xref: /linux/drivers/mmc/core/block.c (revision 13acb62ce1ee7377ef03034fbbad6f5499464b86)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 #define mmc_req_rel_wr(req)	((req->cmd_flags & REQ_FUA) && \
80 				  (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82 
83 /*
84  * The defaults come from config options but can be overriden by module
85  * or bootarg options.
86  */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 
89 /*
90  * We've only got one major, so number of mmcblk devices is
91  * limited to (1 << 20) / number of minors per device.  It is also
92  * limited by the MAX_DEVICES below.
93  */
94 static int max_devices;
95 
96 #define MAX_DEVICES 256
97 
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100 
101 struct mmc_blk_busy_data {
102 	struct mmc_card *card;
103 	u32 status;
104 };
105 
106 /*
107  * There is one mmc_blk_data per slot.
108  */
109 struct mmc_blk_data {
110 	struct device	*parent;
111 	struct gendisk	*disk;
112 	struct mmc_queue queue;
113 	struct list_head part;
114 	struct list_head rpmbs;
115 
116 	unsigned int	flags;
117 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
119 
120 	struct kref	kref;
121 	unsigned int	read_only;
122 	unsigned int	part_type;
123 	unsigned int	reset_done;
124 #define MMC_BLK_READ		BIT(0)
125 #define MMC_BLK_WRITE		BIT(1)
126 #define MMC_BLK_DISCARD		BIT(2)
127 #define MMC_BLK_SECDISCARD	BIT(3)
128 #define MMC_BLK_CQE_RECOVERY	BIT(4)
129 
130 	/*
131 	 * Only set in main mmc_blk_data associated
132 	 * with mmc_card with dev_set_drvdata, and keeps
133 	 * track of the current selected device partition.
134 	 */
135 	unsigned int	part_curr;
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int disable_multi,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 
182 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
183 {
184 	struct mmc_blk_data *md;
185 
186 	mutex_lock(&open_lock);
187 	md = disk->private_data;
188 	if (md && !kref_get_unless_zero(&md->kref))
189 		md = NULL;
190 	mutex_unlock(&open_lock);
191 
192 	return md;
193 }
194 
195 static inline int mmc_get_devidx(struct gendisk *disk)
196 {
197 	int devidx = disk->first_minor / perdev_minors;
198 	return devidx;
199 }
200 
201 static void mmc_blk_kref_release(struct kref *ref)
202 {
203 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
204 	int devidx;
205 
206 	devidx = mmc_get_devidx(md->disk);
207 	ida_simple_remove(&mmc_blk_ida, devidx);
208 
209 	mutex_lock(&open_lock);
210 	md->disk->private_data = NULL;
211 	mutex_unlock(&open_lock);
212 
213 	put_disk(md->disk);
214 	kfree(md);
215 }
216 
217 static void mmc_blk_put(struct mmc_blk_data *md)
218 {
219 	kref_put(&md->kref, mmc_blk_kref_release);
220 }
221 
222 static ssize_t power_ro_lock_show(struct device *dev,
223 		struct device_attribute *attr, char *buf)
224 {
225 	int ret;
226 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
227 	struct mmc_card *card = md->queue.card;
228 	int locked = 0;
229 
230 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
231 		locked = 2;
232 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
233 		locked = 1;
234 
235 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
236 
237 	mmc_blk_put(md);
238 
239 	return ret;
240 }
241 
242 static ssize_t power_ro_lock_store(struct device *dev,
243 		struct device_attribute *attr, const char *buf, size_t count)
244 {
245 	int ret;
246 	struct mmc_blk_data *md, *part_md;
247 	struct mmc_queue *mq;
248 	struct request *req;
249 	unsigned long set;
250 
251 	if (kstrtoul(buf, 0, &set))
252 		return -EINVAL;
253 
254 	if (set != 1)
255 		return count;
256 
257 	md = mmc_blk_get(dev_to_disk(dev));
258 	mq = &md->queue;
259 
260 	/* Dispatch locking to the block layer */
261 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
262 	if (IS_ERR(req)) {
263 		count = PTR_ERR(req);
264 		goto out_put;
265 	}
266 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
267 	blk_execute_rq(req, false);
268 	ret = req_to_mmc_queue_req(req)->drv_op_result;
269 	blk_mq_free_request(req);
270 
271 	if (!ret) {
272 		pr_info("%s: Locking boot partition ro until next power on\n",
273 			md->disk->disk_name);
274 		set_disk_ro(md->disk, 1);
275 
276 		list_for_each_entry(part_md, &md->part, part)
277 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
278 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
279 				set_disk_ro(part_md->disk, 1);
280 			}
281 	}
282 out_put:
283 	mmc_blk_put(md);
284 	return count;
285 }
286 
287 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
288 		power_ro_lock_show, power_ro_lock_store);
289 
290 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
291 			     char *buf)
292 {
293 	int ret;
294 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
295 
296 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
297 		       get_disk_ro(dev_to_disk(dev)) ^
298 		       md->read_only);
299 	mmc_blk_put(md);
300 	return ret;
301 }
302 
303 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
304 			      const char *buf, size_t count)
305 {
306 	int ret;
307 	char *end;
308 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
309 	unsigned long set = simple_strtoul(buf, &end, 0);
310 	if (end == buf) {
311 		ret = -EINVAL;
312 		goto out;
313 	}
314 
315 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
316 	ret = count;
317 out:
318 	mmc_blk_put(md);
319 	return ret;
320 }
321 
322 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
323 
324 static struct attribute *mmc_disk_attrs[] = {
325 	&dev_attr_force_ro.attr,
326 	&dev_attr_ro_lock_until_next_power_on.attr,
327 	NULL,
328 };
329 
330 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
331 		struct attribute *a, int n)
332 {
333 	struct device *dev = container_of(kobj, struct device, kobj);
334 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
335 	umode_t mode = a->mode;
336 
337 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
338 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
339 	    md->queue.card->ext_csd.boot_ro_lockable) {
340 		mode = S_IRUGO;
341 		if (!(md->queue.card->ext_csd.boot_ro_lock &
342 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
343 			mode |= S_IWUSR;
344 	}
345 
346 	mmc_blk_put(md);
347 	return mode;
348 }
349 
350 static const struct attribute_group mmc_disk_attr_group = {
351 	.is_visible	= mmc_disk_attrs_is_visible,
352 	.attrs		= mmc_disk_attrs,
353 };
354 
355 static const struct attribute_group *mmc_disk_attr_groups[] = {
356 	&mmc_disk_attr_group,
357 	NULL,
358 };
359 
360 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
361 {
362 	struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
363 	int ret = -ENXIO;
364 
365 	mutex_lock(&block_mutex);
366 	if (md) {
367 		ret = 0;
368 		if ((mode & FMODE_WRITE) && md->read_only) {
369 			mmc_blk_put(md);
370 			ret = -EROFS;
371 		}
372 	}
373 	mutex_unlock(&block_mutex);
374 
375 	return ret;
376 }
377 
378 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
379 {
380 	struct mmc_blk_data *md = disk->private_data;
381 
382 	mutex_lock(&block_mutex);
383 	mmc_blk_put(md);
384 	mutex_unlock(&block_mutex);
385 }
386 
387 static int
388 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
389 {
390 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
391 	geo->heads = 4;
392 	geo->sectors = 16;
393 	return 0;
394 }
395 
396 struct mmc_blk_ioc_data {
397 	struct mmc_ioc_cmd ic;
398 	unsigned char *buf;
399 	u64 buf_bytes;
400 	struct mmc_rpmb_data *rpmb;
401 };
402 
403 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
404 	struct mmc_ioc_cmd __user *user)
405 {
406 	struct mmc_blk_ioc_data *idata;
407 	int err;
408 
409 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
410 	if (!idata) {
411 		err = -ENOMEM;
412 		goto out;
413 	}
414 
415 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
416 		err = -EFAULT;
417 		goto idata_err;
418 	}
419 
420 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
421 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
422 		err = -EOVERFLOW;
423 		goto idata_err;
424 	}
425 
426 	if (!idata->buf_bytes) {
427 		idata->buf = NULL;
428 		return idata;
429 	}
430 
431 	idata->buf = memdup_user((void __user *)(unsigned long)
432 				 idata->ic.data_ptr, idata->buf_bytes);
433 	if (IS_ERR(idata->buf)) {
434 		err = PTR_ERR(idata->buf);
435 		goto idata_err;
436 	}
437 
438 	return idata;
439 
440 idata_err:
441 	kfree(idata);
442 out:
443 	return ERR_PTR(err);
444 }
445 
446 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
447 				      struct mmc_blk_ioc_data *idata)
448 {
449 	struct mmc_ioc_cmd *ic = &idata->ic;
450 
451 	if (copy_to_user(&(ic_ptr->response), ic->response,
452 			 sizeof(ic->response)))
453 		return -EFAULT;
454 
455 	if (!idata->ic.write_flag) {
456 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
457 				 idata->buf, idata->buf_bytes))
458 			return -EFAULT;
459 	}
460 
461 	return 0;
462 }
463 
464 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
465 			       struct mmc_blk_ioc_data *idata)
466 {
467 	struct mmc_command cmd = {}, sbc = {};
468 	struct mmc_data data = {};
469 	struct mmc_request mrq = {};
470 	struct scatterlist sg;
471 	int err;
472 	unsigned int target_part;
473 
474 	if (!card || !md || !idata)
475 		return -EINVAL;
476 
477 	/*
478 	 * The RPMB accesses comes in from the character device, so we
479 	 * need to target these explicitly. Else we just target the
480 	 * partition type for the block device the ioctl() was issued
481 	 * on.
482 	 */
483 	if (idata->rpmb) {
484 		/* Support multiple RPMB partitions */
485 		target_part = idata->rpmb->part_index;
486 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
487 	} else {
488 		target_part = md->part_type;
489 	}
490 
491 	cmd.opcode = idata->ic.opcode;
492 	cmd.arg = idata->ic.arg;
493 	cmd.flags = idata->ic.flags;
494 
495 	if (idata->buf_bytes) {
496 		data.sg = &sg;
497 		data.sg_len = 1;
498 		data.blksz = idata->ic.blksz;
499 		data.blocks = idata->ic.blocks;
500 
501 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
502 
503 		if (idata->ic.write_flag)
504 			data.flags = MMC_DATA_WRITE;
505 		else
506 			data.flags = MMC_DATA_READ;
507 
508 		/* data.flags must already be set before doing this. */
509 		mmc_set_data_timeout(&data, card);
510 
511 		/* Allow overriding the timeout_ns for empirical tuning. */
512 		if (idata->ic.data_timeout_ns)
513 			data.timeout_ns = idata->ic.data_timeout_ns;
514 
515 		if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
516 			/*
517 			 * Pretend this is a data transfer and rely on the
518 			 * host driver to compute timeout.  When all host
519 			 * drivers support cmd.cmd_timeout for R1B, this
520 			 * can be changed to:
521 			 *
522 			 *     mrq.data = NULL;
523 			 *     cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
524 			 */
525 			data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
526 		}
527 
528 		mrq.data = &data;
529 	}
530 
531 	mrq.cmd = &cmd;
532 
533 	err = mmc_blk_part_switch(card, target_part);
534 	if (err)
535 		return err;
536 
537 	if (idata->ic.is_acmd) {
538 		err = mmc_app_cmd(card->host, card);
539 		if (err)
540 			return err;
541 	}
542 
543 	if (idata->rpmb) {
544 		sbc.opcode = MMC_SET_BLOCK_COUNT;
545 		/*
546 		 * We don't do any blockcount validation because the max size
547 		 * may be increased by a future standard. We just copy the
548 		 * 'Reliable Write' bit here.
