xref: /linux/drivers/mmc/core/block.c (revision 0a149ab78ee220c75eef797abea7a29f4490e226)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block driver for media (i.e., flash cards)
4  *
5  * Copyright 2002 Hewlett-Packard Company
6  * Copyright 2005-2008 Pierre Ossman
7  *
8  * Use consistent with the GNU GPL is permitted,
9  * provided that this copyright notice is
10  * preserved in its entirety in all copies and derived works.
11  *
12  * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13  * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14  * FITNESS FOR ANY PARTICULAR PURPOSE.
15  *
16  * Many thanks to Alessandro Rubini and Jonathan Corbet!
17  *
18  * Author:  Andrew Christian
19  *          28 May 2002
20  */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43 
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49 
50 #include <linux/uaccess.h>
51 
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62 
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68 
69 /*
70  * Set a 10 second timeout for polling write request busy state. Note, mmc core
71  * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72  * second software timer to timeout the whole request, so 10 seconds should be
73  * ample.
74  */
75 #define MMC_BLK_TIMEOUT_MS  (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78 
79 static DEFINE_MUTEX(block_mutex);
80 
81 /*
82  * The defaults come from config options but can be overriden by module
83  * or bootarg options.
84  */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86 
87 /*
88  * We've only got one major, so number of mmcblk devices is
89  * limited to (1 << 20) / number of minors per device.  It is also
90  * limited by the MAX_DEVICES below.
91  */
92 static int max_devices;
93 
94 #define MAX_DEVICES 256
95 
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98 
99 struct mmc_blk_busy_data {
100 	struct mmc_card *card;
101 	u32 status;
102 };
103 
104 /*
105  * There is one mmc_blk_data per slot.
106  */
107 struct mmc_blk_data {
108 	struct device	*parent;
109 	struct gendisk	*disk;
110 	struct mmc_queue queue;
111 	struct list_head part;
112 	struct list_head rpmbs;
113 
114 	unsigned int	flags;
115 #define MMC_BLK_CMD23	(1 << 0)	/* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR	(1 << 1)	/* MMC Reliable write support */
117 
118 	struct kref	kref;
119 	unsigned int	read_only;
120 	unsigned int	part_type;
121 	unsigned int	reset_done;
122 #define MMC_BLK_READ		BIT(0)
123 #define MMC_BLK_WRITE		BIT(1)
124 #define MMC_BLK_DISCARD		BIT(2)
125 #define MMC_BLK_SECDISCARD	BIT(3)
126 #define MMC_BLK_CQE_RECOVERY	BIT(4)
127 #define MMC_BLK_TRIM		BIT(5)
128 
129 	/*
130 	 * Only set in main mmc_blk_data associated
131 	 * with mmc_card with dev_set_drvdata, and keeps
132 	 * track of the current selected device partition.
133 	 */
134 	unsigned int	part_curr;
135 #define MMC_BLK_PART_INVALID	UINT_MAX	/* Unknown partition active */
136 	int	area_type;
137 
138 	/* debugfs files (only in main mmc_blk_data) */
139 	struct dentry *status_dentry;
140 	struct dentry *ext_csd_dentry;
141 };
142 
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145 
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 	.name = "mmc_rpmb",
149 };
150 
151 /**
152  * struct mmc_rpmb_data - special RPMB device type for these areas
153  * @dev: the device for the RPMB area
154  * @chrdev: character device for the RPMB area
155  * @id: unique device ID number
156  * @part_index: partition index (0 on first)
157  * @md: parent MMC block device
158  * @node: list item, so we can put this device on a list
159  */
160 struct mmc_rpmb_data {
161 	struct device dev;
162 	struct cdev chrdev;
163 	int id;
164 	unsigned int part_index;
165 	struct mmc_blk_data *md;
166 	struct list_head node;
167 };
168 
169 static DEFINE_MUTEX(open_lock);
170 
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173 
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 				      unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 			       struct mmc_card *card,
178 			       int recovery_mode,
179 			       struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183 
184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 	struct mmc_blk_data *md;
187 
188 	mutex_lock(&open_lock);
189 	md = disk->private_data;
190 	if (md && !kref_get_unless_zero(&md->kref))
191 		md = NULL;
192 	mutex_unlock(&open_lock);
193 
194 	return md;
195 }
196 
197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 	int devidx = disk->first_minor / perdev_minors;
200 	return devidx;
201 }
202 
203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 	struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 	int devidx;
207 
208 	devidx = mmc_get_devidx(md->disk);
209 	ida_simple_remove(&mmc_blk_ida, devidx);
210 
211 	mutex_lock(&open_lock);
212 	md->disk->private_data = NULL;
213 	mutex_unlock(&open_lock);
214 
215 	put_disk(md->disk);
216 	kfree(md);
217 }
218 
219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 	kref_put(&md->kref, mmc_blk_kref_release);
222 }
223 
224 static ssize_t power_ro_lock_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	int ret;
228 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 	struct mmc_card *card = md->queue.card;
230 	int locked = 0;
231 
232 	if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 		locked = 2;
234 	else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 		locked = 1;
236 
237 	ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238 
239 	mmc_blk_put(md);
240 
241 	return ret;
242 }
243 
244 static ssize_t power_ro_lock_store(struct device *dev,
245 		struct device_attribute *attr, const char *buf, size_t count)
246 {
247 	int ret;
248 	struct mmc_blk_data *md, *part_md;
249 	struct mmc_queue *mq;
250 	struct request *req;
251 	unsigned long set;
252 
253 	if (kstrtoul(buf, 0, &set))
254 		return -EINVAL;
255 
256 	if (set != 1)
257 		return count;
258 
259 	md = mmc_blk_get(dev_to_disk(dev));
260 	mq = &md->queue;
261 
262 	/* Dispatch locking to the block layer */
263 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 	if (IS_ERR(req)) {
265 		count = PTR_ERR(req);
266 		goto out_put;
267 	}
268 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 	blk_execute_rq(req, false);
271 	ret = req_to_mmc_queue_req(req)->drv_op_result;
272 	blk_mq_free_request(req);
273 
274 	if (!ret) {
275 		pr_info("%s: Locking boot partition ro until next power on\n",
276 			md->disk->disk_name);
277 		set_disk_ro(md->disk, 1);
278 
279 		list_for_each_entry(part_md, &md->part, part)
280 			if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 				pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 				set_disk_ro(part_md->disk, 1);
283 			}
284 	}
285 out_put:
286 	mmc_blk_put(md);
287 	return count;
288 }
289 
290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 		power_ro_lock_show, power_ro_lock_store);
292 
293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 			     char *buf)
295 {
296 	int ret;
297 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298 
299 	ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 		       get_disk_ro(dev_to_disk(dev)) ^
301 		       md->read_only);
302 	mmc_blk_put(md);
303 	return ret;
304 }
305 
306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 			      const char *buf, size_t count)
308 {
309 	int ret;
310 	char *end;
311 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 	unsigned long set = simple_strtoul(buf, &end, 0);
313 	if (end == buf) {
314 		ret = -EINVAL;
315 		goto out;
316 	}
317 
318 	set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 	ret = count;
320 out:
321 	mmc_blk_put(md);
322 	return ret;
323 }
324 
325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326 
327 static struct attribute *mmc_disk_attrs[] = {
328 	&dev_attr_force_ro.attr,
329 	&dev_attr_ro_lock_until_next_power_on.attr,
330 	NULL,
331 };
332 
333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 		struct attribute *a, int n)
335 {
336 	struct device *dev = kobj_to_dev(kobj);
337 	struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 	umode_t mode = a->mode;
339 
340 	if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 	    (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 	    md->queue.card->ext_csd.boot_ro_lockable) {
343 		mode = S_IRUGO;
344 		if (!(md->queue.card->ext_csd.boot_ro_lock &
345 				EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 			mode |= S_IWUSR;
347 	}
348 
349 	mmc_blk_put(md);
350 	return mode;
351 }
352 
353 static const struct attribute_group mmc_disk_attr_group = {
354 	.is_visible	= mmc_disk_attrs_is_visible,
355 	.attrs		= mmc_disk_attrs,
356 };
357 
358 static const struct attribute_group *mmc_disk_attr_groups[] = {
359 	&mmc_disk_attr_group,
360 	NULL,
361 };
362 
363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364 {
365 	struct mmc_blk_data *md = mmc_blk_get(disk);
366 	int ret = -ENXIO;
367 
368 	mutex_lock(&block_mutex);
369 	if (md) {
370 		ret = 0;
371 		if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 			mmc_blk_put(md);
373 			ret = -EROFS;
374 		}
375 	}
376 	mutex_unlock(&block_mutex);
377 
378 	return ret;
379 }
380 
381 static void mmc_blk_release(struct gendisk *disk)
382 {
383 	struct mmc_blk_data *md = disk->private_data;
384 
385 	mutex_lock(&block_mutex);
386 	mmc_blk_put(md);
387 	mutex_unlock(&block_mutex);
388 }
389 
390 static int
391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 {
393 	geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 	geo->heads = 4;
395 	geo->sectors = 16;
396 	return 0;
397 }
398 
399 struct mmc_blk_ioc_data {
400 	struct mmc_ioc_cmd ic;
401 	unsigned char *buf;
402 	u64 buf_bytes;
403 	struct mmc_rpmb_data *rpmb;
404 };
405 
406 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
407 	struct mmc_ioc_cmd __user *user)
408 {
409 	struct mmc_blk_ioc_data *idata;
410 	int err;
411 
412 	idata = kmalloc(sizeof(*idata), GFP_KERNEL);
413 	if (!idata) {
414 		err = -ENOMEM;
415 		goto out;
416 	}
417 
418 	if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
419 		err = -EFAULT;
420 		goto idata_err;
421 	}
422 
423 	idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
424 	if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
425 		err = -EOVERFLOW;
426 		goto idata_err;
427 	}
428 
429 	if (!idata->buf_bytes) {
430 		idata->buf = NULL;
431 		return idata;
432 	}
433 
434 	idata->buf = memdup_user((void __user *)(unsigned long)
435 				 idata->ic.data_ptr, idata->buf_bytes);
436 	if (IS_ERR(idata->buf)) {
437 		err = PTR_ERR(idata->buf);
438 		goto idata_err;
439 	}
440 
441 	return idata;
442 
443 idata_err:
444 	kfree(idata);
445 out:
446 	return ERR_PTR(err);
447 }
448 
449 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
450 				      struct mmc_blk_ioc_data *idata)
451 {
452 	struct mmc_ioc_cmd *ic = &idata->ic;
453 
454 	if (copy_to_user(&(ic_ptr->response), ic->response,
455 			 sizeof(ic->response)))
456 		return -EFAULT;
457 
458 	if (!idata->ic.write_flag) {
459 		if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
460 				 idata->buf, idata->buf_bytes))
461 			return -EFAULT;
462 	}
463 
464 	return 0;
465 }
466 
467 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
468 			       struct mmc_blk_ioc_data *idata)
469 {
470 	struct mmc_command cmd = {}, sbc = {};
471 	struct mmc_data data = {};
472 	struct mmc_request mrq = {};
473 	struct scatterlist sg;
474 	bool r1b_resp;
475 	unsigned int busy_timeout_ms;
476 	int err;
477 	unsigned int target_part;
478 
479 	if (!card || !md || !idata)
480 		return -EINVAL;
481 
482 	/*
483 	 * The RPMB accesses comes in from the character device, so we
484 	 * need to target these explicitly. Else we just target the
485 	 * partition type for the block device the ioctl() was issued
486 	 * on.
