytes_xfered = 0; 1747 1748 mmc_retune_release(card->host); 1749 1750 /* 1751 * Try again to get the status. This also provides an opportunity for 1752 * re-tuning. 1753 */ 1754 if (err) 1755 err = __mmc_send_status(card, &status, 0); 1756 1757 /* 1758 * Nothing more to do after the number of bytes transferred has been 1759 * updated and there is no card. 1760 */ 1761 if (err && mmc_detect_card_removed(card->host)) 1762 return; 1763 1764 /* Try to get back to "tran" state */ 1765 if (!mmc_host_is_spi(mq->card->host) && 1766 (err || !mmc_ready_for_data(status))) 1767 err = mmc_blk_fix_state(mq->card, req); 1768 1769 /* 1770 * Special case for SD cards where the card might record the number of 1771 * blocks written. 1772 */ 1773 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1774 rq_data_dir(req) == WRITE) { 1775 if (mmc_sd_num_wr_blocks(card, &blocks)) 1776 brq->data.bytes_xfered = 0; 1777 else 1778 brq->data.bytes_xfered = blocks << 9; 1779 } 1780 1781 /* Reset if the card is in a bad state */ 1782 if (!mmc_host_is_spi(mq->card->host) && 1783 err && mmc_blk_reset(md, card->host, type)) { 1784 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1785 mqrq->retries = MMC_NO_RETRIES; 1786 return; 1787 } 1788 1789 /* 1790 * If anything was done, just return and if there is anything remaining 1791 * on the request it will get requeued. 1792 */ 1793 if (brq->data.bytes_xfered) 1794 return; 1795 1796 /* Reset before last retry */ 1797 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1798 mmc_blk_reset(md, card->host, type); 1799 1800 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1801 if (brq->sbc.error || brq->cmd.error) 1802 return; 1803 1804 /* Reduce the remaining retries for data errors */ 1805 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1806 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1807 return; 1808 } 1809 1810 /* FIXME: Missing single sector read for large sector size */ 1811 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1812 brq->data.blocks > 1) { 1813 /* Read one sector at a time */ 1814 mmc_blk_read_single(mq, req); 1815 return; 1816 } 1817 } 1818 1819 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1820 { 1821 mmc_blk_eval_resp_error(brq); 1822 1823 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1824 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1825 } 1826 1827 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1828 { 1829 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1830 u32 status = 0; 1831 int err; 1832 1833 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1834 return 0; 1835 1836 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1837 1838 /* 1839 * Do not assume data transferred correctly if there are any error bits 1840 * set. 1841 */ 1842 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1843 mqrq->brq.data.bytes_xfered = 0; 1844 err = err ? err : -EIO; 1845 } 1846 1847 /* Copy the exception bit so it will be seen later on */ 1848 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1849 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1850 1851 return err; 1852 } 1853 1854 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1855 struct request *req) 1856 { 1857 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1858 1859 mmc_blk_reset_success(mq->blkdata, type); 1860 } 1861 1862 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1863 { 1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1865 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1866 1867 if (nr_bytes) { 1868 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1869 blk_mq_requeue_request(req, true); 1870 else 1871 __blk_mq_end_request(req, BLK_STS_OK); 1872 } else if (!blk_rq_bytes(req)) { 1873 __blk_mq_end_request(req, BLK_STS_IOERR); 1874 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1875 blk_mq_requeue_request(req, true); 1876 } else { 1877 if (mmc_card_removed(mq->card)) 1878 req->rq_flags |= RQF_QUIET; 1879 blk_mq_end_request(req, BLK_STS_IOERR); 1880 } 1881 } 1882 1883 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1884 struct mmc_queue_req *mqrq) 1885 { 1886 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1887 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1888 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1889 } 1890 1891 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1892 struct mmc_queue_req *mqrq) 1893 { 1894 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1895 mmc_run_bkops(mq->card); 1896 } 1897 1898 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1899 { 1900 struct mmc_queue_req *mqrq = 1901 container_of(mrq, struct mmc_queue_req, brq.mrq); 1902 struct request *req = mmc_queue_req_to_req(mqrq); 1903 struct request_queue *q = req->q; 1904 struct mmc_queue *mq = q->queuedata; 1905 struct mmc_host *host = mq->card->host; 1906 unsigned long flags; 1907 1908 if (mmc_blk_rq_error(&mqrq->brq) || 1909 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1910 spin_lock_irqsave(&mq->lock, flags); 1911 mq->recovery_needed = true; 1912 mq->recovery_req = req; 1913 spin_unlock_irqrestore(&mq->lock, flags); 1914 1915 host->cqe_ops->cqe_recovery_start(host); 1916 1917 schedule_work(&mq->recovery_work); 1918 return; 1919 } 1920 1921 mmc_blk_rw_reset_success(mq, req); 1922 1923 /* 1924 * Block layer timeouts race with completions which means the normal 1925 * completion path cannot be used during recovery. 1926 */ 1927 if (mq->in_recovery) 1928 mmc_blk_cqe_complete_rq(mq, req); 1929 else 1930 blk_mq_complete_request(req); 1931 } 1932 1933 void mmc_blk_mq_complete(struct request *req) 1934 { 1935 struct mmc_queue *mq = req->q->queuedata; 1936 1937 if (mq->use_cqe) 1938 mmc_blk_cqe_complete_rq(mq, req); 1939 else 1940 mmc_blk_mq_complete_rq(mq, req); 1941 } 1942 1943 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 1944 struct request *req) 1945 { 1946 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1947 struct mmc_host *host = mq->card->host; 1948 1949 if (mmc_blk_rq_error(&mqrq->brq) || 1950 mmc_blk_card_busy(mq->card, req)) { 1951 mmc_blk_mq_rw_recovery(mq, req); 1952 } else { 1953 mmc_blk_rw_reset_success(mq, req); 1954 mmc_retune_release(host); 1955 } 1956 1957 mmc_blk_urgent_bkops(mq, mqrq); 1958 } 1959 1960 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 1961 { 1962 unsigned long flags; 1963 bool put_card; 1964 1965 spin_lock_irqsave(&mq->lock, flags); 1966 1967 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 1968 1969 put_card = (mmc_tot_in_flight(mq) == 0); 1970 1971 spin_unlock_irqrestore(&mq->lock, flags); 1972 1973 if (put_card) 1974 mmc_put_card(mq->card, &mq->ctx); 1975 } 1976 1977 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 1978 { 1979 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1980 struct mmc_request *mrq = &mqrq->brq.mrq; 1981 struct mmc_host *host = mq->card->host; 1982 1983 mmc_post_req(host, mrq, 0); 1984 1985 /* 1986 * Block layer timeouts race with completions which means the normal 1987 * completion path cannot be used during recovery. 1988 */ 1989 if (mq->in_recovery) 1990 mmc_blk_mq_complete_rq(mq, req); 1991 else 1992 blk_mq_complete_request(req); 1993 1994 mmc_blk_mq_dec_in_flight(mq, req); 1995 } 1996 1997 void mmc_blk_mq_recovery(struct mmc_queue *mq) 1998 { 1999 struct request *req = mq->recovery_req; 2000 struct mmc_host *host = mq->card->host; 2001 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2002 2003 mq->recovery_req = NULL; 2004 mq->rw_wait = false; 2005 2006 if (mmc_blk_rq_error(&mqrq->brq)) { 2007 mmc_retune_hold_now(host); 2008 mmc_blk_mq_rw_recovery(mq, req); 2009 } 2010 2011 mmc_blk_urgent_bkops(mq, mqrq); 2012 2013 mmc_blk_mq_post_req(mq, req); 2014 } 2015 2016 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2017 struct request **prev_req) 2018 { 2019 if (mmc_host_done_complete(mq->card->host)) 2020 return; 2021 2022 mutex_lock(&mq->complete_lock); 2023 2024 if (!mq->complete_req) 2025 goto out_unlock; 2026 2027 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2028 2029 if (prev_req) 2030 *prev_req = mq->complete_req; 2031 else 2032 mmc_blk_mq_post_req(mq, mq->complete_req); 2033 2034 mq->complete_req = NULL; 2035 2036 out_unlock: 2037 mutex_unlock(&mq->complete_lock); 2038 } 2039 2040 void mmc_blk_mq_complete_work(struct work_struct *work) 2041 { 2042 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2043 complete_work); 2044 2045 mmc_blk_mq_complete_prev_req(mq, NULL); 2046 } 2047 2048 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2049 { 2050 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2051 brq.mrq); 2052 struct request *req = mmc_queue_req_to_req(mqrq); 2053 struct request_queue *q = req->q; 2054 struct mmc_queue *mq = q->queuedata; 2055 struct mmc_host *host = mq->card->host; 2056 unsigned long flags; 2057 2058 if (!mmc_host_done_complete(host)) { 2059 bool waiting; 2060 2061 /* 2062 * We cannot complete the request in this context, so record 2063 * that there is a request to complete, and that a following 2064 * request does not need to wait (although it does need to 2065 * complete complete_req first). 