1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string_helpers.h> 37 #include <linux/delay.h> 38 #include <linux/capability.h> 39 #include <linux/compat.h> 40 #include <linux/pm_runtime.h> 41 #include <linux/idr.h> 42 #include <linux/debugfs.h> 43 44 #include <linux/mmc/ioctl.h> 45 #include <linux/mmc/card.h> 46 #include <linux/mmc/host.h> 47 #include <linux/mmc/mmc.h> 48 #include <linux/mmc/sd.h> 49 50 #include <linux/uaccess.h> 51 52 #include "queue.h" 53 #include "block.h" 54 #include "core.h" 55 #include "card.h" 56 #include "crypto.h" 57 #include "host.h" 58 #include "bus.h" 59 #include "mmc_ops.h" 60 #include "quirks.h" 61 #include "sd_ops.h" 62 63 MODULE_ALIAS("mmc:block"); 64 #ifdef MODULE_PARAM_PREFIX 65 #undef MODULE_PARAM_PREFIX 66 #endif 67 #define MODULE_PARAM_PREFIX "mmcblk." 68 69 /* 70 * Set a 10 second timeout for polling write request busy state. Note, mmc core 71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 72 * second software timer to timeout the whole request, so 10 seconds should be 73 * ample. 74 */ 75 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 78 79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \ 80 (rq_data_dir(req) == WRITE)) 81 static DEFINE_MUTEX(block_mutex); 82 83 /* 84 * The defaults come from config options but can be overriden by module 85 * or bootarg options. 86 */ 87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 88 89 /* 90 * We've only got one major, so number of mmcblk devices is 91 * limited to (1 << 20) / number of minors per device. It is also 92 * limited by the MAX_DEVICES below. 93 */ 94 static int max_devices; 95 96 #define MAX_DEVICES 256 97 98 static DEFINE_IDA(mmc_blk_ida); 99 static DEFINE_IDA(mmc_rpmb_ida); 100 101 /* 102 * There is one mmc_blk_data per slot. 103 */ 104 struct mmc_blk_data { 105 struct device *parent; 106 struct gendisk *disk; 107 struct mmc_queue queue; 108 struct list_head part; 109 struct list_head rpmbs; 110 111 unsigned int flags; 112 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 113 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 114 115 struct kref kref; 116 unsigned int read_only; 117 unsigned int part_type; 118 unsigned int reset_done; 119 #define MMC_BLK_READ BIT(0) 120 #define MMC_BLK_WRITE BIT(1) 121 #define MMC_BLK_DISCARD BIT(2) 122 #define MMC_BLK_SECDISCARD BIT(3) 123 #define MMC_BLK_CQE_RECOVERY BIT(4) 124 125 /* 126 * Only set in main mmc_blk_data associated 127 * with mmc_card with dev_set_drvdata, and keeps 128 * track of the current selected device partition. 129 */ 130 unsigned int part_curr; 131 int area_type; 132 133 /* debugfs files (only in main mmc_blk_data) */ 134 struct dentry *status_dentry; 135 struct dentry *ext_csd_dentry; 136 }; 137 138 /* Device type for RPMB character devices */ 139 static dev_t mmc_rpmb_devt; 140 141 /* Bus type for RPMB character devices */ 142 static struct bus_type mmc_rpmb_bus_type = { 143 .name = "mmc_rpmb", 144 }; 145 146 /** 147 * struct mmc_rpmb_data - special RPMB device type for these areas 148 * @dev: the device for the RPMB area 149 * @chrdev: character device for the RPMB area 150 * @id: unique device ID number 151 * @part_index: partition index (0 on first) 152 * @md: parent MMC block device 153 * @node: list item, so we can put this device on a list 154 */ 155 struct mmc_rpmb_data { 156 struct device dev; 157 struct cdev chrdev; 158 int id; 159 unsigned int part_index; 160 struct mmc_blk_data *md; 161 struct list_head node; 162 }; 163 164 static DEFINE_MUTEX(open_lock); 165 166 module_param(perdev_minors, int, 0444); 167 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 168 169 static inline int mmc_blk_part_switch(struct mmc_card *card, 170 unsigned int part_type); 171 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 172 struct mmc_card *card, 173 int disable_multi, 174 struct mmc_queue *mq); 175 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 176 177 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 178 { 179 struct mmc_blk_data *md; 180 181 mutex_lock(&open_lock); 182 md = disk->private_data; 183 if (md && !kref_get_unless_zero(&md->kref)) 184 md = NULL; 185 mutex_unlock(&open_lock); 186 187 return md; 188 } 189 190 static inline int mmc_get_devidx(struct gendisk *disk) 191 { 192 int devidx = disk->first_minor / perdev_minors; 193 return devidx; 194 } 195 196 static void mmc_blk_kref_release(struct kref *ref) 197 { 198 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 199 int devidx; 200 201 devidx = mmc_get_devidx(md->disk); 202 ida_simple_remove(&mmc_blk_ida, devidx); 203 204 mutex_lock(&open_lock); 205 md->disk->private_data = NULL; 206 mutex_unlock(&open_lock); 207 208 put_disk(md->disk); 209 kfree(md); 210 } 211 212 static void mmc_blk_put(struct mmc_blk_data *md) 213 { 214 kref_put(&md->kref, mmc_blk_kref_release); 215 } 216 217 static ssize_t power_ro_lock_show(struct device *dev, 218 struct device_attribute *attr, char *buf) 219 { 220 int ret; 221 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 222 struct mmc_card *card = md->queue.card; 223 int locked = 0; 224 225 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 226 locked = 2; 227 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 228 locked = 1; 229 230 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked); 231 232 mmc_blk_put(md); 233 234 return ret; 235 } 236 237 static ssize_t power_ro_lock_store(struct device *dev, 238 struct device_attribute *attr, const char *buf, size_t count) 239 { 240 int ret; 241 struct mmc_blk_data *md, *part_md; 242 struct mmc_queue *mq; 243 struct request *req; 244 unsigned long set; 245 246 if (kstrtoul(buf, 0, &set)) 247 return -EINVAL; 248 249 if (set != 1) 250 return count; 251 252 md = mmc_blk_get(dev_to_disk(dev)); 253 mq = &md->queue; 254 255 /* Dispatch locking to the block layer */ 256 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0); 257 if (IS_ERR(req)) { 258 count = PTR_ERR(req); 259 goto out_put; 260 } 261 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 262 blk_execute_rq(NULL, req, 0); 263 ret = req_to_mmc_queue_req(req)->drv_op_result; 264 blk_put_request(req); 265 266 if (!ret) { 267 pr_info("%s: Locking boot partition ro until next power on\n", 268 md->disk->disk_name); 269 set_disk_ro(md->disk, 1); 270 271 list_for_each_entry(part_md, &md->part, part) 272 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 273 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 274 set_disk_ro(part_md->disk, 1); 275 } 276 } 277 out_put: 278 mmc_blk_put(md); 279 return count; 280 } 281 282 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 283 power_ro_lock_show, power_ro_lock_store); 284 285 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 286 char *buf) 287 { 288 int ret; 289 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 290 291 ret = snprintf(buf, PAGE_SIZE, "%d\n", 292 get_disk_ro(dev_to_disk(dev)) ^ 293 md->read_only); 294 mmc_blk_put(md); 295 return ret; 296 } 297 298 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 299 const char *buf, size_t count) 300 { 301 int ret; 302 char *end; 303 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 304 unsigned long set = simple_strtoul(buf, &end, 0); 305 if (end == buf) { 306 ret = -EINVAL; 307 goto out; 308 } 309 310 set_disk_ro(dev_to_disk(dev), set || md->read_only); 311 ret = count; 312 out: 313 mmc_blk_put(md); 314 return ret; 315 } 316 317 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 318 319 static struct attribute *mmc_disk_attrs[] = { 320 &dev_attr_force_ro.attr, 321 &dev_attr_ro_lock_until_next_power_on.attr, 322 NULL, 323 }; 324 325 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 326 struct attribute *a, int n) 327 { 328 struct device *dev = container_of(kobj, struct device, kobj); 329 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 330 umode_t mode = a->mode; 331 332 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 333 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 334 md->queue.card->ext_csd.boot_ro_lockable) { 335 mode = S_IRUGO; 336 if (!(md->queue.card->ext_csd.boot_ro_lock & 337 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 338 mode |= S_IWUSR; 339 } 340 341 mmc_blk_put(md); 342 return mode; 343 } 344 345 static const struct attribute_group mmc_disk_attr_group = { 346 .is_visible = mmc_disk_attrs_is_visible, 347 .attrs = mmc_disk_attrs, 348 }; 349 350 static const struct attribute_group *mmc_disk_attr_groups[] = { 351 &mmc_disk_attr_group, 352 NULL, 353 }; 354 355 static int mmc_blk_open(struct block_device *bdev, fmode_t mode) 356 { 357 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk); 358 int ret = -ENXIO; 359 360 mutex_lock(&block_mutex); 361 if (md) { 362 ret = 0; 363 if ((mode & FMODE_WRITE) && md->read_only) { 364 mmc_blk_put(md); 365 ret = -EROFS; 366 } 367 } 368 mutex_unlock(&block_mutex); 369 370 return ret; 371 } 372 373 static void mmc_blk_release(struct gendisk *disk, fmode_t mode) 374 { 375 struct mmc_blk_data *md = disk->private_data; 376 377 mutex_lock(&block_mutex); 378 mmc_blk_put(md); 379 mutex_unlock(&block_mutex); 380 } 381 382 static int 383 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo) 384 { 385 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16); 386 geo->heads = 4; 387 geo->sectors = 16; 388 return 0; 389 } 390 391 struct mmc_blk_ioc_data { 392 struct mmc_ioc_cmd ic; 393 unsigned char *buf; 394 u64 buf_bytes; 395 struct mmc_rpmb_data *rpmb; 396 }; 397 398 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 399 struct mmc_ioc_cmd __user *user) 400 { 401 struct mmc_blk_ioc_data *idata; 402 int err; 403 404 idata = kmalloc(sizeof(*idata), GFP_KERNEL); 405 if (!idata) { 406 err = -ENOMEM; 407 goto out; 408 } 409 410 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 411 err = -EFAULT; 412 goto idata_err; 413 } 414 415 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 416 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 417 err = -EOVERFLOW; 418 goto idata_err; 419 } 420 421 if (!idata->buf_bytes) { 422 idata->buf = NULL; 423 return idata; 424 } 425 426 idata->buf = memdup_user((void __user *)(unsigned long) 427 idata->ic.data_ptr, idata->buf_bytes); 428 if (IS_ERR(idata->buf)) { 429 err = PTR_ERR(idata->buf); 430 goto idata_err; 431 } 432 433 return idata; 434 435 idata_err: 436 kfree(idata); 437 out: 438 return ERR_PTR(err); 439 } 440 441 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 442 struct mmc_blk_ioc_data *idata) 443 { 444 struct mmc_ioc_cmd *ic = &idata->ic; 445 446 if (copy_to_user(&(ic_ptr->response), ic->response, 447 sizeof(ic->response))) 448 return -EFAULT; 449 450 if (!idata->ic.write_flag) { 451 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 452 idata->buf, idata->buf_bytes)) 453 return -EFAULT; 454 } 455 456 return 0; 457 } 458 459 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms, 460 u32 *resp_errs) 461 { 462 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms); 463 int err = 0; 464 u32 status; 465 466 do { 467 bool done = time_after(jiffies, timeout); 468 469 err = __mmc_send_status(card, &status, 5); 470 if (err) { 471 dev_err(mmc_dev(card->host), 472 "error %d requesting status\n", err); 473 return err; 474 } 475 476 /* Accumulate any response error bits seen */ 477 if (resp_errs) 478 *resp_errs |= status; 479 480 /* 481 * Timeout if the device never becomes ready for data and never 482 * leaves the program state. 