487 	 */
488 	if (idata->rpmb) {
489 		/* Support multiple RPMB partitions */
490 		target_part = idata->rpmb->part_index;
491 		target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
492 	} else {
493 		target_part = md->part_type;
494 	}
495 
496 	cmd.opcode = idata->ic.opcode;
497 	cmd.arg = idata->ic.arg;
498 	cmd.flags = idata->ic.flags;
499 
500 	if (idata->buf_bytes) {
501 		data.sg = &sg;
502 		data.sg_len = 1;
503 		data.blksz = idata->ic.blksz;
504 		data.blocks = idata->ic.blocks;
505 
506 		sg_init_one(data.sg, idata->buf, idata->buf_bytes);
507 
508 		if (idata->ic.write_flag)
509 			data.flags = MMC_DATA_WRITE;
510 		else
511 			data.flags = MMC_DATA_READ;
512 
513 		/* data.flags must already be set before doing this. */
514 		mmc_set_data_timeout(&data, card);
515 
516 		/* Allow overriding the timeout_ns for empirical tuning. */
517 		if (idata->ic.data_timeout_ns)
518 			data.timeout_ns = idata->ic.data_timeout_ns;
519 
520 		mrq.data = &data;
521 	}
522 
523 	mrq.cmd = &cmd;
524 
525 	err = mmc_blk_part_switch(card, target_part);
526 	if (err)
527 		return err;
528 
529 	if (idata->ic.is_acmd) {
530 		err = mmc_app_cmd(card->host, card);
531 		if (err)
532 			return err;
533 	}
534 
535 	if (idata->rpmb) {
536 		sbc.opcode = MMC_SET_BLOCK_COUNT;
537 		/*
538 		 * We don't do any blockcount validation because the max size
539 		 * may be increased by a future standard. We just copy the
540 		 * 'Reliable Write' bit here.
541 		 */
542 		sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
543 		sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
544 		mrq.sbc = &sbc;
545 	}
546 
547 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
548 	    (cmd.opcode == MMC_SWITCH))
549 		return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
550 
551 	/* If it's an R1B response we need some more preparations. */
552 	busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
553 	r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
554 	if (r1b_resp)
555 		mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
556 
557 	mmc_wait_for_req(card->host, &mrq);
558 	memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
559 
560 	if (cmd.error) {
561 		dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
562 						__func__, cmd.error);
563 		return cmd.error;
564 	}
565 	if (data.error) {
566 		dev_err(mmc_dev(card->host), "%s: data error %d\n",
567 						__func__, data.error);
568 		return data.error;
569 	}
570 
571 	/*
572 	 * Make sure the cache of the PARTITION_CONFIG register and
573 	 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
574 	 * changed it successfully.
575 	 */
576 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
577 	    (cmd.opcode == MMC_SWITCH)) {
578 		struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
579 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
580 
581 		/*
582 		 * Update cache so the next mmc_blk_part_switch call operates
583 		 * on up-to-date data.
584 		 */
585 		card->ext_csd.part_config = value;
586 		main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
587 	}
588 
589 	/*
590 	 * Make sure to update CACHE_CTRL in case it was changed. The cache
591 	 * will get turned back on if the card is re-initialized, e.g.
592 	 * suspend/resume or hw reset in recovery.
593 	 */
594 	if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
595 	    (cmd.opcode == MMC_SWITCH)) {
596 		u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
597 
598 		card->ext_csd.cache_ctrl = value;
599 	}
600 
601 	/*
602 	 * According to the SD specs, some commands require a delay after
603 	 * issuing the command.
604 	 */
605 	if (idata->ic.postsleep_min_us)
606 		usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
607 
608 	if (mmc_host_is_spi(card->host)) {
609 		if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
610 			return mmc_spi_err_check(card);
611 		return err;
612 	}
613 
614 	/*
615 	 * Ensure RPMB, writes and R1B responses are completed by polling with
616 	 * CMD13. Note that, usually we don't need to poll when using HW busy
617 	 * detection, but here it's needed since some commands may indicate the
618 	 * error through the R1 status bits.
619 	 */
620 	if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
621 		struct mmc_blk_busy_data cb_data = {
622 			.card = card,
623 		};
624 
625 		err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
626 					  &mmc_blk_busy_cb, &cb_data);
627 
628 		idata->ic.response[0] = cb_data.status;
629 	}
630 
631 	return err;
632 }
633 
634 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
635 			     struct mmc_ioc_cmd __user *ic_ptr,
636 			     struct mmc_rpmb_data *rpmb)
637 {
638 	struct mmc_blk_ioc_data *idata;
639 	struct mmc_blk_ioc_data *idatas[1];
640 	struct mmc_queue *mq;
641 	struct mmc_card *card;
642 	int err = 0, ioc_err = 0;
643 	struct request *req;
644 
645 	idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
646 	if (IS_ERR(idata))
647 		return PTR_ERR(idata);
648 	/* This will be NULL on non-RPMB ioctl():s */
649 	idata->rpmb = rpmb;
650 
651 	card = md->queue.card;
652 	if (IS_ERR(card)) {
653 		err = PTR_ERR(card);
654 		goto cmd_done;
655 	}
656 
657 	/*
658 	 * Dispatch the ioctl() into the block request queue.
659 	 */
660 	mq = &md->queue;
661 	req = blk_mq_alloc_request(mq->queue,
662 		idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
663 	if (IS_ERR(req)) {
664 		err = PTR_ERR(req);
665 		goto cmd_done;
666 	}
667 	idatas[0] = idata;
668 	req_to_mmc_queue_req(req)->drv_op =
669 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
670 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
671 	req_to_mmc_queue_req(req)->drv_op_data = idatas;
672 	req_to_mmc_queue_req(req)->ioc_count = 1;
673 	blk_execute_rq(req, false);
674 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
675 	err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
676 	blk_mq_free_request(req);
677 
678 cmd_done:
679 	kfree(idata->buf);
680 	kfree(idata);
681 	return ioc_err ? ioc_err : err;
682 }
683 
684 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
685 				   struct mmc_ioc_multi_cmd __user *user,
686 				   struct mmc_rpmb_data *rpmb)
687 {
688 	struct mmc_blk_ioc_data **idata = NULL;
689 	struct mmc_ioc_cmd __user *cmds = user->cmds;
690 	struct mmc_card *card;
691 	struct mmc_queue *mq;
692 	int err = 0, ioc_err = 0;
693 	__u64 num_of_cmds;
694 	unsigned int i, n;
695 	struct request *req;
696 
697 	if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
698 			   sizeof(num_of_cmds)))
699 		return -EFAULT;
700 
701 	if (!num_of_cmds)
702 		return 0;
703 
704 	if (num_of_cmds > MMC_IOC_MAX_CMDS)
705 		return -EINVAL;
706 
707 	n = num_of_cmds;
708 	idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
709 	if (!idata)
710 		return -ENOMEM;
711 
712 	for (i = 0; i < n; i++) {
713 		idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
714 		if (IS_ERR(idata[i])) {
715 			err = PTR_ERR(idata[i]);
716 			n = i;
717 			goto cmd_err;
718 		}
719 		/* This will be NULL on non-RPMB ioctl():s */
720 		idata[i]->rpmb = rpmb;
721 	}
722 
723 	card = md->queue.card;
724 	if (IS_ERR(card)) {
725 		err = PTR_ERR(card);
726 		goto cmd_err;
727 	}
728 
729 
730 	/*
731 	 * Dispatch the ioctl()s into the block request queue.
732 	 */
733 	mq = &md->queue;
734 	req = blk_mq_alloc_request(mq->queue,
735 		idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
736 	if (IS_ERR(req)) {
737 		err = PTR_ERR(req);
738 		goto cmd_err;
739 	}
740 	req_to_mmc_queue_req(req)->drv_op =
741 		rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
742 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
743 	req_to_mmc_queue_req(req)->drv_op_data = idata;
744 	req_to_mmc_queue_req(req)->ioc_count = n;
745 	blk_execute_rq(req, false);
746 	ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
747 
748 	/* copy to user if data and response */
749 	for (i = 0; i < n && !err; i++)
750 		err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
751 
752 	blk_mq_free_request(req);
753 
754 cmd_err:
755 	for (i = 0; i < n; i++) {
756 		kfree(idata[i]->buf);
757 		kfree(idata[i]);
758 	}
759 	kfree(idata);
760 	return ioc_err ? ioc_err : err;
761 }
762 
763 static int mmc_blk_check_blkdev(struct block_device *bdev)
764 {
765 	/*
766 	 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
767 	 * whole block device, not on a partition.  This prevents overspray
768 	 * between sibling partitions.
769 	 */
770 	if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
771 		return -EPERM;
772 	return 0;
773 }
774 
775 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
776 	unsigned int cmd, unsigned long arg)
777 {
778 	struct mmc_blk_data *md;
779 	int ret;
780 
781 	switch (cmd) {
782 	case MMC_IOC_CMD:
783 		ret = mmc_blk_check_blkdev(bdev);
784 		if (ret)
785 			return ret;
786 		md = mmc_blk_get(bdev->bd_disk);
787 		if (!md)
788 			return -EINVAL;
789 		ret = mmc_blk_ioctl_cmd(md,
790 					(struct mmc_ioc_cmd __user *)arg,
791 					NULL);
792 		mmc_blk_put(md);
793 		return ret;
794 	case MMC_IOC_MULTI_CMD:
795 		ret = mmc_blk_check_blkdev(bdev);
796 		if (ret)
797 			return ret;
798 		md = mmc_blk_get(bdev->bd_disk);
799 		if (!md)
800 			return -EINVAL;
801 		ret = mmc_blk_ioctl_multi_cmd(md,
802 					(struct mmc_ioc_multi_cmd __user *)arg,
803 					NULL);
804 		mmc_blk_put(md);
805 		return ret;
806 	default:
807 		return -EINVAL;
808 	}
809 }
810 
811 #ifdef CONFIG_COMPAT
812 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
813 	unsigned int cmd, unsigned long arg)
814 {
815 	return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
816 }
817 #endif
818 
819 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
820 					  sector_t *sector)
821 {
822 	struct mmc_blk_data *md;
823 	int ret;
824 
825 	md = mmc_blk_get(disk);
826 	if (!md)
827 		return -EINVAL;
828 
829 	if (md->queue.card)
830 		ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
831 	else
832 		ret = -ENODEV;
833 
834 	mmc_blk_put(md);
835 
836 	return ret;
837 }
838 
839 static const struct block_device_operations mmc_bdops = {
840 	.open			= mmc_blk_open,
841 	.release		= mmc_blk_release,
842 	.getgeo			= mmc_blk_getgeo,
843 	.owner			= THIS_MODULE,
844 	.ioctl			= mmc_blk_ioctl,
845 #ifdef CONFIG_COMPAT
846 	.compat_ioctl		= mmc_blk_compat_ioctl,
847 #endif
848 	.alternative_gpt_sector	= mmc_blk_alternative_gpt_sector,
849 };
850 
851 static int mmc_blk_part_switch_pre(struct mmc_card *card,
852 				   unsigned int part_type)
853 {
854 	int ret = 0;
855 
856 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
857 		if (card->ext_csd.cmdq_en) {
858 			ret = mmc_cmdq_disable(card);
859 			if (ret)
860 				return ret;
861 		}
862 		mmc_retune_pause(card->host);
863 	}
864 
865 	return ret;
866 }
867 
868 static int mmc_blk_part_switch_post(struct mmc_card *card,
869 				    unsigned int part_type)
870 {
871 	int ret = 0;
872 
873 	if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
874 		mmc_retune_unpause(card->host);
875 		if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
876 			ret = mmc_cmdq_enable(card);
877 	}
878 
879 	return ret;
880 }
881 
882 static inline int mmc_blk_part_switch(struct mmc_card *card,
883 				      unsigned int part_type)
884 {
885 	int ret = 0;
886 	struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
887 
888 	if (main_md->part_curr == part_type)
889 		return 0;
890 
891 	if (mmc_card_mmc(card)) {
892 		u8 part_config = card->ext_csd.part_config;
893 
894 		ret = mmc_blk_part_switch_pre(card, part_type);
895 		if (ret)
896 			return ret;
897 
898 		part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
899 		part_config |= part_type;
900 
901 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
902 				 EXT_CSD_PART_CONFIG, part_config,
903 				 card->ext_csd.part_time);
904 		if (ret) {
905 			mmc_blk_part_switch_post(card, part_type);
906 			return ret;
907 		}
908 
909 		card->ext_csd.part_config = part_config;
910 
911 		ret = mmc_blk_part_switch_post(card, main_md->part_curr);
912 	}
913 
914 	main_md->part_curr = part_type;
915 	return ret;
916 }
917 
918 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
919 {
920 	int err;
921 	u32 result;
922 	__be32 *blocks;
923 
924 	struct mmc_request mrq = {};
925 	struct mmc_command cmd = {};
926 	struct mmc_data data = {};
927 
928 	struct scatterlist sg;
929 
930 	err = mmc_app_cmd(card->host, card);
931 	if (err)
932 		return err;
933 
934 	cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
935 	cmd.arg = 0;
936 	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
937 
938 	data.blksz = 4;
939 	data.blocks = 1;
940 	data.flags = MMC_DATA_READ;
941 	data.sg = &sg;
942 	data.sg_len = 1;
943 	mmc_set_data_timeout(&data, card);
944 
945 	mrq.cmd = &cmd;
946 	mrq.data = &data;
947 
948 	blocks = kmalloc(4, GFP_KERNEL);
949 	if (!blocks)
950 		return -ENOMEM;
951 
952 	sg_init_one(&sg, blocks, 4);
953 
954 	mmc_wait_for_req(card->host, &mrq);
955 
956 	result = ntohl(*blocks);
957 	kfree(blocks);
958 
959 	if (cmd.error || data.error)
960 		return -EIO;
961 
962 	*written_blocks = result;
963 
964 	return 0;
965 }
966 
967 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
968 {
969 	if (host->actual_clock)
970 		return host->actual_clock / 1000;
971 
972 	/* Clock may be subject to a divisor, fudge it by a factor of 2. */
973 	if (host->ios.clock)
974 		return host->ios.clock / 2000;
975 
976 	/* How can there be no clock */
977 	WARN_ON_ONCE(1);
978 	return 100; /* 100 kHz is minimum possible value */
979 }
980 
981 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
982 					    struct mmc_data *data)
983 {
984 	unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
985 	unsigned int khz;
986 
987 	if (data->timeout_clks) {
988 		khz = mmc_blk_clock_khz(host);
989 		ms += DIV_ROUND_UP(data->timeout_clks, khz);
990 	}
991 
992 	return ms;
993 }
994 
995 /*
996  * Attempts to reset the card and get back to the requested partition.