549 		 */
550 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
551 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
552 		mrq.sbc = &sbc;
553 	}
554 
555 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
556 	    (cmd.opcode == MMC_SWITCH))
557 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
558 
559 	mmc_wait_for_req(card->host, &mrq);
560 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
561 
562 	if (cmd.error) {
563 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
564 						__func__, cmd.error);
565 		return cmd.error;
566 	}
567 	if (data.error) {
568 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
569 						__func__, data.error);
570 		return data.error;
571 	}
572 
573 	/*
574 	 * Make sure the cache of the PARTITION_CONFIG register and
575 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
576 	 * changed it successfully.
577 	 */
578 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
579 	    (cmd.opcode == MMC_SWITCH)) {
580 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
581 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
582 
583 		/*
584 		 * Update cache so the next mmc_blk_part_switch call operates
585 		 * on up-to-date data.
586 		 */
587 		card->ext_csd.part_config = value;
588 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
589 	}
590 
591 	/*
592 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
593 	 * will get turned back on if the card is re-initialized, e.g.
594 	 * suspend/resume or hw reset in recovery.
595 	 */
596 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
597 	    (cmd.opcode == MMC_SWITCH)) {
598 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
599 
600 		card->ext_csd.cache_ctrl = value;
601 	}
602 
603 	/*
604 	 * According to the SD specs, some commands require a delay after
605 	 * issuing the command.
606 	 */
607 	if (idata->ic.postsleep_min_us)
608 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
609 
610 	if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
611 		/*
612 		 * Ensure RPMB/R1B command has completed by polling CMD13
613 		 * "Send Status".
614 		 */
615 		err = mmc_poll_for_busy(card, MMC_BLK_TIMEOUT_MS, false,
616 					MMC_BUSY_IO);
617 	}
618 
619 	return err;
620 }
621 
622 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
623 			     struct mmc_ioc_cmd __user *ic_ptr,
624 			     struct mmc_rpmb_data *rpmb)
625 {
626 	struct mmc_blk_ioc_data *idata;
627 	struct mmc_blk_ioc_data *idatas[1];
628 	struct mmc_queue *mq;
629 	struct mmc_card *card;
630 	int err = 0, ioc_err = 0;
631 	struct request *req;
632 
633 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
634 	if (IS_ERR(idata))
635 		return PTR_ERR(idata);
636 	/* This will be NULL on non-RPMB ioctl():s */
637 	idata->rpmb = rpmb;
638 
639 	card = md->queue.card;
640 	if (IS_ERR(card)) {
641 		err = PTR_ERR(card);
642 		goto cmd_done;
643 	}
644 
645 	/*
646 	 * Dispatch the ioctl() into the block request queue.
647 	 */
648 	mq = &md->queue;
649 	req = blk_mq_alloc_request(mq->queue,
650 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
651 	if (IS_ERR(req)) {
652 		err = PTR_ERR(req);
653 		goto cmd_done;
654 	}
655 	idatas[0] = idata;
656 	req_to_mmc_queue_req(req)->drv_op =
657 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
658 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
659 	req_to_mmc_queue_req(req)->ioc_count = 1;
660 	blk_execute_rq(req, false);
661 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
662 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
663 	blk_mq_free_request(req);
664 
665 cmd_done:
666 	kfree(idata->buf);
667 	kfree(idata);
668 	return ioc_err ? ioc_err : err;
669 }
670 
671 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
672 				   struct mmc_ioc_multi_cmd __user *user,
673 				   struct mmc_rpmb_data *rpmb)
674 {
675 	struct mmc_blk_ioc_data **idata = NULL;
676 	struct mmc_ioc_cmd __user *cmds = user->cmds;
677 	struct mmc_card *card;
678 	struct mmc_queue *mq;
679 	int err = 0, ioc_err = 0;
680 	__u64 num_of_cmds;
681 	unsigned int i, n;
682 	struct request *req;
683 
684 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
685 			   sizeof(num_of_cmds)))
686 		return -EFAULT;
687 
688 	if (!num_of_cmds)
689 		return 0;
690 
691 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
692 		return -EINVAL;
693 
694 	n = num_of_cmds;
695 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
696 	if (!idata)
697 		return -ENOMEM;
698 
699 	for (i = 0; i < n; i++) {
700 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
701 		if (IS_ERR(idata[i])) {
702 			err = PTR_ERR(idata[i]);
703 			n = i;
704 			goto cmd_err;
705 		}
706 		/* This will be NULL on non-RPMB ioctl():s */
707 		idata[i]->rpmb = rpmb;
708 	}
709 
710 	card = md->queue.card;
711 	if (IS_ERR(card)) {
712 		err = PTR_ERR(card);
713 		goto cmd_err;
714 	}
715 
716 
717 	/*
718 	 * Dispatch the ioctl()s into the block request queue.
719 	 */
720 	mq = &md->queue;
721 	req = blk_mq_alloc_request(mq->queue,
722 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
723 	if (IS_ERR(req)) {
724 		err = PTR_ERR(req);
725 		goto cmd_err;
726 	}
727 	req_to_mmc_queue_req(req)->drv_op =
728 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
729 	req_to_mmc_queue_req(req)->drv_op_data = idata;
730 	req_to_mmc_queue_req(req)->ioc_count = n;
731 	blk_execute_rq(req, false);
732 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
733 
734 	/* copy to user if data and response */
735 	for (i = 0; i < n && !err; i++)
736 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
737 
738 	blk_mq_free_request(req);
739 
740 cmd_err:
741 	for (i = 0; i < n; i++) {
742 		kfree(idata[i]->buf);
743 		kfree(idata[i]);
744 	}
745 	kfree(idata);
746 	return ioc_err ? ioc_err : err;
747 }
748 
749 static int mmc_blk_check_blkdev(struct block_device *bdev)
750 {
751 	/*
752 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
753 	 * whole block device, not on a partition.  This prevents overspray
754 	 * between sibling partitions.
755 	 */
756 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
757 		return -EPERM;
758 	return 0;
759 }
760 
761 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
762 	unsigned int cmd, unsigned long arg)
763 {
764 	struct mmc_blk_data *md;
765 	int ret;
766 
767 	switch (cmd) {
768 	case MMC_IOC_CMD:
769 		ret = mmc_blk_check_blkdev(bdev);
770 		if (ret)
771 			return ret;
772 		md = mmc_blk_get(bdev->bd_disk);
773 		if (!md)
774 			return -EINVAL;
775 		ret = mmc_blk_ioctl_cmd(md,
776 					(struct mmc_ioc_cmd __user *)arg,
777 					NULL);
778 		mmc_blk_put(md);
779 		return ret;
780 	case MMC_IOC_MULTI_CMD:
781 		ret = mmc_blk_check_blkdev(bdev);
782 		if (ret)
783 			return ret;
784 		md = mmc_blk_get(bdev->bd_disk);
785 		if (!md)
786 			return -EINVAL;
787 		ret = mmc_blk_ioctl_multi_cmd(md,
788 					(struct mmc_ioc_multi_cmd __user *)arg,
789 					NULL);
790 		mmc_blk_put(md);
791 		return ret;
792 	default:
793 		return -EINVAL;
794 	}
795 }
796 
797 #ifdef CONFIG_COMPAT
798 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
799 	unsigned int cmd, unsigned long arg)
800 {
801 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
802 }
803 #endif
804 
805 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
806 					  sector_t *sector)
807 {
808 	struct mmc_blk_data *md;
809 	int ret;
810 
811 	md = mmc_blk_get(disk);
812 	if (!md)
813 		return -EINVAL;
814 
815 	if (md->queue.card)
816 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
817 	else
818 		ret = -ENODEV;
819 
820 	mmc_blk_put(md);
821 
822 	return ret;
823 }
824 
825 static const struct block_device_operations mmc_bdops = {
826 	.open			= mmc_blk_open,
827 	.release		= mmc_blk_release,
828 	.getgeo			= mmc_blk_getgeo,
829 	.owner			= THIS_MODULE,
830 	.ioctl			= mmc_blk_ioctl,
831 #ifdef CONFIG_COMPAT
832 	.compat_ioctl		= mmc_blk_compat_ioctl,
833 #endif
834 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
835 };
836 
837 static int mmc_blk_part_switch_pre(struct mmc_card *card,
838 				   unsigned int part_type)
839 {
840 	int ret = 0;
841 
842 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
843 		if (card->ext_csd.cmdq_en) {
844 			ret = mmc_cmdq_disable(card);
845 			if (ret)
846 				return ret;
847 		}
848 		mmc_retune_pause(card->host);
849 	}
850 
851 	return ret;
852 }
853 
854 static int mmc_blk_part_switch_post(struct mmc_card *card,
855 				    unsigned int part_type)
856 {
857 	int ret = 0;
858 
859 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
860 		mmc_retune_unpause(card->host);
861 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
862 			ret = mmc_cmdq_enable(card);
863 	}
864 
865 	return ret;
866 }
867 
868 static inline int mmc_blk_part_switch(struct mmc_card *card,
869 				      unsigned int part_type)
870 {
871 	int ret = 0;
872 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
873 
874 	if (main_md->part_curr == part_type)
875 		return 0;
876 
877 	if (mmc_card_mmc(card)) {
878 		u8 part_config = card->ext_csd.part_config;
879 
880 		ret = mmc_blk_part_switch_pre(card, part_type);
881 		if (ret)
882 			return ret;
883 
884 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
885 		part_config |= part_type;
886 
887 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
888 				 EXT_CSD_PART_CONFIG, part_config,
889 				 card->ext_csd.part_time);
890 		if (ret) {
891 			mmc_blk_part_switch_post(card, part_type);
892 			return ret;
893 		}
894 
895 		card->ext_csd.part_config = part_config;
896 
897 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
898 	}
899 
900 	main_md->part_curr = part_type;
901 	return ret;
902 }
903 
904 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
905 {
906 	int err;
907 	u32 result;
908 	__be32 *blocks;
909 
910 	struct mmc_request mrq = {};
911 	struct mmc_command cmd = {};
912 	struct mmc_data data = {};
913 
914 	struct scatterlist sg;
915 
916 	cmd.opcode = MMC_APP_CMD;
917 	cmd.arg = card->rca << 16;
918 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
919 
920 	err = mmc_wait_for_cmd(card->host, &cmd, 0);
921 	if (err)
922 		return err;
923 	if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
924 		return -EIO;
925 
926 	memset(&cmd, 0, sizeof(struct mmc_command));
927 
928 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
929 	cmd.arg = 0;
930 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
931 
932 	data.blksz = 4;
933 	data.blocks = 1;
934 	data.flags = MMC_DATA_READ;
935 	data.sg = &sg;
936 	data.sg_len = 1;
937 	mmc_set_data_timeout(&data, card);
938 
939 	mrq.cmd = &cmd;
940 	mrq.data = &data;
941 
942 	blocks = kmalloc(4, GFP_KERNEL);
943 	if (!blocks)
944 		return -ENOMEM;
945 
946 	sg_init_one(&sg, blocks, 4);
947 
948 	mmc_wait_for_req(card->host, &mrq);
949 
950 	result = ntohl(*blocks);
951 	kfree(blocks);
952 
953 	if (cmd.error || data.error)
954 		return -EIO;
955 
956 	*written_blocks = result;
957 
958 	return 0;
959 }
960 
961 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
962 {
963 	if (host->actual_clock)
964 		return host->actual_clock / 1000;
965 
966 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
967 	if (host->ios.clock)
968 		return host->ios.clock / 2000;
969 
970 	/* How can there be no clock */
971 	WARN_ON_ONCE(1);
972 	return 100; /* 100 kHz is minimum possible value */
973 }
974 
975 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
976 					    struct mmc_data *data)
977 {
978 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
979 	unsigned int khz;
980 
981 	if (data->timeout_clks) {
982 		khz = mmc_blk_clock_khz(host);
983 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
984 	}
985 
986 	return ms;
987 }
988 
989 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
990 			 int type)
991 {
992 	int err;
993 
994 	if (md->reset_done & type)
995 		return -EEXIST;
996 
997 	md->reset_done |= type;
998 	err = mmc_hw_reset(host->card);
999 	/* Ensure we switch back to the correct partition */
1000 	if (err) {
1001 		struct mmc_blk_data *main_md =
1002 			dev_get_drvdata(&host->card->dev);
1003 		int part_err;
1004 
1005 		main_md->part_curr = main_md->part_type;
1006 		part_err = mmc_blk_part_switch(host->card, md->part_type);
1007 		if (part_err) {
1008 			/*
1009 			 * We have failed to get back into the correct
1010 			 * partition, so we need to abort the whole request.