483 */ 484 if (done) { 485 dev_err(mmc_dev(card->host), 486 "Card stuck in wrong state! %s status: %#x\n", 487 __func__, status); 488 return -ETIMEDOUT; 489 } 490 } while (!mmc_ready_for_data(status)); 491 492 return err; 493 } 494 495 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 496 struct mmc_blk_ioc_data *idata) 497 { 498 struct mmc_command cmd = {}, sbc = {}; 499 struct mmc_data data = {}; 500 struct mmc_request mrq = {}; 501 struct scatterlist sg; 502 int err; 503 unsigned int target_part; 504 505 if (!card || !md || !idata) 506 return -EINVAL; 507 508 /* 509 * The RPMB accesses comes in from the character device, so we 510 * need to target these explicitly. Else we just target the 511 * partition type for the block device the ioctl() was issued 512 * on. 513 */ 514 if (idata->rpmb) { 515 /* Support multiple RPMB partitions */ 516 target_part = idata->rpmb->part_index; 517 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 518 } else { 519 target_part = md->part_type; 520 } 521 522 cmd.opcode = idata->ic.opcode; 523 cmd.arg = idata->ic.arg; 524 cmd.flags = idata->ic.flags; 525 526 if (idata->buf_bytes) { 527 data.sg = &sg; 528 data.sg_len = 1; 529 data.blksz = idata->ic.blksz; 530 data.blocks = idata->ic.blocks; 531 532 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 533 534 if (idata->ic.write_flag) 535 data.flags = MMC_DATA_WRITE; 536 else 537 data.flags = MMC_DATA_READ; 538 539 /* data.flags must already be set before doing this. */ 540 mmc_set_data_timeout(&data, card); 541 542 /* Allow overriding the timeout_ns for empirical tuning. */ 543 if (idata->ic.data_timeout_ns) 544 data.timeout_ns = idata->ic.data_timeout_ns; 545 546 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 547 /* 548 * Pretend this is a data transfer and rely on the 549 * host driver to compute timeout. When all host 550 * drivers support cmd.cmd_timeout for R1B, this 551 * can be changed to: 552 * 553 * mrq.data = NULL; 554 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms; 555 */ 556 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000; 557 } 558 559 mrq.data = &data; 560 } 561 562 mrq.cmd = &cmd; 563 564 err = mmc_blk_part_switch(card, target_part); 565 if (err) 566 return err; 567 568 if (idata->ic.is_acmd) { 569 err = mmc_app_cmd(card->host, card); 570 if (err) 571 return err; 572 } 573 574 if (idata->rpmb) { 575 sbc.opcode = MMC_SET_BLOCK_COUNT; 576 /* 577 * We don't do any blockcount validation because the max size 578 * may be increased by a future standard. We just copy the 579 * 'Reliable Write' bit here. 580 */ 581 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 582 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 583 mrq.sbc = &sbc; 584 } 585 586 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 587 (cmd.opcode == MMC_SWITCH)) 588 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 589 590 mmc_wait_for_req(card->host, &mrq); 591 592 if (cmd.error) { 593 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 594 __func__, cmd.error); 595 return cmd.error; 596 } 597 if (data.error) { 598 dev_err(mmc_dev(card->host), "%s: data error %d\n", 599 __func__, data.error); 600 return data.error; 601 } 602 603 /* 604 * Make sure the cache of the PARTITION_CONFIG register and 605 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 606 * changed it successfully. 607 */ 608 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 609 (cmd.opcode == MMC_SWITCH)) { 610 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 611 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 612 613 /* 614 * Update cache so the next mmc_blk_part_switch call operates 615 * on up-to-date data. 616 */ 617 card->ext_csd.part_config = value; 618 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 619 } 620 621 /* 622 * Make sure to update CACHE_CTRL in case it was changed. The cache 623 * will get turned back on if the card is re-initialized, e.g. 624 * suspend/resume or hw reset in recovery. 625 */ 626 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 627 (cmd.opcode == MMC_SWITCH)) { 628 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 629 630 card->ext_csd.cache_ctrl = value; 631 } 632 633 /* 634 * According to the SD specs, some commands require a delay after 635 * issuing the command. 636 */ 637 if (idata->ic.postsleep_min_us) 638 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 639 640 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp)); 641 642 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) { 643 /* 644 * Ensure RPMB/R1B command has completed by polling CMD13 645 * "Send Status". 646 */ 647 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, NULL); 648 } 649 650 return err; 651 } 652 653 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 654 struct mmc_ioc_cmd __user *ic_ptr, 655 struct mmc_rpmb_data *rpmb) 656 { 657 struct mmc_blk_ioc_data *idata; 658 struct mmc_blk_ioc_data *idatas[1]; 659 struct mmc_queue *mq; 660 struct mmc_card *card; 661 int err = 0, ioc_err = 0; 662 struct request *req; 663 664 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 665 if (IS_ERR(idata)) 666 return PTR_ERR(idata); 667 /* This will be NULL on non-RPMB ioctl():s */ 668 idata->rpmb = rpmb; 669 670 card = md->queue.card; 671 if (IS_ERR(card)) { 672 err = PTR_ERR(card); 673 goto cmd_done; 674 } 675 676 /* 677 * Dispatch the ioctl() into the block request queue. 678 */ 679 mq = &md->queue; 680 req = blk_get_request(mq->queue, 681 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 682 if (IS_ERR(req)) { 683 err = PTR_ERR(req); 684 goto cmd_done; 685 } 686 idatas[0] = idata; 687 req_to_mmc_queue_req(req)->drv_op = 688 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 689 req_to_mmc_queue_req(req)->drv_op_data = idatas; 690 req_to_mmc_queue_req(req)->ioc_count = 1; 691 blk_execute_rq(NULL, req, 0); 692 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 693 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 694 blk_put_request(req); 695 696 cmd_done: 697 kfree(idata->buf); 698 kfree(idata); 699 return ioc_err ? ioc_err : err; 700 } 701 702 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 703 struct mmc_ioc_multi_cmd __user *user, 704 struct mmc_rpmb_data *rpmb) 705 { 706 struct mmc_blk_ioc_data **idata = NULL; 707 struct mmc_ioc_cmd __user *cmds = user->cmds; 708 struct mmc_card *card; 709 struct mmc_queue *mq; 710 int i, err = 0, ioc_err = 0; 711 __u64 num_of_cmds; 712 struct request *req; 713 714 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 715 sizeof(num_of_cmds))) 716 return -EFAULT; 717 718 if (!num_of_cmds) 719 return 0; 720 721 if (num_of_cmds > MMC_IOC_MAX_CMDS) 722 return -EINVAL; 723 724 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL); 725 if (!idata) 726 return -ENOMEM; 727 728 for (i = 0; i < num_of_cmds; i++) { 729 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 730 if (IS_ERR(idata[i])) { 731 err = PTR_ERR(idata[i]); 732 num_of_cmds = i; 733 goto cmd_err; 734 } 735 /* This will be NULL on non-RPMB ioctl():s */ 736 idata[i]->rpmb = rpmb; 737 } 738 739 card = md->queue.card; 740 if (IS_ERR(card)) { 741 err = PTR_ERR(card); 742 goto cmd_err; 743 } 744 745 746 /* 747 * Dispatch the ioctl()s into the block request queue. 748 */ 749 mq = &md->queue; 750 req = blk_get_request(mq->queue, 751 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 752 if (IS_ERR(req)) { 753 err = PTR_ERR(req); 754 goto cmd_err; 755 } 756 req_to_mmc_queue_req(req)->drv_op = 757 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 758 req_to_mmc_queue_req(req)->drv_op_data = idata; 759 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds; 760 blk_execute_rq(NULL, req, 0); 761 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 762 763 /* copy to user if data and response */ 764 for (i = 0; i < num_of_cmds && !err; i++) 765 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 766 767 blk_put_request(req); 768 769 cmd_err: 770 for (i = 0; i < num_of_cmds; i++) { 771 kfree(idata[i]->buf); 772 kfree(idata[i]); 773 } 774 kfree(idata); 775 return ioc_err ? ioc_err : err; 776 } 777 778 static int mmc_blk_check_blkdev(struct block_device *bdev) 779 { 780 /* 781 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 782 * whole block device, not on a partition. This prevents overspray 783 * between sibling partitions. 