1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Block driver for media (i.e., flash cards) 4 * 5 * Copyright 2002 Hewlett-Packard Company 6 * Copyright 2005-2008 Pierre Ossman 7 * 8 * Use consistent with the GNU GPL is permitted, 9 * provided that this copyright notice is 10 * preserved in its entirety in all copies and derived works. 11 * 12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED, 13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS 14 * FITNESS FOR ANY PARTICULAR PURPOSE. 15 * 16 * Many thanks to Alessandro Rubini and Jonathan Corbet! 17 * 18 * Author: Andrew Christian 19 * 28 May 2002 20 */ 21 #include <linux/moduleparam.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 25 #include <linux/kernel.h> 26 #include <linux/fs.h> 27 #include <linux/slab.h> 28 #include <linux/errno.h> 29 #include <linux/hdreg.h> 30 #include <linux/kdev_t.h> 31 #include <linux/kref.h> 32 #include <linux/blkdev.h> 33 #include <linux/cdev.h> 34 #include <linux/mutex.h> 35 #include <linux/scatterlist.h> 36 #include <linux/string.h> 37 #include <linux/string_helpers.h> 38 #include <linux/delay.h> 39 #include <linux/capability.h> 40 #include <linux/compat.h> 41 #include <linux/pm_runtime.h> 42 #include <linux/idr.h> 43 #include <linux/debugfs.h> 44 #include <linux/rpmb.h> 45 46 #include <linux/mmc/ioctl.h> 47 #include <linux/mmc/card.h> 48 #include <linux/mmc/host.h> 49 #include <linux/mmc/mmc.h> 50 #include <linux/mmc/sd.h> 51 52 #include <linux/uaccess.h> 53 #include <linux/unaligned.h> 54 55 #include "queue.h" 56 #include "block.h" 57 #include "core.h" 58 #include "card.h" 59 #include "crypto.h" 60 #include "host.h" 61 #include "bus.h" 62 #include "mmc_ops.h" 63 #include "quirks.h" 64 #include "sd_ops.h" 65 66 MODULE_ALIAS("mmc:block"); 67 #ifdef MODULE_PARAM_PREFIX 68 #undef MODULE_PARAM_PREFIX 69 #endif 70 #define MODULE_PARAM_PREFIX "mmcblk." 71 72 /* 73 * Set a 10 second timeout for polling write request busy state. Note, mmc core 74 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10 75 * second software timer to timeout the whole request, so 10 seconds should be 76 * ample. 77 */ 78 #define MMC_BLK_TIMEOUT_MS (10 * 1000) 79 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16) 80 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8) 81 82 /** 83 * struct rpmb_frame - rpmb frame as defined by eMMC 5.1 (JESD84-B51) 84 * 85 * @stuff : stuff bytes 86 * @key_mac : The authentication key or the message authentication 87 * code (MAC) depending on the request/response type. 88 * The MAC will be delivered in the last (or the only) 89 * block of data. 90 * @data : Data to be written or read by signed access. 91 * @nonce : Random number generated by the host for the requests 92 * and copied to the response by the RPMB engine. 93 * @write_counter: Counter value for the total amount of the successful 94 * authenticated data write requests made by the host. 95 * @addr : Address of the data to be programmed to or read 96 * from the RPMB. Address is the serial number of 97 * the accessed block (half sector 256B). 98 * @block_count : Number of blocks (half sectors, 256B) requested to be 99 * read/programmed. 100 * @result : Includes information about the status of the write counter 101 * (valid, expired) and result of the access made to the RPMB. 102 * @req_resp : Defines the type of request and response to/from the memory. 103 * 104 * The stuff bytes and big-endian properties are modeled to fit to the spec. 105 */ 106 struct rpmb_frame { 107 u8 stuff[196]; 108 u8 key_mac[32]; 109 u8 data[256]; 110 u8 nonce[16]; 111 __be32 write_counter; 112 __be16 addr; 113 __be16 block_count; 114 __be16 result; 115 __be16 req_resp; 116 } __packed; 117 118 #define RPMB_PROGRAM_KEY 0x1 /* Program RPMB Authentication Key */ 119 #define RPMB_GET_WRITE_COUNTER 0x2 /* Read RPMB write counter */ 120 #define RPMB_WRITE_DATA 0x3 /* Write data to RPMB partition */ 121 #define RPMB_READ_DATA 0x4 /* Read data from RPMB partition */ 122 #define RPMB_RESULT_READ 0x5 /* Read result request (Internal) */ 123 124 #define RPMB_FRAME_SIZE sizeof(struct rpmb_frame) 125 #define CHECK_SIZE_NEQ(val) ((val) != sizeof(struct rpmb_frame)) 126 #define CHECK_SIZE_ALIGNED(val) IS_ALIGNED((val), sizeof(struct rpmb_frame)) 127 128 static DEFINE_MUTEX(block_mutex); 129 130 /* 131 * The defaults come from config options but can be overriden by module 132 * or bootarg options. 133 */ 134 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS; 135 136 /* 137 * We've only got one major, so number of mmcblk devices is 138 * limited to (1 << 20) / number of minors per device. It is also 139 * limited by the MAX_DEVICES below. 