1011 			 */
1012 			return -ENODEV;
1013 		}
1014 	}
1015 	return err;
1016 }
1017 
1018 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1019 {
1020 	md->reset_done &= ~type;
1021 }
1022 
1023 /*
1024  * The non-block commands come back from the block layer after it queued it and
1025  * processed it with all other requests and then they get issued in this
1026  * function.
1027  */
1028 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1029 {
1030 	struct mmc_queue_req *mq_rq;
1031 	struct mmc_card *card = mq->card;
1032 	struct mmc_blk_data *md = mq->blkdata;
1033 	struct mmc_blk_ioc_data **idata;
1034 	bool rpmb_ioctl;
1035 	u8 **ext_csd;
1036 	u32 status;
1037 	int ret;
1038 	int i;
1039 
1040 	mq_rq = req_to_mmc_queue_req(req);
1041 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1042 
1043 	switch (mq_rq->drv_op) {
1044 	case MMC_DRV_OP_IOCTL:
1045 		if (card->ext_csd.cmdq_en) {
1046 			ret = mmc_cmdq_disable(card);
1047 			if (ret)
1048 				break;
1049 		}
1050 		fallthrough;
1051 	case MMC_DRV_OP_IOCTL_RPMB:
1052 		idata = mq_rq->drv_op_data;
1053 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1054 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1055 			if (ret)
1056 				break;
1057 		}
1058 		/* Always switch back to main area after RPMB access */
1059 		if (rpmb_ioctl)
1060 			mmc_blk_part_switch(card, 0);
1061 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1062 			mmc_cmdq_enable(card);
1063 		break;
1064 	case MMC_DRV_OP_BOOT_WP:
1065 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1066 				 card->ext_csd.boot_ro_lock |
1067 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1068 				 card->ext_csd.part_time);
1069 		if (ret)
1070 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1071 			       md->disk->disk_name, ret);
1072 		else
1073 			card->ext_csd.boot_ro_lock |=
1074 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1075 		break;
1076 	case MMC_DRV_OP_GET_CARD_STATUS:
1077 		ret = mmc_send_status(card, &status);
1078 		if (!ret)
1079 			ret = status;
1080 		break;
1081 	case MMC_DRV_OP_GET_EXT_CSD:
1082 		ext_csd = mq_rq->drv_op_data;
1083 		ret = mmc_get_ext_csd(card, ext_csd);
1084 		break;
1085 	default:
1086 		pr_err("%s: unknown driver specific operation\n",
1087 		       md->disk->disk_name);
1088 		ret = -EINVAL;
1089 		break;
1090 	}
1091 	mq_rq->drv_op_result = ret;
1092 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1093 }
1094 
1095 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1096 {
1097 	struct mmc_blk_data *md = mq->blkdata;
1098 	struct mmc_card *card = md->queue.card;
1099 	unsigned int from, nr;
1100 	int err = 0, type = MMC_BLK_DISCARD;
1101 	blk_status_t status = BLK_STS_OK;
1102 
1103 	if (!mmc_can_erase(card)) {
1104 		status = BLK_STS_NOTSUPP;
1105 		goto fail;
1106 	}
1107 
1108 	from = blk_rq_pos(req);
1109 	nr = blk_rq_sectors(req);
1110 
1111 	do {
1112 		err = 0;
1113 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1114 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1115 					 INAND_CMD38_ARG_EXT_CSD,
1116 					 card->erase_arg == MMC_TRIM_ARG ?
1117 					 INAND_CMD38_ARG_TRIM :
1118 					 INAND_CMD38_ARG_ERASE,
1119 					 card->ext_csd.generic_cmd6_time);
1120 		}
1121 		if (!err)
1122 			err = mmc_erase(card, from, nr, card->erase_arg);
1123 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1124 	if (err)
1125 		status = BLK_STS_IOERR;
1126 	else
1127 		mmc_blk_reset_success(md, type);
1128 fail:
1129 	blk_mq_end_request(req, status);
1130 }
1131 
1132 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1133 				       struct request *req)
1134 {
1135 	struct mmc_blk_data *md = mq->blkdata;
1136 	struct mmc_card *card = md->queue.card;
1137 	unsigned int from, nr, arg;
1138 	int err = 0, type = MMC_BLK_SECDISCARD;
1139 	blk_status_t status = BLK_STS_OK;
1140 
1141 	if (!(mmc_can_secure_erase_trim(card))) {
1142 		status = BLK_STS_NOTSUPP;
1143 		goto out;
1144 	}
1145 
1146 	from = blk_rq_pos(req);
1147 	nr = blk_rq_sectors(req);
1148 
1149 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1150 		arg = MMC_SECURE_TRIM1_ARG;
1151 	else
1152 		arg = MMC_SECURE_ERASE_ARG;
1153 
1154 retry:
1155 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1156 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1157 				 INAND_CMD38_ARG_EXT_CSD,
1158 				 arg == MMC_SECURE_TRIM1_ARG ?
1159 				 INAND_CMD38_ARG_SECTRIM1 :
1160 				 INAND_CMD38_ARG_SECERASE,
1161 				 card->ext_csd.generic_cmd6_time);
1162 		if (err)
1163 			goto out_retry;
1164 	}
1165 
1166 	err = mmc_erase(card, from, nr, arg);
1167 	if (err == -EIO)
1168 		goto out_retry;
1169 	if (err) {
1170 		status = BLK_STS_IOERR;
1171 		goto out;
1172 	}
1173 
1174 	if (arg == MMC_SECURE_TRIM1_ARG) {
1175 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1176 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1177 					 INAND_CMD38_ARG_EXT_CSD,
1178 					 INAND_CMD38_ARG_SECTRIM2,
1179 					 card->ext_csd.generic_cmd6_time);
1180 			if (err)
1181 				goto out_retry;
1182 		}
1183 
1184 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1185 		if (err == -EIO)
1186 			goto out_retry;
1187 		if (err) {
1188 			status = BLK_STS_IOERR;
1189 			goto out;
1190 		}
1191 	}
1192 
1193 out_retry:
1194 	if (err && !mmc_blk_reset(md, card->host, type))
1195 		goto retry;
1196 	if (!err)
1197 		mmc_blk_reset_success(md, type);
1198 out:
1199 	blk_mq_end_request(req, status);
1200 }
1201 
1202 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1203 {
1204 	struct mmc_blk_data *md = mq->blkdata;
1205 	struct mmc_card *card = md->queue.card;
1206 	int ret = 0;
1207 
1208 	ret = mmc_flush_cache(card->host);
1209 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1210 }
1211 
1212 /*
1213  * Reformat current write as a reliable write, supporting
1214  * both legacy and the enhanced reliable write MMC cards.
1215  * In each transfer we'll handle only as much as a single
1216  * reliable write can handle, thus finish the request in
1217  * partial completions.
1218  */
1219 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1220 				    struct mmc_card *card,
1221 				    struct request *req)
1222 {
1223 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1224 		/* Legacy mode imposes restrictions on transfers. */
1225 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1226 			brq->data.blocks = 1;
1227 
1228 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1229 			brq->data.blocks = card->ext_csd.rel_sectors;
1230 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1231 			brq->data.blocks = 1;
1232 	}
1233 }
1234 
1235 #define CMD_ERRORS_EXCL_OOR						\
1236 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1237 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1238 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1239 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1240 	 R1_CC_ERROR |		/* Card controller error */		\
1241 	 R1_ERROR)		/* General/unknown error */
1242 
1243 #define CMD_ERRORS							\
1244 	(CMD_ERRORS_EXCL_OOR |						\
1245 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1246 
1247 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1248 {
1249 	u32 val;
1250 
1251 	/*
1252 	 * Per the SD specification(physical layer version 4.10)[1],
1253 	 * section 4.3.3, it explicitly states that "When the last
1254 	 * block of user area is read using CMD18, the host should
1255 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1256 	 * is correct". And JESD84-B51 for eMMC also has a similar
1257 	 * statement on section 6.8.3.
1258 	 *
1259 	 * Multiple block read/write could be done by either predefined
1260 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1261 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1262 	 *
1263 	 * However the spec[1] doesn't tell us whether we should also
1264 	 * ignore that for predefined method. But per the spec[1], section
1265 	 * 4.15 Set Block Count Command, it says"If illegal block count
1266 	 * is set, out of range error will be indicated during read/write
1267 	 * operation (For example, data transfer is stopped at user area
1268 	 * boundary)." In another word, we could expect a out of range error
1269 	 * in the response for the following CMD18/25. And if argument of
1270 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1271 	 * we could also expect to get a -ETIMEDOUT or any error number from
1272 	 * the host drivers due to missing data response(for write)/data(for
1273 	 * read), as the cards will stop the data transfer by itself per the
1274 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1275 	 */
1276 
1277 	if (!brq->stop.error) {
1278 		bool oor_with_open_end;
1279 		/* If there is no error yet, check R1 response */
1280 
1281 		val = brq->stop.resp[0] & CMD_ERRORS;
1282 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1283 
1284 		if (val && !oor_with_open_end)
1285 			brq->stop.error = -EIO;
1286 	}
1287 }
1288 
1289 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1290 			      int disable_multi, bool *do_rel_wr_p,
1291 			      bool *do_data_tag_p)
1292 {
1293 	struct mmc_blk_data *md = mq->blkdata;
1294 	struct mmc_card *card = md->queue.card;
1295 	struct mmc_blk_request *brq = &mqrq->brq;
1296 	struct request *req = mmc_queue_req_to_req(mqrq);
1297 	bool do_rel_wr, do_data_tag;
1298 
1299 	/*
1300 	 * Reliable writes are used to implement Forced Unit Access and
1301 	 * are supported only on MMCs.