2066 */ 2067 spin_lock_irqsave(&mq->lock, flags); 2068 mq->complete_req = req; 2069 mq->rw_wait = false; 2070 waiting = mq->waiting; 2071 spin_unlock_irqrestore(&mq->lock, flags); 2072 2073 /* 2074 * If 'waiting' then the waiting task will complete this 2075 * request, otherwise queue a work to do it. Note that 2076 * complete_work may still race with the dispatch of a following 2077 * request. 2078 */ 2079 if (waiting) 2080 wake_up(&mq->wait); 2081 else 2082 queue_work(mq->card->complete_wq, &mq->complete_work); 2083 2084 return; 2085 } 2086 2087 /* Take the recovery path for errors or urgent background operations */ 2088 if (mmc_blk_rq_error(&mqrq->brq) || 2089 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2090 spin_lock_irqsave(&mq->lock, flags); 2091 mq->recovery_needed = true; 2092 mq->recovery_req = req; 2093 spin_unlock_irqrestore(&mq->lock, flags); 2094 wake_up(&mq->wait); 2095 schedule_work(&mq->recovery_work); 2096 return; 2097 } 2098 2099 mmc_blk_rw_reset_success(mq, req); 2100 2101 mq->rw_wait = false; 2102 wake_up(&mq->wait); 2103 2104 mmc_blk_mq_post_req(mq, req); 2105 } 2106 2107 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2108 { 2109 unsigned long flags; 2110 bool done; 2111 2112 /* 2113 * Wait while there is another request in progress, but not if recovery 2114 * is needed. Also indicate whether there is a request waiting to start. 2115 */ 2116 spin_lock_irqsave(&mq->lock, flags); 2117 if (mq->recovery_needed) { 2118 *err = -EBUSY; 2119 done = true; 2120 } else { 2121 done = !mq->rw_wait; 2122 } 2123 mq->waiting = !done; 2124 spin_unlock_irqrestore(&mq->lock, flags); 2125 2126 return done; 2127 } 2128 2129 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2130 { 2131 int err = 0; 2132 2133 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2134 2135 /* Always complete the previous request if there is one */ 2136 mmc_blk_mq_complete_prev_req(mq, prev_req); 2137 2138 return err; 2139 } 2140 2141 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2142 struct request *req) 2143 { 2144 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2145 struct mmc_host *host = mq->card->host; 2146 struct request *prev_req = NULL; 2147 int err = 0; 2148 2149 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2150 2151 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2152 2153 mmc_pre_req(host, &mqrq->brq.mrq); 2154 2155 err = mmc_blk_rw_wait(mq, &prev_req); 2156 if (err) 2157 goto out_post_req; 2158 2159 mq->rw_wait = true; 2160 2161 err = mmc_start_request(host, &mqrq->brq.mrq); 2162 2163 if (prev_req) 2164 mmc_blk_mq_post_req(mq, prev_req); 2165 2166 if (err) 2167 mq->rw_wait = false; 2168 2169 /* Release re-tuning here where there is no synchronization required */ 2170 if (err || mmc_host_done_complete(host)) 2171 mmc_retune_release(host); 2172 2173 out_post_req: 2174 if (err) 2175 mmc_post_req(host, &mqrq->brq.mrq, err); 2176 2177 return err; 2178 } 2179 2180 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2181 { 2182 if (mq->use_cqe) 2183 return host->cqe_ops->cqe_wait_for_idle(host); 2184 2185 return mmc_blk_rw_wait(mq, NULL); 2186 } 2187 2188 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2189 { 2190 struct mmc_blk_data *md = mq->blkdata; 2191 struct mmc_card *card = md->queue.card; 2192 struct mmc_host *host = card->host; 2193 int ret; 2194 2195 ret = mmc_blk_part_switch(card, md->part_type); 2196 if (ret) 2197 return MMC_REQ_FAILED_TO_START; 2198 2199 switch (mmc_issue_type(mq, req)) { 2200 case MMC_ISSUE_SYNC: 2201 ret = mmc_blk_wait_for_idle(mq, host); 2202 if (ret) 2203 return MMC_REQ_BUSY; 2204 switch (req_op(req)) { 2205 case REQ_OP_DRV_IN: 2206 case REQ_OP_DRV_OUT: 2207 mmc_blk_issue_drv_op(mq, req); 2208 break; 2209 case REQ_OP_DISCARD: 2210 mmc_blk_issue_discard_rq(mq, req); 2211 break; 2212 case REQ_OP_SECURE_ERASE: 2213 mmc_blk_issue_secdiscard_rq(mq, req); 2214 break; 2215 case REQ_OP_FLUSH: 2216 mmc_blk_issue_flush(mq, req); 2217 break; 2218 default: 2219 WARN_ON_ONCE(1); 2220 return MMC_REQ_FAILED_TO_START; 2221 } 2222 return MMC_REQ_FINISHED; 2223 case MMC_ISSUE_DCMD: 2224 case MMC_ISSUE_ASYNC: 2225 switch (req_op(req)) { 2226 case REQ_OP_FLUSH: 2227 ret = mmc_blk_cqe_issue_flush(mq, req); 2228 break; 2229 case REQ_OP_READ: 2230 case REQ_OP_WRITE: 2231 if (mq->use_cqe) 2232 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2233 else 2234 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2235 break; 2236 default: 2237 WARN_ON_ONCE(1); 2238 ret = -EINVAL; 2239 } 2240 if (!ret) 2241 return