997  * Therefore any error here must result in cancelling the block layer
998  * request, it must not be reattempted without going through the mmc_blk
999  * partition sanity checks.
1000  */
1001 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1002 			 int type)
1003 {
1004 	int err;
1005 	struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1006 
1007 	if (md->reset_done & type)
1008 		return -EEXIST;
1009 
1010 	md->reset_done |= type;
1011 	err = mmc_hw_reset(host->card);
1012 	/*
1013 	 * A successful reset will leave the card in the main partition, but
1014 	 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1015 	 * in that case.
1016 	 */
1017 	main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1018 	if (err)
1019 		return err;
1020 	/* Ensure we switch back to the correct partition */
1021 	if (mmc_blk_part_switch(host->card, md->part_type))
1022 		/*
1023 		 * We have failed to get back into the correct
1024 		 * partition, so we need to abort the whole request.
1025 		 */
1026 		return -ENODEV;
1027 	return 0;
1028 }
1029 
1030 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1031 {
1032 	md->reset_done &= ~type;
1033 }
1034 
1035 /*
1036  * The non-block commands come back from the block layer after it queued it and
1037  * processed it with all other requests and then they get issued in this
1038  * function.
1039  */
1040 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1041 {
1042 	struct mmc_queue_req *mq_rq;
1043 	struct mmc_card *card = mq->card;
1044 	struct mmc_blk_data *md = mq->blkdata;
1045 	struct mmc_blk_ioc_data **idata;
1046 	bool rpmb_ioctl;
1047 	u8 **ext_csd;
1048 	u32 status;
1049 	int ret;
1050 	int i;
1051 
1052 	mq_rq = req_to_mmc_queue_req(req);
1053 	rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1054 
1055 	switch (mq_rq->drv_op) {
1056 	case MMC_DRV_OP_IOCTL:
1057 		if (card->ext_csd.cmdq_en) {
1058 			ret = mmc_cmdq_disable(card);
1059 			if (ret)
1060 				break;
1061 		}
1062 		fallthrough;
1063 	case MMC_DRV_OP_IOCTL_RPMB:
1064 		idata = mq_rq->drv_op_data;
1065 		for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1066 			ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1067 			if (ret)
1068 				break;
1069 		}
1070 		/* Always switch back to main area after RPMB access */
1071 		if (rpmb_ioctl)
1072 			mmc_blk_part_switch(card, 0);
1073 		else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1074 			mmc_cmdq_enable(card);
1075 		break;
1076 	case MMC_DRV_OP_BOOT_WP:
1077 		ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1078 				 card->ext_csd.boot_ro_lock |
1079 				 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1080 				 card->ext_csd.part_time);
1081 		if (ret)
1082 			pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1083 			       md->disk->disk_name, ret);
1084 		else
1085 			card->ext_csd.boot_ro_lock |=
1086 				EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1087 		break;
1088 	case MMC_DRV_OP_GET_CARD_STATUS:
1089 		ret = mmc_send_status(card, &status);
1090 		if (!ret)
1091 			ret = status;
1092 		break;
1093 	case MMC_DRV_OP_GET_EXT_CSD:
1094 		ext_csd = mq_rq->drv_op_data;
1095 		ret = mmc_get_ext_csd(card, ext_csd);
1096 		break;
1097 	default:
1098 		pr_err("%s: unknown driver specific operation\n",
1099 		       md->disk->disk_name);
1100 		ret = -EINVAL;
1101 		break;
1102 	}
1103 	mq_rq->drv_op_result = ret;
1104 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1105 }
1106 
1107 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1108 				   int type, unsigned int erase_arg)
1109 {
1110 	struct mmc_blk_data *md = mq->blkdata;
1111 	struct mmc_card *card = md->queue.card;
1112 	unsigned int from, nr;
1113 	int err = 0;
1114 	blk_status_t status = BLK_STS_OK;
1115 
1116 	if (!mmc_can_erase(card)) {
1117 		status = BLK_STS_NOTSUPP;
1118 		goto fail;
1119 	}
1120 
1121 	from = blk_rq_pos(req);
1122 	nr = blk_rq_sectors(req);
1123 
1124 	do {
1125 		err = 0;
1126 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1127 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1128 					 INAND_CMD38_ARG_EXT_CSD,
1129 					 erase_arg == MMC_TRIM_ARG ?
1130 					 INAND_CMD38_ARG_TRIM :
1131 					 INAND_CMD38_ARG_ERASE,
1132 					 card->ext_csd.generic_cmd6_time);
1133 		}
1134 		if (!err)
1135 			err = mmc_erase(card, from, nr, erase_arg);
1136 	} while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1137 	if (err)
1138 		status = BLK_STS_IOERR;
1139 	else
1140 		mmc_blk_reset_success(md, type);
1141 fail:
1142 	blk_mq_end_request(req, status);
1143 }
1144 
1145 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1146 {
1147 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1148 }
1149 
1150 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1151 {
1152 	struct mmc_blk_data *md = mq->blkdata;
1153 	struct mmc_card *card = md->queue.card;
1154 	unsigned int arg = card->erase_arg;
1155 
1156 	if (mmc_card_broken_sd_discard(card))
1157 		arg = SD_ERASE_ARG;
1158 
1159 	mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1160 }
1161 
1162 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1163 				       struct request *req)
1164 {
1165 	struct mmc_blk_data *md = mq->blkdata;
1166 	struct mmc_card *card = md->queue.card;
1167 	unsigned int from, nr, arg;
1168 	int err = 0, type = MMC_BLK_SECDISCARD;
1169 	blk_status_t status = BLK_STS_OK;
1170 
1171 	if (!(mmc_can_secure_erase_trim(card))) {
1172 		status = BLK_STS_NOTSUPP;
1173 		goto out;
1174 	}
1175 
1176 	from = blk_rq_pos(req);
1177 	nr = blk_rq_sectors(req);
1178 
1179 	if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1180 		arg = MMC_SECURE_TRIM1_ARG;
1181 	else
1182 		arg = MMC_SECURE_ERASE_ARG;
1183 
1184 retry:
1185 	if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1186 		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1187 				 INAND_CMD38_ARG_EXT_CSD,
1188 				 arg == MMC_SECURE_TRIM1_ARG ?
1189 				 INAND_CMD38_ARG_SECTRIM1 :
1190 				 INAND_CMD38_ARG_SECERASE,
1191 				 card->ext_csd.generic_cmd6_time);
1192 		if (err)
1193 			goto out_retry;
1194 	}
1195 
1196 	err = mmc_erase(card, from, nr, arg);
1197 	if (err == -EIO)
1198 		goto out_retry;
1199 	if (err) {
1200 		status = BLK_STS_IOERR;
1201 		goto out;
1202 	}
1203 
1204 	if (arg == MMC_SECURE_TRIM1_ARG) {
1205 		if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1206 			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1207 					 INAND_CMD38_ARG_EXT_CSD,
1208 					 INAND_CMD38_ARG_SECTRIM2,
1209 					 card->ext_csd.generic_cmd6_time);
1210 			if (err)
1211 				goto out_retry;
1212 		}
1213 
1214 		err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1215 		if (err == -EIO)
1216 			goto out_retry;
1217 		if (err) {
1218 			status = BLK_STS_IOERR;
1219 			goto out;
1220 		}
1221 	}
1222 
1223 out_retry:
1224 	if (err && !mmc_blk_reset(md, card->host, type))
1225 		goto retry;
1226 	if (!err)
1227 		mmc_blk_reset_success(md, type);
1228 out:
1229 	blk_mq_end_request(req, status);
1230 }
1231 
1232 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1233 {
1234 	struct mmc_blk_data *md = mq->blkdata;
1235 	struct mmc_card *card = md->queue.card;
1236 	int ret = 0;
1237 
1238 	ret = mmc_flush_cache(card->host);
1239 	blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1240 }
1241 
1242 /*
1243  * Reformat current write as a reliable write, supporting
1244  * both legacy and the enhanced reliable write MMC cards.
1245  * In each transfer we'll handle only as much as a single
1246  * reliable write can handle, thus finish the request in
1247  * partial completions.
1248  */
1249 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1250 				    struct mmc_card *card,
1251 				    struct request *req)
1252 {
1253 	if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1254 		/* Legacy mode imposes restrictions on transfers. */
1255 		if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1256 			brq->data.blocks = 1;
1257 
1258 		if (brq->data.blocks > card->ext_csd.rel_sectors)
1259 			brq->data.blocks = card->ext_csd.rel_sectors;
1260 		else if (brq->data.blocks < card->ext_csd.rel_sectors)
1261 			brq->data.blocks = 1;
1262 	}
1263 }
1264 
1265 #define CMD_ERRORS_EXCL_OOR						\
1266 	(R1_ADDRESS_ERROR |	/* Misaligned address */		\
1267 	 R1_BLOCK_LEN_ERROR |	/* Transferred block length incorrect */\
1268 	 R1_WP_VIOLATION |	/* Tried to write to protected block */	\
1269 	 R1_CARD_ECC_FAILED |	/* Card ECC failed */			\
1270 	 R1_CC_ERROR |		/* Card controller error */		\
1271 	 R1_ERROR)		/* General/unknown error */
1272 
1273 #define CMD_ERRORS							\
1274 	(CMD_ERRORS_EXCL_OOR |						\
1275 	 R1_OUT_OF_RANGE)	/* Command argument out of range */	\
1276 
1277 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1278 {
1279 	u32 val;
1280 
1281 	/*
1282 	 * Per the SD specification(physical layer version 4.10)[1],
1283 	 * section 4.3.3, it explicitly states that "When the last
1284 	 * block of user area is read using CMD18, the host should
1285 	 * ignore OUT_OF_RANGE error that may occur even the sequence
1286 	 * is correct". And JESD84-B51 for eMMC also has a similar
1287 	 * statement on section 6.8.3.