784 */ 785 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 786 return -EPERM; 787 return 0; 788 } 789 790 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode, 791 unsigned int cmd, unsigned long arg) 792 { 793 struct mmc_blk_data *md; 794 int ret; 795 796 switch (cmd) { 797 case MMC_IOC_CMD: 798 ret = mmc_blk_check_blkdev(bdev); 799 if (ret) 800 return ret; 801 md = mmc_blk_get(bdev->bd_disk); 802 if (!md) 803 return -EINVAL; 804 ret = mmc_blk_ioctl_cmd(md, 805 (struct mmc_ioc_cmd __user *)arg, 806 NULL); 807 mmc_blk_put(md); 808 return ret; 809 case MMC_IOC_MULTI_CMD: 810 ret = mmc_blk_check_blkdev(bdev); 811 if (ret) 812 return ret; 813 md = mmc_blk_get(bdev->bd_disk); 814 if (!md) 815 return -EINVAL; 816 ret = mmc_blk_ioctl_multi_cmd(md, 817 (struct mmc_ioc_multi_cmd __user *)arg, 818 NULL); 819 mmc_blk_put(md); 820 return ret; 821 default: 822 return -EINVAL; 823 } 824 } 825 826 #ifdef CONFIG_COMPAT 827 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode, 828 unsigned int cmd, unsigned long arg) 829 { 830 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 831 } 832 #endif 833 834 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 835 sector_t *sector) 836 { 837 struct mmc_blk_data *md; 838 int ret; 839 840 md = mmc_blk_get(disk); 841 if (!md) 842 return -EINVAL; 843 844 if (md->queue.card) 845 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 846 else 847 ret = -ENODEV; 848 849 mmc_blk_put(md); 850 851 return ret; 852 } 853 854 static const struct block_device_operations mmc_bdops = { 855 .open = mmc_blk_open, 856 .release = mmc_blk_release, 857 .getgeo = mmc_blk_getgeo, 858 .owner = THIS_MODULE, 859 .ioctl = mmc_blk_ioctl, 860 #ifdef CONFIG_COMPAT 861 .compat_ioctl = mmc_blk_compat_ioctl, 862 #endif 863 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 864 }; 865 866 static int mmc_blk_part_switch_pre(struct mmc_card *card, 867 unsigned int part_type) 868 { 869 int ret = 0; 870 871 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 872 if (card->ext_csd.cmdq_en) { 873 ret = mmc_cmdq_disable(card); 874 if (ret) 875 return ret; 876 } 877 mmc_retune_pause(card->host); 878 } 879 880 return ret; 881 } 882 883 static int mmc_blk_part_switch_post(struct mmc_card *card, 884 unsigned int part_type) 885 { 886 int ret = 0; 887 888 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) { 889 mmc_retune_unpause(card->host); 890 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 891 ret = mmc_cmdq_enable(card); 892 } 893 894 return ret; 895 } 896 897 static inline int mmc_blk_part_switch(struct mmc_card *card, 898 unsigned int part_type) 899 { 900 int ret = 0; 901 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 902 903 if (main_md->part_curr == part_type) 904 return 0; 905 906 if (mmc_card_mmc(card)) { 907 u8 part_config = card->ext_csd.part_config; 908 909 ret = mmc_blk_part_switch_pre(card, part_type); 910 if (ret) 911 return ret; 912 913 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 914 part_config |= part_type; 915 916 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 917 EXT_CSD_PART_CONFIG, part_config, 918 card->ext_csd.part_time); 919 if (ret) { 920 mmc_blk_part_switch_post(card, part_type); 921 return ret; 922 } 923 924 card->ext_csd.part_config = part_config; 925 926 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 927 } 928 929 main_md->part_curr = part_type; 930 return ret; 931 } 932 933 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 934 { 935 int err; 936 u32 result; 937 __be32 *blocks; 938 939 struct mmc_request mrq = {}; 940 struct mmc_command cmd = {}; 941 struct mmc_data data = {}; 942 943 struct scatterlist sg; 944 945 cmd.opcode = MMC_APP_CMD; 946 cmd.arg = card->rca << 16; 947 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 948 949 err = mmc_wait_for_cmd(card->host, &cmd, 0); 950 if (err) 951 return err; 952 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD)) 953 return -EIO; 954 955 memset(&cmd, 0, sizeof(struct mmc_command)); 956 957 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 958 cmd.arg = 0; 959 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 960 961 data.blksz = 4; 962 data.blocks = 1; 963 data.flags = MMC_DATA_READ; 964 data.sg = &sg; 965 data.sg_len = 1; 966 mmc_set_data_timeout(&data, card); 967 968 mrq.cmd = &cmd; 969 mrq.data = &data; 970 971 blocks = kmalloc(4, GFP_KERNEL); 972 if (!blocks) 973 return -ENOMEM; 974 975 sg_init_one(&sg, blocks, 4); 976 977 mmc_wait_for_req(card->host, &mrq); 978 979 result = ntohl(*blocks); 980 kfree(blocks); 981 982 if (cmd.error || data.error) 983 return -EIO; 984 985 *written_blocks = result; 986 987 return 0; 988 } 989 990 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 991 { 992 if (host->actual_clock) 993 return host->actual_clock / 1000; 994 995 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 996 if (host->ios.clock) 997 return host->ios.clock / 2000; 998 999 /* How can there be no clock */ 1000 WARN_ON_ONCE(1); 1001 return 100; /* 100 kHz is minimum possible value */ 1002 } 1003 1004 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 1005 struct mmc_data *data) 1006 { 1007 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 1008 unsigned int khz; 1009 1010 if (data->timeout_clks) { 1011 khz = mmc_blk_clock_khz(host); 1012 ms += DIV_ROUND_UP(data->timeout_clks, khz); 1013 } 1014 1015 return ms; 1016 } 1017 1018 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1019 int type) 1020 { 1021 int err; 1022 1023 if (md->reset_done & type) 1024 return -EEXIST; 1025 1026 md->reset_done |= type; 1027 err = mmc_hw_reset(host); 1028 /* Ensure we switch back to the correct partition */ 1029 if (err) { 1030 struct mmc_blk_data *main_md = 1031 dev_get_drvdata(&host->card->dev); 1032 int part_err; 1033 1034 main_md->part_curr = main_md->part_type; 1035 part_err = mmc_blk_part_switch(host->card, md->part_type); 1036 if (part_err) { 1037 /* 1038 * We have failed to get back into the correct 1039 * partition, so we need to abort the whole request. 1040 */ 1041 return -ENODEV; 1042 } 1043 } 1044 return err; 1045 } 1046 1047 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1048 { 1049 md->reset_done &= ~type; 1050 } 1051 1052 /* 1053 * The non-block commands come back from the block layer after it queued it and 1054 * processed it with all other requests and then they get issued in this 1055 * function. 1056 */ 1057 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1058 { 1059 struct mmc_queue_req *mq_rq; 1060 struct mmc_card *card = mq->card; 1061 struct mmc_blk_data *md = mq->blkdata; 1062 struct mmc_blk_ioc_data **idata; 1063 bool rpmb_ioctl; 1064 u8 **ext_csd; 1065 u32 status; 1066 int ret; 1067 int i; 1068 1069 mq_rq = req_to_mmc_queue_req(req); 1070 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1071 1072 switch (mq_rq->drv_op) { 1073 case MMC_DRV_OP_IOCTL: 1074 if (card->ext_csd.cmdq_en) { 1075 ret = mmc_cmdq_disable(card); 1076 if (ret) 1077 break; 1078 } 1079 fallthrough; 1080 case MMC_DRV_OP_IOCTL_RPMB: 1081 idata = mq_rq->drv_op_data; 1082 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1083 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]); 1084 if (ret) 1085 break; 1086 } 1087 /* Always switch back to main area after RPMB access */ 1088 if (rpmb_ioctl) 1089 mmc_blk_part_switch(card, 0); 1090 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1091 mmc_cmdq_enable(card); 1092 break; 1093 case MMC_DRV_OP_BOOT_WP: 1094 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1095 card->ext_csd.boot_ro_lock | 1096 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1097 card->ext_csd.part_time); 1098 if (ret) 1099 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1100 md->disk->disk_name, ret); 1101 else 1102 card->ext_csd.boot_ro_lock |= 1103 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1104 break; 1105 case MMC_DRV_OP_GET_CARD_STATUS: 1106 ret = mmc_send_status(card, &status); 1107 if (!ret) 1108 ret = status; 1109 break; 1110 case MMC_DRV_OP_GET_EXT_CSD: 1111 ext_csd = mq_rq->drv_op_data; 1112 ret = mmc_get_ext_csd(card, ext_csd); 1113 break; 1114 default: 1115 pr_err("%s: unknown driver specific operation\n", 1116 md->disk->disk_name); 1117 ret = -EINVAL; 1118 break; 1119 } 1120 mq_rq->drv_op_result = ret; 1121 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1122 } 1123 1124 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1125 { 1126 struct mmc_blk_data *md = mq->blkdata; 1127 struct mmc_card *card = md->queue.card; 1128 unsigned int from, nr; 1129 int err = 0, type = MMC_BLK_DISCARD; 1130 blk_status_t status = BLK_STS_OK; 1131 1132 if (!mmc_can_erase(card)) { 1133 status = BLK_STS_NOTSUPP; 1134 goto fail; 1135 } 1136 1137 from = blk_rq_pos(req); 1138 nr = blk_rq_sectors(req); 1139 1140 do { 1141 err = 0; 1142 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1143 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1144 INAND_CMD38_ARG_EXT_CSD, 1145 card->erase_arg == MMC_TRIM_ARG ? 1146 INAND_CMD38_ARG_TRIM : 1147 INAND_CMD38_ARG_ERASE, 1148 card->ext_csd.generic_cmd6_time); 1149 } 1150 if (!err) 1151 err = mmc_erase(card, from, nr, card->erase_arg); 1152 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1153 if (err) 1154 status = BLK_STS_IOERR; 1155 else 1156 mmc_blk_reset_success(md, type); 1157 fail: 1158 blk_mq_end_request(req, status); 1159 } 1160 1161 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1162 struct request *req) 1163 { 1164 struct mmc_blk_data *md = mq->blkdata; 1165 struct mmc_card *card = md->queue.card; 1166 unsigned int from, nr, arg; 1167 int err = 0, type = MMC_BLK_SECDISCARD; 1168 blk_status_t status = BLK_STS_OK; 1169 1170 if (!(mmc_can_secure_erase_trim(card))) { 1171 status = BLK_STS_NOTSUPP; 1172 goto out; 1173 } 1174 1175 from = blk_rq_pos(req); 1176 nr = blk_rq_sectors(req); 1177 1178 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1179 arg = MMC_SECURE_TRIM1_ARG; 1180 else 1181 arg = MMC_SECURE_ERASE_ARG; 1182 1183 retry: 1184 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1185 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1186 INAND_CMD38_ARG_EXT_CSD, 1187 arg == MMC_SECURE_TRIM1_ARG ? 1188 INAND_CMD38_ARG_SECTRIM1 : 1189 INAND_CMD38_ARG_SECERASE, 1190 card->ext_csd.generic_cmd6_time); 1191 if (err) 1192 goto out_retry; 1193 } 1194 1195 err = mmc_erase(card, from, nr, arg); 1196 if (err == -EIO) 1197 goto out_retry; 1198 if (err) { 1199 status = BLK_STS_IOERR; 1200 goto out; 1201 } 1202 1203 if (arg == MMC_SECURE_TRIM1_ARG) { 1204 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1205 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1206 INAND_CMD38_ARG_EXT_CSD, 1207 INAND_CMD38_ARG_SECTRIM2, 1208 card->ext_csd.generic_cmd6_time); 1209 if (err) 1210 goto out_retry; 1211 } 1212 1213 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1214 if (err == -EIO) 1215 goto out_retry; 1216 if (err) { 1217 status = BLK_STS_IOERR; 1218 goto out; 1219 } 1220 } 1221 1222 out_retry: 1223 if (err && !mmc_blk_reset(md, card->host, type)) 1224 goto retry; 1225 if (!err) 1226 mmc_blk_reset_success(md, type); 1227 out: 1228 blk_mq_end_request(req, status); 1229 } 1230 1231 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1232 { 1233 struct mmc_blk_data *md = mq->blkdata; 1234 struct mmc_card *card = md->queue.card; 1235 int ret = 0; 1236 1237 ret = mmc_flush_cache(card->host); 1238 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1239 } 1240 1241 /* 1242 * Reformat current write as a reliable write, supporting 1243 * both legacy and the enhanced reliable write MMC cards. 1244 * In each transfer we'll handle only as much as a single 1245 * reliable write can handle, thus finish the request in 1246 * partial completions. 