MMC_REQ_STARTED; 2242 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2243 default: 2244 WARN_ON_ONCE(1); 2245 return MMC_REQ_FAILED_TO_START; 2246 } 2247 } 2248 2249 static inline int mmc_blk_readonly(struct mmc_card *card) 2250 { 2251 return mmc_card_readonly(card) || 2252 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2253 } 2254 2255 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2256 struct device *parent, 2257 sector_t size, 2258 bool default_ro, 2259 const char *subname, 2260 int area_type) 2261 { 2262 struct mmc_blk_data *md; 2263 int devidx, ret; 2264 2265 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2266 if (devidx < 0) { 2267 /* 2268 * We get -ENOSPC because there are no more any available 2269 * devidx. The reason may be that, either userspace haven't yet 2270 * unmounted the partitions, which postpones mmc_blk_release() 2271 * from being called, or the device has more partitions than 2272 * what we support. 2273 */ 2274 if (devidx == -ENOSPC) 2275 dev_err(mmc_dev(card->host), 2276 "no more device IDs available\n"); 2277 2278 return ERR_PTR(devidx); 2279 } 2280 2281 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2282 if (!md) { 2283 ret = -ENOMEM; 2284 goto out; 2285 } 2286 2287 md->area_type = area_type; 2288 2289 /* 2290 * Set the read-only status based on the supported commands 2291 * and the write protect switch. 2292 */ 2293 md->read_only = mmc_blk_readonly(card); 2294 2295 md->disk = alloc_disk(perdev_minors); 2296 if (md->disk == NULL) { 2297 ret = -ENOMEM; 2298 goto err_kfree; 2299 } 2300 2301 INIT_LIST_HEAD(&md->part); 2302 INIT_LIST_HEAD(&md->rpmbs); 2303 md->usage = 1; 2304 2305 ret = mmc_init_queue(&md->queue, card); 2306 if (ret) 2307 goto err_putdisk; 2308 2309 md->queue.blkdata = md; 2310 2311 /* 2312 * Keep an extra reference to the queue so that we can shutdown the 2313 * queue (i.e. call blk_cleanup_queue()) while there are still 2314 * references to the 'md'. The corresponding blk_put_queue() is in 2315 * mmc_blk_put(). 2316 */ 2317 if (!blk_get_queue(md->queue.queue)) { 2318 mmc_cleanup_queue(&md->queue); 2319 ret = -ENODEV; 2320 goto err_putdisk; 2321 } 2322 2323 md->disk->major = MMC_BLOCK_MAJOR; 2324 md->disk->first_minor = devidx * perdev_minors; 2325 md->disk->fops = &mmc_bdops; 2326 md->disk->private_data = md; 2327 md->disk->queue = md->queue.queue; 2328 md->parent = parent; 2329 set_disk_ro(md->disk, md->read_only || default_ro); 2330 md->disk->flags = GENHD_FL_EXT_DEVT; 2331 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2332 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2333 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2334 2335 /* 2336 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2337 * 2338 * - be set for removable media with permanent block devices 2339 * - be unset for removable block devices with permanent media 2340 * 2341 * Since MMC block devices clearly fall under the second 2342 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2343 * should use the block device creation/destruction hotplug 2344 * messages to tell when the card is present. 2345 */ 2346 2347 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2348 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2349 2350 set_capacity(md->disk, size); 2351 2352 if (mmc_host_cmd23(card->host)) { 2353 if ((mmc_card_mmc(card) && 2354 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2355 (mmc_card_sd(card) && 2356 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2357 md->flags |= MMC_BLK_CMD23; 2358 } 2359 2360 if (mmc_card_mmc(card) && 2361 md->flags & MMC_BLK_CMD23 && 2362 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2363 card->ext_csd.rel_sectors)) { 2364 md->flags |= MMC_BLK_REL_WR; 2365 blk_queue_write_cache(md->queue.queue, true, true); 2366 } 2367 2368 return md; 2369 2370 err_putdisk: 2371 put_disk(md->disk); 2372 err_kfree: 2373 kfree(md); 2374 out: 2375 ida_simple_remove(&mmc_blk_ida, devidx); 2376 return ERR_PTR(ret); 2377 } 2378 2379 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2380 { 2381 sector_t size; 2382 2383 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2384 /* 2385 * The EXT_CSD sector count is in number or 512 byte 2386 * sectors. 2387 */ 2388 size = card->ext_csd.sectors; 2389 } else { 2390 /* 2391 * The CSD capacity field is in units of read_blkbits. 2392 * set_capacity takes units of 512 bytes. 