1302 	 */
1303 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1304 		    rq_data_dir(req) == WRITE &&
1305 		    (md->flags & MMC_BLK_REL_WR);
1306 
1307 	memset(brq, 0, sizeof(struct mmc_blk_request));
1308 
1309 	mmc_crypto_prepare_req(mqrq);
1310 
1311 	brq->mrq.data = &brq->data;
1312 	brq->mrq.tag = req->tag;
1313 
1314 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1315 	brq->stop.arg = 0;
1316 
1317 	if (rq_data_dir(req) == READ) {
1318 		brq->data.flags = MMC_DATA_READ;
1319 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1320 	} else {
1321 		brq->data.flags = MMC_DATA_WRITE;
1322 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1323 	}
1324 
1325 	brq->data.blksz = 512;
1326 	brq->data.blocks = blk_rq_sectors(req);
1327 	brq->data.blk_addr = blk_rq_pos(req);
1328 
1329 	/*
1330 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1331 	 * The eMMC will give "high" priority tasks priority over "simple"
1332 	 * priority tasks. Here we always set "simple" priority by not setting
1333 	 * MMC_DATA_PRIO.
1334 	 */
1335 
1336 	/*
1337 	 * The block layer doesn't support all sector count
1338 	 * restrictions, so we need to be prepared for too big
1339 	 * requests.
1340 	 */
1341 	if (brq->data.blocks > card->host->max_blk_count)
1342 		brq->data.blocks = card->host->max_blk_count;
1343 
1344 	if (brq->data.blocks > 1) {
1345 		/*
1346 		 * Some SD cards in SPI mode return a CRC error or even lock up
1347 		 * completely when trying to read the last block using a
1348 		 * multiblock read command.
1349 		 */
1350 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1351 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1352 		     get_capacity(md->disk)))
1353 			brq->data.blocks--;
1354 
1355 		/*
1356 		 * After a read error, we redo the request one sector
1357 		 * at a time in order to accurately determine which
1358 		 * sectors can be read successfully.
1359 		 */
1360 		if (disable_multi)
1361 			brq->data.blocks = 1;
1362 
1363 		/*
1364 		 * Some controllers have HW issues while operating
1365 		 * in multiple I/O mode
1366 		 */
1367 		if (card->host->ops->multi_io_quirk)
1368 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1369 						(rq_data_dir(req) == READ) ?
1370 						MMC_DATA_READ : MMC_DATA_WRITE,
1371 						brq->data.blocks);
1372 	}
1373 
1374 	if (do_rel_wr) {
1375 		mmc_apply_rel_rw(brq, card, req);
1376 		brq->data.flags |= MMC_DATA_REL_WR;
1377 	}
1378 
1379 	/*
1380 	 * Data tag is used only during writing meta data to speed
1381 	 * up write and any subsequent read of this meta data
1382 	 */
1383 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1384 		      (req->cmd_flags & REQ_META) &&
1385 		      (rq_data_dir(req) == WRITE) &&
1386 		      ((brq->data.blocks * brq->data.blksz) >=
1387 		       card->ext_csd.data_tag_unit_size);
1388 
1389 	if (do_data_tag)
1390 		brq->data.flags |= MMC_DATA_DAT_TAG;
1391 
1392 	mmc_set_data_timeout(&brq->data, card);
1393 
1394 	brq->data.sg = mqrq->sg;
1395 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1396 
1397 	/*
1398 	 * Adjust the sg list so it is the same size as the
1399 	 * request.
1400 	 */
1401 	if (brq->data.blocks != blk_rq_sectors(req)) {
1402 		int i, data_size = brq->data.blocks << 9;
1403 		struct scatterlist *sg;
1404 
1405 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1406 			data_size -= sg->length;
1407 			if (data_size <= 0) {
1408 				sg->length += data_size;
1409 				i++;
1410 				break;
1411 			}
1412 		}
1413 		brq->data.sg_len = i;
1414 	}
1415 
1416 	if (do_rel_wr_p)
1417 		*do_rel_wr_p = do_rel_wr;
1418 
1419 	if (do_data_tag_p)
1420 		*do_data_tag_p = do_data_tag;
1421 }
1422 
1423 #define MMC_CQE_RETRIES 2
1424 
1425 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1426 {
1427 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1428 	struct mmc_request *mrq = &mqrq->brq.mrq;
1429 	struct request_queue *q = req->q;
1430 	struct mmc_host *host = mq->card->host;
1431 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1432 	unsigned long flags;
1433 	bool put_card;
1434 	int err;
1435 
1436 	mmc_cqe_post_req(host, mrq);
1437 
1438 	if (mrq->cmd && mrq->cmd->error)
1439 		err = mrq->cmd->error;
1440 	else if (mrq->data && mrq->data->error)
1441 		err = mrq->data->error;
1442 	else
1443 		err = 0;
1444 
1445 	if (err) {
1446 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1447 			blk_mq_requeue_request(req, true);
1448 		else
1449 			blk_mq_end_request(req, BLK_STS_IOERR);
1450 	} else if (mrq->data) {
1451 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1452 			blk_mq_requeue_request(req, true);
1453 		else
1454 			__blk_mq_end_request(req, BLK_STS_OK);
1455 	} else {
1456 		blk_mq_end_request(req, BLK_STS_OK);
1457 	}
1458 
1459 	spin_lock_irqsave(&mq->lock, flags);
1460 
1461 	mq->in_flight[issue_type] -= 1;
1462 
1463 	put_card = (mmc_tot_in_flight(mq) == 0);
1464 
1465 	mmc_cqe_check_busy(mq);
1466 
1467 	spin_unlock_irqrestore(&mq->lock, flags);
1468 
1469 	if (!mq->cqe_busy)
1470 		blk_mq_run_hw_queues(q, true);
1471 
1472 	if (put_card)
1473 		mmc_put_card(mq->card, &mq->ctx);
1474 }
1475 
1476 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1477 {
1478 	struct mmc_card *card = mq->card;
1479 	struct mmc_host *host = card->host;
1480 	int err;
1481 
1482 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1483 
1484 	err = mmc_cqe_recovery(host);
1485 	if (err)
1486 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1487 	else
1488 		mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1489 
1490 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1491 }
1492 
1493 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1494 {
1495 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1496 						  brq.mrq);
1497 	struct request *req = mmc_queue_req_to_req(mqrq);
1498 	struct request_queue *q = req->q;
1499 	struct mmc_queue *mq = q->queuedata;
1500 
1501 	/*
1502 	 * Block layer timeouts race with completions which means the normal
1503 	 * completion path cannot be used during recovery.
1504 	 */
1505 	if (mq->in_recovery)
1506 		mmc_blk_cqe_complete_rq(mq, req);
1507 	else if (likely(!blk_should_fake_timeout(req->q)))
1508 		blk_mq_complete_request(req);
1509 }
1510 
1511 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1512 {
1513 	mrq->done		= mmc_blk_cqe_req_done;
1514 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1515 
1516 	return mmc_cqe_start_req(host, mrq);
1517 }
1518 
1519 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1520 						 struct request *req)
1521 {
1522 	struct mmc_blk_request *brq = &mqrq->brq;
1523 
1524 	memset(brq, 0, sizeof(*brq));
1525 
1526 	brq->mrq.cmd = &brq->cmd;
1527 	brq->mrq.tag = req->tag;
1528 
1529 	return &brq->mrq;
1530 }
1531 
1532 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1533 {
1534 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1535 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1536 
1537 	mrq->cmd->opcode = MMC_SWITCH;
1538 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1539 			(EXT_CSD_FLUSH_CACHE << 16) |
1540 			(1 << 8) |
1541 			EXT_CSD_CMD_SET_NORMAL;
1542 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1543 
1544 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1545 }
1546 
1547 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1548 {
1549 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1550 	struct mmc_host *host = mq->card->host;
1551 	int err;
1552 
1553 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1554 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1555 	mmc_pre_req(host, &mqrq->brq.mrq);
1556 
1557 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1558 	if (err)
1559 		mmc_post_req(host, &mqrq->brq.mrq, err);
1560 
1561 	return err;
1562 }
1563 
1564 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1565 {
1566 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1567 	struct mmc_host *host = mq->card->host;
1568 
1569 	if (host->hsq_enabled)
1570 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1571 
1572 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1573 
1574 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1575 }
1576 
1577 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1578 			       struct mmc_card *card,
1579 			       int disable_multi,
1580 			       struct mmc_queue *mq)
1581 {
1582 	u32 readcmd, writecmd;
1583 	struct mmc_blk_request *brq = &mqrq->brq;
1584 	struct request *req = mmc_queue_req_to_req(mqrq);
1585 	struct mmc_blk_data *md = mq->blkdata;
1586 	bool do_rel_wr, do_data_tag;
1587 
1588 	mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1589 
1590 	brq->mrq.cmd = &brq->cmd;
1591 
1592 	brq->cmd.arg = blk_rq_pos(req);
1593 	if (!mmc_card_blockaddr(card))
1594 		brq->cmd.arg <<= 9;
1595 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1596 
1597 	if (brq->data.blocks > 1 || do_rel_wr) {
1598 		/* SPI multiblock writes terminate using a special
1599 		 * token, not a STOP_TRANSMISSION request.
1600 		 */
1601 		if (!mmc_host_is_spi(card->host) ||
1602 		    rq_data_dir(req) == READ)
1603 			brq->mrq.stop = &brq->stop;
1604 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1605 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1606 	} else {
1607 		brq->mrq.stop = NULL;
1608 		readcmd = MMC_READ_SINGLE_BLOCK;
1609 		writecmd = MMC_WRITE_BLOCK;
1610 	}
1611 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1612 
1613 	/*
1614 	 * Pre-defined multi-block transfers are preferable to
1615 	 * open ended-ones (and necessary for reliable writes).
1616 	 * However, it is not sufficient to just send CMD23,
1617 	 * and avoid the final CMD12, as on an error condition
1618 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1619 	 * with Auto-CMD23 enhancements provided by some
1620 	 * hosts, means that the complexity of dealing
1621 	 * with this is best left to the host. If CMD23 is
1622 	 * supported by card and host, we'll fill sbc in and let
1623 	 * the host deal with handling it correctly. This means
1624 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1625 	 * change of behavior will be observed.
1626 	 *
1627 	 * N.B: Some MMC cards experience perf degradation.
1628 	 * We'll avoid using CMD23-bounded multiblock writes for
1629 	 * these, while retaining features like reliable writes.