1247 */ 1248 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1249 struct mmc_card *card, 1250 struct request *req) 1251 { 1252 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1253 /* Legacy mode imposes restrictions on transfers. */ 1254 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1255 brq->data.blocks = 1; 1256 1257 if (brq->data.blocks > card->ext_csd.rel_sectors) 1258 brq->data.blocks = card->ext_csd.rel_sectors; 1259 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1260 brq->data.blocks = 1; 1261 } 1262 } 1263 1264 #define CMD_ERRORS_EXCL_OOR \ 1265 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1266 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1267 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1268 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1269 R1_CC_ERROR | /* Card controller error */ \ 1270 R1_ERROR) /* General/unknown error */ 1271 1272 #define CMD_ERRORS \ 1273 (CMD_ERRORS_EXCL_OOR | \ 1274 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1275 1276 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1277 { 1278 u32 val; 1279 1280 /* 1281 * Per the SD specification(physical layer version 4.10)[1], 1282 * section 4.3.3, it explicitly states that "When the last 1283 * block of user area is read using CMD18, the host should 1284 * ignore OUT_OF_RANGE error that may occur even the sequence 1285 * is correct". And JESD84-B51 for eMMC also has a similar 1286 * statement on section 6.8.3. 1287 * 1288 * Multiple block read/write could be done by either predefined 1289 * method, namely CMD23, or open-ending mode. For open-ending mode, 1290 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1291 * 1292 * However the spec[1] doesn't tell us whether we should also 1293 * ignore that for predefined method. But per the spec[1], section 1294 * 4.15 Set Block Count Command, it says"If illegal block count 1295 * is set, out of range error will be indicated during read/write 1296 * operation (For example, data transfer is stopped at user area 1297 * boundary)." In another word, we could expect a out of range error 1298 * in the response for the following CMD18/25. And if argument of 1299 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1300 * we could also expect to get a -ETIMEDOUT or any error number from 1301 * the host drivers due to missing data response(for write)/data(for 1302 * read), as the cards will stop the data transfer by itself per the 1303 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1304 */ 1305 1306 if (!brq->stop.error) { 1307 bool oor_with_open_end; 1308 /* If there is no error yet, check R1 response */ 1309 1310 val = brq->stop.resp[0] & CMD_ERRORS; 1311 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1312 1313 if (val && !oor_with_open_end) 1314 brq->stop.error = -EIO; 1315 } 1316 } 1317 1318 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1319 int disable_multi, bool *do_rel_wr_p, 1320 bool *do_data_tag_p) 1321 { 1322 struct mmc_blk_data *md = mq->blkdata; 1323 struct mmc_card *card = md->queue.card; 1324 struct mmc_blk_request *brq = &mqrq->brq; 1325 struct request *req = mmc_queue_req_to_req(mqrq); 1326 bool do_rel_wr, do_data_tag; 1327 1328 /* 1329 * Reliable writes are used to implement Forced Unit Access and 1330 * are supported only on MMCs. 1331 */ 1332 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1333 rq_data_dir(req) == WRITE && 1334 (md->flags & MMC_BLK_REL_WR); 1335 1336 memset(brq, 0, sizeof(struct mmc_blk_request)); 1337 1338 mmc_crypto_prepare_req(mqrq); 1339 1340 brq->mrq.data = &brq->data; 1341 brq->mrq.tag = req->tag; 1342 1343 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1344 brq->stop.arg = 0; 1345 1346 if (rq_data_dir(req) == READ) { 1347 brq->data.flags = MMC_DATA_READ; 1348 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1349 } else { 1350 brq->data.flags = MMC_DATA_WRITE; 1351 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1352 } 1353 1354 brq->data.blksz = 512; 1355 brq->data.blocks = blk_rq_sectors(req); 1356 brq->data.blk_addr = blk_rq_pos(req); 1357 1358 /* 1359 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1360 * The eMMC will give "high" priority tasks priority over "simple" 1361 * priority tasks. Here we always set "simple" priority by not setting 1362 * MMC_DATA_PRIO. 1363 */ 1364 1365 /* 1366 * The block layer doesn't support all sector count 1367 * restrictions, so we need to be prepared for too big 1368 * requests. 1369 */ 1370 if (brq->data.blocks > card->host->max_blk_count) 1371 brq->data.blocks = card->host->max_blk_count; 1372 1373 if (brq->data.blocks > 1) { 1374 /* 1375 * Some SD cards in SPI mode return a CRC error or even lock up 1376 * completely when trying to read the last block using a 1377 * multiblock read command. 1378 */ 1379 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1380 (blk_rq_pos(req) + blk_rq_sectors(req) == 1381 get_capacity(md->disk))) 1382 brq->data.blocks--; 1383 1384 /* 1385 * After a read error, we redo the request one sector 1386 * at a time in order to accurately determine which 1387 * sectors can be read successfully. 1388 */ 1389 if (disable_multi) 1390 brq->data.blocks = 1; 1391 1392 /* 1393 * Some controllers have HW issues while operating 1394 * in multiple I/O mode 1395 */ 1396 if (card->host->ops->multi_io_quirk) 1397 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1398 (rq_data_dir(req) == READ) ? 1399 MMC_DATA_READ : MMC_DATA_WRITE, 1400 brq->data.blocks); 1401 } 1402 1403 if (do_rel_wr) { 1404 mmc_apply_rel_rw(brq, card, req); 1405 brq->data.flags |= MMC_DATA_REL_WR; 1406 } 1407 1408 /* 1409 * Data tag is used only during writing meta data to speed 1410 * up write and any subsequent read of this meta data 1411 */ 1412 do_data_tag = card->ext_csd.data_tag_unit_size && 1413 (req->cmd_flags & REQ_META) && 1414 (rq_data_dir(req) == WRITE) && 1415 ((brq->data.blocks * brq->data.blksz) >= 1416 card->ext_csd.data_tag_unit_size); 1417 1418 if (do_data_tag) 1419 brq->data.flags |= MMC_DATA_DAT_TAG; 1420 1421 mmc_set_data_timeout(&brq->data, card); 1422 1423 brq->data.sg = mqrq->sg; 1424 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1425 1426 /* 1427 * Adjust the sg list so it is the same size as the 1428 * request. 1429 */ 1430 if (brq->data.blocks != blk_rq_sectors(req)) { 1431 int i, data_size = brq->data.blocks << 9; 1432 struct scatterlist *sg; 1433 1434 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1435 data_size -= sg->length; 1436 if (data_size <= 0) { 1437 sg->length += data_size; 1438 i++; 1439 break; 1440 } 1441 } 1442 brq->data.sg_len = i; 1443 } 1444 1445 if (do_rel_wr_p) 1446 *do_rel_wr_p = do_rel_wr; 1447 1448 if (do_data_tag_p) 1449 *do_data_tag_p = do_data_tag; 1450 } 1451 1452 #define MMC_CQE_RETRIES 2 1453 1454 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1455 { 1456 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1457 struct mmc_request *mrq = &mqrq->brq.mrq; 1458 struct request_queue *q = req->q; 1459 struct mmc_host *host = mq->card->host; 1460 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1461 unsigned long flags; 1462 bool put_card; 1463 int err; 1464 1465 mmc_cqe_post_req(host, mrq); 1466 1467 if (mrq->cmd && mrq->cmd->error) 1468 err = mrq->cmd->error; 1469 else if (mrq->data && mrq->data->error) 1470 err = mrq->data->error; 1471 else 1472 err = 0; 1473 1474 if (err) { 1475 if (mqrq->retries++ < MMC_CQE_RETRIES) 1476 blk_mq_requeue_request(req, true); 1477 else 1478 blk_mq_end_request(req, BLK_STS_IOERR); 1479 } else if (mrq->data) { 1480 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1481 blk_mq_requeue_request(req, true); 1482 else 1483 __blk_mq_end_request(req, BLK_STS_OK); 1484 } else { 1485 blk_mq_end_request(req, BLK_STS_OK); 1486 } 1487 1488 spin_lock_irqsave(&mq->lock, flags); 1489 1490 mq->in_flight[issue_type] -= 1; 1491 1492 put_card = (mmc_tot_in_flight(mq) == 0); 1493 1494 mmc_cqe_check_busy(mq); 1495 1496 spin_unlock_irqrestore(&mq->lock, flags); 1497 1498 if (!mq->cqe_busy) 1499 blk_mq_run_hw_queues(q, true); 1500 1501 if (put_card) 1502 mmc_put_card(mq->card, &mq->ctx); 1503 } 1504 1505 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1506 { 1507 struct mmc_card *card = mq->card; 1508 struct mmc_host *host = card->host; 1509 int err; 1510 1511 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1512 1513 err = mmc_cqe_recovery(host); 1514 if (err) 1515 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1516 else 1517 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1518 1519 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1520 } 1521 1522 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1523 { 1524 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1525 brq.mrq); 1526 struct request *req = mmc_queue_req_to_req(mqrq); 1527 struct request_queue *q = req->q; 1528 struct mmc_queue *mq = q->queuedata; 1529 1530 /* 1531 * Block layer timeouts race with completions which means the normal 1532 * completion path cannot be used during recovery. 1533 */ 1534 if (mq->in_recovery) 1535 mmc_blk_cqe_complete_rq(mq, req); 1536 else if (likely(!blk_should_fake_timeout(req->q))) 1537 blk_mq_complete_request(req); 1538 } 1539 1540 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1541 { 1542 mrq->done = mmc_blk_cqe_req_done; 1543 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1544 1545 return mmc_cqe_start_req(host, mrq); 1546 } 1547 1548 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1549 struct request *req) 1550 { 1551 struct mmc_blk_request *brq = &mqrq->brq; 1552 1553 memset(brq, 0, sizeof(*brq)); 1554 1555 brq->mrq.cmd = &brq->cmd; 1556 brq->mrq.tag = req->tag; 1557 1558 return &brq->mrq; 1559 } 1560 1561 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1562 { 1563 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1564 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1565 1566 mrq->cmd->opcode = MMC_SWITCH; 1567 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1568 (EXT_CSD_FLUSH_CACHE << 16) | 1569 (1 << 8) | 1570 EXT_CSD_CMD_SET_NORMAL; 1571 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1572 1573 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1574 } 1575 1576 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1577 { 1578 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1579 struct mmc_host *host = mq->card->host; 1580 int err; 1581 1582 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1583 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1584 mmc_pre_req(host, &mqrq->brq.mrq); 1585 1586 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1587 if (err) 1588 mmc_post_req(host, &mqrq->brq.mrq, err); 1589 1590 return err; 1591 } 1592 1593 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1594 { 1595 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1596 struct mmc_host *host = mq->card->host; 1597 1598 if (host->hsq_enabled) 1599 return mmc_blk_hsq_issue_rw_rq(mq, req); 1600 1601 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1602 1603 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1604 } 1605 1606 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1607 struct mmc_card *card, 1608 int disable_multi, 1609 struct mmc_queue *mq) 1610 { 1611 u32 readcmd, writecmd; 1612 struct mmc_blk_request *brq = &mqrq->brq; 1613 struct request *req = mmc_queue_req_to_req(mqrq); 1614 struct mmc_blk_data *md = mq->blkdata; 1615 bool do_rel_wr, do_data_tag; 1616 1617 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag); 1618 1619 brq->mrq.cmd = &brq->cmd; 1620 1621 brq->cmd.arg = blk_rq_pos(req); 1622 if (!mmc_card_blockaddr(card)) 1623 brq->cmd.arg <<= 9; 1624 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1625 1626 if (brq->data.blocks > 1 || do_rel_wr) { 1627 /* SPI multiblock writes terminate using a special 1628 * token, not a STOP_TRANSMISSION request. 