2393 */ 2394 size = (typeof(sector_t))card->csd.capacity 2395 << (card->csd.read_blkbits - 9); 2396 } 2397 2398 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2399 MMC_BLK_DATA_AREA_MAIN); 2400 } 2401 2402 static int mmc_blk_alloc_part(struct mmc_card *card, 2403 struct mmc_blk_data *md, 2404 unsigned int part_type, 2405 sector_t size, 2406 bool default_ro, 2407 const char *subname, 2408 int area_type) 2409 { 2410 char cap_str[10]; 2411 struct mmc_blk_data *part_md; 2412 2413 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2414 subname, area_type); 2415 if (IS_ERR(part_md)) 2416 return PTR_ERR(part_md); 2417 part_md->part_type = part_type; 2418 list_add(&part_md->part, &md->part); 2419 2420 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2, 2421 cap_str, sizeof(cap_str)); 2422 pr_info("%s: %s %s partition %u %s\n", 2423 part_md->disk->disk_name, mmc_card_id(card), 2424 mmc_card_name(card), part_md->part_type, cap_str); 2425 return 0; 2426 } 2427 2428 /** 2429 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2430 * @filp: the character device file 2431 * @cmd: the ioctl() command 2432 * @arg: the argument from userspace 2433 * 2434 * This will essentially just redirect the ioctl()s coming in over to 2435 * the main block device spawning the RPMB character device. 2436 */ 2437 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2438 unsigned long arg) 2439 { 2440 struct mmc_rpmb_data *rpmb = filp->private_data; 2441 int ret; 2442 2443 switch (cmd) { 2444 case MMC_IOC_CMD: 2445 ret = mmc_blk_ioctl_cmd(rpmb->md, 2446 (struct mmc_ioc_cmd __user *)arg, 2447 rpmb); 2448 break; 2449 case MMC_IOC_MULTI_CMD: 2450 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2451 (struct mmc_ioc_multi_cmd __user *)arg, 2452 rpmb); 2453 break; 2454 default: 2455 ret = -EINVAL; 2456 break; 2457 } 2458 2459 return ret; 2460 } 2461 2462 #ifdef CONFIG_COMPAT 2463 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2464 unsigned long arg) 2465 { 2466 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2467 } 2468 #endif 2469 2470 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2471 { 2472 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2473 struct mmc_rpmb_data, chrdev); 2474 2475 get_device(&rpmb->dev); 2476 filp->private_data = rpmb; 2477 mmc_blk_get(rpmb->md->disk); 2478 2479 return nonseekable_open(inode, filp); 2480 } 2481 2482 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2483 { 2484 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2485 struct mmc_rpmb_data, chrdev); 2486 2487 mmc_blk_put(rpmb->md); 2488 put_device(&rpmb->dev); 2489 2490 return 0; 2491 } 2492 2493 static const struct file_operations mmc_rpmb_fileops = { 2494 .release = mmc_rpmb_chrdev_release, 2495 .open = mmc_rpmb_chrdev_open, 2496 .owner = THIS_MODULE, 2497 .llseek = no_llseek, 2498 .unlocked_ioctl = mmc_rpmb_ioctl, 2499 #ifdef CONFIG_COMPAT 2500 .compat_ioctl = mmc_rpmb_ioctl_compat, 2501 #endif 2502 }; 2503 2504 static void mmc_blk_rpmb_device_release(struct device *dev) 2505 { 2506 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2507 2508 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2509 kfree(rpmb); 2510 } 2511 2512 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2513 struct mmc_blk_data *md, 2514 unsigned int part_index, 2515 sector_t size, 2516 const char *subname) 2517 { 2518 int devidx, ret; 2519 char rpmb_name[DISK_NAME_LEN]; 2520 char cap_str[10]; 2521 struct mmc_rpmb_data *rpmb; 2522 2523 /* This creates the minor number for the RPMB char device */ 2524 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2525 if (devidx < 0) 2526 return devidx; 2527 2528 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2529 if (!rpmb) { 2530 ida_simple_remove(&mmc_rpmb_ida, devidx); 2531 return -ENOMEM; 2532 } 2533 2534 snprintf(rpmb_name, sizeof(rpmb_name), 2535 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2536 2537 rpmb->id = devidx; 2538 rpmb->part_index = part_index; 2539 rpmb->dev.init_name = rpmb_name; 2540 rpmb->dev.bus = &mmc_rpmb_bus_type; 2541 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2542 rpmb->dev.parent = &card->dev; 2543 rpmb->dev.release = mmc_blk_rpmb_device_release; 2544 device_initialize(&rpmb->dev); 2545 dev_set_drvdata(&rpmb->dev, rpmb); 2546 rpmb->md = md; 2547 2548 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2549 rpmb->chrdev.owner = THIS_MODULE; 2550 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2551 if (ret) { 2552 pr_err("%s: could not add character device\n", rpmb_name); 2553 goto out_put_device; 2554 } 2555 2556 list_add(&rpmb->node, &md->rpmbs); 2557 2558 string_get_size((u64)size, 512, STRING_UNITS_2, 2559 cap_str, sizeof(cap_str)); 2560 2561 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n", 2562 rpmb_name, mmc_card_id(card), 2563 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str, 2564 MAJOR(mmc_rpmb_devt), rpmb->id); 2565 2566 return 0; 2567 2568 out_put_device: 2569 put_device(&rpmb->dev); 2570 return ret; 2571 } 2572 2573 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2574 2575 { 2576 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2577 put_device(&rpmb->dev); 2578 } 2579 2580 /* MMC Physical partitions consist of two boot partitions and 2581 * up to four general purpose partitions. 