140 */ 141 static int max_devices; 142 143 #define MAX_DEVICES 256 144 145 static DEFINE_IDA(mmc_blk_ida); 146 static DEFINE_IDA(mmc_rpmb_ida); 147 148 struct mmc_blk_busy_data { 149 struct mmc_card *card; 150 u32 status; 151 }; 152 153 /* 154 * There is one mmc_blk_data per slot. 155 */ 156 struct mmc_blk_data { 157 struct device *parent; 158 struct gendisk *disk; 159 struct mmc_queue queue; 160 struct list_head part; 161 struct list_head rpmbs; 162 163 unsigned int flags; 164 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */ 165 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */ 166 167 struct kref kref; 168 unsigned int read_only; 169 unsigned int part_type; 170 unsigned int reset_done; 171 #define MMC_BLK_READ BIT(0) 172 #define MMC_BLK_WRITE BIT(1) 173 #define MMC_BLK_DISCARD BIT(2) 174 #define MMC_BLK_SECDISCARD BIT(3) 175 #define MMC_BLK_CQE_RECOVERY BIT(4) 176 #define MMC_BLK_TRIM BIT(5) 177 178 /* 179 * Only set in main mmc_blk_data associated 180 * with mmc_card with dev_set_drvdata, and keeps 181 * track of the current selected device partition. 182 */ 183 unsigned int part_curr; 184 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */ 185 int area_type; 186 187 /* debugfs files (only in main mmc_blk_data) */ 188 struct dentry *status_dentry; 189 struct dentry *ext_csd_dentry; 190 }; 191 192 /* Device type for RPMB character devices */ 193 static dev_t mmc_rpmb_devt; 194 195 /* Bus type for RPMB character devices */ 196 static const struct bus_type mmc_rpmb_bus_type = { 197 .name = "mmc_rpmb", 198 }; 199 200 /** 201 * struct mmc_rpmb_data - special RPMB device type for these areas 202 * @dev: the device for the RPMB area 203 * @chrdev: character device for the RPMB area 204 * @id: unique device ID number 205 * @part_index: partition index (0 on first) 206 * @md: parent MMC block device 207 * @rdev: registered RPMB device 208 * @node: list item, so we can put this device on a list 209 */ 210 struct mmc_rpmb_data { 211 struct device dev; 212 struct cdev chrdev; 213 int id; 214 unsigned int part_index; 215 struct mmc_blk_data *md; 216 struct rpmb_dev *rdev; 217 struct list_head node; 218 }; 219 220 static DEFINE_MUTEX(open_lock); 221 222 module_param(perdev_minors, int, 0444); 223 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device"); 224 225 static inline int mmc_blk_part_switch(struct mmc_card *card, 226 unsigned int part_type); 227 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 228 struct mmc_card *card, 229 int recovery_mode, 230 struct mmc_queue *mq); 231 static void mmc_blk_hsq_req_done(struct mmc_request *mrq); 232 static int mmc_spi_err_check(struct mmc_card *card); 233 static int mmc_blk_busy_cb(void *cb_data, bool *busy); 234 235 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk) 236 { 237 struct mmc_blk_data *md; 238 239 mutex_lock(&open_lock); 240 md = disk->private_data; 241 if (md && !kref_get_unless_zero(&md->kref)) 242 md = NULL; 243 mutex_unlock(&open_lock); 244 245 return md; 246 } 247 248 static inline int mmc_get_devidx(struct gendisk *disk) 249 { 250 int devidx = disk->first_minor / perdev_minors; 251 return devidx; 252 } 253 254 static void mmc_blk_kref_release(struct kref *ref) 255 { 256 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref); 257 int devidx; 258 259 devidx = mmc_get_devidx(md->disk); 260 ida_free(&mmc_blk_ida, devidx); 261 262 mutex_lock(&open_lock); 263 md->disk->private_data = NULL; 264 mutex_unlock(&open_lock); 265 266 put_disk(md->disk); 267 kfree(md); 268 } 269 270 static void mmc_blk_put(struct mmc_blk_data *md) 271 { 272 kref_put(&md->kref, mmc_blk_kref_release); 273 } 274 275 static ssize_t power_ro_lock_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 int ret; 279 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 280 struct mmc_card *card = md->queue.card; 281 int locked = 0; 282 283 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN) 284 locked = 2; 285 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN) 286 locked = 1; 287 288 ret = sysfs_emit(buf, "%d\n", locked); 289 290 mmc_blk_put(md); 291 292 return ret; 293 } 294 295 static ssize_t power_ro_lock_store(struct device *dev, 296 struct device_attribute *attr, const char *buf, size_t count) 297 { 298 int ret; 299 struct mmc_blk_data *md, *part_md; 300 struct mmc_queue *mq; 301 struct request *req; 302 unsigned long set; 303 304 if (kstrtoul(buf, 0, &set)) 305 return -EINVAL; 306 307 if (set != 1) 308 return count; 309 310 md = mmc_blk_get(dev_to_disk(dev)); 311 mq = &md->queue; 312 313 /* Dispatch locking to the block layer */ 314 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0); 315 if (IS_ERR(req)) { 316 count = PTR_ERR(req); 317 goto out_put; 318 } 319 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP; 320 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 321 blk_execute_rq(req, false); 322 ret = req_to_mmc_queue_req(req)->drv_op_result; 323 blk_mq_free_request(req); 324 325 if (!ret) { 326 pr_info("%s: Locking boot partition ro until next power on\n", 327 md->disk->disk_name); 328 set_disk_ro(md->disk, 1); 329 330 list_for_each_entry(part_md, &md->part, part) 331 