1288 	 *
1289 	 * Multiple block read/write could be done by either predefined
1290 	 * method, namely CMD23, or open-ending mode. For open-ending mode,
1291 	 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1292 	 *
1293 	 * However the spec[1] doesn't tell us whether we should also
1294 	 * ignore that for predefined method. But per the spec[1], section
1295 	 * 4.15 Set Block Count Command, it says"If illegal block count
1296 	 * is set, out of range error will be indicated during read/write
1297 	 * operation (For example, data transfer is stopped at user area
1298 	 * boundary)." In another word, we could expect a out of range error
1299 	 * in the response for the following CMD18/25. And if argument of
1300 	 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1301 	 * we could also expect to get a -ETIMEDOUT or any error number from
1302 	 * the host drivers due to missing data response(for write)/data(for
1303 	 * read), as the cards will stop the data transfer by itself per the
1304 	 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1305 	 */
1306 
1307 	if (!brq->stop.error) {
1308 		bool oor_with_open_end;
1309 		/* If there is no error yet, check R1 response */
1310 
1311 		val = brq->stop.resp[0] & CMD_ERRORS;
1312 		oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1313 
1314 		if (val && !oor_with_open_end)
1315 			brq->stop.error = -EIO;
1316 	}
1317 }
1318 
1319 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1320 			      int recovery_mode, bool *do_rel_wr_p,
1321 			      bool *do_data_tag_p)
1322 {
1323 	struct mmc_blk_data *md = mq->blkdata;
1324 	struct mmc_card *card = md->queue.card;
1325 	struct mmc_blk_request *brq = &mqrq->brq;
1326 	struct request *req = mmc_queue_req_to_req(mqrq);
1327 	bool do_rel_wr, do_data_tag;
1328 
1329 	/*
1330 	 * Reliable writes are used to implement Forced Unit Access and
1331 	 * are supported only on MMCs.
1332 	 */
1333 	do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1334 		    rq_data_dir(req) == WRITE &&
1335 		    (md->flags & MMC_BLK_REL_WR);
1336 
1337 	memset(brq, 0, sizeof(struct mmc_blk_request));
1338 
1339 	mmc_crypto_prepare_req(mqrq);
1340 
1341 	brq->mrq.data = &brq->data;
1342 	brq->mrq.tag = req->tag;
1343 
1344 	brq->stop.opcode = MMC_STOP_TRANSMISSION;
1345 	brq->stop.arg = 0;
1346 
1347 	if (rq_data_dir(req) == READ) {
1348 		brq->data.flags = MMC_DATA_READ;
1349 		brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1350 	} else {
1351 		brq->data.flags = MMC_DATA_WRITE;
1352 		brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1353 	}
1354 
1355 	brq->data.blksz = 512;
1356 	brq->data.blocks = blk_rq_sectors(req);
1357 	brq->data.blk_addr = blk_rq_pos(req);
1358 
1359 	/*
1360 	 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1361 	 * The eMMC will give "high" priority tasks priority over "simple"
1362 	 * priority tasks. Here we always set "simple" priority by not setting
1363 	 * MMC_DATA_PRIO.
1364 	 */
1365 
1366 	/*
1367 	 * The block layer doesn't support all sector count
1368 	 * restrictions, so we need to be prepared for too big
1369 	 * requests.
1370 	 */
1371 	if (brq->data.blocks > card->host->max_blk_count)
1372 		brq->data.blocks = card->host->max_blk_count;
1373 
1374 	if (brq->data.blocks > 1) {
1375 		/*
1376 		 * Some SD cards in SPI mode return a CRC error or even lock up
1377 		 * completely when trying to read the last block using a
1378 		 * multiblock read command.
1379 		 */
1380 		if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1381 		    (blk_rq_pos(req) + blk_rq_sectors(req) ==
1382 		     get_capacity(md->disk)))
1383 			brq->data.blocks--;
1384 
1385 		/*
1386 		 * After a read error, we redo the request one (native) sector
1387 		 * at a time in order to accurately determine which
1388 		 * sectors can be read successfully.
1389 		 */
1390 		if (recovery_mode)
1391 			brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1392 
1393 		/*
1394 		 * Some controllers have HW issues while operating
1395 		 * in multiple I/O mode
1396 		 */
1397 		if (card->host->ops->multi_io_quirk)
1398 			brq->data.blocks = card->host->ops->multi_io_quirk(card,
1399 						(rq_data_dir(req) == READ) ?
1400 						MMC_DATA_READ : MMC_DATA_WRITE,
1401 						brq->data.blocks);
1402 	}
1403 
1404 	if (do_rel_wr) {
1405 		mmc_apply_rel_rw(brq, card, req);
1406 		brq->data.flags |= MMC_DATA_REL_WR;
1407 	}
1408 
1409 	/*
1410 	 * Data tag is used only during writing meta data to speed
1411 	 * up write and any subsequent read of this meta data
1412 	 */
1413 	do_data_tag = card->ext_csd.data_tag_unit_size &&
1414 		      (req->cmd_flags & REQ_META) &&
1415 		      (rq_data_dir(req) == WRITE) &&
1416 		      ((brq->data.blocks * brq->data.blksz) >=
1417 		       card->ext_csd.data_tag_unit_size);
1418 
1419 	if (do_data_tag)
1420 		brq->data.flags |= MMC_DATA_DAT_TAG;
1421 
1422 	mmc_set_data_timeout(&brq->data, card);
1423 
1424 	brq->data.sg = mqrq->sg;
1425 	brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1426 
1427 	/*
1428 	 * Adjust the sg list so it is the same size as the
1429 	 * request.
1430 	 */
1431 	if (brq->data.blocks != blk_rq_sectors(req)) {
1432 		int i, data_size = brq->data.blocks << 9;
1433 		struct scatterlist *sg;
1434 
1435 		for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1436 			data_size -= sg->length;
1437 			if (data_size <= 0) {
1438 				sg->length += data_size;
1439 				i++;
1440 				break;
1441 			}
1442 		}
1443 		brq->data.sg_len = i;
1444 	}
1445 
1446 	if (do_rel_wr_p)
1447 		*do_rel_wr_p = do_rel_wr;
1448 
1449 	if (do_data_tag_p)
1450 		*do_data_tag_p = do_data_tag;
1451 }
1452 
1453 #define MMC_CQE_RETRIES 2
1454 
1455 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1456 {
1457 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1458 	struct mmc_request *mrq = &mqrq->brq.mrq;
1459 	struct request_queue *q = req->q;
1460 	struct mmc_host *host = mq->card->host;
1461 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1462 	unsigned long flags;
1463 	bool put_card;
1464 	int err;
1465 
1466 	mmc_cqe_post_req(host, mrq);
1467 
1468 	if (mrq->cmd && mrq->cmd->error)
1469 		err = mrq->cmd->error;
1470 	else if (mrq->data && mrq->data->error)
1471 		err = mrq->data->error;
1472 	else
1473 		err = 0;
1474 
1475 	if (err) {
1476 		if (mqrq->retries++ < MMC_CQE_RETRIES)
1477 			blk_mq_requeue_request(req, true);
1478 		else
1479 			blk_mq_end_request(req, BLK_STS_IOERR);
1480 	} else if (mrq->data) {
1481 		if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1482 			blk_mq_requeue_request(req, true);
1483 		else
1484 			__blk_mq_end_request(req, BLK_STS_OK);
1485 	} else if (mq->in_recovery) {
1486 		blk_mq_requeue_request(req, true);
1487 	} else {
1488 		blk_mq_end_request(req, BLK_STS_OK);
1489 	}
1490 
1491 	spin_lock_irqsave(&mq->lock, flags);
1492 
1493 	mq->in_flight[issue_type] -= 1;
1494 
1495 	put_card = (mmc_tot_in_flight(mq) == 0);
1496 
1497 	mmc_cqe_check_busy(mq);
1498 
1499 	spin_unlock_irqrestore(&mq->lock, flags);
1500 
1501 	if (!mq->cqe_busy)
1502 		blk_mq_run_hw_queues(q, true);
1503 
1504 	if (put_card)
1505 		mmc_put_card(mq->card, &mq->ctx);
1506 }
1507 
1508 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1509 {
1510 	struct mmc_card *card = mq->card;
1511 	struct mmc_host *host = card->host;
1512 	int err;
1513 
1514 	pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1515 
1516 	err = mmc_cqe_recovery(host);
1517 	if (err)
1518 		mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1519 	mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1520 
1521 	pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1522 }
1523 
1524 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1525 {
1526 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1527 						  brq.mrq);
1528 	struct request *req = mmc_queue_req_to_req(mqrq);
1529 	struct request_queue *q = req->q;
1530 	struct mmc_queue *mq = q->queuedata;
1531 
1532 	/*
1533 	 * Block layer timeouts race with completions which means the normal
1534 	 * completion path cannot be used during recovery.
1535 	 */
1536 	if (mq->in_recovery)
1537 		mmc_blk_cqe_complete_rq(mq, req);
1538 	else if (likely(!blk_should_fake_timeout(req->q)))
1539 		blk_mq_complete_request(req);
1540 }
1541 
1542 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1543 {
1544 	mrq->done		= mmc_blk_cqe_req_done;
1545 	mrq->recovery_notifier	= mmc_cqe_recovery_notifier;
1546 
1547 	return mmc_cqe_start_req(host, mrq);
1548 }
1549 
1550 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1551 						 struct request *req)
1552 {
1553 	struct mmc_blk_request *brq = &mqrq->brq;
1554 
1555 	memset(brq, 0, sizeof(*brq));
1556 
1557 	brq->mrq.cmd = &brq->cmd;
1558 	brq->mrq.tag = req->tag;
1559 
1560 	return &brq->mrq;
1561 }
1562 
1563 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1564 {
1565 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1566 	struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1567 
1568 	mrq->cmd->opcode = MMC_SWITCH;
1569 	mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1570 			(EXT_CSD_FLUSH_CACHE << 16) |
1571 			(1 << 8) |
1572 			EXT_CSD_CMD_SET_NORMAL;
1573 	mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1574 
1575 	return mmc_blk_cqe_start_req(mq->card->host, mrq);
1576 }
1577 
1578 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1579 {
1580 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1581 	struct mmc_host *host = mq->card->host;
1582 	int err;
1583 
1584 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1585 	mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1586 	mmc_pre_req(host, &mqrq->brq.mrq);
1587 
1588 	err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1589 	if (err)
1590 		mmc_post_req(host, &mqrq->brq.mrq, err);
1591 
1592 	return err;
1593 }
1594 
1595 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1596 {
1597 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1598 	struct mmc_host *host = mq->card->host;
1599 
1600 	if (host->hsq_enabled)
1601 		return mmc_blk_hsq_issue_rw_rq(mq, req);
1602 
1603 	mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1604 
1605 	return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1606 }
1607 
1608 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1609 			       struct mmc_card *card,
1610 			       int recovery_mode,
1611 			       struct mmc_queue *mq)
1612 {
1613 	u32 readcmd, writecmd;
1614 	struct mmc_blk_request *brq = &mqrq->brq;
1615 	struct request *req = mmc_queue_req_to_req(mqrq);
1616 	struct mmc_blk_data *md = mq->blkdata;
1617 	bool do_rel_wr, do_data_tag;
1618 
1619 	mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1620 
1621 	brq->mrq.cmd = &brq->cmd;
1622 
1623 	brq->cmd.arg = blk_rq_pos(req);
1624 	if (!mmc_card_blockaddr(card))
1625 		brq->cmd.arg <<= 9;
1626 	brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1627 
1628 	if (brq->data.blocks > 1 || do_rel_wr) {
1629 		/* SPI multiblock writes terminate using a special
1630 		 * token, not a STOP_TRANSMISSION request.
1631 		 */
1632 		if (!mmc_host_is_spi(card->host) ||
1633 		    rq_data_dir(req) == READ)
1634 			brq->mrq.stop = &brq->stop;
1635 		readcmd = MMC_READ_MULTIPLE_BLOCK;
1636 		writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1637 	} else {
1638 		brq->mrq.stop = NULL;
1639 		readcmd = MMC_READ_SINGLE_BLOCK;
1640 		writecmd = MMC_WRITE_BLOCK;
1641 	}
1642 	brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1643 
1644 	/*
1645 	 * Pre-defined multi-block transfers are preferable to
1646 	 * open ended-ones (and necessary for reliable writes).