1630 	 */
1631 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1632 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1633 	     do_data_tag)) {
1634 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1635 		brq->sbc.arg = brq->data.blocks |
1636 			(do_rel_wr ? (1 << 31) : 0) |
1637 			(do_data_tag ? (1 << 29) : 0);
1638 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1639 		brq->mrq.sbc = &brq->sbc;
1640 	}
1641 }
1642 
1643 #define MMC_MAX_RETRIES		5
1644 #define MMC_DATA_RETRIES	2
1645 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1646 
1647 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1648 {
1649 	struct mmc_command cmd = {
1650 		.opcode = MMC_STOP_TRANSMISSION,
1651 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1652 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1653 		.busy_timeout = timeout,
1654 	};
1655 
1656 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1657 }
1658 
1659 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1660 {
1661 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1662 	struct mmc_blk_request *brq = &mqrq->brq;
1663 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1664 	int err;
1665 
1666 	mmc_retune_hold_now(card->host);
1667 
1668 	mmc_blk_send_stop(card, timeout);
1669 
1670 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1671 
1672 	mmc_retune_release(card->host);
1673 
1674 	return err;
1675 }
1676 
1677 #define MMC_READ_SINGLE_RETRIES	2
1678 
1679 /* Single sector read during recovery */
1680 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1681 {
1682 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1683 	struct mmc_request *mrq = &mqrq->brq.mrq;
1684 	struct mmc_card *card = mq->card;
1685 	struct mmc_host *host = card->host;
1686 	blk_status_t error = BLK_STS_OK;
1687 
1688 	do {
1689 		u32 status;
1690 		int err;
1691 		int retries = 0;
1692 
1693 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1694 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1695 
1696 			mmc_wait_for_req(host, mrq);
1697 
1698 			err = mmc_send_status(card, &status);
1699 			if (err)
1700 				goto error_exit;
1701 
1702 			if (!mmc_host_is_spi(host) &&
1703 			    !mmc_ready_for_data(status)) {
1704 				err = mmc_blk_fix_state(card, req);
1705 				if (err)
1706 					goto error_exit;
1707 			}
1708 
1709 			if (!mrq->cmd->error)
1710 				break;
1711 		}
1712 
1713 		if (mrq->cmd->error ||
1714 		    mrq->data->error ||
1715 		    (!mmc_host_is_spi(host) &&
1716 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1717 			error = BLK_STS_IOERR;
1718 		else
1719 			error = BLK_STS_OK;
1720 
1721 	} while (blk_update_request(req, error, 512));
1722 
1723 	return;
1724 
1725 error_exit:
1726 	mrq->data->bytes_xfered = 0;
1727 	blk_update_request(req, BLK_STS_IOERR, 512);
1728 	/* Let it try the remaining request again */
1729 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1730 		mqrq->retries = MMC_MAX_RETRIES - 1;
1731 }
1732 
1733 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1734 {
1735 	return !!brq->mrq.sbc;
1736 }
1737 
1738 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1739 {
1740 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1741 }
1742 
1743 /*
1744  * Check for errors the host controller driver might not have seen such as
1745  * response mode errors or invalid card state.
1746  */
1747 static bool mmc_blk_status_error(struct request *req, u32 status)
1748 {
1749 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1750 	struct mmc_blk_request *brq = &mqrq->brq;
1751 	struct mmc_queue *mq = req->q->queuedata;
1752 	u32 stop_err_bits;
1753 
1754 	if (mmc_host_is_spi(mq->card->host))
1755 		return false;
1756 
1757 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1758 
1759 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1760 	       brq->stop.resp[0] & stop_err_bits ||
1761 	       status            & stop_err_bits ||
1762 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1763 }
1764 
1765 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1766 {
1767 	return !brq->sbc.error && !brq->cmd.error &&
1768 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1769 }
1770 
1771 /*
1772  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1773  * policy:
1774  * 1. A request that has transferred at least some data is considered
1775  * successful and will be requeued if there is remaining data to
1776  * transfer.
1777  * 2. Otherwise the number of retries is incremented and the request
1778  * will be requeued if there are remaining retries.
1779  * 3. Otherwise the request will be errored out.
1780  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1781  * mqrq->retries. So there are only 4 possible actions here:
1782  *	1. do not accept the bytes_xfered value i.e. set it to zero
1783  *	2. change mqrq->retries to determine the number of retries
1784  *	3. try to reset the card
1785  *	4. read one sector at a time
1786  */
1787 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1788 {
1789 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1790 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1791 	struct mmc_blk_request *brq = &mqrq->brq;
1792 	struct mmc_blk_data *md = mq->blkdata;
1793 	struct mmc_card *card = mq->card;
1794 	u32 status;
1795 	u32 blocks;
1796 	int err;
1797 
1798 	/*
1799 	 * Some errors the host driver might not have seen. Set the number of
1800 	 * bytes transferred to zero in that case.
1801 	 */
1802 	err = __mmc_send_status(card, &status, 0);
1803 	if (err || mmc_blk_status_error(req, status))
1804 		brq->data.bytes_xfered = 0;
1805 
1806 	mmc_retune_release(card->host);
1807 
1808 	/*
1809 	 * Try again to get the status. This also provides an opportunity for
1810 	 * re-tuning.
1811 	 */
1812 	if (err)
1813 		err = __mmc_send_status(card, &status, 0);
1814 
1815 	/*
1816 	 * Nothing more to do after the number of bytes transferred has been
1817 	 * updated and there is no card.
1818 	 */
1819 	if (err && mmc_detect_card_removed(card->host))
1820 		return;
1821 
1822 	/* Try to get back to "tran" state */
1823 	if (!mmc_host_is_spi(mq->card->host) &&
1824 	    (err || !mmc_ready_for_data(status)))
1825 		err = mmc_blk_fix_state(mq->card, req);
1826 
1827 	/*
1828 	 * Special case for SD cards where the card might record the number of
1829 	 * blocks written.
1830 	 */
1831 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1832 	    rq_data_dir(req) == WRITE) {
1833 		if (mmc_sd_num_wr_blocks(card, &blocks))
1834 			brq->data.bytes_xfered = 0;
1835 		else
1836 			brq->data.bytes_xfered = blocks << 9;
1837 	}
1838 
1839 	/* Reset if the card is in a bad state */
1840 	if (!mmc_host_is_spi(mq->card->host) &&
1841 	    err && mmc_blk_reset(md, card->host, type)) {
1842 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1843 		mqrq->retries = MMC_NO_RETRIES;
1844 		return;
1845 	}
1846 
1847 	/*
1848 	 * If anything was done, just return and if there is anything remaining
1849 	 * on the request it will get requeued.
1850 	 */
1851 	if (brq->data.bytes_xfered)
1852 		return;
1853 
1854 	/* Reset before last retry */
1855 	if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1856 		mmc_blk_reset(md, card->host, type);
1857 
1858 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1859 	if (brq->sbc.error || brq->cmd.error)
1860 		return;
1861 
1862 	/* Reduce the remaining retries for data errors */
1863 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1864 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1865 		return;
1866 	}
1867 
1868 	/* FIXME: Missing single sector read for large sector size */
1869 	if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1870 	    brq->data.blocks > 1) {
1871 		/* Read one sector at a time */
1872 		mmc_blk_read_single(mq, req);
1873 		return;
1874 	}
1875 }
1876 
1877 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1878 {
1879 	mmc_blk_eval_resp_error(brq);
1880 
1881 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1882 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1883 }
1884 
1885 static int mmc_spi_err_check(struct mmc_card *card)
1886 {
1887 	u32 status = 0;
1888 	int err;
1889 
1890 	/*
1891 	 * SPI does not have a TRAN state we have to wait on, instead the
1892 	 * card is ready again when it no longer holds the line LOW.
1893 	 * We still have to ensure two things here before we know the write
1894 	 * was successful:
1895 	 * 1. The card has not disconnected during busy and we actually read our
1896 	 * own pull-up, thinking it was still connected, so ensure it
1897 	 * still responds.
1898 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1899 	 * just reconnected card after being disconnected during busy.
1900 	 */
1901 	err = __mmc_send_status(card, &status, 0);
1902 	if (err)
1903 		return err;
1904 	/* All R1 and R2 bits of SPI are errors in our case */
1905 	if (status)
1906 		return -EIO;
1907 	return 0;
1908 }
1909 
1910 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1911 {
1912 	struct mmc_blk_busy_data *data = cb_data;
1913 	u32 status = 0;
1914 	int err;
1915 
1916 	err = mmc_send_status(data->card, &status);
1917 	if (err)
1918 		return err;
1919 
1920 	/* Accumulate response error bits. */
1921 	data->status |= status;
1922 
1923 	*busy = !mmc_ready_for_data(status);
1924 	return 0;
1925 }
1926 
1927 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1928 {
1929 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1930 	struct mmc_blk_busy_data cb_data;
1931 	int err;
1932 
1933 	if (rq_data_dir(req) == READ)
1934 		return 0;
1935 
1936 	if (mmc_host_is_spi(card->host)) {
1937 		err = mmc_spi_err_check(card);
1938 		if (err)
1939 			mqrq->brq.data.bytes_xfered = 0;
1940 		return err;
1941 	}
1942 
1943 	cb_data.card = card;
1944 	cb_data.status = 0;
1945 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1946 				  &mmc_blk_busy_cb, &cb_data);
1947 
1948 	/*
1949 	 * Do not assume data transferred correctly if there are any error bits
1950 	 * set.
1951 	 */
1952 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1953 		mqrq->brq.data.bytes_xfered = 0;
1954 		err = err ? err : -EIO;
1955 	}
1956 
1957 	/* Copy the exception bit so it will be seen later on */
1958 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1959 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1960 
1961 	return err;
1962 }
1963 
1964 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1965 					    struct request *req)
1966 {
1967 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1968 
1969 	mmc_blk_reset_success(mq->blkdata, type);
1970 }
1971 
1972 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1973 {
1974 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1975 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1976 
1977 	if (nr_bytes) {
1978 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1979 			blk_mq_requeue_request(req, true);
1980 		else
1981 			__blk_mq_end_request(req, BLK_STS_OK);
1982 	} else if (!blk_rq_bytes(req)) {
1983 		__blk_mq_end_request(req, BLK_STS_IOERR);
1984 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1985 		blk_mq_requeue_request(req, true);
1986 	} else {
1987 		if (mmc_card_removed(mq->card))
1988 			req->rq_flags |= RQF_QUIET;
1989 		blk_mq_end_request(req, BLK_STS_IOERR);
1990 	}
1991 }
1992 
1993 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1994 					struct mmc_queue_req *mqrq)
1995 {
1996 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1997 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1998 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1999 }
2000 
2001 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2002 				 struct mmc_queue_req *mqrq)
2003 {
2004 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2005 		mmc_run_bkops(mq->card);
2006 }
2007 
2008 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2009 {
2010 	struct mmc_queue_req *mqrq =
2011 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2012 	struct request *req = mmc_queue_req_to_req(mqrq);
2013 	struct request_queue *q = req->q;
2014 	struct mmc_queue *mq = q->queuedata;
2015 	struct mmc_host *host = mq->card->host;
2016 	unsigned long flags;
2017 
2018 	if (mmc_blk_rq_error(&mqrq->brq) ||
2019 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2020 		spin_lock_irqsave(&mq->lock, flags);
2021 		mq->recovery_needed = true;
2022 		mq->recovery_req = req;
2023 		spin_unlock_irqrestore(&mq->lock, flags);
2024 
2025 		host->cqe_ops->cqe_recovery_start(host);
2026 
2027 		schedule_work(&mq->recovery_work);
2028 		return;
2029 	}
2030 
2031 	mmc_blk_rw_reset_success(mq, req);
2032 
2033 	/*
2034 	 * Block layer timeouts race with completions which means the normal
2035 	 * completion path cannot be used during recovery.