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) { 332 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name); 333 set_disk_ro(part_md->disk, 1); 334 } 335 } 336 out_put: 337 mmc_blk_put(md); 338 return count; 339 } 340 341 static DEVICE_ATTR(ro_lock_until_next_power_on, 0, 342 power_ro_lock_show, power_ro_lock_store); 343 344 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr, 345 char *buf) 346 { 347 int ret; 348 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 349 350 ret = sysfs_emit(buf, "%d\n", 351 get_disk_ro(dev_to_disk(dev)) ^ 352 md->read_only); 353 mmc_blk_put(md); 354 return ret; 355 } 356 357 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr, 358 const char *buf, size_t count) 359 { 360 int ret; 361 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 362 unsigned long set; 363 364 if (kstrtoul(buf, 0, &set)) { 365 ret = -EINVAL; 366 goto out; 367 } 368 369 set_disk_ro(dev_to_disk(dev), set || md->read_only); 370 ret = count; 371 out: 372 mmc_blk_put(md); 373 return ret; 374 } 375 376 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store); 377 378 static struct attribute *mmc_disk_attrs[] = { 379 &dev_attr_force_ro.attr, 380 &dev_attr_ro_lock_until_next_power_on.attr, 381 NULL, 382 }; 383 384 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj, 385 struct attribute *a, int n) 386 { 387 struct device *dev = kobj_to_dev(kobj); 388 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev)); 389 umode_t mode = a->mode; 390 391 if (a == &dev_attr_ro_lock_until_next_power_on.attr && 392 (md->area_type & MMC_BLK_DATA_AREA_BOOT) && 393 md->queue.card->ext_csd.boot_ro_lockable) { 394 mode = S_IRUGO; 395 if (!(md->queue.card->ext_csd.boot_ro_lock & 396 EXT_CSD_BOOT_WP_B_PWR_WP_DIS)) 397 mode |= S_IWUSR; 398 } 399 400 mmc_blk_put(md); 401 return mode; 402 } 403 404 static const struct attribute_group mmc_disk_attr_group = { 405 .is_visible = mmc_disk_attrs_is_visible, 406 .attrs = mmc_disk_attrs, 407 }; 408 409 static const struct attribute_group *mmc_disk_attr_groups[] = { 410 &mmc_disk_attr_group, 411 NULL, 412 }; 413 414 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode) 415 { 416 struct mmc_blk_data *md = mmc_blk_get(disk); 417 int ret = -ENXIO; 418 419 mutex_lock(&block_mutex); 420 if (md) { 421 ret = 0; 422 if ((mode & BLK_OPEN_WRITE) && md->read_only) { 423 mmc_blk_put(md); 424 ret = -EROFS; 425 } 426 } 427 mutex_unlock(&block_mutex); 428 429 return ret; 430 } 431 432 static void mmc_blk_release(struct gendisk *disk) 433 { 434 struct mmc_blk_data *md = disk->private_data; 435 436 mutex_lock(&block_mutex); 437 mmc_blk_put(md); 438 mutex_unlock(&block_mutex); 439 } 440 441 static int 442 mmc_blk_getgeo(struct gendisk *disk, struct hd_geometry *geo) 443 { 444 geo->cylinders = get_capacity(disk) / (4 * 16); 445 geo->heads = 4; 446 geo->sectors = 16; 447 return 0; 448 } 449 450 struct mmc_blk_ioc_data { 451 struct mmc_ioc_cmd ic; 452 unsigned char *buf; 453 u64 buf_bytes; 454 unsigned int flags; 455 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */ 456 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */ 457 458 struct mmc_rpmb_data *rpmb; 459 }; 460 461 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user( 462 struct mmc_ioc_cmd __user *user) 463 { 464 struct mmc_blk_ioc_data *idata; 465 int err; 466 467 idata = kzalloc(sizeof(*idata), GFP_KERNEL); 468 if (!idata) { 469 err = -ENOMEM; 470 goto out; 471 } 472 473 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) { 474 err = -EFAULT; 475 goto idata_err; 476 } 477 478 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks; 479 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) { 480 err = -EOVERFLOW; 481 goto idata_err; 482 } 483 484 if (!idata->buf_bytes) { 485 idata->buf = NULL; 486 return idata; 487 } 488 489 idata->buf = memdup_user((void __user *)(unsigned long) 490 idata->ic.data_ptr, idata->buf_bytes); 491 if (IS_ERR(idata->buf)) { 492 err = PTR_ERR(idata->buf); 493 goto idata_err; 494 } 495 496 return idata; 497 498 idata_err: 499 kfree(idata); 500 out: 501 return ERR_PTR(err); 502 } 503 504 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr, 505 struct mmc_blk_ioc_data *idata) 506 { 507 struct mmc_ioc_cmd *ic = &idata->ic; 508 509 if (copy_to_user(&(ic_ptr->response), ic->response, 510 sizeof(ic->response))) 511 return -EFAULT; 512 513 if (!idata->ic.write_flag) { 514 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr, 515 idata->buf, idata->buf_bytes)) 516 return -EFAULT; 517 } 518 519 return 0; 520 } 521 522 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md, 523 struct mmc_blk_ioc_data **idatas, int i) 524 { 525 struct mmc_command cmd = {}, sbc = {}; 526 struct mmc_data data = {}; 527 struct mmc_request mrq = {}; 528 struct scatterlist sg; 529 bool r1b_resp; 530 unsigned int busy_timeout_ms; 531 int err; 532 unsigned int target_part; 533 struct mmc_blk_ioc_data *idata = idatas[i]; 534 struct mmc_blk_ioc_data *prev_idata = NULL; 535 536 if (!card || !md || !idata) 537 return -EINVAL; 538 539 if (idata->flags & MMC_BLK_IOC_DROP) 540 return 0; 541 542 if (idata->flags & MMC_BLK_IOC_SBC && i > 0) 543 prev_idata = idatas[i - 1]; 544 545 /* 546 * The RPMB accesses comes in from the character device, so we 547 * need to target these explicitly. Else we just target the 548 * partition type for the block device the ioctl() was issued 549 * on. 550 */ 551 if (idata->rpmb) { 552 /* Support multiple RPMB partitions */ 553 target_part = idata->rpmb->part_index; 554 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB; 555 } else { 556 target_part = md->part_type; 557 } 558 559 cmd.opcode = idata->ic.opcode; 560 cmd.arg = idata->ic.arg; 561 cmd.flags = idata->ic.flags; 562 563 if (idata->buf_bytes) { 564 data.sg = &sg; 565 data.sg_len = 1; 566 data.blksz = idata->ic.blksz; 567 data.blocks = idata->ic.blocks; 568 569 sg_init_one(data.sg, idata->buf, idata->buf_bytes); 570 571 if (idata->ic.write_flag) 572 data.flags = MMC_DATA_WRITE; 573 else 574 data.flags = MMC_DATA_READ; 575 576 /* data.flags must already be set before doing this. */ 577 mmc_set_data_timeout(&data, card); 578 579 /* Allow overriding the timeout_ns for empirical tuning. */ 580 if (idata->ic.data_timeout_ns) 581 data.timeout_ns = idata->ic.data_timeout_ns; 582 583 mrq.data = &data; 584 } 585 586 mrq.cmd = &cmd; 587 588 err = mmc_blk_part_switch(card, target_part); 589 if (err) 590 return err; 591 592 if (idata->ic.is_acmd) { 593 err = mmc_app_cmd(card->host, card); 594 if (err) 595 return err; 596 } 597 598 if (idata->rpmb || prev_idata) { 599 sbc.opcode = MMC_SET_BLOCK_COUNT; 600 /* 601 * We don't do any blockcount validation because the max size 602 * may be increased by a future standard. We just copy the 603 * 'Reliable Write' bit here. 604 */ 605 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31)); 606 if (prev_idata) 607 sbc.arg = prev_idata->ic.arg; 608 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 609 mrq.sbc = &sbc; 610 } 611 612 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) && 613 (cmd.opcode == MMC_SWITCH)) 614 return mmc_sanitize(card, idata->ic.cmd_timeout_ms); 615 616 /* If it's an R1B response we need some more preparations. */ 617 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS; 618 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B; 619 if (r1b_resp) 620 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms); 621 622 mmc_wait_for_req(card->host, &mrq); 623 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp)); 624 625 if (prev_idata) { 626 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp)); 627 if (sbc.error) { 628 dev_err(mmc_dev(card->host), "%s: sbc error %d\n", 629 __func__, sbc.error); 630 return sbc.error; 631 } 632 } 633 634 if (cmd.error) { 635 dev_err(mmc_dev(card->host), "%s: cmd error %d\n", 636 __func__, cmd.error); 637 return cmd.error; 638 } 639 if (data.error) { 640 dev_err(mmc_dev(card->host), "%s: data error %d\n", 641 __func__, data.error); 642 return data.error; 643 } 644 645 /* 646 * Make sure the cache of the PARTITION_CONFIG register and 647 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write 648 * changed it successfully. 649 */ 650 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) && 651 (cmd.opcode == MMC_SWITCH)) { 652 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 653 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg); 654 655 /* 656 * Update cache so the next mmc_blk_part_switch call operates 657 * on up-to-date data. 658 */ 659 card->ext_csd.part_config = value; 660 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK; 661 } 662 663 /* 664 * Make sure to update CACHE_CTRL in case it was changed. The cache 665 * will get turned back on if the card is re-initialized, e.g. 666 * suspend/resume or hw reset in recovery. 667 */ 668 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) && 669 (cmd.opcode == MMC_SWITCH)) { 670 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1; 671 672 card->ext_csd.cache_ctrl = value; 673 } 674 675 /* 676 * According to the SD specs, some commands require a delay after 677 * issuing the command. 