1629 */ 1630 if (!mmc_host_is_spi(card->host) || 1631 rq_data_dir(req) == READ) 1632 brq->mrq.stop = &brq->stop; 1633 readcmd = MMC_READ_MULTIPLE_BLOCK; 1634 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1635 } else { 1636 brq->mrq.stop = NULL; 1637 readcmd = MMC_READ_SINGLE_BLOCK; 1638 writecmd = MMC_WRITE_BLOCK; 1639 } 1640 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1641 1642 /* 1643 * Pre-defined multi-block transfers are preferable to 1644 * open ended-ones (and necessary for reliable writes). 1645 * However, it is not sufficient to just send CMD23, 1646 * and avoid the final CMD12, as on an error condition 1647 * CMD12 (stop) needs to be sent anyway. This, coupled 1648 * with Auto-CMD23 enhancements provided by some 1649 * hosts, means that the complexity of dealing 1650 * with this is best left to the host. If CMD23 is 1651 * supported by card and host, we'll fill sbc in and let 1652 * the host deal with handling it correctly. This means 1653 * that for hosts that don't expose MMC_CAP_CMD23, no 1654 * change of behavior will be observed. 1655 * 1656 * N.B: Some MMC cards experience perf degradation. 1657 * We'll avoid using CMD23-bounded multiblock writes for 1658 * these, while retaining features like reliable writes. 1659 */ 1660 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1661 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) || 1662 do_data_tag)) { 1663 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1664 brq->sbc.arg = brq->data.blocks | 1665 (do_rel_wr ? (1 << 31) : 0) | 1666 (do_data_tag ? (1 << 29) : 0); 1667 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1668 brq->mrq.sbc = &brq->sbc; 1669 } 1670 } 1671 1672 #define MMC_MAX_RETRIES 5 1673 #define MMC_DATA_RETRIES 2 1674 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1675 1676 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1677 { 1678 struct mmc_command cmd = { 1679 .opcode = MMC_STOP_TRANSMISSION, 1680 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1681 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1682 .busy_timeout = timeout, 1683 }; 1684 1685 return mmc_wait_for_cmd(card->host, &cmd, 5); 1686 } 1687 1688 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1689 { 1690 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1691 struct mmc_blk_request *brq = &mqrq->brq; 1692 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1693 int err; 1694 1695 mmc_retune_hold_now(card->host); 1696 1697 mmc_blk_send_stop(card, timeout); 1698 1699 err = card_busy_detect(card, timeout, NULL); 1700 1701 mmc_retune_release(card->host); 1702 1703 return err; 1704 } 1705 1706 #define MMC_READ_SINGLE_RETRIES 2 1707 1708 /* Single sector read during recovery */ 1709 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1710 { 1711 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1712 struct mmc_request *mrq = &mqrq->brq.mrq; 1713 struct mmc_card *card = mq->card; 1714 struct mmc_host *host = card->host; 1715 blk_status_t error = BLK_STS_OK; 1716 int retries = 0; 1717 1718 do { 1719 u32 status; 1720 int err; 1721 1722 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1723 1724 mmc_wait_for_req(host, mrq); 1725 1726 err = mmc_send_status(card, &status); 1727 if (err) 1728 goto error_exit; 1729 1730 if (!mmc_host_is_spi(host) && 1731 !mmc_ready_for_data(status)) { 1732 err = mmc_blk_fix_state(card, req); 1733 if (err) 1734 goto error_exit; 1735 } 1736 1737 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES) 1738 continue; 1739 1740 retries = 0; 1741 1742 if (mrq->cmd->error || 1743 mrq->data->error || 1744 (!mmc_host_is_spi(host) && 1745 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1746 error = BLK_STS_IOERR; 1747 else 1748 error = BLK_STS_OK; 1749 1750 } while (blk_update_request(req, error, 512)); 1751 1752 return; 1753 1754 error_exit: 1755 mrq->data->bytes_xfered = 0; 1756 blk_update_request(req, BLK_STS_IOERR, 512); 1757 /* Let it try the remaining request again */ 1758 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1759 mqrq->retries = MMC_MAX_RETRIES - 1; 1760 } 1761 1762 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1763 { 1764 return !!brq->mrq.sbc; 1765 } 1766 1767 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1768 { 1769 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1770 } 1771 1772 /* 1773 * Check for errors the host controller driver might not have seen such as 1774 * response mode errors or invalid card state. 1775 */ 1776 static bool mmc_blk_status_error(struct request *req, u32 status) 1777 { 1778 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1779 struct mmc_blk_request *brq = &mqrq->brq; 1780 struct mmc_queue *mq = req->q->queuedata; 1781 u32 stop_err_bits; 1782 1783 if (mmc_host_is_spi(mq->card->host)) 1784 return false; 1785 1786 stop_err_bits = mmc_blk_stop_err_bits(brq); 1787 1788 return brq->cmd.resp[0] & CMD_ERRORS || 1789 brq->stop.resp[0] & stop_err_bits || 1790 status & stop_err_bits || 1791 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1792 } 1793 1794 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1795 { 1796 return !brq->sbc.error && !brq->cmd.error && 1797 !(brq->cmd.resp[0] & CMD_ERRORS); 1798 } 1799 1800 /* 1801 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1802 * policy: 1803 * 1. A request that has transferred at least some data is considered 1804 * successful and will be requeued if there is remaining data to 1805 * transfer. 1806 * 2. Otherwise the number of retries is incremented and the request 1807 * will be requeued if there are remaining retries. 1808 * 3. Otherwise the request will be errored out. 1809 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1810 * mqrq->retries. So there are only 4 possible actions here: 1811 * 1. do not accept the bytes_xfered value i.e. set it to zero 1812 * 2. change mqrq->retries to determine the number of retries 1813 * 3. try to reset the card 1814 * 4. read one sector at a time 1815 */ 1816 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1817 { 1818 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1819 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1820 struct mmc_blk_request *brq = &mqrq->brq; 1821 struct mmc_blk_data *md = mq->blkdata; 1822 struct mmc_card *card = mq->card; 1823 u32 status; 1824 u32 blocks; 1825 int err; 1826 1827 /* 1828 * Some errors the host driver might not have seen. Set the number of 1829 * bytes transferred to zero in that case. 1830 */ 1831 err = __mmc_send_status(card, &status, 0); 1832 if (err || mmc_blk_status_error(req, status)) 1833 brq->data.bytes_xfered = 0; 1834 1835 mmc_retune_release(card->host); 1836 1837 /* 1838 * Try again to get the status. This also provides an opportunity for 1839 * re-tuning. 1840 */ 1841 if (err) 1842 err = __mmc_send_status(card, &status, 0); 1843 1844 /* 1845 * Nothing more to do after the number of bytes transferred has been 1846 * updated and there is no card. 1847 */ 1848 if (err && mmc_detect_card_removed(card->host)) 1849 return; 1850 1851 /* Try to get back to "tran" state */ 1852 if (!mmc_host_is_spi(mq->card->host) && 1853 (err || !mmc_ready_for_data(status))) 1854 err = mmc_blk_fix_state(mq->card, req); 1855 1856 /* 1857 * Special case for SD cards where the card might record the number of 1858 * blocks written. 1859 */ 1860 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1861 rq_data_dir(req) == WRITE) { 1862 if (mmc_sd_num_wr_blocks(card, &blocks)) 1863 brq->data.bytes_xfered = 0; 1864 else 1865 brq->data.bytes_xfered = blocks << 9; 1866 } 1867 1868 /* Reset if the card is in a bad state */ 1869 if (!mmc_host_is_spi(mq->card->host) && 1870 err && mmc_blk_reset(md, card->host, type)) { 1871 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name); 1872 mqrq->retries = MMC_NO_RETRIES; 1873 return; 1874 } 1875 1876 /* 1877 * If anything was done, just return and if there is anything remaining 1878 * on the request it will get requeued. 