2036 	 */
2037 	if (mq->in_recovery)
2038 		mmc_blk_cqe_complete_rq(mq, req);
2039 	else if (likely(!blk_should_fake_timeout(req->q)))
2040 		blk_mq_complete_request(req);
2041 }
2042 
2043 void mmc_blk_mq_complete(struct request *req)
2044 {
2045 	struct mmc_queue *mq = req->q->queuedata;
2046 	struct mmc_host *host = mq->card->host;
2047 
2048 	if (host->cqe_enabled)
2049 		mmc_blk_cqe_complete_rq(mq, req);
2050 	else if (likely(!blk_should_fake_timeout(req->q)))
2051 		mmc_blk_mq_complete_rq(mq, req);
2052 }
2053 
2054 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2055 				       struct request *req)
2056 {
2057 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2058 	struct mmc_host *host = mq->card->host;
2059 
2060 	if (mmc_blk_rq_error(&mqrq->brq) ||
2061 	    mmc_blk_card_busy(mq->card, req)) {
2062 		mmc_blk_mq_rw_recovery(mq, req);
2063 	} else {
2064 		mmc_blk_rw_reset_success(mq, req);
2065 		mmc_retune_release(host);
2066 	}
2067 
2068 	mmc_blk_urgent_bkops(mq, mqrq);
2069 }
2070 
2071 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2072 {
2073 	unsigned long flags;
2074 	bool put_card;
2075 
2076 	spin_lock_irqsave(&mq->lock, flags);
2077 
2078 	mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2079 
2080 	put_card = (mmc_tot_in_flight(mq) == 0);
2081 
2082 	spin_unlock_irqrestore(&mq->lock, flags);
2083 
2084 	if (put_card)
2085 		mmc_put_card(mq->card, &mq->ctx);
2086 }
2087 
2088 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2089 				bool can_sleep)
2090 {
2091 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2092 	struct mmc_request *mrq = &mqrq->brq.mrq;
2093 	struct mmc_host *host = mq->card->host;
2094 
2095 	mmc_post_req(host, mrq, 0);
2096 
2097 	/*
2098 	 * Block layer timeouts race with completions which means the normal
2099 	 * completion path cannot be used during recovery.
2100 	 */
2101 	if (mq->in_recovery) {
2102 		mmc_blk_mq_complete_rq(mq, req);
2103 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2104 		if (can_sleep)
2105 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2106 		else
2107 			blk_mq_complete_request(req);
2108 	}
2109 
2110 	mmc_blk_mq_dec_in_flight(mq, req);
2111 }
2112 
2113 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2114 {
2115 	struct request *req = mq->recovery_req;
2116 	struct mmc_host *host = mq->card->host;
2117 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2118 
2119 	mq->recovery_req = NULL;
2120 	mq->rw_wait = false;
2121 
2122 	if (mmc_blk_rq_error(&mqrq->brq)) {
2123 		mmc_retune_hold_now(host);
2124 		mmc_blk_mq_rw_recovery(mq, req);
2125 	}
2126 
2127 	mmc_blk_urgent_bkops(mq, mqrq);
2128 
2129 	mmc_blk_mq_post_req(mq, req, true);
2130 }
2131 
2132 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2133 					 struct request **prev_req)
2134 {
2135 	if (mmc_host_done_complete(mq->card->host))
2136 		return;
2137 
2138 	mutex_lock(&mq->complete_lock);
2139 
2140 	if (!mq->complete_req)
2141 		goto out_unlock;
2142 
2143 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2144 
2145 	if (prev_req)
2146 		*prev_req = mq->complete_req;
2147 	else
2148 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2149 
2150 	mq->complete_req = NULL;
2151 
2152 out_unlock:
2153 	mutex_unlock(&mq->complete_lock);
2154 }
2155 
2156 void mmc_blk_mq_complete_work(struct work_struct *work)
2157 {
2158 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2159 					    complete_work);
2160 
2161 	mmc_blk_mq_complete_prev_req(mq, NULL);
2162 }
2163 
2164 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2165 {
2166 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2167 						  brq.mrq);
2168 	struct request *req = mmc_queue_req_to_req(mqrq);
2169 	struct request_queue *q = req->q;
2170 	struct mmc_queue *mq = q->queuedata;
2171 	struct mmc_host *host = mq->card->host;
2172 	unsigned long flags;
2173 
2174 	if (!mmc_host_done_complete(host)) {
2175 		bool waiting;
2176 
2177 		/*
2178 		 * We cannot complete the request in this context, so record
2179 		 * that there is a request to complete, and that a following
2180 		 * request does not need to wait (although it does need to
2181 		 * complete complete_req first).
2182 		 */
2183 		spin_lock_irqsave(&mq->lock, flags);
2184 		mq->complete_req = req;
2185 		mq->rw_wait = false;
2186 		waiting = mq->waiting;
2187 		spin_unlock_irqrestore(&mq->lock, flags);
2188 
2189 		/*
2190 		 * If 'waiting' then the waiting task will complete this
2191 		 * request, otherwise queue a work to do it. Note that
2192 		 * complete_work may still race with the dispatch of a following
2193 		 * request.
2194 		 */
2195 		if (waiting)
2196 			wake_up(&mq->wait);
2197 		else
2198 			queue_work(mq->card->complete_wq, &mq->complete_work);
2199 
2200 		return;
2201 	}
2202 
2203 	/* Take the recovery path for errors or urgent background operations */
2204 	if (mmc_blk_rq_error(&mqrq->brq) ||
2205 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2206 		spin_lock_irqsave(&mq->lock, flags);
2207 		mq->recovery_needed = true;
2208 		mq->recovery_req = req;
2209 		spin_unlock_irqrestore(&mq->lock, flags);
2210 		wake_up(&mq->wait);
2211 		schedule_work(&mq->recovery_work);
2212 		return;
2213 	}
2214 
2215 	mmc_blk_rw_reset_success(mq, req);
2216 
2217 	mq->rw_wait = false;
2218 	wake_up(&mq->wait);
2219 
2220 	/* context unknown */
2221 	mmc_blk_mq_post_req(mq, req, false);
2222 }
2223 
2224 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2225 {
2226 	unsigned long flags;
2227 	bool done;
2228 
2229 	/*
2230 	 * Wait while there is another request in progress, but not if recovery
2231 	 * is needed. Also indicate whether there is a request waiting to start.
2232 	 */
2233 	spin_lock_irqsave(&mq->lock, flags);
2234 	if (mq->recovery_needed) {
2235 		*err = -EBUSY;
2236 		done = true;
2237 	} else {
2238 		done = !mq->rw_wait;
2239 	}
2240 	mq->waiting = !done;
2241 	spin_unlock_irqrestore(&mq->lock, flags);
2242 
2243 	return done;
2244 }
2245 
2246 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2247 {
2248 	int err = 0;
2249 
2250 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2251 
2252 	/* Always complete the previous request if there is one */
2253 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2254 
2255 	return err;
2256 }
2257 
2258 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2259 				  struct request *req)
2260 {
2261 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2262 	struct mmc_host *host = mq->card->host;
2263 	struct request *prev_req = NULL;
2264 	int err = 0;
2265 
2266 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2267 
2268 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2269 
2270 	mmc_pre_req(host, &mqrq->brq.mrq);
2271 
2272 	err = mmc_blk_rw_wait(mq, &prev_req);
2273 	if (err)
2274 		goto out_post_req;
2275 
2276 	mq->rw_wait = true;
2277 
2278 	err = mmc_start_request(host, &mqrq->brq.mrq);
2279 
2280 	if (prev_req)
2281 		mmc_blk_mq_post_req(mq, prev_req, true);
2282 
2283 	if (err)
2284 		mq->rw_wait = false;
2285 
2286 	/* Release re-tuning here where there is no synchronization required */
2287 	if (err || mmc_host_done_complete(host))
2288 		mmc_retune_release(host);
2289 
2290 out_post_req:
2291 	if (err)
2292 		mmc_post_req(host, &mqrq->brq.mrq, err);
2293 
2294 	return err;
2295 }
2296 
2297 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2298 {
2299 	if (host->cqe_enabled)
2300 		return host->cqe_ops->cqe_wait_for_idle(host);
2301 
2302 	return mmc_blk_rw_wait(mq, NULL);
2303 }
2304 
2305 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2306 {
2307 	struct mmc_blk_data *md = mq->blkdata;
2308 	struct mmc_card *card = md->queue.card;
2309 	struct mmc_host *host = card->host;
2310 	int ret;
2311 
2312 	ret = mmc_blk_part_switch(card, md->part_type);
2313 	if (ret)
2314 		return MMC_REQ_FAILED_TO_START;
2315 
2316 	switch (mmc_issue_type(mq, req)) {
2317 	case MMC_ISSUE_SYNC:
2318 		ret = mmc_blk_wait_for_idle(mq, host);
2319 		if (ret)
2320 			return MMC_REQ_BUSY;
2321 		switch (req_op(req)) {
2322 		case REQ_OP_DRV_IN:
2323 		case REQ_OP_DRV_OUT:
2324 			mmc_blk_issue_drv_op(mq, req);
2325 			break;
2326 		case REQ_OP_DISCARD:
2327 			mmc_blk_issue_discard_rq(mq, req);
2328 			break;
2329 		case REQ_OP_SECURE_ERASE:
2330 			mmc_blk_issue_secdiscard_rq(mq, req);
2331 			break;
2332 		case REQ_OP_FLUSH:
2333 			mmc_blk_issue_flush(mq, req);
2334 			break;
2335 		default:
2336 			WARN_ON_ONCE(1);
2337 			return MMC_REQ_FAILED_TO_START;
2338 		}
2339 		return MMC_REQ_FINISHED;
2340 	case MMC_ISSUE_DCMD:
2341 	case MMC_ISSUE_ASYNC:
2342 		switch (req_op(req)) {
2343 		case REQ_OP_FLUSH:
2344 			if (!mmc_cache_enabled(host)) {
2345 				blk_mq_end_request(req, BLK_STS_OK);
2346 				return MMC_REQ_FINISHED;
2347 			}
2348 			ret = mmc_blk_cqe_issue_flush(mq, req);
2349 			break;
2350 		case REQ_OP_READ:
2351 		case REQ_OP_WRITE:
2352 			if (host->cqe_enabled)
2353 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2354 			else
2355 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2356 			break;
2357 		default:
2358 			WARN_ON_ONCE(1);
2359 			ret = -EINVAL;
2360 		}
2361 		if (!ret)
2362 			return MMC_REQ_STARTED;
2363 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2364 	default:
2365 		WARN_ON_ONCE(1);
2366 		return MMC_REQ_FAILED_TO_START;
2367 	}
2368 }
2369 
2370 static inline int mmc_blk_readonly(struct mmc_card *card)
2371 {
2372 	return mmc_card_readonly(card) ||
2373 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2374 }
2375 
2376 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2377 					      struct device *parent,
2378 					      sector_t size,
2379 					      bool default_ro,
2380 					      const char *subname,
2381 					      int area_type,
2382 					      unsigned int part_type)
2383 {
2384 	struct mmc_blk_data *md;
2385 	int devidx, ret;
2386 	char cap_str[10];
2387 	bool cache_enabled = false;
2388 	bool fua_enabled = false;
2389 
2390 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2391 	if (devidx < 0) {
2392 		/*
2393 		 * We get -ENOSPC because there are no more any available
2394 		 * devidx. The reason may be that, either userspace haven't yet
2395 		 * unmounted the partitions, which postpones mmc_blk_release()
2396 		 * from being called, or the device has more partitions than
2397 		 * what we support.