678 */ 679 if (idata->ic.postsleep_min_us) 680 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us); 681 682 if (mmc_host_is_spi(card->host)) { 683 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY) 684 return mmc_spi_err_check(card); 685 return err; 686 } 687 688 /* 689 * Ensure RPMB, writes and R1B responses are completed by polling with 690 * CMD13. Note that, usually we don't need to poll when using HW busy 691 * detection, but here it's needed since some commands may indicate the 692 * error through the R1 status bits. 693 */ 694 if (idata->rpmb || idata->ic.write_flag || r1b_resp) { 695 struct mmc_blk_busy_data cb_data = { 696 .card = card, 697 }; 698 699 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms, 700 &mmc_blk_busy_cb, &cb_data); 701 702 idata->ic.response[0] = cb_data.status; 703 } 704 705 return err; 706 } 707 708 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md, 709 struct mmc_ioc_cmd __user *ic_ptr, 710 struct mmc_rpmb_data *rpmb) 711 { 712 struct mmc_blk_ioc_data *idata; 713 struct mmc_blk_ioc_data *idatas[1]; 714 struct mmc_queue *mq; 715 struct mmc_card *card; 716 int err = 0, ioc_err = 0; 717 struct request *req; 718 719 idata = mmc_blk_ioctl_copy_from_user(ic_ptr); 720 if (IS_ERR(idata)) 721 return PTR_ERR(idata); 722 /* This will be NULL on non-RPMB ioctl():s */ 723 idata->rpmb = rpmb; 724 725 card = md->queue.card; 726 if (IS_ERR(card)) { 727 err = PTR_ERR(card); 728 goto cmd_done; 729 } 730 731 /* 732 * Dispatch the ioctl() into the block request queue. 733 */ 734 mq = &md->queue; 735 req = blk_mq_alloc_request(mq->queue, 736 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 737 if (IS_ERR(req)) { 738 err = PTR_ERR(req); 739 goto cmd_done; 740 } 741 idatas[0] = idata; 742 req_to_mmc_queue_req(req)->drv_op = 743 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 744 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 745 req_to_mmc_queue_req(req)->drv_op_data = idatas; 746 req_to_mmc_queue_req(req)->ioc_count = 1; 747 blk_execute_rq(req, false); 748 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 749 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata); 750 blk_mq_free_request(req); 751 752 cmd_done: 753 kfree(idata->buf); 754 kfree(idata); 755 return ioc_err ? ioc_err : err; 756 } 757 758 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md, 759 struct mmc_ioc_multi_cmd __user *user, 760 struct mmc_rpmb_data *rpmb) 761 { 762 struct mmc_blk_ioc_data **idata = NULL; 763 struct mmc_ioc_cmd __user *cmds = user->cmds; 764 struct mmc_card *card; 765 struct mmc_queue *mq; 766 int err = 0, ioc_err = 0; 767 __u64 num_of_cmds; 768 unsigned int i, n; 769 struct request *req; 770 771 if (copy_from_user(&num_of_cmds, &user->num_of_cmds, 772 sizeof(num_of_cmds))) 773 return -EFAULT; 774 775 if (!num_of_cmds) 776 return 0; 777 778 if (num_of_cmds > MMC_IOC_MAX_CMDS) 779 return -EINVAL; 780 781 n = num_of_cmds; 782 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL); 783 if (!idata) 784 return -ENOMEM; 785 786 for (i = 0; i < n; i++) { 787 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]); 788 if (IS_ERR(idata[i])) { 789 err = PTR_ERR(idata[i]); 790 n = i; 791 goto cmd_err; 792 } 793 /* This will be NULL on non-RPMB ioctl():s */ 794 idata[i]->rpmb = rpmb; 795 } 796 797 card = md->queue.card; 798 if (IS_ERR(card)) { 799 err = PTR_ERR(card); 800 goto cmd_err; 801 } 802 803 804 /* 805 * Dispatch the ioctl()s into the block request queue. 806 */ 807 mq = &md->queue; 808 req = blk_mq_alloc_request(mq->queue, 809 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0); 810 if (IS_ERR(req)) { 811 err = PTR_ERR(req); 812 goto cmd_err; 813 } 814 req_to_mmc_queue_req(req)->drv_op = 815 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL; 816 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 817 req_to_mmc_queue_req(req)->drv_op_data = idata; 818 req_to_mmc_queue_req(req)->ioc_count = n; 819 blk_execute_rq(req, false); 820 ioc_err = req_to_mmc_queue_req(req)->drv_op_result; 821 822 /* copy to user if data and response */ 823 for (i = 0; i < n && !err; i++) 824 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]); 825 826 blk_mq_free_request(req); 827 828 cmd_err: 829 for (i = 0; i < n; i++) { 830 kfree(idata[i]->buf); 831 kfree(idata[i]); 832 } 833 kfree(idata); 834 return ioc_err ? ioc_err : err; 835 } 836 837 static int mmc_blk_check_blkdev(struct block_device *bdev) 838 { 839 /* 840 * The caller must have CAP_SYS_RAWIO, and must be calling this on the 841 * whole block device, not on a partition. This prevents overspray 842 * between sibling partitions. 843 */ 844 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev)) 845 return -EPERM; 846 return 0; 847 } 848 849 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode, 850 unsigned int cmd, unsigned long arg) 851 { 852 struct mmc_blk_data *md; 853 int ret; 854 855 switch (cmd) { 856 case MMC_IOC_CMD: 857 ret = mmc_blk_check_blkdev(bdev); 858 if (ret) 859 return ret; 860 md = mmc_blk_get(bdev->bd_disk); 861 if (!md) 862 return -EINVAL; 863 ret = mmc_blk_ioctl_cmd(md, 864 (struct mmc_ioc_cmd __user *)arg, 865 NULL); 866 mmc_blk_put(md); 867 return ret; 868 case MMC_IOC_MULTI_CMD: 869 ret = mmc_blk_check_blkdev(bdev); 870 if (ret) 871 return ret; 872 md = mmc_blk_get(bdev->bd_disk); 873 if (!md) 874 return -EINVAL; 875 ret = mmc_blk_ioctl_multi_cmd(md, 876 (struct mmc_ioc_multi_cmd __user *)arg, 877 NULL); 878 mmc_blk_put(md); 879 return ret; 880 default: 881 return -EINVAL; 882 } 883 } 884 885 #ifdef CONFIG_COMPAT 886 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode, 887 unsigned int cmd, unsigned long arg) 888 { 889 