1879 */ 1880 if (brq->data.bytes_xfered) 1881 return; 1882 1883 /* Reset before last retry */ 1884 if (mqrq->retries + 1 == MMC_MAX_RETRIES) 1885 mmc_blk_reset(md, card->host, type); 1886 1887 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 1888 if (brq->sbc.error || brq->cmd.error) 1889 return; 1890 1891 /* Reduce the remaining retries for data errors */ 1892 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 1893 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 1894 return; 1895 } 1896 1897 /* FIXME: Missing single sector read for large sector size */ 1898 if (!mmc_large_sector(card) && rq_data_dir(req) == READ && 1899 brq->data.blocks > 1) { 1900 /* Read one sector at a time */ 1901 mmc_blk_read_single(mq, req); 1902 return; 1903 } 1904 } 1905 1906 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 1907 { 1908 mmc_blk_eval_resp_error(brq); 1909 1910 return brq->sbc.error || brq->cmd.error || brq->stop.error || 1911 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 1912 } 1913 1914 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 1915 { 1916 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1917 u32 status = 0; 1918 int err; 1919 1920 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ) 1921 return 0; 1922 1923 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, &status); 1924 1925 /* 1926 * Do not assume data transferred correctly if there are any error bits 1927 * set. 1928 */ 1929 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) { 1930 mqrq->brq.data.bytes_xfered = 0; 1931 err = err ? err : -EIO; 1932 } 1933 1934 /* Copy the exception bit so it will be seen later on */ 1935 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT) 1936 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 1937 1938 return err; 1939 } 1940 1941 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 1942 struct request *req) 1943 { 1944 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1945 1946 mmc_blk_reset_success(mq->blkdata, type); 1947 } 1948 1949 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 1950 { 1951 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1952 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 1953 1954 if (nr_bytes) { 1955 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 1956 blk_mq_requeue_request(req, true); 1957 else 1958 __blk_mq_end_request(req, BLK_STS_OK); 1959 } else if (!blk_rq_bytes(req)) { 1960 __blk_mq_end_request(req, BLK_STS_IOERR); 1961 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 1962 blk_mq_requeue_request(req, true); 1963 } else { 1964 if (mmc_card_removed(mq->card)) 1965 req->rq_flags |= RQF_QUIET; 1966 blk_mq_end_request(req, BLK_STS_IOERR); 1967 } 1968 } 1969 1970 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 1971 struct mmc_queue_req *mqrq) 1972 { 1973 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 1974 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 1975 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 1976 } 1977 1978 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 1979 struct mmc_queue_req *mqrq) 1980 { 1981 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 1982 mmc_run_bkops(mq->card); 1983 } 1984 1985 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 1986 { 1987 struct mmc_queue_req *mqrq = 1988 container_of(mrq, struct mmc_queue_req, brq.mrq); 1989 struct request *req = mmc_queue_req_to_req(mqrq); 1990 struct request_queue *q = req->q; 1991 struct mmc_queue *mq = q->queuedata; 1992 struct mmc_host *host = mq->card->host; 1993 unsigned long flags; 1994 1995 if (mmc_blk_rq_error(&mqrq->brq) || 1996 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 1997 spin_lock_irqsave(&mq->lock, flags); 1998 mq->recovery_needed = true; 1999 mq->recovery_req = req; 2000 spin_unlock_irqrestore(&mq->lock, flags); 2001 2002 host->cqe_ops->cqe_recovery_start(host); 2003 2004 schedule_work(&mq->recovery_work); 2005 return; 2006 } 2007 2008 mmc_blk_rw_reset_success(mq, req); 2009 2010 /* 2011 * Block layer timeouts race with completions which means the normal 2012 * completion path cannot be used during recovery. 2013 */ 2014 if (mq->in_recovery) 2015 mmc_blk_cqe_complete_rq(mq, req); 2016 else if (likely(!blk_should_fake_timeout(req->q))) 2017 blk_mq_complete_request(req); 2018 } 2019 2020 void mmc_blk_mq_complete(struct request *req) 2021 { 2022 struct mmc_queue *mq = req->q->queuedata; 2023 struct mmc_host *host = mq->card->host; 2024 2025 if (host->cqe_enabled) 2026 mmc_blk_cqe_complete_rq(mq, req); 2027 else if (likely(!blk_should_fake_timeout(req->q))) 2028 mmc_blk_mq_complete_rq(mq, req); 2029 } 2030 2031 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2032 struct request *req) 2033 { 2034 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2035 struct mmc_host *host = mq->card->host; 2036 2037 if (mmc_blk_rq_error(&mqrq->brq) || 2038 mmc_blk_card_busy(mq->card, req)) { 2039 mmc_blk_mq_rw_recovery(mq, req); 2040 } else { 2041 mmc_blk_rw_reset_success(mq, req); 2042 mmc_retune_release(host); 2043 } 2044 2045 mmc_blk_urgent_bkops(mq, mqrq); 2046 } 2047 2048 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req) 2049 { 2050 unsigned long flags; 2051 bool put_card; 2052 2053 spin_lock_irqsave(&mq->lock, flags); 2054 2055 mq->in_flight[mmc_issue_type(mq, req)] -= 1; 2056 2057 put_card = (mmc_tot_in_flight(mq) == 0); 2058 2059 spin_unlock_irqrestore(&mq->lock, flags); 2060 2061 if (put_card) 2062 mmc_put_card(mq->card, &mq->ctx); 2063 } 2064 2065 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req) 2066 { 2067 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2068 struct mmc_request *mrq = &mqrq->brq.mrq; 2069 struct mmc_host *host = mq->card->host; 2070 2071 mmc_post_req(host, mrq, 0); 2072 2073 /* 2074 * Block layer timeouts race with completions which means the normal 2075 * completion path cannot be used during recovery. 2076 */ 2077 if (mq->in_recovery) 2078 mmc_blk_mq_complete_rq(mq, req); 2079 else if (likely(!blk_should_fake_timeout(req->q))) 2080 blk_mq_complete_request(req); 2081 2082 mmc_blk_mq_dec_in_flight(mq, req); 2083 } 2084 2085 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2086 { 2087 struct request *req = mq->recovery_req; 2088 struct mmc_host *host = mq->card->host; 2089 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2090 2091 mq->recovery_req = NULL; 2092 mq->rw_wait = false; 2093 2094 if (mmc_blk_rq_error(&mqrq->brq)) { 2095 mmc_retune_hold_now(host); 2096 mmc_blk_mq_rw_recovery(mq, req); 2097 } 2098 2099 mmc_blk_urgent_bkops(mq, mqrq); 2100 2101 mmc_blk_mq_post_req(mq, req); 2102 } 2103 2104 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2105 struct request **prev_req) 2106 { 2107 if (mmc_host_done_complete(mq->card->host)) 2108 return; 2109 2110 mutex_lock(&mq->complete_lock); 2111 2112 if (!mq->complete_req) 2113 goto out_unlock; 2114 2115 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2116 2117 if (prev_req) 2118 *prev_req = mq->complete_req; 2119 else 2120 mmc_blk_mq_post_req(mq, mq->complete_req); 2121 2122 mq->complete_req = NULL; 2123 2124 out_unlock: 2125 mutex_unlock(&mq->complete_lock); 2126 } 2127 2128 void mmc_blk_mq_complete_work(struct work_struct *work) 2129 { 2130 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2131 complete_work); 2132 2133 mmc_blk_mq_complete_prev_req(mq, NULL); 2134 } 2135 2136 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2137 { 2138 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2139 brq.mrq); 2140 struct request *req = mmc_queue_req_to_req(mqrq); 2141 struct request_queue *q = req->q; 2142 struct mmc_queue *mq = q->queuedata; 2143 struct mmc_host *host = mq->card->host; 2144 unsigned long flags; 2145 2146 if (!mmc_host_done_complete(host)) { 2147 bool waiting; 2148 2149 /* 2150 * We cannot complete the request in this context, so record 2151 * that there is a request to complete, and that a following 2152 * request does not need to wait (although it does need to 2153 * complete complete_req first). 2154 */ 2155 spin_lock_irqsave(&mq->lock, flags); 2156 mq->complete_req = req; 2157 mq->rw_wait = false; 2158 waiting = mq->waiting; 2159 spin_unlock_irqrestore(&mq->lock, flags); 2160 2161 /* 2162 * If 'waiting' then the waiting task will complete this 2163 * request, otherwise queue a work to do it. Note that 2164 * complete_work may still race with the dispatch of a following 2165 * request. 2166 */ 2167 if (waiting) 2168 wake_up(&mq->wait); 2169 else 2170 queue_work(mq->card->complete_wq, &mq->complete_work); 2171 2172 return; 2173 } 2174 2175 /* Take the recovery path for errors or urgent background operations */ 2176 if (mmc_blk_rq_error(&mqrq->brq) || 2177 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2178 spin_lock_irqsave(&mq->lock, flags); 2179 mq->recovery_needed = true; 2180 mq->recovery_req = req; 2181 spin_unlock_irqrestore(&mq->lock, flags); 2182 wake_up(&mq->wait); 2183 schedule_work(&mq->recovery_work); 2184 return; 2185 } 2186 2187 mmc_blk_rw_reset_success(mq, req); 2188 2189 mq->rw_wait = false; 2190 wake_up(&mq->wait); 2191 2192 mmc_blk_mq_post_req(mq, req); 2193 } 2194 2195 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2196 { 2197 unsigned long flags; 2198 bool done; 2199 2200 /* 2201 * Wait while there is another request in progress, but not if recovery 2202 * is needed. Also indicate whether there is a request waiting to start. 2203 */ 2204 spin_lock_irqsave(&mq->lock, flags); 2205 if (mq->recovery_needed) { 2206 *err = -EBUSY; 2207 done = true; 2208 } else { 2209 done = !mq->rw_wait; 2210 } 2211 mq->waiting = !done; 2212 spin_unlock_irqrestore(&mq->lock, flags); 2213 2214 return done; 2215 } 2216 2217 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2218 { 2219 int err = 0; 2220 2221 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2222 2223 /* Always complete the previous request if there is one */ 2224 mmc_blk_mq_complete_prev_req(mq, prev_req); 2225 2226 return err; 2227 } 2228 2229 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2230 struct request *req) 2231 { 2232 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2233 struct mmc_host *host = mq->card->host; 2234 struct request *prev_req = NULL; 2235 int err = 0; 2236 2237 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2238 2239 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2240 2241 mmc_pre_req(host, &mqrq->brq.mrq); 2242 2243 err = mmc_blk_rw_wait(mq, &prev_req); 2244 if (err) 2245 goto out_post_req; 2246 2247 mq->rw_wait = true; 2248 2249 err = mmc_start_request(host, &mqrq->brq.mrq); 2250 2251 if (prev_req) 2252 mmc_blk_mq_post_req(mq, prev_req); 2253 2254 if (err) 2255 mq->rw_wait = false; 2256 2257 /* Release re-tuning here where there is no synchronization required */ 2258 if (err || mmc_host_done_complete(host)) 2259 mmc_retune_release(host); 2260 2261 out_post_req: 2262 if (err) 2263 mmc_post_req(host, &mqrq->brq.mrq, err); 2264 2265 return err; 2266 } 2267 2268 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2269 { 2270 if (host->cqe_enabled) 2271 return host->cqe_ops->cqe_wait_for_idle(host); 2272 2273 return mmc_blk_rw_wait(mq, NULL); 2274 } 2275 2276 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2277 { 2278 struct mmc_blk_data *md = mq->blkdata; 2279 struct mmc_card *card = md->queue.card; 2280 struct mmc_host *host = card->host; 2281 int ret; 2282 2283 ret = mmc_blk_part_switch(card, md->part_type); 2284 if (ret) 2285 return MMC_REQ_FAILED_TO_START; 2286 2287 switch (mmc_issue_type(mq, req)) { 2288 case MMC_ISSUE_SYNC: 2289 ret = mmc_blk_wait_for_idle(mq, host); 2290 if (ret) 2291 return MMC_REQ_BUSY; 2292 switch (req_op(req)) { 2293 case REQ_OP_DRV_IN: 2294 case REQ_OP_DRV_OUT: 2295 mmc_blk_issue_drv_op(mq, req); 2296 break; 2297 case REQ_OP_DISCARD: 2298 mmc_blk_issue_discard_rq(mq, req); 2299 break; 2300 case REQ_OP_SECURE_ERASE: 2301 mmc_blk_issue_secdiscard_rq(mq, req); 2302 break; 2303 case REQ_OP_FLUSH: 2304 mmc_blk_issue_flush(mq, req); 2305 