2398 		 */
2399 		if (devidx == -ENOSPC)
2400 			dev_err(mmc_dev(card->host),
2401 				"no more device IDs available\n");
2402 
2403 		return ERR_PTR(devidx);
2404 	}
2405 
2406 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2407 	if (!md) {
2408 		ret = -ENOMEM;
2409 		goto out;
2410 	}
2411 
2412 	md->area_type = area_type;
2413 
2414 	/*
2415 	 * Set the read-only status based on the supported commands
2416 	 * and the write protect switch.
2417 	 */
2418 	md->read_only = mmc_blk_readonly(card);
2419 
2420 	md->disk = mmc_init_queue(&md->queue, card);
2421 	if (IS_ERR(md->disk)) {
2422 		ret = PTR_ERR(md->disk);
2423 		goto err_kfree;
2424 	}
2425 
2426 	INIT_LIST_HEAD(&md->part);
2427 	INIT_LIST_HEAD(&md->rpmbs);
2428 	kref_init(&md->kref);
2429 
2430 	md->queue.blkdata = md;
2431 	md->part_type = part_type;
2432 
2433 	md->disk->major	= MMC_BLOCK_MAJOR;
2434 	md->disk->minors = perdev_minors;
2435 	md->disk->first_minor = devidx * perdev_minors;
2436 	md->disk->fops = &mmc_bdops;
2437 	md->disk->private_data = md;
2438 	md->parent = parent;
2439 	set_disk_ro(md->disk, md->read_only || default_ro);
2440 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2441 		md->disk->flags |= GENHD_FL_NO_PART;
2442 
2443 	/*
2444 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2445 	 *
2446 	 * - be set for removable media with permanent block devices
2447 	 * - be unset for removable block devices with permanent media
2448 	 *
2449 	 * Since MMC block devices clearly fall under the second
2450 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2451 	 * should use the block device creation/destruction hotplug
2452 	 * messages to tell when the card is present.
2453 	 */
2454 
2455 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2456 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2457 
2458 	set_capacity(md->disk, size);
2459 
2460 	if (mmc_host_cmd23(card->host)) {
2461 		if ((mmc_card_mmc(card) &&
2462 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2463 		    (mmc_card_sd(card) &&
2464 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2465 			md->flags |= MMC_BLK_CMD23;
2466 	}
2467 
2468 	if (md->flags & MMC_BLK_CMD23 &&
2469 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2470 	     card->ext_csd.rel_sectors)) {
2471 		md->flags |= MMC_BLK_REL_WR;
2472 		fua_enabled = true;
2473 		cache_enabled = true;
2474 	}
2475 	if (mmc_cache_enabled(card->host))
2476 		cache_enabled  = true;
2477 
2478 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2479 
2480 	string_get_size((u64)size, 512, STRING_UNITS_2,
2481 			cap_str, sizeof(cap_str));
2482 	pr_info("%s: %s %s %s %s\n",
2483 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2484 		cap_str, md->read_only ? "(ro)" : "");
2485 
2486 	/* used in ->open, must be set before add_disk: */
2487 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2488 		dev_set_drvdata(&card->dev, md);
2489 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2490 	if (ret)
2491 		goto err_cleanup_queue;
2492 	return md;
2493 
2494  err_cleanup_queue:
2495 	blk_cleanup_queue(md->disk->queue);
2496 	blk_mq_free_tag_set(&md->queue.tag_set);
2497  err_kfree:
2498 	kfree(md);
2499  out:
2500 	ida_simple_remove(&mmc_blk_ida, devidx);
2501 	return ERR_PTR(ret);
2502 }
2503 
2504 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2505 {
2506 	sector_t size;
2507 
2508 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2509 		/*
2510 		 * The EXT_CSD sector count is in number or 512 byte
2511 		 * sectors.
2512 		 */
2513 		size = card->ext_csd.sectors;
2514 	} else {
2515 		/*
2516 		 * The CSD capacity field is in units of read_blkbits.
2517 		 * set_capacity takes units of 512 bytes.
2518 		 */
2519 		size = (typeof(sector_t))card->csd.capacity
2520 			<< (card->csd.read_blkbits - 9);
2521 	}
2522 
2523 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2524 					MMC_BLK_DATA_AREA_MAIN, 0);
2525 }
2526 
2527 static int mmc_blk_alloc_part(struct mmc_card *card,
2528 			      struct mmc_blk_data *md,
2529 			      unsigned int part_type,
2530 			      sector_t size,
2531 			      bool default_ro,
2532 			      const char *subname,
2533 			      int area_type)
2534 {
2535 	struct mmc_blk_data *part_md;
2536 
2537 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2538 				    subname, area_type, part_type);
2539 	if (IS_ERR(part_md))
2540 		return PTR_ERR(part_md);
2541 	list_add(&part_md->part, &md->part);
2542 
2543 	return 0;
2544 }
2545 
2546 /**
2547  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2548  * @filp: the character device file
2549  * @cmd: the ioctl() command
2550  * @arg: the argument from userspace
2551  *
2552  * This will essentially just redirect the ioctl()s coming in over to
2553  * the main block device spawning the RPMB character device.
2554  */
2555 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2556 			   unsigned long arg)
2557 {
2558 	struct mmc_rpmb_data *rpmb = filp->private_data;
2559 	int ret;
2560 
2561 	switch (cmd) {
2562 	case MMC_IOC_CMD:
2563 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2564 					(struct mmc_ioc_cmd __user *)arg,
2565 					rpmb);
2566 		break;
2567 	case MMC_IOC_MULTI_CMD:
2568 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2569 					(struct mmc_ioc_multi_cmd __user *)arg,
2570 					rpmb);
2571 		break;
2572 	default:
2573 		ret = -EINVAL;
2574 		break;
2575 	}
2576 
2577 	return ret;
2578 }
2579 
2580 #ifdef CONFIG_COMPAT
2581 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2582 			      unsigned long arg)
2583 {
2584 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2585 }
2586 #endif
2587 
2588 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2589 {
2590 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2591 						  struct mmc_rpmb_data, chrdev);
2592 
2593 	get_device(&rpmb->dev);
2594 	filp->private_data = rpmb;
2595 	mmc_blk_get(rpmb->md->disk);
2596 
2597 	return nonseekable_open(inode, filp);
2598 }
2599 
2600 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2601 {
2602 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2603 						  struct mmc_rpmb_data, chrdev);
2604 
2605 	mmc_blk_put(rpmb->md);
2606 	put_device(&rpmb->dev);
2607 
2608 	return 0;
2609 }
2610 
2611 static const struct file_operations mmc_rpmb_fileops = {
2612 	.release = mmc_rpmb_chrdev_release,
2613 	.open = mmc_rpmb_chrdev_open,
2614 	.owner = THIS_MODULE,
2615 	.llseek = no_llseek,
2616 	.unlocked_ioctl = mmc_rpmb_ioctl,
2617 #ifdef CONFIG_COMPAT
2618 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2619 #endif
2620 };
2621 
2622 static void mmc_blk_rpmb_device_release(struct device *dev)
2623 {
2624 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2625 
2626 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2627 	kfree(rpmb);
2628 }
2629 
2630 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2631 				   struct mmc_blk_data *md,
2632 				   unsigned int part_index,
2633 				   sector_t size,
2634 				   const char *subname)
2635 {
2636 	int devidx, ret;
2637 	char rpmb_name[DISK_NAME_LEN];
2638 	char cap_str[10];
2639 	struct mmc_rpmb_data *rpmb;
2640 
2641 	/* This creates the minor number for the RPMB char device */
2642 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2643 	if (devidx < 0)
2644 		return devidx;
2645 
2646 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2647 	if (!rpmb) {
2648 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2649 		return -ENOMEM;
2650 	}
2651 
2652 	snprintf(rpmb_name, sizeof(rpmb_name),
2653 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2654 
2655 	rpmb->id = devidx;
2656 	rpmb->part_index = part_index;
2657 	rpmb->dev.init_name = rpmb_name;
2658 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2659 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2660 	rpmb->dev.parent = &card->dev;
2661 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2662 	device_initialize(&rpmb->dev);
2663 	dev_set_drvdata(&rpmb->dev, rpmb);
2664 	rpmb->md = md;
2665 
2666 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2667 	rpmb->chrdev.owner = THIS_MODULE;
2668 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2669 	if (ret) {
2670 		pr_err("%s: could not add character device\n", rpmb_name);
2671 		goto out_put_device;
2672 	}
2673 
2674 	list_add(&rpmb->node, &md->rpmbs);
2675 
2676 	string_get_size((u64)size, 512, STRING_UNITS_2,
2677 			cap_str, sizeof(cap_str));
2678 
2679 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2680 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2681 		MAJOR(mmc_rpmb_devt), rpmb->id);
2682 
2683 	return 0;
2684 
2685 out_put_device:
2686 	put_device(&rpmb->dev);
2687 	return ret;
2688 }
2689 
2690 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2691 
2692 {
2693 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2694 	put_device(&rpmb->dev);
2695 }
2696 
2697 /* MMC Physical partitions consist of two boot partitions and
2698  * up to four general purpose partitions.
2699  * For each partition enabled in EXT_CSD a block device will be allocatedi
2700  * to provide access to the partition.
2701  */
2702 
2703 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2704 {
2705 	int idx, ret;
2706 
2707 	if (!mmc_card_mmc(card))
2708 		return 0;
2709 
2710 	for (idx = 0; idx < card->nr_parts; idx++) {
2711 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2712 			/*
2713 			 * RPMB partitions does not provide block access, they
2714 			 * are only accessed using ioctl():s. Thus create
2715 			 * special RPMB block devices that do not have a
2716 			 * backing block queue for these.
2717 			 */
2718 			ret = mmc_blk_alloc_rpmb_part(card, md,
2719 				card->part[idx].part_cfg,
2720 				card->part[idx].size >> 9,
2721 				card->part[idx].name);
2722 			if (ret)
2723 				return ret;
2724 		} else if (card->part[idx].size) {
2725 			ret = mmc_blk_alloc_part(card, md,
2726 				card->part[idx].part_cfg,
2727 				card->part[idx].size >> 9,
2728 				card->part[idx].force_ro,
2729 				card->part[idx].name,
2730 				card->part[idx].area_type);
2731 			if (ret)
2732 				return ret;
2733 		}
2734 	}
2735 
2736 	return 0;
2737 }
2738 
2739 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2740 {
2741 	/*
2742 	 * Flush remaining requests and free queues. It is freeing the queue
2743 	 * that stops new requests from being accepted.