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg)); 890 } 891 #endif 892 893 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk, 894 sector_t *sector) 895 { 896 struct mmc_blk_data *md; 897 int ret; 898 899 md = mmc_blk_get(disk); 900 if (!md) 901 return -EINVAL; 902 903 if (md->queue.card) 904 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector); 905 else 906 ret = -ENODEV; 907 908 mmc_blk_put(md); 909 910 return ret; 911 } 912 913 static const struct block_device_operations mmc_bdops = { 914 .open = mmc_blk_open, 915 .release = mmc_blk_release, 916 .getgeo = mmc_blk_getgeo, 917 .owner = THIS_MODULE, 918 .ioctl = mmc_blk_ioctl, 919 #ifdef CONFIG_COMPAT 920 .compat_ioctl = mmc_blk_compat_ioctl, 921 #endif 922 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector, 923 }; 924 925 static int mmc_blk_part_switch_pre(struct mmc_card *card, 926 unsigned int part_type) 927 { 928 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK; 929 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB; 930 int ret = 0; 931 932 if ((part_type & mask) == rpmb) { 933 if (card->ext_csd.cmdq_en) { 934 ret = mmc_cmdq_disable(card); 935 if (ret) 936 return ret; 937 } 938 mmc_retune_pause(card->host); 939 } 940 941 return ret; 942 } 943 944 static int mmc_blk_part_switch_post(struct mmc_card *card, 945 unsigned int part_type) 946 { 947 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_MASK; 948 const unsigned int rpmb = EXT_CSD_PART_CONFIG_ACC_RPMB; 949 int ret = 0; 950 951 if ((part_type & mask) == rpmb) { 952 mmc_retune_unpause(card->host); 953 if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 954 ret = mmc_cmdq_enable(card); 955 } 956 957 return ret; 958 } 959 960 static inline int mmc_blk_part_switch(struct mmc_card *card, 961 unsigned int part_type) 962 { 963 int ret = 0; 964 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev); 965 966 if (main_md->part_curr == part_type) 967 return 0; 968 969 if (mmc_card_mmc(card)) { 970 u8 part_config = card->ext_csd.part_config; 971 972 ret = mmc_blk_part_switch_pre(card, part_type); 973 if (ret) 974 return ret; 975 976 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK; 977 part_config |= part_type; 978 979 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 980 EXT_CSD_PART_CONFIG, part_config, 981 card->ext_csd.part_time); 982 if (ret) { 983 mmc_blk_part_switch_post(card, part_type); 984 return ret; 985 } 986 987 card->ext_csd.part_config = part_config; 988 989 ret = mmc_blk_part_switch_post(card, main_md->part_curr); 990 } 991 992 main_md->part_curr = part_type; 993 return ret; 994 } 995 996 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks) 997 { 998 int err; 999 u32 result; 1000 __be32 *blocks; 1001 u8 resp_sz = mmc_card_ult_capacity(card) ? 8 : 4; 1002 unsigned int noio_flag; 1003 1004 struct mmc_request mrq = {}; 1005 struct mmc_command cmd = {}; 1006 struct mmc_data data = {}; 1007 struct scatterlist sg; 1008 1009 err = mmc_app_cmd(card->host, card); 1010 if (err) 1011 return err; 1012 1013 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS; 1014 cmd.arg = 0; 1015 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1016 1017 data.blksz = resp_sz; 1018 data.blocks = 1; 1019 data.flags = MMC_DATA_READ; 1020 data.sg = &sg; 1021 data.sg_len = 1; 1022 mmc_set_data_timeout(&data, card); 1023 1024 mrq.cmd = &cmd; 1025 mrq.data = &data; 1026 1027 noio_flag = memalloc_noio_save(); 1028 blocks = kmalloc(resp_sz, GFP_KERNEL); 1029 memalloc_noio_restore(noio_flag); 1030 if (!blocks) 1031 return -ENOMEM; 1032 1033 sg_init_one(&sg, blocks, resp_sz); 1034 1035 mmc_wait_for_req(card->host, &mrq); 1036 1037 if (mmc_card_ult_capacity(card)) { 1038 /* 1039 * Normally, ACMD22 returns the number of written sectors as 1040 * u32. SDUC, however, returns it as u64. This is not a 1041 * superfluous requirement, because SDUC writes may exceed 2TB. 1042 * For Linux mmc however, the previously write operation could 1043 * not be more than the block layer limits, thus just make room 1044 * for a u64 and cast the response back to u32. 1045 */ 1046 result = clamp_val(get_unaligned_be64(blocks), 0, UINT_MAX); 1047 } else { 1048 result = ntohl(*blocks); 1049 } 1050 kfree(blocks); 1051 1052 if (cmd.error || data.error) 1053 return -EIO; 1054 1055 *written_blocks = result; 1056 1057 return 0; 1058 } 1059 1060 static unsigned int mmc_blk_clock_khz(struct mmc_host *host) 1061 { 1062 if (host->actual_clock) 1063 return host->actual_clock / 1000; 1064 1065 /* Clock may be subject to a divisor, fudge it by a factor of 2. */ 1066 if (host->ios.clock) 1067 return host->ios.clock / 2000; 1068 1069 /* How can there be no clock */ 1070 WARN_ON_ONCE(1); 1071 return 100; /* 100 kHz is minimum possible value */ 1072 } 1073 1074 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host, 1075 struct mmc_data *data) 1076 { 1077 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000); 1078 unsigned int khz; 1079 1080 if (data->timeout_clks) { 1081 khz = mmc_blk_clock_khz(host); 1082 ms += DIV_ROUND_UP(data->timeout_clks, khz); 1083 } 1084 1085 return ms; 1086 } 1087 1088 /* 1089 * Attempts to reset the card and get back to the requested partition. 