break; 2306 default: 2307 WARN_ON_ONCE(1); 2308 return MMC_REQ_FAILED_TO_START; 2309 } 2310 return MMC_REQ_FINISHED; 2311 case MMC_ISSUE_DCMD: 2312 case MMC_ISSUE_ASYNC: 2313 switch (req_op(req)) { 2314 case REQ_OP_FLUSH: 2315 if (!mmc_cache_enabled(host)) { 2316 blk_mq_end_request(req, BLK_STS_OK); 2317 return MMC_REQ_FINISHED; 2318 } 2319 ret = mmc_blk_cqe_issue_flush(mq, req); 2320 break; 2321 case REQ_OP_READ: 2322 case REQ_OP_WRITE: 2323 if (host->cqe_enabled) 2324 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2325 else 2326 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2327 break; 2328 default: 2329 WARN_ON_ONCE(1); 2330 ret = -EINVAL; 2331 } 2332 if (!ret) 2333 return MMC_REQ_STARTED; 2334 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2335 default: 2336 WARN_ON_ONCE(1); 2337 return MMC_REQ_FAILED_TO_START; 2338 } 2339 } 2340 2341 static inline int mmc_blk_readonly(struct mmc_card *card) 2342 { 2343 return mmc_card_readonly(card) || 2344 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2345 } 2346 2347 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2348 struct device *parent, 2349 sector_t size, 2350 bool default_ro, 2351 const char *subname, 2352 int area_type, 2353 unsigned int part_type) 2354 { 2355 struct mmc_blk_data *md; 2356 int devidx, ret; 2357 char cap_str[10]; 2358 2359 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL); 2360 if (devidx < 0) { 2361 /* 2362 * We get -ENOSPC because there are no more any available 2363 * devidx. The reason may be that, either userspace haven't yet 2364 * unmounted the partitions, which postpones mmc_blk_release() 2365 * from being called, or the device has more partitions than 2366 * what we support. 2367 */ 2368 if (devidx == -ENOSPC) 2369 dev_err(mmc_dev(card->host), 2370 "no more device IDs available\n"); 2371 2372 return ERR_PTR(devidx); 2373 } 2374 2375 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL); 2376 if (!md) { 2377 ret = -ENOMEM; 2378 goto out; 2379 } 2380 2381 md->area_type = area_type; 2382 2383 /* 2384 * Set the read-only status based on the supported commands 2385 * and the write protect switch. 2386 */ 2387 md->read_only = mmc_blk_readonly(card); 2388 2389 md->disk = mmc_init_queue(&md->queue, card); 2390 if (IS_ERR(md->disk)) { 2391 ret = PTR_ERR(md->disk); 2392 goto err_kfree; 2393 } 2394 2395 INIT_LIST_HEAD(&md->part); 2396 INIT_LIST_HEAD(&md->rpmbs); 2397 kref_init(&md->kref); 2398 2399 md->queue.blkdata = md; 2400 md->part_type = part_type; 2401 2402 md->disk->major = MMC_BLOCK_MAJOR; 2403 md->disk->minors = perdev_minors; 2404 md->disk->first_minor = devidx * perdev_minors; 2405 md->disk->fops = &mmc_bdops; 2406 md->disk->private_data = md; 2407 md->parent = parent; 2408 set_disk_ro(md->disk, md->read_only || default_ro); 2409 md->disk->flags = GENHD_FL_EXT_DEVT; 2410 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT)) 2411 md->disk->flags |= GENHD_FL_NO_PART_SCAN 2412 | GENHD_FL_SUPPRESS_PARTITION_INFO; 2413 2414 /* 2415 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2416 * 2417 * - be set for removable media with permanent block devices 2418 * - be unset for removable block devices with permanent media 2419 * 2420 * Since MMC block devices clearly fall under the second 2421 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2422 * should use the block device creation/destruction hotplug 2423 * messages to tell when the card is present. 2424 */ 2425 2426 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2427 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2428 2429 set_capacity(md->disk, size); 2430 2431 if (mmc_host_cmd23(card->host)) { 2432 if ((mmc_card_mmc(card) && 2433 card->csd.mmca_vsn >= CSD_SPEC_VER_3) || 2434 (mmc_card_sd(card) && 2435 card->scr.cmds & SD_SCR_CMD23_SUPPORT)) 2436 md->flags |= MMC_BLK_CMD23; 2437 } 2438 2439 if (mmc_card_mmc(card) && 2440 md->flags & MMC_BLK_CMD23 && 2441 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2442 card->ext_csd.rel_sectors)) { 2443 md->flags |= MMC_BLK_REL_WR; 2444 blk_queue_write_cache(md->queue.queue, true, true); 2445 } 2446 2447 string_get_size((u64)size, 512, STRING_UNITS_2, 2448 cap_str, sizeof(cap_str)); 2449 pr_info("%s: %s %s %s %s\n", 2450 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2451 cap_str, md->read_only ? "(ro)" : ""); 2452 2453 /* used in ->open, must be set before add_disk: */ 2454 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2455 dev_set_drvdata(&card->dev, md); 2456 device_add_disk(md->parent, md->disk, mmc_disk_attr_groups); 2457 return md; 2458 2459 err_kfree: 2460 kfree(md); 2461 out: 2462 ida_simple_remove(&mmc_blk_ida, devidx); 2463 return ERR_PTR(ret); 2464 } 2465 2466 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2467 { 2468 sector_t size; 2469 2470 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2471 /* 2472 * The EXT_CSD sector count is in number or 512 byte 2473 * sectors. 2474 */ 2475 size = card->ext_csd.sectors; 2476 } else { 2477 /* 2478 * The CSD capacity field is in units of read_blkbits. 2479 * set_capacity takes units of 512 bytes. 2480 */ 2481 size = (typeof(sector_t))card->csd.capacity 2482 << (card->csd.read_blkbits - 9); 2483 } 2484 2485 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2486 MMC_BLK_DATA_AREA_MAIN, 0); 2487 } 2488 2489 static int mmc_blk_alloc_part(struct mmc_card *card, 2490 struct mmc_blk_data *md, 2491 unsigned int part_type, 2492 sector_t size, 2493 bool default_ro, 2494 const char *subname, 2495 int area_type) 2496 { 2497 struct mmc_blk_data *part_md; 2498 2499 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2500 subname, area_type, part_type); 2501 if (IS_ERR(part_md)) 2502 return PTR_ERR(part_md); 2503 list_add(&part_md->part, &md->part); 2504 2505 return 0; 2506 } 2507 2508 /** 2509 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2510 * @filp: the character device file 2511 * @cmd: the ioctl() command 2512 * @arg: the argument from userspace 2513 * 2514 * This will essentially just redirect the ioctl()s coming in over to 2515 * the main block device spawning the RPMB character device. 2516 */ 2517 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2518 unsigned long arg) 2519 { 2520 struct mmc_rpmb_data *rpmb = filp->private_data; 2521 int ret; 2522 2523 switch (cmd) { 2524 case MMC_IOC_CMD: 2525 ret = mmc_blk_ioctl_cmd(rpmb->md, 2526 (struct mmc_ioc_cmd __user *)arg, 2527 rpmb); 2528 break; 2529 case MMC_IOC_MULTI_CMD: 2530 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2531 (struct mmc_ioc_multi_cmd __user *)arg, 2532 rpmb); 2533 break; 2534 default: 2535 ret = -EINVAL; 2536 break; 2537 } 2538 2539 return ret; 2540 } 2541 2542 #ifdef CONFIG_COMPAT 2543 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2544 unsigned long arg) 2545 { 2546 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2547 } 2548 #endif 2549 2550 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2551 { 2552 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2553 struct mmc_rpmb_data, chrdev); 2554 2555 get_device(&rpmb->dev); 2556 filp->private_data = rpmb; 2557 mmc_blk_get(rpmb->md->disk); 2558 2559 return nonseekable_open(inode, filp); 2560 } 2561 2562 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2563 { 2564 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2565 struct mmc_rpmb_data, chrdev); 2566 2567 mmc_blk_put(rpmb->md); 2568 put_device(&rpmb->dev); 2569 2570 return 0; 2571 } 2572 2573 static const struct file_operations mmc_rpmb_fileops = { 2574 .release = mmc_rpmb_chrdev_release, 2575 .open = mmc_rpmb_chrdev_open, 2576 .owner = THIS_MODULE, 2577 .llseek = no_llseek, 2578 .unlocked_ioctl = mmc_rpmb_ioctl, 2579 #ifdef CONFIG_COMPAT 2580 .compat_ioctl = mmc_rpmb_ioctl_compat, 2581 #endif 2582 }; 2583 2584 static void mmc_blk_rpmb_device_release(struct device *dev) 2585 { 2586 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2587 2588 ida_simple_remove(&mmc_rpmb_ida, rpmb->id); 2589 kfree(rpmb); 2590 } 2591 2592 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2593 struct mmc_blk_data *md, 2594 unsigned int part_index, 2595 sector_t size, 2596 const char *subname) 2597 { 2598 int devidx, ret; 2599 char rpmb_name[DISK_NAME_LEN]; 2600 char cap_str[10]; 2601 struct mmc_rpmb_data *rpmb; 2602 2603 /* This creates the minor number for the RPMB char device */ 2604 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL); 2605 if (devidx < 0) 2606 return devidx; 2607 2608 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2609 if (!rpmb) { 2610 ida_simple_remove(&mmc_rpmb_ida, devidx); 2611 return -ENOMEM; 2612 } 2613 2614 snprintf(rpmb_name, sizeof(rpmb_name), 2615 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2616 2617 rpmb->id = devidx; 2618 rpmb->part_index = part_index; 2619 rpmb->dev.init_name = rpmb_name; 2620 rpmb->dev.bus = &mmc_rpmb_bus_type; 2621 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 2622 rpmb->dev.parent = &card->dev; 2623 rpmb->dev.release = mmc_blk_rpmb_device_release; 2624 device_initialize(&rpmb->dev); 2625 dev_set_drvdata(&rpmb->dev, rpmb); 2626 rpmb->md = md; 2627 2628 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 2629 rpmb->chrdev.owner = THIS_MODULE; 2630 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 2631 if (ret) { 2632 pr_err("%s: could not add character device\n", rpmb_name); 2633 goto out_put_device; 2634 } 2635 2636 list_add(&rpmb->node, &md->rpmbs); 2637 2638 string_get_size((u64)size, 512, STRING_UNITS_2, 2639 cap_str, sizeof(cap_str)); 2640 2641 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 2642 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 2643 MAJOR(mmc_rpmb_devt), rpmb->id); 2644 2645 return 0; 2646 2647 out_put_device: 2648 put_device(&rpmb->dev); 2649 return ret; 2650 } 2651 2652 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 2653 2654 { 2655 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 2656 put_device(&rpmb->dev); 2657 } 2658 2659 /* MMC Physical partitions consist of two boot partitions and 2660 * up to four general purpose partitions. 2661 * For each partition enabled in EXT_CSD a block device will be allocatedi 2662 * to provide access to the partition. 2663 */ 2664 2665 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 2666 { 2667 int idx, ret; 2668 2669 if (!mmc_card_mmc(card)) 2670 return 0; 2671 2672 for (idx = 0; idx < card->nr_parts; idx++) { 2673 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 2674 /* 2675 * RPMB partitions does not provide block access, they 2676 * are only accessed using ioctl():s. Thus create 2677 * special RPMB block devices that do not have a 2678 * backing block queue for these. 