2744 	 */
2745 	del_gendisk(md->disk);
2746 	mmc_cleanup_queue(&md->queue);
2747 	mmc_blk_put(md);
2748 }
2749 
2750 static void mmc_blk_remove_parts(struct mmc_card *card,
2751 				 struct mmc_blk_data *md)
2752 {
2753 	struct list_head *pos, *q;
2754 	struct mmc_blk_data *part_md;
2755 	struct mmc_rpmb_data *rpmb;
2756 
2757 	/* Remove RPMB partitions */
2758 	list_for_each_safe(pos, q, &md->rpmbs) {
2759 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2760 		list_del(pos);
2761 		mmc_blk_remove_rpmb_part(rpmb);
2762 	}
2763 	/* Remove block partitions */
2764 	list_for_each_safe(pos, q, &md->part) {
2765 		part_md = list_entry(pos, struct mmc_blk_data, part);
2766 		list_del(pos);
2767 		mmc_blk_remove_req(part_md);
2768 	}
2769 }
2770 
2771 #ifdef CONFIG_DEBUG_FS
2772 
2773 static int mmc_dbg_card_status_get(void *data, u64 *val)
2774 {
2775 	struct mmc_card *card = data;
2776 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2777 	struct mmc_queue *mq = &md->queue;
2778 	struct request *req;
2779 	int ret;
2780 
2781 	/* Ask the block layer about the card status */
2782 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2783 	if (IS_ERR(req))
2784 		return PTR_ERR(req);
2785 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2786 	blk_execute_rq(req, false);
2787 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2788 	if (ret >= 0) {
2789 		*val = ret;
2790 		ret = 0;
2791 	}
2792 	blk_mq_free_request(req);
2793 
2794 	return ret;
2795 }
2796 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2797 			 NULL, "%08llx\n");
2798 
2799 /* That is two digits * 512 + 1 for newline */
2800 #define EXT_CSD_STR_LEN 1025
2801 
2802 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2803 {
2804 	struct mmc_card *card = inode->i_private;
2805 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2806 	struct mmc_queue *mq = &md->queue;
2807 	struct request *req;
2808 	char *buf;
2809 	ssize_t n = 0;
2810 	u8 *ext_csd;
2811 	int err, i;
2812 
2813 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2814 	if (!buf)
2815 		return -ENOMEM;
2816 
2817 	/* Ask the block layer for the EXT CSD */
2818 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2819 	if (IS_ERR(req)) {
2820 		err = PTR_ERR(req);
2821 		goto out_free;
2822 	}
2823 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2824 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2825 	blk_execute_rq(req, false);
2826 	err = req_to_mmc_queue_req(req)->drv_op_result;
2827 	blk_mq_free_request(req);
2828 	if (err) {
2829 		pr_err("FAILED %d\n", err);
2830 		goto out_free;
2831 	}
2832 
2833 	for (i = 0; i < 512; i++)
2834 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2835 	n += sprintf(buf + n, "\n");
2836 
2837 	if (n != EXT_CSD_STR_LEN) {
2838 		err = -EINVAL;
2839 		kfree(ext_csd);
2840 		goto out_free;
2841 	}
2842 
2843 	filp->private_data = buf;
2844 	kfree(ext_csd);
2845 	return 0;
2846 
2847 out_free:
2848 	kfree(buf);
2849 	return err;
2850 }
2851 
2852 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2853 				size_t cnt, loff_t *ppos)
2854 {
2855 	char *buf = filp->private_data;
2856 
2857 	return simple_read_from_buffer(ubuf, cnt, ppos,
2858 				       buf, EXT_CSD_STR_LEN);
2859 }
2860 
2861 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2862 {
2863 	kfree(file->private_data);
2864 	return 0;
2865 }
2866 
2867 static const struct file_operations mmc_dbg_ext_csd_fops = {
2868 	.open		= mmc_ext_csd_open,
2869 	.read		= mmc_ext_csd_read,
2870 	.release	= mmc_ext_csd_release,
2871 	.llseek		= default_llseek,
2872 };
2873 
2874 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2875 {
2876 	struct dentry *root;
2877 
2878 	if (!card->debugfs_root)
2879 		return 0;
2880 
2881 	root = card->debugfs_root;
2882 
2883 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2884 		md->status_dentry =
2885 			debugfs_create_file_unsafe("status", 0400, root,
2886 						   card,
2887 						   &mmc_dbg_card_status_fops);
2888 		if (!md->status_dentry)
2889 			return -EIO;
2890 	}
2891 
2892 	if (mmc_card_mmc(card)) {
2893 		md->ext_csd_dentry =
2894 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2895 					    &mmc_dbg_ext_csd_fops);
2896 		if (!md->ext_csd_dentry)
2897 			return -EIO;
2898 	}
2899 
2900 	return 0;
2901 }
2902 
2903 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2904 				   struct mmc_blk_data *md)
2905 {
2906 	if (!card->debugfs_root)
2907 		return;
2908 
2909 	if (!IS_ERR_OR_NULL(md->status_dentry)) {
2910 		debugfs_remove(md->status_dentry);
2911 		md->status_dentry = NULL;
2912 	}
2913 
2914 	if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2915 		debugfs_remove(md->ext_csd_dentry);
2916 		md->ext_csd_dentry = NULL;
2917 	}
2918 }
2919 
2920 #else
2921 
2922 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2923 {
2924 	return 0;
2925 }
2926 
2927 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2928 				   struct mmc_blk_data *md)
2929 {
2930 }
2931 
2932 #endif /* CONFIG_DEBUG_FS */
2933 
2934 static int mmc_blk_probe(struct mmc_card *card)
2935 {
2936 	struct mmc_blk_data *md;
2937 	int ret = 0;
2938 
2939 	/*
2940 	 * Check that the card supports the command class(es) we need.
2941 	 */
2942 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2943 		return -ENODEV;
2944 
2945 	mmc_fixup_device(card, mmc_blk_fixups);
2946 
2947 	card->complete_wq = alloc_workqueue("mmc_complete",
2948 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2949 	if (!card->complete_wq) {
2950 		pr_err("Failed to create mmc completion workqueue");
2951 		return -ENOMEM;
2952 	}
2953 
2954 	md = mmc_blk_alloc(card);
2955 	if (IS_ERR(md)) {
2956 		ret = PTR_ERR(md);
2957 		goto out_free;
2958 	}
2959 
2960 	ret = mmc_blk_alloc_parts(card, md);
2961 	if (ret)
2962 		goto out;
2963 
2964 	/* Add two debugfs entries */
2965 	mmc_blk_add_debugfs(card, md);
2966 
2967 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2968 	pm_runtime_use_autosuspend(&card->dev);
2969 
2970 	/*
2971 	 * Don't enable runtime PM for SD-combo cards here. Leave that
2972 	 * decision to be taken during the SDIO init sequence instead.
2973 	 */
2974 	if (card->type != MMC_TYPE_SD_COMBO) {
2975 		pm_runtime_set_active(&card->dev);
2976 		pm_runtime_enable(&card->dev);
2977 	}
2978 
2979 	return 0;
2980 
2981 out:
2982 	mmc_blk_remove_parts(card, md);
2983 	mmc_blk_remove_req(md);
2984 out_free:
2985 	destroy_workqueue(card->complete_wq);
2986 	return ret;
2987 }
2988 
2989 static void mmc_blk_remove(struct mmc_card *card)
2990 {
2991 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2992 
2993 	mmc_blk_remove_debugfs(card, md);
2994 	mmc_blk_remove_parts(card, md);
2995 	pm_runtime_get_sync(&card->dev);
2996 	if (md->part_curr != md->part_type) {
2997 		mmc_claim_host(card->host);
2998 		mmc_blk_part_switch(card, md->part_type);
2999 		mmc_release_host(card->host);
3000 	}
3001 	if (card->type != MMC_TYPE_SD_COMBO)
3002 		pm_runtime_disable(&card->dev);
3003 	pm_runtime_put_noidle(&card->dev);
3004 	mmc_blk_remove_req(md);
3005 	dev_set_drvdata(&card->dev, NULL);
3006 	destroy_workqueue(card->complete_wq);
3007 }
3008 
3009 static int _mmc_blk_suspend(struct mmc_card *card)
3010 {
3011 	struct mmc_blk_data *part_md;
3012 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3013 
3014 	if (md) {
3015 		mmc_queue_suspend(&md->queue);
3016 		list_for_each_entry(part_md, &md->part, part) {
3017 			mmc_queue_suspend(&part_md->queue);
3018 		}
3019 	}
3020 	return 0;
3021 }
3022 
3023 static void mmc_blk_shutdown(struct mmc_card *card)
3024 {
3025 	_mmc_blk_suspend(card);
3026 }
3027 
3028 #ifdef CONFIG_PM_SLEEP
3029 static int mmc_blk_suspend(struct device *dev)
3030 {
3031 	struct mmc_card *card = mmc_dev_to_card(dev);
3032 
3033 	return _mmc_blk_suspend(card);
3034 }
3035 
3036 static int mmc_blk_resume(struct device *dev)
3037 {
3038 	struct mmc_blk_data *part_md;
3039 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3040 
3041 	if (md) {
3042 		/*
3043 		 * Resume involves the card going into idle state,
3044 		 * so current partition is always the main one.
3045 		 */
3046 		md->part_curr = md->part_type;
3047 		mmc_queue_resume(&md->queue);
3048 		list_for_each_entry(part_md, &md->part, part) {
3049 			mmc_queue_resume(&part_md->queue);
3050 		}
3051 	}
3052 	return 0;
3053 }
3054 #endif
3055 
3056 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3057 
3058 static struct mmc_driver mmc_driver = {
3059 	.drv		= {
3060 		.name	= "mmcblk",
3061 		.pm	= &mmc_blk_pm_ops,
3062 	},
3063 	.probe		= mmc_blk_probe,
3064 	.remove		= mmc_blk_remove,
3065 	.shutdown	= mmc_blk_shutdown,
3066 };
3067 
3068 static int __init mmc_blk_init(void)
3069 {
3070 	int res;
3071 
3072 	res  = bus_register(&mmc_rpmb_bus_type);
3073 	if (res < 0) {
3074 		pr_err("mmcblk: could not register RPMB bus type\n");
3075 		return res;
3076 	}
3077 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3078 	if (res < 0) {
3079 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3080 		goto out_bus_unreg;
3081 	}
3082 
3083 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3084 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3085 
3086 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3087 
3088 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3089 	if (res)
3090 		goto out_chrdev_unreg;
3091 
3092 	res = mmc_register_driver(&mmc_driver);
3093 	if (res)
3094 		goto out_blkdev_unreg;
3095 
3096 	return 0;
3097 
3098 out_blkdev_unreg:
3099 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3100 out_chrdev_unreg:
3101 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3102 out_bus_unreg:
3103 	bus_unregister(&mmc_rpmb_bus_type);
3104 	return res;
3105 }
3106 
3107 static void __exit mmc_blk_exit(void)
3108 {
3109 	mmc_unregister_driver(&mmc_driver);
3110 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3111 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3112 	bus_unregister(&mmc_rpmb_bus_type);
3113 }
3114 
3115 module_init(mmc_blk_init);
3116 module_exit(mmc_blk_exit);
3117 
3118 MODULE_LICENSE("GPL");
3119 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3120 
3121