1647 	 * However, it is not sufficient to just send CMD23,
1648 	 * and avoid the final CMD12, as on an error condition
1649 	 * CMD12 (stop) needs to be sent anyway. This, coupled
1650 	 * with Auto-CMD23 enhancements provided by some
1651 	 * hosts, means that the complexity of dealing
1652 	 * with this is best left to the host. If CMD23 is
1653 	 * supported by card and host, we'll fill sbc in and let
1654 	 * the host deal with handling it correctly. This means
1655 	 * that for hosts that don't expose MMC_CAP_CMD23, no
1656 	 * change of behavior will be observed.
1657 	 *
1658 	 * N.B: Some MMC cards experience perf degradation.
1659 	 * We'll avoid using CMD23-bounded multiblock writes for
1660 	 * these, while retaining features like reliable writes.
1661 	 */
1662 	if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1663 	    (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1664 	     do_data_tag)) {
1665 		brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1666 		brq->sbc.arg = brq->data.blocks |
1667 			(do_rel_wr ? (1 << 31) : 0) |
1668 			(do_data_tag ? (1 << 29) : 0);
1669 		brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1670 		brq->mrq.sbc = &brq->sbc;
1671 	}
1672 }
1673 
1674 #define MMC_MAX_RETRIES		5
1675 #define MMC_DATA_RETRIES	2
1676 #define MMC_NO_RETRIES		(MMC_MAX_RETRIES + 1)
1677 
1678 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1679 {
1680 	struct mmc_command cmd = {
1681 		.opcode = MMC_STOP_TRANSMISSION,
1682 		.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1683 		/* Some hosts wait for busy anyway, so provide a busy timeout */
1684 		.busy_timeout = timeout,
1685 	};
1686 
1687 	return mmc_wait_for_cmd(card->host, &cmd, 5);
1688 }
1689 
1690 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1691 {
1692 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1693 	struct mmc_blk_request *brq = &mqrq->brq;
1694 	unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1695 	int err;
1696 
1697 	mmc_retune_hold_now(card->host);
1698 
1699 	mmc_blk_send_stop(card, timeout);
1700 
1701 	err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1702 
1703 	mmc_retune_release(card->host);
1704 
1705 	return err;
1706 }
1707 
1708 #define MMC_READ_SINGLE_RETRIES	2
1709 
1710 /* Single (native) sector read during recovery */
1711 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1712 {
1713 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1714 	struct mmc_request *mrq = &mqrq->brq.mrq;
1715 	struct mmc_card *card = mq->card;
1716 	struct mmc_host *host = card->host;
1717 	blk_status_t error = BLK_STS_OK;
1718 	size_t bytes_per_read = queue_physical_block_size(mq->queue);
1719 
1720 	do {
1721 		u32 status;
1722 		int err;
1723 		int retries = 0;
1724 
1725 		while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1726 			mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1727 
1728 			mmc_wait_for_req(host, mrq);
1729 
1730 			err = mmc_send_status(card, &status);
1731 			if (err)
1732 				goto error_exit;
1733 
1734 			if (!mmc_host_is_spi(host) &&
1735 			    !mmc_ready_for_data(status)) {
1736 				err = mmc_blk_fix_state(card, req);
1737 				if (err)
1738 					goto error_exit;
1739 			}
1740 
1741 			if (!mrq->cmd->error)
1742 				break;
1743 		}
1744 
1745 		if (mrq->cmd->error ||
1746 		    mrq->data->error ||
1747 		    (!mmc_host_is_spi(host) &&
1748 		     (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1749 			error = BLK_STS_IOERR;
1750 		else
1751 			error = BLK_STS_OK;
1752 
1753 	} while (blk_update_request(req, error, bytes_per_read));
1754 
1755 	return;
1756 
1757 error_exit:
1758 	mrq->data->bytes_xfered = 0;
1759 	blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1760 	/* Let it try the remaining request again */
1761 	if (mqrq->retries > MMC_MAX_RETRIES - 1)
1762 		mqrq->retries = MMC_MAX_RETRIES - 1;
1763 }
1764 
1765 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1766 {
1767 	return !!brq->mrq.sbc;
1768 }
1769 
1770 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1771 {
1772 	return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1773 }
1774 
1775 /*
1776  * Check for errors the host controller driver might not have seen such as
1777  * response mode errors or invalid card state.
1778  */
1779 static bool mmc_blk_status_error(struct request *req, u32 status)
1780 {
1781 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1782 	struct mmc_blk_request *brq = &mqrq->brq;
1783 	struct mmc_queue *mq = req->q->queuedata;
1784 	u32 stop_err_bits;
1785 
1786 	if (mmc_host_is_spi(mq->card->host))
1787 		return false;
1788 
1789 	stop_err_bits = mmc_blk_stop_err_bits(brq);
1790 
1791 	return brq->cmd.resp[0]  & CMD_ERRORS    ||
1792 	       brq->stop.resp[0] & stop_err_bits ||
1793 	       status            & stop_err_bits ||
1794 	       (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1795 }
1796 
1797 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1798 {
1799 	return !brq->sbc.error && !brq->cmd.error &&
1800 	       !(brq->cmd.resp[0] & CMD_ERRORS);
1801 }
1802 
1803 /*
1804  * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1805  * policy:
1806  * 1. A request that has transferred at least some data is considered
1807  * successful and will be requeued if there is remaining data to
1808  * transfer.
1809  * 2. Otherwise the number of retries is incremented and the request
1810  * will be requeued if there are remaining retries.
1811  * 3. Otherwise the request will be errored out.
1812  * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1813  * mqrq->retries. So there are only 4 possible actions here:
1814  *	1. do not accept the bytes_xfered value i.e. set it to zero
1815  *	2. change mqrq->retries to determine the number of retries
1816  *	3. try to reset the card
1817  *	4. read one sector at a time
1818  */
1819 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1820 {
1821 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1822 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1823 	struct mmc_blk_request *brq = &mqrq->brq;
1824 	struct mmc_blk_data *md = mq->blkdata;
1825 	struct mmc_card *card = mq->card;
1826 	u32 status;
1827 	u32 blocks;
1828 	int err;
1829 
1830 	/*
1831 	 * Some errors the host driver might not have seen. Set the number of
1832 	 * bytes transferred to zero in that case.
1833 	 */
1834 	err = __mmc_send_status(card, &status, 0);
1835 	if (err || mmc_blk_status_error(req, status))
1836 		brq->data.bytes_xfered = 0;
1837 
1838 	mmc_retune_release(card->host);
1839 
1840 	/*
1841 	 * Try again to get the status. This also provides an opportunity for
1842 	 * re-tuning.
1843 	 */
1844 	if (err)
1845 		err = __mmc_send_status(card, &status, 0);
1846 
1847 	/*
1848 	 * Nothing more to do after the number of bytes transferred has been
1849 	 * updated and there is no card.
1850 	 */
1851 	if (err && mmc_detect_card_removed(card->host))
1852 		return;
1853 
1854 	/* Try to get back to "tran" state */
1855 	if (!mmc_host_is_spi(mq->card->host) &&
1856 	    (err || !mmc_ready_for_data(status)))
1857 		err = mmc_blk_fix_state(mq->card, req);
1858 
1859 	/*
1860 	 * Special case for SD cards where the card might record the number of
1861 	 * blocks written.
1862 	 */
1863 	if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1864 	    rq_data_dir(req) == WRITE) {
1865 		if (mmc_sd_num_wr_blocks(card, &blocks))
1866 			brq->data.bytes_xfered = 0;
1867 		else
1868 			brq->data.bytes_xfered = blocks << 9;
1869 	}
1870 
1871 	/* Reset if the card is in a bad state */
1872 	if (!mmc_host_is_spi(mq->card->host) &&
1873 	    err && mmc_blk_reset(md, card->host, type)) {
1874 		pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1875 		mqrq->retries = MMC_NO_RETRIES;
1876 		return;
1877 	}
1878 
1879 	/*
1880 	 * If anything was done, just return and if there is anything remaining
1881 	 * on the request it will get requeued.
1882 	 */
1883 	if (brq->data.bytes_xfered)
1884 		return;
1885 
1886 	/* Reset before last retry */
1887 	if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1888 	    mmc_blk_reset(md, card->host, type))
1889 		return;
1890 
1891 	/* Command errors fail fast, so use all MMC_MAX_RETRIES */
1892 	if (brq->sbc.error || brq->cmd.error)
1893 		return;
1894 
1895 	/* Reduce the remaining retries for data errors */
1896 	if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1897 		mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1898 		return;
1899 	}
1900 
1901 	if (rq_data_dir(req) == READ && brq->data.blocks >
1902 			queue_physical_block_size(mq->queue) >> 9) {
1903 		/* Read one (native) sector at a time */
1904 		mmc_blk_read_single(mq, req);
1905 		return;
1906 	}
1907 }
1908 
1909 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1910 {
1911 	mmc_blk_eval_resp_error(brq);
1912 
1913 	return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1914 	       brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1915 }
1916 
1917 static int mmc_spi_err_check(struct mmc_card *card)
1918 {
1919 	u32 status = 0;
1920 	int err;
1921 
1922 	/*
1923 	 * SPI does not have a TRAN state we have to wait on, instead the
1924 	 * card is ready again when it no longer holds the line LOW.
1925 	 * We still have to ensure two things here before we know the write
1926 	 * was successful:
1927 	 * 1. The card has not disconnected during busy and we actually read our
1928 	 * own pull-up, thinking it was still connected, so ensure it
1929 	 * still responds.
1930 	 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1931 	 * just reconnected card after being disconnected during busy.
1932 	 */
1933 	err = __mmc_send_status(card, &status, 0);
1934 	if (err)
1935 		return err;
1936 	/* All R1 and R2 bits of SPI are errors in our case */
1937 	if (status)
1938 		return -EIO;
1939 	return 0;
1940 }
1941 
1942 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1943 {
1944 	struct mmc_blk_busy_data *data = cb_data;
1945 	u32 status = 0;
1946 	int err;
1947 
1948 	err = mmc_send_status(data->card, &status);
1949 	if (err)
1950 		return err;
1951 
1952 	/* Accumulate response error bits. */
1953 	data->status |= status;
1954 
1955 	*busy = !mmc_ready_for_data(status);
1956 	return 0;
1957 }
1958 
1959 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1960 {
1961 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1962 	struct mmc_blk_busy_data cb_data;
1963 	int err;
1964 
1965 	if (rq_data_dir(req) == READ)
1966 		return 0;
1967 
1968 	if (mmc_host_is_spi(card->host)) {
1969 		err = mmc_spi_err_check(card);
1970 		if (err)
1971 			mqrq->brq.data.bytes_xfered = 0;
1972 		return err;
1973 	}
1974 
1975 	cb_data.card = card;
1976 	cb_data.status = 0;
1977 	err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1978 				  &mmc_blk_busy_cb, &cb_data);
1979 
1980 	/*
1981 	 * Do not assume data transferred correctly if there are any error bits
1982 	 * set.