2679 */ 2680 ret = mmc_blk_alloc_rpmb_part(card, md, 2681 card->part[idx].part_cfg, 2682 card->part[idx].size >> 9, 2683 card->part[idx].name); 2684 if (ret) 2685 return ret; 2686 } else if (card->part[idx].size) { 2687 ret = mmc_blk_alloc_part(card, md, 2688 card->part[idx].part_cfg, 2689 card->part[idx].size >> 9, 2690 card->part[idx].force_ro, 2691 card->part[idx].name, 2692 card->part[idx].area_type); 2693 if (ret) 2694 return ret; 2695 } 2696 } 2697 2698 return 0; 2699 } 2700 2701 static void mmc_blk_remove_req(struct mmc_blk_data *md) 2702 { 2703 /* 2704 * Flush remaining requests and free queues. It is freeing the queue 2705 * that stops new requests from being accepted. 2706 */ 2707 del_gendisk(md->disk); 2708 mmc_cleanup_queue(&md->queue); 2709 mmc_blk_put(md); 2710 } 2711 2712 static void mmc_blk_remove_parts(struct mmc_card *card, 2713 struct mmc_blk_data *md) 2714 { 2715 struct list_head *pos, *q; 2716 struct mmc_blk_data *part_md; 2717 struct mmc_rpmb_data *rpmb; 2718 2719 /* Remove RPMB partitions */ 2720 list_for_each_safe(pos, q, &md->rpmbs) { 2721 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 2722 list_del(pos); 2723 mmc_blk_remove_rpmb_part(rpmb); 2724 } 2725 /* Remove block partitions */ 2726 list_for_each_safe(pos, q, &md->part) { 2727 part_md = list_entry(pos, struct mmc_blk_data, part); 2728 list_del(pos); 2729 mmc_blk_remove_req(part_md); 2730 } 2731 } 2732 2733 #ifdef CONFIG_DEBUG_FS 2734 2735 static int mmc_dbg_card_status_get(void *data, u64 *val) 2736 { 2737 struct mmc_card *card = data; 2738 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2739 struct mmc_queue *mq = &md->queue; 2740 struct request *req; 2741 int ret; 2742 2743 /* Ask the block layer about the card status */ 2744 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2745 if (IS_ERR(req)) 2746 return PTR_ERR(req); 2747 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 2748 blk_execute_rq(NULL, req, 0); 2749 ret = req_to_mmc_queue_req(req)->drv_op_result; 2750 if (ret >= 0) { 2751 *val = ret; 2752 ret = 0; 2753 } 2754 blk_put_request(req); 2755 2756 return ret; 2757 } 2758 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 2759 NULL, "%08llx\n"); 2760 2761 /* That is two digits * 512 + 1 for newline */ 2762 #define EXT_CSD_STR_LEN 1025 2763 2764 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 2765 { 2766 struct mmc_card *card = inode->i_private; 2767 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2768 struct mmc_queue *mq = &md->queue; 2769 struct request *req; 2770 char *buf; 2771 ssize_t n = 0; 2772 u8 *ext_csd; 2773 int err, i; 2774 2775 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 2776 if (!buf) 2777 return -ENOMEM; 2778 2779 /* Ask the block layer for the EXT CSD */ 2780 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0); 2781 if (IS_ERR(req)) { 2782 err = PTR_ERR(req); 2783 goto out_free; 2784 } 2785 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 2786 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 2787 blk_execute_rq(NULL, req, 0); 2788 err = req_to_mmc_queue_req(req)->drv_op_result; 2789 blk_put_request(req); 2790 if (err) { 2791 pr_err("FAILED %d\n", err); 2792 goto out_free; 2793 } 2794 2795 for (i = 0; i < 512; i++) 2796 n += sprintf(buf + n, "%02x", ext_csd[i]); 2797 n += sprintf(buf + n, "\n"); 2798 2799 if (n != EXT_CSD_STR_LEN) { 2800 err = -EINVAL; 2801 kfree(ext_csd); 2802 goto out_free; 2803 } 2804 2805 filp->private_data = buf; 2806 kfree(ext_csd); 2807 return 0; 2808 2809 out_free: 2810 kfree(buf); 2811 return err; 2812 } 2813 2814 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 2815 size_t cnt, loff_t *ppos) 2816 { 2817 char *buf = filp->private_data; 2818 2819 return simple_read_from_buffer(ubuf, cnt, ppos, 2820 buf, EXT_CSD_STR_LEN); 2821 } 2822 2823 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 2824 { 2825 kfree(file->private_data); 2826 return 0; 2827 } 2828 2829 static const struct file_operations mmc_dbg_ext_csd_fops = { 2830 .open = mmc_ext_csd_open, 2831 .read = mmc_ext_csd_read, 2832 .release = mmc_ext_csd_release, 2833 .llseek = default_llseek, 2834 }; 2835 2836 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2837 { 2838 struct dentry *root; 2839 2840 if (!card->debugfs_root) 2841 return 0; 2842 2843 root = card->debugfs_root; 2844 2845 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 2846 md->status_dentry = 2847 debugfs_create_file_unsafe("status", 0400, root, 2848 card, 2849 &mmc_dbg_card_status_fops); 2850 if (!md->status_dentry) 2851 return -EIO; 2852 } 2853 2854 if (mmc_card_mmc(card)) { 2855 md->ext_csd_dentry = 2856 debugfs_create_file("ext_csd", S_IRUSR, root, card, 2857 &mmc_dbg_ext_csd_fops); 2858 if (!md->ext_csd_dentry) 2859 return -EIO; 2860 } 2861 2862 return 0; 2863 } 2864 2865 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2866 struct mmc_blk_data *md) 2867 { 2868 if (!card->debugfs_root) 2869 return; 2870 2871 if (!IS_ERR_OR_NULL(md->status_dentry)) { 2872 debugfs_remove(md->status_dentry); 2873 md->status_dentry = NULL; 2874 } 2875 2876 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) { 2877 debugfs_remove(md->ext_csd_dentry); 2878 md->ext_csd_dentry = NULL; 2879 } 2880 } 2881 2882 #else 2883 2884 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 2885 { 2886 return 0; 2887 } 2888 2889 static void mmc_blk_remove_debugfs(struct mmc_card *card, 2890 struct mmc_blk_data *md) 2891 { 2892 } 2893 2894 #endif /* CONFIG_DEBUG_FS */ 2895 2896 static int mmc_blk_probe(struct mmc_card *card) 2897 { 2898 struct mmc_blk_data *md; 2899 int ret = 0; 2900 2901 /* 2902 * Check that the card supports the command class(es) we need. 2903 */ 2904 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 2905 return -ENODEV; 2906 2907 mmc_fixup_device(card, mmc_blk_fixups); 2908 2909 card->complete_wq = alloc_workqueue("mmc_complete", 2910 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 2911 if (!card->complete_wq) { 2912 pr_err("Failed to create mmc completion workqueue"); 2913 return -ENOMEM; 2914 } 2915 2916 md = mmc_blk_alloc(card); 2917 if (IS_ERR(md)) { 2918 ret = PTR_ERR(md); 2919 goto out_free; 2920 } 2921 2922 ret = mmc_blk_alloc_parts(card, md); 2923 if (ret) 2924 goto out; 2925 2926 /* Add two debugfs entries */ 2927 mmc_blk_add_debugfs(card, md); 2928 2929 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 2930 pm_runtime_use_autosuspend(&card->dev); 2931 2932 /* 2933 * Don't enable runtime PM for SD-combo cards here. Leave that 2934 * decision to be taken during the SDIO init sequence instead. 2935 */ 2936 if (card->type != MMC_TYPE_SD_COMBO) { 2937 pm_runtime_set_active(&card->dev); 2938 pm_runtime_enable(&card->dev); 2939 } 2940 2941 return 0; 2942 2943 out: 2944 mmc_blk_remove_parts(card, md); 2945 mmc_blk_remove_req(md); 2946 out_free: 2947 destroy_workqueue(card->complete_wq); 2948 return ret; 2949 } 2950 2951 static void mmc_blk_remove(struct mmc_card *card) 2952 { 2953 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2954 2955 mmc_blk_remove_debugfs(card, md); 2956 mmc_blk_remove_parts(card, md); 2957 pm_runtime_get_sync(&card->dev); 2958 if (md->part_curr != md->part_type) { 2959 mmc_claim_host(card->host); 2960 mmc_blk_part_switch(card, md->part_type); 2961 mmc_release_host(card->host); 2962 } 2963 if (card->type != MMC_TYPE_SD_COMBO) 2964 pm_runtime_disable(&card->dev); 2965 pm_runtime_put_noidle(&card->dev); 2966 mmc_blk_remove_req(md); 2967 dev_set_drvdata(&card->dev, NULL); 2968 destroy_workqueue(card->complete_wq); 2969 } 2970 2971 static int _mmc_blk_suspend(struct mmc_card *card) 2972 { 2973 struct mmc_blk_data *part_md; 2974 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 2975 2976 if (md) { 2977 mmc_queue_suspend(&md->queue); 2978 list_for_each_entry(part_md, &md->part, part) { 2979 mmc_queue_suspend(&part_md->queue); 2980 } 2981 } 2982 return 0; 2983 } 2984 2985 static void mmc_blk_shutdown(struct mmc_card *card) 2986 { 2987 _mmc_blk_suspend(card); 2988 } 2989 2990 #ifdef CONFIG_PM_SLEEP 2991 static int mmc_blk_suspend(struct device *dev) 2992 { 2993 struct mmc_card *card = mmc_dev_to_card(dev); 2994 2995 return _mmc_blk_suspend(card); 2996 } 2997 2998 static int mmc_blk_resume(struct device *dev) 2999 { 3000 struct mmc_blk_data *part_md; 3001 struct mmc_blk_data *md = dev_get_drvdata(dev); 3002 3003 if (md) { 3004 /* 3005 * Resume involves the card going into idle state, 3006 * so current partition is always the main one. 3007 */ 3008 md->part_curr = md->part_type; 3009 mmc_queue_resume(&md->queue); 3010 list_for_each_entry(part_md, &md->part, part) { 3011 mmc_queue_resume(&part_md->queue); 3012 } 3013 } 3014 return 0; 3015 } 3016 #endif 3017 3018 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3019 3020 static struct mmc_driver mmc_driver = { 3021 .drv = { 3022 .name = "mmcblk", 3023 .pm = &mmc_blk_pm_ops, 3024 }, 3025 .probe = mmc_blk_probe, 3026 .remove = mmc_blk_remove, 3027 .shutdown = mmc_blk_shutdown, 3028 }; 3029 3030 static int __init mmc_blk_init(void) 3031 { 3032 int res; 3033 3034 res = bus_register(&mmc_rpmb_bus_type); 3035 if (res < 0) { 3036 pr_err("mmcblk: could not register RPMB bus type\n"); 3037 return res; 3038 } 3039 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3040 if (res < 0) { 3041 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3042 goto out_bus_unreg; 3043 } 3044 3045 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3046 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3047 3048 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3049 3050 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3051 if (res) 3052 goto out_chrdev_unreg; 3053 3054 res = mmc_register_driver(&mmc_driver); 3055 if (res) 3056 goto out_blkdev_unreg; 3057 3058 return 0; 3059 3060 out_blkdev_unreg: 3061 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3062 out_chrdev_unreg: 3063 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3064 out_bus_unreg: 3065 bus_unregister(&mmc_rpmb_bus_type); 3066 return res; 3067 } 3068 3069 static void __exit mmc_blk_exit(void) 3070 { 3071 mmc_unregister_driver(&mmc_driver); 3072 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3073 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3074 bus_unregister(&mmc_rpmb_bus_type); 3075 } 3076 3077 module_init(mmc_blk_init); 3078 module_exit(mmc_blk_exit); 3079 3080 MODULE_LICENSE("GPL"); 3081 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3082 3083