2582 * For each partition enabled in EXT_CSD a block device will be allocatedi 2583 * to provide access to the partition. 2584 */ 2585 2586 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2587 { 2588 int idx, ret; 2589 2590 if (!mmc_card_mmc(card)) 2591 return 0; 2592 2593 for (idx = 0; idx < card->nr_parts; idx++) { 2594 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2595 /* 2596 * RPMB partitions does not provide block access, they 2597 * are only accessed using ioctl():s. Thus create 2598 * special RPMB block devices that do not have a 2599 * backing block queue for these. 2600 */ 2601 ret = mmc_blk_alloc_rpmb_part(card, md, 2602 card->part[idx].part_cfg, 2603 card->part[idx].size >> 9, 2604 card->part[idx].name); 2605 if (ret) 2606 return ret; 2607 } else if (card->part[idx].size) { 2608 ret = mmc_blk_alloc_part(card, md, 2609 card->part[idx].part_cfg, 2610 card->part[idx].size >> 9, 2611 card->part[idx].force_ro, 2612 card->part[idx].name, 2613 card->part[idx].area_type); 2614 if (ret) 2615 return ret; 2616 } 2617 } 2618 2619 return 0; 2620 } 2621 2622 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2623 { 2624 struct mmc_card *card; 2625 2626 if (md) { 2627 /* 2628 * Flush remaining requests and free queues. It 2629 * is freeing the queue that stops new requests 2630 * from being accepted. 2631 */ 2632 card = md->queue.card; 2633 if (md->disk->flags & GENHD_FL_UP) { 2634 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2635 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2636 card->ext_csd.boot_ro_lockable) 2637 device_remove_file(disk_to_dev(md->disk), 2638 &md->power_ro_lock); 2639 2640 del_gendisk(md->disk); 2641 } 2642 mmc_cleanup_queue(&md->queue); 2643 mmc_blk_put(md); 2644 } 2645 } 2646 2647 static void mmc_blk_remove_parts(struct mmc_card *card, 2648 struct mmc_blk_data *md) 2649 { 2650 struct list_head *pos, *q; 2651 struct mmc_blk_data *part_md; 2652 struct mmc_rpmb_data *rpmb; 2653 2654 /* Remove RPMB partitions */ 2655 list_for_each_safe(pos, q, &md->rpmbs) { 2656 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2657 list_del(pos); 2658 mmc_blk_remove_rpmb_part(rpmb); 2659 } 2660 /* Remove block partitions */ 2661 list_for_each_safe(pos, q, &md->part) { 2662 part_md = list_entry(pos, struct mmc_blk_data, part); 2663 list_del(pos); 2664 mmc_blk_remove_req(part_md); 2665 } 2666 } 2667 2668 static int mmc_add_disk(struct mmc_blk_data *md) 2669 { 2670 int ret; 2671 struct mmc_card *card = md->queue.card; 2672 2673 device_add_disk(md->parent, md->disk, NULL); 2674 md->force_ro.show = force_ro_show; 2675 md->force_ro.store = force_ro_store; 2676 sysfs_attr_init(&md->force_ro.attr); 2677 md->force_ro.attr.name = "force_ro"; 2678 md->force_ro.attr.mode = S_IRUGO | S_IWUSR; 2679 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro); 2680 if (ret) 2681 goto force_ro_fail; 2682 2683 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) && 2684 card->ext_csd.boot_ro_lockable) { 2685 umode_t mode; 2686 2687 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS) 2688 mode = S_IRUGO; 2689 else 2690 mode = S_IRUGO | S_IWUSR; 2691 2692 md->power_ro_lock.show = power_ro_lock_show; 2693 md->power_ro_lock.store = power_ro_lock_store; 2694 sysfs_attr_init(&md->power_ro_lock.attr); 2695 md->power_ro_lock.attr.mode = mode; 2696 md->power_ro_lock.attr.name = 2697 "ro_lock_until_next_power_on"; 2698 ret = device_create_file(disk_to_dev(md->disk), 2699 &md->power_ro_lock); 2700 if (ret) 2701 goto power_ro_lock_fail; 2702 } 2703 return ret; 2704 2705 power_ro_lock_fail: 2706 device_remove_file(disk_to_dev(md->disk), &md->force_ro); 2707 force_ro_fail: 2708 del_gendisk(md->disk); 2709 2710 return ret; 2711 } 2712 2713 #ifdef CONFIG_DEBUG_FS 2714 2715 static int mmc_dbg_card_status_get(void *data, u64 *val) 2716 { 2717 struct mmc_card *card = data; 2718 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2719 struct mmc_queue *mq = &md->queue; 2720 struct request *req; 2721 int ret; 