1983 	 */
1984 	if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1985 		mqrq->brq.data.bytes_xfered = 0;
1986 		err = err ? err : -EIO;
1987 	}
1988 
1989 	/* Copy the exception bit so it will be seen later on */
1990 	if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1991 		mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1992 
1993 	return err;
1994 }
1995 
1996 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1997 					    struct request *req)
1998 {
1999 	int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2000 
2001 	mmc_blk_reset_success(mq->blkdata, type);
2002 }
2003 
2004 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2005 {
2006 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2007 	unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2008 
2009 	if (nr_bytes) {
2010 		if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2011 			blk_mq_requeue_request(req, true);
2012 		else
2013 			__blk_mq_end_request(req, BLK_STS_OK);
2014 	} else if (!blk_rq_bytes(req)) {
2015 		__blk_mq_end_request(req, BLK_STS_IOERR);
2016 	} else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2017 		blk_mq_requeue_request(req, true);
2018 	} else {
2019 		if (mmc_card_removed(mq->card))
2020 			req->rq_flags |= RQF_QUIET;
2021 		blk_mq_end_request(req, BLK_STS_IOERR);
2022 	}
2023 }
2024 
2025 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2026 					struct mmc_queue_req *mqrq)
2027 {
2028 	return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2029 	       (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2030 		mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2031 }
2032 
2033 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2034 				 struct mmc_queue_req *mqrq)
2035 {
2036 	if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2037 		mmc_run_bkops(mq->card);
2038 }
2039 
2040 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2041 {
2042 	struct mmc_queue_req *mqrq =
2043 		container_of(mrq, struct mmc_queue_req, brq.mrq);
2044 	struct request *req = mmc_queue_req_to_req(mqrq);
2045 	struct request_queue *q = req->q;
2046 	struct mmc_queue *mq = q->queuedata;
2047 	struct mmc_host *host = mq->card->host;
2048 	unsigned long flags;
2049 
2050 	if (mmc_blk_rq_error(&mqrq->brq) ||
2051 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2052 		spin_lock_irqsave(&mq->lock, flags);
2053 		mq->recovery_needed = true;
2054 		mq->recovery_req = req;
2055 		spin_unlock_irqrestore(&mq->lock, flags);
2056 
2057 		host->cqe_ops->cqe_recovery_start(host);
2058 
2059 		schedule_work(&mq->recovery_work);
2060 		return;
2061 	}
2062 
2063 	mmc_blk_rw_reset_success(mq, req);
2064 
2065 	/*
2066 	 * Block layer timeouts race with completions which means the normal
2067 	 * completion path cannot be used during recovery.
2068 	 */
2069 	if (mq->in_recovery)
2070 		mmc_blk_cqe_complete_rq(mq, req);
2071 	else if (likely(!blk_should_fake_timeout(req->q)))
2072 		blk_mq_complete_request(req);
2073 }
2074 
2075 void mmc_blk_mq_complete(struct request *req)
2076 {
2077 	struct mmc_queue *mq = req->q->queuedata;
2078 	struct mmc_host *host = mq->card->host;
2079 
2080 	if (host->cqe_enabled)
2081 		mmc_blk_cqe_complete_rq(mq, req);
2082 	else if (likely(!blk_should_fake_timeout(req->q)))
2083 		mmc_blk_mq_complete_rq(mq, req);
2084 }
2085 
2086 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2087 				       struct request *req)
2088 {
2089 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2090 	struct mmc_host *host = mq->card->host;
2091 
2092 	if (mmc_blk_rq_error(&mqrq->brq) ||
2093 	    mmc_blk_card_busy(mq->card, req)) {
2094 		mmc_blk_mq_rw_recovery(mq, req);
2095 	} else {
2096 		mmc_blk_rw_reset_success(mq, req);
2097 		mmc_retune_release(host);
2098 	}
2099 
2100 	mmc_blk_urgent_bkops(mq, mqrq);
2101 }
2102 
2103 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2104 {
2105 	unsigned long flags;
2106 	bool put_card;
2107 
2108 	spin_lock_irqsave(&mq->lock, flags);
2109 
2110 	mq->in_flight[issue_type] -= 1;
2111 
2112 	put_card = (mmc_tot_in_flight(mq) == 0);
2113 
2114 	spin_unlock_irqrestore(&mq->lock, flags);
2115 
2116 	if (put_card)
2117 		mmc_put_card(mq->card, &mq->ctx);
2118 }
2119 
2120 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2121 				bool can_sleep)
2122 {
2123 	enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2124 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2125 	struct mmc_request *mrq = &mqrq->brq.mrq;
2126 	struct mmc_host *host = mq->card->host;
2127 
2128 	mmc_post_req(host, mrq, 0);
2129 
2130 	/*
2131 	 * Block layer timeouts race with completions which means the normal
2132 	 * completion path cannot be used during recovery.
2133 	 */
2134 	if (mq->in_recovery) {
2135 		mmc_blk_mq_complete_rq(mq, req);
2136 	} else if (likely(!blk_should_fake_timeout(req->q))) {
2137 		if (can_sleep)
2138 			blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2139 		else
2140 			blk_mq_complete_request(req);
2141 	}
2142 
2143 	mmc_blk_mq_dec_in_flight(mq, issue_type);
2144 }
2145 
2146 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2147 {
2148 	struct request *req = mq->recovery_req;
2149 	struct mmc_host *host = mq->card->host;
2150 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2151 
2152 	mq->recovery_req = NULL;
2153 	mq->rw_wait = false;
2154 
2155 	if (mmc_blk_rq_error(&mqrq->brq)) {
2156 		mmc_retune_hold_now(host);
2157 		mmc_blk_mq_rw_recovery(mq, req);
2158 	}
2159 
2160 	mmc_blk_urgent_bkops(mq, mqrq);
2161 
2162 	mmc_blk_mq_post_req(mq, req, true);
2163 }
2164 
2165 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2166 					 struct request **prev_req)
2167 {
2168 	if (mmc_host_done_complete(mq->card->host))
2169 		return;
2170 
2171 	mutex_lock(&mq->complete_lock);
2172 
2173 	if (!mq->complete_req)
2174 		goto out_unlock;
2175 
2176 	mmc_blk_mq_poll_completion(mq, mq->complete_req);
2177 
2178 	if (prev_req)
2179 		*prev_req = mq->complete_req;
2180 	else
2181 		mmc_blk_mq_post_req(mq, mq->complete_req, true);
2182 
2183 	mq->complete_req = NULL;
2184 
2185 out_unlock:
2186 	mutex_unlock(&mq->complete_lock);
2187 }
2188 
2189 void mmc_blk_mq_complete_work(struct work_struct *work)
2190 {
2191 	struct mmc_queue *mq = container_of(work, struct mmc_queue,
2192 					    complete_work);
2193 
2194 	mmc_blk_mq_complete_prev_req(mq, NULL);
2195 }
2196 
2197 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2198 {
2199 	struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2200 						  brq.mrq);
2201 	struct request *req = mmc_queue_req_to_req(mqrq);
2202 	struct request_queue *q = req->q;
2203 	struct mmc_queue *mq = q->queuedata;
2204 	struct mmc_host *host = mq->card->host;
2205 	unsigned long flags;
2206 
2207 	if (!mmc_host_done_complete(host)) {
2208 		bool waiting;
2209 
2210 		/*
2211 		 * We cannot complete the request in this context, so record
2212 		 * that there is a request to complete, and that a following
2213 		 * request does not need to wait (although it does need to
2214 		 * complete complete_req first).
2215 		 */
2216 		spin_lock_irqsave(&mq->lock, flags);
2217 		mq->complete_req = req;
2218 		mq->rw_wait = false;
2219 		waiting = mq->waiting;
2220 		spin_unlock_irqrestore(&mq->lock, flags);
2221 
2222 		/*
2223 		 * If 'waiting' then the waiting task will complete this
2224 		 * request, otherwise queue a work to do it. Note that
2225 		 * complete_work may still race with the dispatch of a following
2226 		 * request.
2227 		 */
2228 		if (waiting)
2229 			wake_up(&mq->wait);
2230 		else
2231 			queue_work(mq->card->complete_wq, &mq->complete_work);
2232 
2233 		return;
2234 	}
2235 
2236 	/* Take the recovery path for errors or urgent background operations */
2237 	if (mmc_blk_rq_error(&mqrq->brq) ||
2238 	    mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2239 		spin_lock_irqsave(&mq->lock, flags);
2240 		mq->recovery_needed = true;
2241 		mq->recovery_req = req;
2242 		spin_unlock_irqrestore(&mq->lock, flags);
2243 		wake_up(&mq->wait);
2244 		schedule_work(&mq->recovery_work);
2245 		return;
2246 	}
2247 
2248 	mmc_blk_rw_reset_success(mq, req);
2249 
2250 	mq->rw_wait = false;
2251 	wake_up(&mq->wait);
2252 
2253 	/* context unknown */
2254 	mmc_blk_mq_post_req(mq, req, false);
2255 }
2256 
2257 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2258 {
2259 	unsigned long flags;
2260 	bool done;
2261 
2262 	/*
2263 	 * Wait while there is another request in progress, but not if recovery
2264 	 * is needed. Also indicate whether there is a request waiting to start.
2265 	 */
2266 	spin_lock_irqsave(&mq->lock, flags);
2267 	if (mq->recovery_needed) {
2268 		*err = -EBUSY;
2269 		done = true;
2270 	} else {
2271 		done = !mq->rw_wait;
2272 	}
2273 	mq->waiting = !done;
2274 	spin_unlock_irqrestore(&mq->lock, flags);
2275 
2276 	return done;
2277 }
2278 
2279 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2280 {
2281 	int err = 0;
2282 
2283 	wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2284 
2285 	/* Always complete the previous request if there is one */
2286 	mmc_blk_mq_complete_prev_req(mq, prev_req);
2287 
2288 	return err;
2289 }
2290 
2291 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2292 				  struct request *req)
2293 {
2294 	struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2295 	struct mmc_host *host = mq->card->host;
2296 	struct request *prev_req = NULL;
2297 	int err = 0;
2298 
2299 	mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2300 
2301 	mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2302 
2303 	mmc_pre_req(host, &mqrq->brq.mrq);
2304 
2305 	err = mmc_blk_rw_wait(mq, &prev_req);
2306 	if (err)
2307 		goto out_post_req;
2308 
2309 	mq->rw_wait = true;
2310 
2311 	err = mmc_start_request(host, &mqrq->brq.mrq);
2312 
2313 	if (prev_req)
2314 		mmc_blk_mq_post_req(mq, prev_req, true);
2315 
2316 	if (err)
2317 		mq->rw_wait = false;
2318 
2319 	/* Release re-tuning here where there is no synchronization required */
2320 	if (err || mmc_host_done_complete(host))
2321 		mmc_retune_release(host);
2322 
2323 out_post_req:
2324 	if (err)
2325 		mmc_post_req(host, &mqrq->brq.mrq, err);
2326 
2327 	return err;
2328 }
2329 
2330 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2331 {
2332 	if (host->cqe_enabled)
2333 		return host->cqe_ops->cqe_wait_for_idle(host);
2334 
2335 	return mmc_blk_rw_wait(mq, NULL);
2336 }
2337 
2338 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2339 {
2340 	struct mmc_blk_data *md = mq->blkdata;
2341 	struct mmc_card *card = md->queue.card;
2342 	struct mmc_host *host = card->host;
2343 	int ret;
2344 
2345 	ret = mmc_blk_part_switch(card, md->part_type);
2346 	if (ret)
2347 		return MMC_REQ_FAILED_TO_START;
2348 
2349 	switch (mmc_issue_type(mq, req)) {
2350 	case MMC_ISSUE_SYNC:
2351 		ret = mmc_blk_wait_for_idle(mq, host);
2352 		if (ret)
2353 			return MMC_REQ_BUSY;
2354 		switch (req_op(req)) {
2355 		case REQ_OP_DRV_IN:
2356 		case REQ_OP_DRV_OUT:
2357 			mmc_blk_issue_drv_op(mq, req);
2358 			break;
2359 		case REQ_OP_DISCARD:
2360 			mmc_blk_issue_discard_rq(mq, req);
2361 			break;
2362 		case REQ_OP_SECURE_ERASE:
2363 			mmc_blk_issue_secdiscard_rq(mq, req);
2364 			break;
2365 		case REQ_OP_WRITE_ZEROES:
2366 			mmc_blk_issue_trim_rq(mq, req);
2367 			break;
2368 		case REQ_OP_FLUSH:
2369 			mmc_blk_issue_flush(mq, req);
2370 			break;
2371 		default:
2372 			WARN_ON_ONCE(1);
2373 			return MMC_REQ_FAILED_TO_START;
2374 		}
2375 		return MMC_REQ_FINISHED;
2376 	case MMC_ISSUE_DCMD:
2377 	case MMC_ISSUE_ASYNC:
2378 		switch (req_op(req)) {
2379 		case REQ_OP_FLUSH:
2380 			if (!mmc_cache_enabled(host)) {
2381 				blk_mq_end_request(req, BLK_STS_OK);
2382 				return MMC_REQ_FINISHED;
2383 			}
2384 			ret = mmc_blk_cqe_issue_flush(mq, req);
2385 			break;
2386 		case REQ_OP_WRITE:
2387 			card->written_flag = true;
2388 			fallthrough;
2389 		case REQ_OP_READ:
2390 			if (host->cqe_enabled)
2391 				ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2392 			else
2393 				ret = mmc_blk_mq_issue_rw_rq(mq, req);
2394 			break;
2395 		default:
2396 			WARN_ON_ONCE(1);
2397 			ret = -EINVAL;
2398 		}
2399 		if (!ret)
2400 			return MMC_REQ_STARTED;
2401 		return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2402 	default:
2403 		WARN_ON_ONCE(1);
2404 		return MMC_REQ_FAILED_TO_START;
2405 	}
2406 }
2407 
2408 static inline int mmc_blk_readonly(struct mmc_card *card)
2409 {
2410 	return mmc_card_readonly(card) ||
2411 	       !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2412 }
2413 
2414 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2415 					      struct device *parent,
2416 					      sector_t size,
2417 					      bool default_ro,
2418 					      const char *subname,
2419 					      int area_type,
2420 					      unsigned int part_type)
2421 {
2422 	struct mmc_blk_data *md;
2423 	int devidx, ret;
2424 	char cap_str[10];
2425 	bool cache_enabled = false;
2426 	bool fua_enabled = false;
2427 
2428 	devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2429 	if (devidx < 0) {
2430 		/*
2431 		 * We get -ENOSPC because there are no more any available
2432 		 * devidx. The reason may be that, either userspace haven't yet
2433 		 * unmounted the partitions, which postpones mmc_blk_release()
2434 		 * from being called, or the device has more partitions than
2435 		 * what we support.