1090 * Therefore any error here must result in cancelling the block layer 1091 * request, it must not be reattempted without going through the mmc_blk 1092 * partition sanity checks. 1093 */ 1094 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host, 1095 int type) 1096 { 1097 int err; 1098 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev); 1099 1100 if (md->reset_done & type) 1101 return -EEXIST; 1102 1103 md->reset_done |= type; 1104 err = mmc_hw_reset(host->card); 1105 /* 1106 * A successful reset will leave the card in the main partition, but 1107 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID 1108 * in that case. 1109 */ 1110 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type; 1111 if (err) 1112 return err; 1113 /* Ensure we switch back to the correct partition */ 1114 if (mmc_blk_part_switch(host->card, md->part_type)) 1115 /* 1116 * We have failed to get back into the correct 1117 * partition, so we need to abort the whole request. 1118 */ 1119 return -ENODEV; 1120 return 0; 1121 } 1122 1123 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type) 1124 { 1125 md->reset_done &= ~type; 1126 } 1127 1128 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq) 1129 { 1130 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data; 1131 int i; 1132 1133 for (i = 1; i < mq_rq->ioc_count; i++) { 1134 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT && 1135 mmc_op_multi(idata[i]->ic.opcode)) { 1136 idata[i - 1]->flags |= MMC_BLK_IOC_DROP; 1137 idata[i]->flags |= MMC_BLK_IOC_SBC; 1138 } 1139 } 1140 } 1141 1142 /* 1143 * The non-block commands come back from the block layer after it queued it and 1144 * processed it with all other requests and then they get issued in this 1145 * function. 1146 */ 1147 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req) 1148 { 1149 struct mmc_queue_req *mq_rq; 1150 struct mmc_card *card = mq->card; 1151 struct mmc_blk_data *md = mq->blkdata; 1152 struct mmc_blk_ioc_data **idata; 1153 bool rpmb_ioctl; 1154 u8 **ext_csd; 1155 u32 status; 1156 int ret; 1157 int i; 1158 1159 mq_rq = req_to_mmc_queue_req(req); 1160 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB); 1161 1162 switch (mq_rq->drv_op) { 1163 case MMC_DRV_OP_IOCTL: 1164 if (card->ext_csd.cmdq_en) { 1165 ret = mmc_cmdq_disable(card); 1166 if (ret) 1167 break; 1168 } 1169 1170 mmc_blk_check_sbc(mq_rq); 1171 1172 fallthrough; 1173 case MMC_DRV_OP_IOCTL_RPMB: 1174 idata = mq_rq->drv_op_data; 1175 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) { 1176 ret = __mmc_blk_ioctl_cmd(card, md, idata, i); 1177 if (ret) 1178 break; 1179 } 1180 /* Always switch back to main area after RPMB access */ 1181 if (rpmb_ioctl) 1182 mmc_blk_part_switch(card, 0); 1183 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en) 1184 mmc_cmdq_enable(card); 1185 break; 1186 case MMC_DRV_OP_BOOT_WP: 1187 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP, 1188 card->ext_csd.boot_ro_lock | 1189 EXT_CSD_BOOT_WP_B_PWR_WP_EN, 1190 card->ext_csd.part_time); 1191 if (ret) 1192 pr_err("%s: Locking boot partition ro until next power on failed: %d\n", 1193 md->disk->disk_name, ret); 1194 else 1195 card->ext_csd.boot_ro_lock |= 1196 EXT_CSD_BOOT_WP_B_PWR_WP_EN; 1197 break; 1198 case MMC_DRV_OP_GET_CARD_STATUS: 1199 ret = mmc_send_status(card, &status); 1200 if (!ret) 1201 ret = status; 1202 break; 1203 case MMC_DRV_OP_GET_EXT_CSD: 1204 ext_csd = mq_rq->drv_op_data; 1205 ret = mmc_get_ext_csd(card, ext_csd); 1206 break; 1207 default: 1208 pr_err("%s: unknown driver specific operation\n", 1209 md->disk->disk_name); 1210 ret = -EINVAL; 1211 break; 1212 } 1213 mq_rq->drv_op_result = ret; 1214 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1215 } 1216 1217 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req, 1218 int type, unsigned int erase_arg) 1219 { 1220 struct mmc_blk_data *md = mq->blkdata; 1221 struct mmc_card *card = md->queue.card; 1222 unsigned int nr; 1223 sector_t from; 1224 int err = 0; 1225 blk_status_t status = BLK_STS_OK; 1226 1227 if (!mmc_card_can_erase(card)) { 1228 status = BLK_STS_NOTSUPP; 1229 goto fail; 1230 } 1231 1232 from = blk_rq_pos(req); 1233 nr = blk_rq_sectors(req); 1234 1235 do { 1236 err = 0; 1237 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1238 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1239 INAND_CMD38_ARG_EXT_CSD, 1240 erase_arg == MMC_TRIM_ARG ? 