2722 2723 /* Ask the block layer about the card status */ 2724 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2725 if (IS_ERR(req)) 2726 return PTR_ERR(req); 2727 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2728 blk_execute_rq(mq->queue, NULL, req, 0); 2729 ret = req_to_mmc_queue_req(req)->drv_op_result; 2730 if (ret >= 0) { 2731 *val = ret; 2732 ret = 0; 2733 } 2734 blk_put_request(req); 2735 2736 return ret; 2737 } 2738 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2739 NULL, "%08llx\n"); 2740 2741 /* That is two digits * 512 + 1 for newline */ 2742 #define EXT_CSD_STR_LEN 1025 2743 2744 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2745 { 2746 struct mmc_card *card = inode->i_private; 2747 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2748 struct mmc_queue *mq = &md->queue; 2749 struct request *req; 2750 char *buf; 2751 ssize_t n = 0; 2752 u8 *ext_csd; 2753 int err, i; 2754 2755 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2756 if (!buf) 2757 return -ENOMEM; 2758 2759 /* Ask the block layer for the EXT CSD */ 2760 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2761 if (IS_ERR(req)) { 2762 err = PTR_ERR(req); 2763 goto out_free; 2764 } 2765 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2766 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2767 blk_execute_rq(mq->queue, NULL, req, 0); 2768 err = req_to_mmc_queue_req(req)->drv_op_result; 2769 blk_put_request(req); 2770 if (err) { 2771 pr_err("FAILED %d\n", err); 2772 goto out_free; 2773 } 2774 2775 for (i = 0; i < 512; i++) 2776 n += sprintf(buf + n, "%02x", ext_csd[i]); 2777 n += sprintf(buf + n, "\n"); 2778 2779 if (n != EXT_CSD_STR_LEN) { 2780 err = -EINVAL; 2781 kfree(ext_csd); 2782 goto out_free; 2783 } 2784 2785 filp->private_data = buf; 2786 kfree(ext_csd); 2787 return 0; 2788 2789 out_free: 2790 kfree(buf); 2791 return err; 2792 } 2793 2794 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2795 size_t cnt, loff_t *ppos) 2796 { 2797 char *buf = filp->private_data; 2798 2799 return simple_read_from_buffer(ubuf, cnt, ppos, 2800 buf, EXT_CSD_STR_LEN); 2801 } 2802 2803 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2804 { 2805 kfree(file->private_data); 2806 return 0; 2807 } 2808 2809 static const struct file_operations mmc_dbg_ext_csd_fops = { 2810 .open = mmc_ext_csd_open, 2811 .read = mmc_ext_csd_read, 2812 .release = mmc_ext_csd_release, 2813 .llseek = default_llseek, 2814 }; 2815 2816 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2817 { 2818 struct dentry *root; 2819 2820 if (!card->debugfs_root) 2821 return 0; 2822 2823 root = card->debugfs_root; 2824 2825 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2826 md->status_dentry = 2827 debugfs_create_file_unsafe("status", 0400, root, 2828 card, 2829 &mmc_dbg_card_status_fops); 2830 if (!md->status_dentry) 2831 return -EIO; 2832 } 2833 2834 if (mmc_card_mmc(card)) { 2835 md->ext_csd_dentry = 2836 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2837 &mmc_dbg_ext_csd_fops); 2838 if (!md->ext_csd_dentry) 2839 return -EIO; 2840 } 2841 2842 return 0; 2843 } 2844 2845 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2846 struct mmc_blk_data *md) 2847 { 2848 if (!card->debugfs_root) 2849 return; 2850 2851 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2852 debugfs_remove(md->status_dentry); 2853 md->status_dentry = NULL; 2854 } 2855 2856 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2857 debugfs_remove(md->ext_csd_dentry); 2858 md->ext_csd_dentry = NULL; 2859 } 2860 } 2861 2862 #else 2863 2864 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2865 { 2866 return 0; 2867 } 2868 2869 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2870 struct mmc_blk_data *md) 2871 { 2872 } 2873 2874 #endif /* CONFIG_DEBUG_FS */ 2875 2876 static int mmc_blk_probe(struct mmc_card *card) 2877 { 2878 struct mmc_blk_data *md, *part_md; 2879 char cap_str[10]; 2880 2881 /* 2882 * Check that the card supports the command class(es) we need. 2883 */ 2884 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2885 return -ENODEV; 2886 2887 mmc_fixup_device(card, mmc_blk_fixups); 2888 2889 card->complete_wq = alloc_workqueue("mmc_complete", 2890 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2891 if (unlikely(!card->complete_wq)) { 2892 pr_err("Failed to create mmc completion workqueue"); 2893 return -ENOMEM; 2894 } 2895 2896 md = mmc_blk_alloc(card); 2897 if (IS_ERR(md)) 2898 return PTR_ERR(md); 2899 2900 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2, 2901 cap_str, sizeof(cap_str)); 