2436 		 */
2437 		if (devidx == -ENOSPC)
2438 			dev_err(mmc_dev(card->host),
2439 				"no more device IDs available\n");
2440 
2441 		return ERR_PTR(devidx);
2442 	}
2443 
2444 	md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2445 	if (!md) {
2446 		ret = -ENOMEM;
2447 		goto out;
2448 	}
2449 
2450 	md->area_type = area_type;
2451 
2452 	/*
2453 	 * Set the read-only status based on the supported commands
2454 	 * and the write protect switch.
2455 	 */
2456 	md->read_only = mmc_blk_readonly(card);
2457 
2458 	md->disk = mmc_init_queue(&md->queue, card);
2459 	if (IS_ERR(md->disk)) {
2460 		ret = PTR_ERR(md->disk);
2461 		goto err_kfree;
2462 	}
2463 
2464 	INIT_LIST_HEAD(&md->part);
2465 	INIT_LIST_HEAD(&md->rpmbs);
2466 	kref_init(&md->kref);
2467 
2468 	md->queue.blkdata = md;
2469 	md->part_type = part_type;
2470 
2471 	md->disk->major	= MMC_BLOCK_MAJOR;
2472 	md->disk->minors = perdev_minors;
2473 	md->disk->first_minor = devidx * perdev_minors;
2474 	md->disk->fops = &mmc_bdops;
2475 	md->disk->private_data = md;
2476 	md->parent = parent;
2477 	set_disk_ro(md->disk, md->read_only || default_ro);
2478 	if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2479 		md->disk->flags |= GENHD_FL_NO_PART;
2480 
2481 	/*
2482 	 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2483 	 *
2484 	 * - be set for removable media with permanent block devices
2485 	 * - be unset for removable block devices with permanent media
2486 	 *
2487 	 * Since MMC block devices clearly fall under the second
2488 	 * case, we do not set GENHD_FL_REMOVABLE.  Userspace
2489 	 * should use the block device creation/destruction hotplug
2490 	 * messages to tell when the card is present.
2491 	 */
2492 
2493 	snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2494 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2495 
2496 	set_capacity(md->disk, size);
2497 
2498 	if (mmc_host_cmd23(card->host)) {
2499 		if ((mmc_card_mmc(card) &&
2500 		     card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2501 		    (mmc_card_sd(card) &&
2502 		     card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2503 			md->flags |= MMC_BLK_CMD23;
2504 	}
2505 
2506 	if (md->flags & MMC_BLK_CMD23 &&
2507 	    ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2508 	     card->ext_csd.rel_sectors)) {
2509 		md->flags |= MMC_BLK_REL_WR;
2510 		fua_enabled = true;
2511 		cache_enabled = true;
2512 	}
2513 	if (mmc_cache_enabled(card->host))
2514 		cache_enabled  = true;
2515 
2516 	blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2517 
2518 	string_get_size((u64)size, 512, STRING_UNITS_2,
2519 			cap_str, sizeof(cap_str));
2520 	pr_info("%s: %s %s %s%s\n",
2521 		md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2522 		cap_str, md->read_only ? " (ro)" : "");
2523 
2524 	/* used in ->open, must be set before add_disk: */
2525 	if (area_type == MMC_BLK_DATA_AREA_MAIN)
2526 		dev_set_drvdata(&card->dev, md);
2527 	ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2528 	if (ret)
2529 		goto err_put_disk;
2530 	return md;
2531 
2532  err_put_disk:
2533 	put_disk(md->disk);
2534 	blk_mq_free_tag_set(&md->queue.tag_set);
2535  err_kfree:
2536 	kfree(md);
2537  out:
2538 	ida_simple_remove(&mmc_blk_ida, devidx);
2539 	return ERR_PTR(ret);
2540 }
2541 
2542 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2543 {
2544 	sector_t size;
2545 
2546 	if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2547 		/*
2548 		 * The EXT_CSD sector count is in number or 512 byte
2549 		 * sectors.
2550 		 */
2551 		size = card->ext_csd.sectors;
2552 	} else {
2553 		/*
2554 		 * The CSD capacity field is in units of read_blkbits.
2555 		 * set_capacity takes units of 512 bytes.
2556 		 */
2557 		size = (typeof(sector_t))card->csd.capacity
2558 			<< (card->csd.read_blkbits - 9);
2559 	}
2560 
2561 	return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2562 					MMC_BLK_DATA_AREA_MAIN, 0);
2563 }
2564 
2565 static int mmc_blk_alloc_part(struct mmc_card *card,
2566 			      struct mmc_blk_data *md,
2567 			      unsigned int part_type,
2568 			      sector_t size,
2569 			      bool default_ro,
2570 			      const char *subname,
2571 			      int area_type)
2572 {
2573 	struct mmc_blk_data *part_md;
2574 
2575 	part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2576 				    subname, area_type, part_type);
2577 	if (IS_ERR(part_md))
2578 		return PTR_ERR(part_md);
2579 	list_add(&part_md->part, &md->part);
2580 
2581 	return 0;
2582 }
2583 
2584 /**
2585  * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2586  * @filp: the character device file
2587  * @cmd: the ioctl() command
2588  * @arg: the argument from userspace
2589  *
2590  * This will essentially just redirect the ioctl()s coming in over to
2591  * the main block device spawning the RPMB character device.
2592  */
2593 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2594 			   unsigned long arg)
2595 {
2596 	struct mmc_rpmb_data *rpmb = filp->private_data;
2597 	int ret;
2598 
2599 	switch (cmd) {
2600 	case MMC_IOC_CMD:
2601 		ret = mmc_blk_ioctl_cmd(rpmb->md,
2602 					(struct mmc_ioc_cmd __user *)arg,
2603 					rpmb);
2604 		break;
2605 	case MMC_IOC_MULTI_CMD:
2606 		ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2607 					(struct mmc_ioc_multi_cmd __user *)arg,
2608 					rpmb);
2609 		break;
2610 	default:
2611 		ret = -EINVAL;
2612 		break;
2613 	}
2614 
2615 	return ret;
2616 }
2617 
2618 #ifdef CONFIG_COMPAT
2619 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2620 			      unsigned long arg)
2621 {
2622 	return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2623 }
2624 #endif
2625 
2626 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2627 {
2628 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2629 						  struct mmc_rpmb_data, chrdev);
2630 
2631 	get_device(&rpmb->dev);
2632 	filp->private_data = rpmb;
2633 	mmc_blk_get(rpmb->md->disk);
2634 
2635 	return nonseekable_open(inode, filp);
2636 }
2637 
2638 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2639 {
2640 	struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2641 						  struct mmc_rpmb_data, chrdev);
2642 
2643 	mmc_blk_put(rpmb->md);
2644 	put_device(&rpmb->dev);
2645 
2646 	return 0;
2647 }
2648 
2649 static const struct file_operations mmc_rpmb_fileops = {
2650 	.release = mmc_rpmb_chrdev_release,
2651 	.open = mmc_rpmb_chrdev_open,
2652 	.owner = THIS_MODULE,
2653 	.llseek = no_llseek,
2654 	.unlocked_ioctl = mmc_rpmb_ioctl,
2655 #ifdef CONFIG_COMPAT
2656 	.compat_ioctl = mmc_rpmb_ioctl_compat,
2657 #endif
2658 };
2659 
2660 static void mmc_blk_rpmb_device_release(struct device *dev)
2661 {
2662 	struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2663 
2664 	ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2665 	kfree(rpmb);
2666 }
2667 
2668 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2669 				   struct mmc_blk_data *md,
2670 				   unsigned int part_index,
2671 				   sector_t size,
2672 				   const char *subname)
2673 {
2674 	int devidx, ret;
2675 	char rpmb_name[DISK_NAME_LEN];
2676 	char cap_str[10];
2677 	struct mmc_rpmb_data *rpmb;
2678 
2679 	/* This creates the minor number for the RPMB char device */
2680 	devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2681 	if (devidx < 0)
2682 		return devidx;
2683 
2684 	rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2685 	if (!rpmb) {
2686 		ida_simple_remove(&mmc_rpmb_ida, devidx);
2687 		return -ENOMEM;
2688 	}
2689 
2690 	snprintf(rpmb_name, sizeof(rpmb_name),
2691 		 "mmcblk%u%s", card->host->index, subname ? subname : "");
2692 
2693 	rpmb->id = devidx;
2694 	rpmb->part_index = part_index;
2695 	rpmb->dev.init_name = rpmb_name;
2696 	rpmb->dev.bus = &mmc_rpmb_bus_type;
2697 	rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2698 	rpmb->dev.parent = &card->dev;
2699 	rpmb->dev.release = mmc_blk_rpmb_device_release;
2700 	device_initialize(&rpmb->dev);
2701 	dev_set_drvdata(&rpmb->dev, rpmb);
2702 	rpmb->md = md;
2703 
2704 	cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2705 	rpmb->chrdev.owner = THIS_MODULE;
2706 	ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2707 	if (ret) {
2708 		pr_err("%s: could not add character device\n", rpmb_name);
2709 		goto out_put_device;
2710 	}
2711 
2712 	list_add(&rpmb->node, &md->rpmbs);
2713 
2714 	string_get_size((u64)size, 512, STRING_UNITS_2,
2715 			cap_str, sizeof(cap_str));
2716 
2717 	pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2718 		rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2719 		MAJOR(mmc_rpmb_devt), rpmb->id);
2720 
2721 	return 0;
2722 
2723 out_put_device:
2724 	put_device(&rpmb->dev);
2725 	return ret;
2726 }
2727 
2728 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2729 
2730 {
2731 	cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2732 	put_device(&rpmb->dev);
2733 }
2734 
2735 /* MMC Physical partitions consist of two boot partitions and
2736  * up to four general purpose partitions.
2737  * For each partition enabled in EXT_CSD a block device will be allocatedi
2738  * to provide access to the partition.
2739  */
2740 
2741 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2742 {
2743 	int idx, ret;
2744 
2745 	if (!mmc_card_mmc(card))
2746 		return 0;
2747 
2748 	for (idx = 0; idx < card->nr_parts; idx++) {
2749 		if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2750 			/*
2751 			 * RPMB partitions does not provide block access, they
2752 			 * are only accessed using ioctl():s. Thus create
2753 			 * special RPMB block devices that do not have a
2754 			 * backing block queue for these.
2755 			 */
2756 			ret = mmc_blk_alloc_rpmb_part(card, md,
2757 				card->part[idx].part_cfg,
2758 				card->part[idx].size >> 9,
2759 				card->part[idx].name);
2760 			if (ret)
2761 				return ret;
2762 		} else if (card->part[idx].size) {
2763 			ret = mmc_blk_alloc_part(card, md,
2764 				card->part[idx].part_cfg,
2765 				card->part[idx].size >> 9,
2766 				card->part[idx].force_ro,
2767 				card->part[idx].name,
2768 				card->part[idx].area_type);
2769 			if (ret)
2770 				return ret;
2771 		}
2772 	}
2773 
2774 	return 0;
2775 }
2776 
2777 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2778 {
2779 	/*
2780 	 * Flush remaining requests and free queues. It is freeing the queue
2781 	 * that stops new requests from being accepted.
2782 	 */
2783 	del_gendisk(md->disk);
2784 	mmc_cleanup_queue(&md->queue);
2785 	mmc_blk_put(md);
2786 }
2787 
2788 static void mmc_blk_remove_parts(struct mmc_card *card,
2789 				 struct mmc_blk_data *md)
2790 {
2791 	struct list_head *pos, *q;
2792 	struct mmc_blk_data *part_md;
2793 	struct mmc_rpmb_data *rpmb;
2794 
2795 	/* Remove RPMB partitions */
2796 	list_for_each_safe(pos, q, &md->rpmbs) {
2797 		rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2798 		list_del(pos);
2799 		mmc_blk_remove_rpmb_part(rpmb);
2800 	}
2801 	/* Remove block partitions */
2802 	list_for_each_safe(pos, q, &md->part) {
2803 		part_md = list_entry(pos, struct mmc_blk_data, part);
2804 		list_del(pos);
2805 		mmc_blk_remove_req(part_md);
2806 	}
2807 }
2808 
2809 #ifdef CONFIG_DEBUG_FS
2810 
2811 static int mmc_dbg_card_status_get(void *data, u64 *val)
2812 {
2813 	struct mmc_card *card = data;
2814 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2815 	struct mmc_queue *mq = &md->queue;
2816 	struct request *req;
2817 	int ret;
2818 
2819 	/* Ask the block layer about the card status */
2820 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2821 	if (IS_ERR(req))
2822 		return PTR_ERR(req);
2823 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2824 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2825 	blk_execute_rq(req, false);
2826 	ret = req_to_mmc_queue_req(req)->drv_op_result;
2827 	if (ret >= 0) {
2828 		*val = ret;
2829 		ret = 0;
2830 	}
2831 	blk_mq_free_request(req);
2832 
2833 	return ret;
2834 }
2835 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2836 			 NULL, "%08llx\n");
2837 
2838 /* That is two digits * 512 + 1 for newline */
2839 #define EXT_CSD_STR_LEN 1025
2840 
2841 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2842 {
2843 	struct mmc_card *card = inode->i_private;
2844 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2845 	struct mmc_queue *mq = &md->queue;
2846 	struct request *req;
2847 	char *buf;
2848 	ssize_t n = 0;
2849 	u8 *ext_csd;
2850 	int err, i;
2851 
2852 	buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2853 	if (!buf)
2854 		return -ENOMEM;
2855 
2856 	/* Ask the block layer for the EXT CSD */
2857 	req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2858 	if (IS_ERR(req)) {
2859 		err = PTR_ERR(req);
2860 		goto out_free;
2861 	}
2862 	req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2863 	req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2864 	req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2865 	blk_execute_rq(req, false);
2866 	err = req_to_mmc_queue_req(req)->drv_op_result;
2867 	blk_mq_free_request(req);
2868 	if (err) {
2869 		pr_err("FAILED %d\n", err);
2870 		goto out_free;
2871 	}
2872 
2873 	for (i = 0; i < 512; i++)
2874 		n += sprintf(buf + n, "%02x", ext_csd[i]);
2875 	n += sprintf(buf + n, "\n");
2876 
2877 	if (n != EXT_CSD_STR_LEN) {
2878 		err = -EINVAL;
2879 		kfree(ext_csd);
2880 		goto out_free;
2881 	}
2882 
2883 	filp->private_data = buf;
2884 	kfree(ext_csd);
2885 	return 0;
2886 
2887 out_free:
2888 	kfree(buf);
2889 	return err;
2890 }
2891 
2892 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2893 				size_t cnt, loff_t *ppos)
2894 {
2895 	char *buf = filp->private_data;
2896 
2897 	return simple_read_from_buffer(ubuf, cnt, ppos,
2898 				       buf, EXT_CSD_STR_LEN);
2899 }
2900 
2901 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2902 {
2903 	kfree(file->private_data);
2904 	return 0;
2905 }
2906 
2907 static const struct file_operations mmc_dbg_ext_csd_fops = {
2908 	.open		= mmc_ext_csd_open,
2909 	.read		= mmc_ext_csd_read,
2910 	.release	= mmc_ext_csd_release,
2911 	.llseek		= default_llseek,
2912 };
2913 
2914 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2915 {
2916 	struct dentry *root;
2917 
2918 	if (!card->debugfs_root)
2919 		return;
2920 
2921 	root = card->debugfs_root;
2922 
2923 	if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2924 		md->status_dentry =
2925 			debugfs_create_file_unsafe("status", 0400, root,
2926 						   card,
2927 						   &mmc_dbg_card_status_fops);
2928 	}
2929 
2930 	if (mmc_card_mmc(card)) {
2931 		md->ext_csd_dentry =
2932 			debugfs_create_file("ext_csd", S_IRUSR, root, card,
2933 					    &mmc_dbg_ext_csd_fops);
2934 	}
2935 }
2936 
2937 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2938 				   struct mmc_blk_data *md)
2939 {
2940 	if (!card->debugfs_root)
2941 		return;
2942 
2943 	debugfs_remove(md->status_dentry);
2944 	md->status_dentry = NULL;
2945 
2946 	debugfs_remove(md->ext_csd_dentry);
2947 	md->ext_csd_dentry = NULL;
2948 }
2949 
2950 #else
2951 
2952 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2953 {
2954 }
2955 
2956 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2957 				   struct mmc_blk_data *md)
2958 {
2959 }
2960 
2961 #endif /* CONFIG_DEBUG_FS */
2962 
2963 static int mmc_blk_probe(struct mmc_card *card)
2964 {
2965 	struct mmc_blk_data *md;
2966 	int ret = 0;
2967 
2968 	/*
2969 	 * Check that the card supports the command class(es) we need.
2970 	 */
2971 	if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2972 		return -ENODEV;
2973 
2974 	mmc_fixup_device(card, mmc_blk_fixups);
2975 
2976 	card->complete_wq = alloc_workqueue("mmc_complete",
2977 					WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2978 	if (!card->complete_wq) {
2979 		pr_err("Failed to create mmc completion workqueue");
2980 		return -ENOMEM;
2981 	}
2982 
2983 	md = mmc_blk_alloc(card);
2984 	if (IS_ERR(md)) {
2985 		ret = PTR_ERR(md);
2986 		goto out_free;
2987 	}
2988 
2989 	ret = mmc_blk_alloc_parts(card, md);
2990 	if (ret)
2991 		goto out;
2992 
2993 	/* Add two debugfs entries */
2994 	mmc_blk_add_debugfs(card, md);
2995 
2996 	pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2997 	pm_runtime_use_autosuspend(&card->dev);
2998 
2999 	/*
3000 	 * Don't enable runtime PM for SD-combo cards here. Leave that
3001 	 * decision to be taken during the SDIO init sequence instead.
3002 	 */
3003 	if (!mmc_card_sd_combo(card)) {
3004 		pm_runtime_set_active(&card->dev);
3005 		pm_runtime_enable(&card->dev);
3006 	}
3007 
3008 	return 0;
3009 
3010 out:
3011 	mmc_blk_remove_parts(card, md);
3012 	mmc_blk_remove_req(md);
3013 out_free:
3014 	destroy_workqueue(card->complete_wq);
3015 	return ret;
3016 }
3017 
3018 static void mmc_blk_remove(struct mmc_card *card)
3019 {
3020 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3021 
3022 	mmc_blk_remove_debugfs(card, md);
3023 	mmc_blk_remove_parts(card, md);
3024 	pm_runtime_get_sync(&card->dev);
3025 	if (md->part_curr != md->part_type) {
3026 		mmc_claim_host(card->host);
3027 		mmc_blk_part_switch(card, md->part_type);
3028 		mmc_release_host(card->host);
3029 	}
3030 	if (!mmc_card_sd_combo(card))
3031 		pm_runtime_disable(&card->dev);
3032 	pm_runtime_put_noidle(&card->dev);
3033 	mmc_blk_remove_req(md);
3034 	destroy_workqueue(card->complete_wq);
3035 }
3036 
3037 static int _mmc_blk_suspend(struct mmc_card *card)
3038 {
3039 	struct mmc_blk_data *part_md;
3040 	struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3041 
3042 	if (md) {
3043 		mmc_queue_suspend(&md->queue);
3044 		list_for_each_entry(part_md, &md->part, part) {
3045 			mmc_queue_suspend(&part_md->queue);
3046 		}
3047 	}
3048 	return 0;
3049 }
3050 
3051 static void mmc_blk_shutdown(struct mmc_card *card)
3052 {
3053 	_mmc_blk_suspend(card);
3054 }
3055 
3056 #ifdef CONFIG_PM_SLEEP
3057 static int mmc_blk_suspend(struct device *dev)
3058 {
3059 	struct mmc_card *card = mmc_dev_to_card(dev);
3060 
3061 	return _mmc_blk_suspend(card);
3062 }
3063 
3064 static int mmc_blk_resume(struct device *dev)
3065 {
3066 	struct mmc_blk_data *part_md;
3067 	struct mmc_blk_data *md = dev_get_drvdata(dev);
3068 
3069 	if (md) {
3070 		/*
3071 		 * Resume involves the card going into idle state,
3072 		 * so current partition is always the main one.
3073 		 */
3074 		md->part_curr = md->part_type;
3075 		mmc_queue_resume(&md->queue);
3076 		list_for_each_entry(part_md, &md->part, part) {
3077 			mmc_queue_resume(&part_md->queue);
3078 		}
3079 	}
3080 	return 0;
3081 }
3082 #endif
3083 
3084 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3085 
3086 static struct mmc_driver mmc_driver = {
3087 	.drv		= {
3088 		.name	= "mmcblk",
3089 		.pm	= &mmc_blk_pm_ops,
3090 	},
3091 	.probe		= mmc_blk_probe,
3092 	.remove		= mmc_blk_remove,
3093 	.shutdown	= mmc_blk_shutdown,
3094 };
3095 
3096 static int __init mmc_blk_init(void)
3097 {
3098 	int res;
3099 
3100 	res  = bus_register(&mmc_rpmb_bus_type);
3101 	if (res < 0) {
3102 		pr_err("mmcblk: could not register RPMB bus type\n");
3103 		return res;
3104 	}
3105 	res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3106 	if (res < 0) {
3107 		pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3108 		goto out_bus_unreg;
3109 	}
3110 
3111 	if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3112 		pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3113 
3114 	max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3115 
3116 	res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3117 	if (res)
3118 		goto out_chrdev_unreg;
3119 
3120 	res = mmc_register_driver(&mmc_driver);
3121 	if (res)
3122 		goto out_blkdev_unreg;
3123 
3124 	return 0;
3125 
3126 out_blkdev_unreg:
3127 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3128 out_chrdev_unreg:
3129 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3130 out_bus_unreg:
3131 	bus_unregister(&mmc_rpmb_bus_type);
3132 	return res;
3133 }
3134 
3135 static void __exit mmc_blk_exit(void)
3136 {
3137 	mmc_unregister_driver(&mmc_driver);
3138 	unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3139 	unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3140 	bus_unregister(&mmc_rpmb_bus_type);
3141 }
3142 
3143 module_init(mmc_blk_init);
3144 module_exit(mmc_blk_exit);
3145 
3146 MODULE_LICENSE("GPL");
3147 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3148 
3149