2902 pr_info("%s: %s %s %s %s\n", 2903 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2904 cap_str, md->read_only ? "(ro)" : ""); 2905 2906 if (mmc_blk_alloc_parts(card, md)) 2907 goto out; 2908 2909 dev_set_drvdata(&card->dev, md); 2910 2911 if (mmc_add_disk(md)) 2912 goto out; 2913 2914 list_for_each_entry(part_md, &md->part, part) { 2915 if (mmc_add_disk(part_md)) 2916 goto out; 2917 } 2918 2919 /* Add two debugfs entries */ 2920 mmc_blk_add_debugfs(card, md); 2921 2922 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2923 pm_runtime_use_autosuspend(&card->dev); 2924 2925 /* 2926 * Don't enable runtime PM for SD-combo cards here. Leave that 2927 * decision to be taken during the SDIO init sequence instead. 2928 */ 2929 if (card->type != MMC_TYPE_SD_COMBO) { 2930 pm_runtime_set_active(&card->dev); 2931 pm_runtime_enable(&card->dev); 2932 } 2933 2934 return 0; 2935 2936 out: 2937 mmc_blk_remove_parts(card, md); 2938 mmc_blk_remove_req(md); 2939 return 0; 2940 } 2941 2942 static void mmc_blk_remove(struct mmc_card *card) 2943 { 2944 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2945 2946 mmc_blk_remove_debugfs(card, md); 2947 mmc_blk_remove_parts(card, md); 2948 pm_runtime_get_sync(&card->dev); 2949 if (md->part_curr != md->part_type) { 2950 mmc_claim_host(card->host); 2951 mmc_blk_part_switch(card, md->part_type); 2952 mmc_release_host(card->host); 2953 } 2954 if (card->type != MMC_TYPE_SD_COMBO) 2955 pm_runtime_disable(&card->dev); 2956 pm_runtime_put_noidle(&card->dev); 2957 mmc_blk_remove_req(md); 2958 dev_set_drvdata(&card->dev, NULL); 2959 destroy_workqueue(card->complete_wq); 2960 } 2961 2962 static int _mmc_blk_suspend(struct mmc_card *card) 2963 { 2964 struct mmc_blk_data *part_md; 2965 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2966 2967 if (md) { 2968 mmc_queue_suspend(&md->queue); 2969 list_for_each_entry(part_md, &md->part, part) { 2970 mmc_queue_suspend(&part_md->queue); 2971 } 2972 } 2973 return 0; 2974 } 2975 2976 static void mmc_blk_shutdown(struct mmc_card *card) 2977 { 2978 _mmc_blk_suspend(card); 2979 } 2980 2981 #ifdef CONFIG_PM_SLEEP 2982 static int mmc_blk_suspend(struct device *dev) 2983 { 2984 struct mmc_card *card = mmc_dev_to_card(dev); 2985 2986 return _mmc_blk_suspend(card); 2987 } 2988 2989 static int mmc_blk_resume(struct device *dev) 2990 { 2991 struct mmc_blk_data *part_md; 2992 struct mmc_blk_data *md = dev_get_drvdata(dev); 2993 2994 if (md) { 2995 /* 2996 * Resume involves the card going into idle state, 2997 * so current partition is always the main one. 2998 */ 2999 md->part_curr = md->part_type; 3000 mmc_queue_resume(&md->queue); 3001 list_for_each_entry(part_md, &md->part, part) { 3002 mmc_queue_resume(&part_md->queue); 3003 } 3004 } 3005 return 0; 3006 } 3007 #endif 3008 3009 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3010 3011 static struct mmc_driver mmc_driver = { 3012 .drv = { 3013 .name = "mmcblk", 3014 .pm = &mmc_blk_pm_ops, 3015 }, 3016 .probe = mmc_blk_probe, 3017 .remove = mmc_blk_remove, 3018 .shutdown = mmc_blk_shutdown, 3019 }; 3020 3021 static int __init mmc_blk_init(void) 3022 { 3023 int res; 3024 3025 res = bus_register(&mmc_rpmb_bus_type); 3026 if (res < 0) { 3027 pr_err("mmcblk: could not register RPMB bus type\n"); 3028 return res; 3029 } 3030 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3031 if (res < 0) { 3032 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3033 goto out_bus_unreg; 3034 } 3035 3036 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3037 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3038 3039 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3040 3041 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3042 if (res) 3043 goto out_chrdev_unreg; 3044 3045 res = mmc_register_driver(&mmc_driver); 3046 if (res) 3047 goto out_blkdev_unreg; 3048 3049 return 0; 3050 3051 out_blkdev_unreg: 3052 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3053 out_chrdev_unreg: 3054 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3055 out_bus_unreg: 3056 bus_unregister(&mmc_rpmb_bus_type); 3057 return res; 3058 } 3059 3060 static void __exit mmc_blk_exit(void) 3061 { 3062 mmc_unregister_driver(&mmc_driver); 3063 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3064 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3065 bus_unregister(&mmc_rpmb_bus_type); 3066 } 3067 3068 module_init(mmc_blk_init); 3069 module_exit(mmc_blk_exit); 3070 3071 MODULE_LICENSE("GPL"); 3072 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3073 3074