1241 INAND_CMD38_ARG_TRIM : 1242 INAND_CMD38_ARG_ERASE, 1243 card->ext_csd.generic_cmd6_time); 1244 } 1245 if (!err) 1246 err = mmc_erase(card, from, nr, erase_arg); 1247 } while (err == -EIO && !mmc_blk_reset(md, card->host, type)); 1248 if (err) 1249 status = BLK_STS_IOERR; 1250 else 1251 mmc_blk_reset_success(md, type); 1252 fail: 1253 blk_mq_end_request(req, status); 1254 } 1255 1256 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req) 1257 { 1258 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG); 1259 } 1260 1261 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req) 1262 { 1263 struct mmc_blk_data *md = mq->blkdata; 1264 struct mmc_card *card = md->queue.card; 1265 unsigned int arg = card->erase_arg; 1266 1267 if (mmc_card_broken_sd_discard(card)) 1268 arg = SD_ERASE_ARG; 1269 1270 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg); 1271 } 1272 1273 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq, 1274 struct request *req) 1275 { 1276 struct mmc_blk_data *md = mq->blkdata; 1277 struct mmc_card *card = md->queue.card; 1278 unsigned int nr, arg; 1279 sector_t from; 1280 int err = 0, type = MMC_BLK_SECDISCARD; 1281 blk_status_t status = BLK_STS_OK; 1282 1283 if (!(mmc_card_can_secure_erase_trim(card))) { 1284 status = BLK_STS_NOTSUPP; 1285 goto out; 1286 } 1287 1288 from = blk_rq_pos(req); 1289 nr = blk_rq_sectors(req); 1290 1291 if (mmc_card_can_trim(card) && !mmc_erase_group_aligned(card, from, nr)) 1292 arg = MMC_SECURE_TRIM1_ARG; 1293 else 1294 arg = MMC_SECURE_ERASE_ARG; 1295 1296 retry: 1297 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1298 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1299 INAND_CMD38_ARG_EXT_CSD, 1300 arg == MMC_SECURE_TRIM1_ARG ? 1301 INAND_CMD38_ARG_SECTRIM1 : 1302 INAND_CMD38_ARG_SECERASE, 1303 card->ext_csd.generic_cmd6_time); 1304 if (err) 1305 goto out_retry; 1306 } 1307 1308 err = mmc_erase(card, from, nr, arg); 1309 if (err == -EIO) 1310 goto out_retry; 1311 if (err) { 1312 status = BLK_STS_IOERR; 1313 goto out; 1314 } 1315 1316 if (arg == MMC_SECURE_TRIM1_ARG) { 1317 if (card->quirks & MMC_QUIRK_INAND_CMD38) { 1318 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, 1319 INAND_CMD38_ARG_EXT_CSD, 1320 INAND_CMD38_ARG_SECTRIM2, 1321 card->ext_csd.generic_cmd6_time); 1322 if (err) 1323 goto out_retry; 1324 } 1325 1326 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG); 1327 if (err == -EIO) 1328 goto out_retry; 1329 if (err) { 1330 status = BLK_STS_IOERR; 1331 goto out; 1332 } 1333 } 1334 1335 out_retry: 1336 if (err && !mmc_blk_reset(md, card->host, type)) 1337 goto retry; 1338 if (!err) 1339 mmc_blk_reset_success(md, type); 1340 out: 1341 blk_mq_end_request(req, status); 1342 } 1343 1344 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req) 1345 { 1346 struct mmc_blk_data *md = mq->blkdata; 1347 struct mmc_card *card = md->queue.card; 1348 int ret = 0; 1349 1350 ret = mmc_flush_cache(card->host); 1351 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK); 1352 } 1353 1354 /* 1355 * Reformat current write as a reliable write, supporting 1356 * both legacy and the enhanced reliable write MMC cards. 1357 * In each transfer we'll handle only as much as a single 1358 * reliable write can handle, thus finish the request in 1359 * partial completions. 1360 */ 1361 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq, 1362 struct mmc_card *card, 1363 struct request *req) 1364 { 1365 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) { 1366 /* Legacy mode imposes restrictions on transfers. */ 1367 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors)) 1368 brq->data.blocks = 1; 1369 1370 if (brq->data.blocks > card->ext_csd.rel_sectors) 1371 brq->data.blocks = card->ext_csd.rel_sectors; 1372 else if (brq->data.blocks < card->ext_csd.rel_sectors) 1373 brq->data.blocks = 1; 1374 } 1375 } 1376 1377 #define CMD_ERRORS_EXCL_OOR \ 1378 (R1_ADDRESS_ERROR | /* Misaligned address */ \ 1379 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\ 1380 R1_WP_VIOLATION | /* Tried to write to protected block */ \ 1381 R1_CARD_ECC_FAILED | /* Card ECC failed */ \ 1382 R1_CC_ERROR | /* Card controller error */ \ 1383 R1_ERROR) /* General/unknown error */ 1384 1385 #define CMD_ERRORS \ 1386 (CMD_ERRORS_EXCL_OOR | \ 1387 R1_OUT_OF_RANGE) /* Command argument out of range */ \ 1388 1389 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq) 1390 { 1391 u32 val; 1392 1393 /* 1394 * Per the SD specification(physical layer version 4.10)[1], 1395 * section 4.3.3, it explicitly states that "When the last 1396 * block of user area is read using CMD18, the host should 1397 * ignore OUT_OF_RANGE error that may occur even the sequence 1398 * is correct". And JESD84-B51 for eMMC also has a similar 1399 * statement on section 6.8.3. 1400 * 1401 * Multiple block read/write could be done by either predefined 1402 * method, namely CMD23, or open-ending mode. For open-ending mode, 1403 * we should ignore the OUT_OF_RANGE error as it's normal behaviour. 1404 * 1405 * However the spec[1] doesn't tell us whether we should also 1406 * ignore that for predefined method. But per the spec[1], section 1407 * 4.15 Set Block Count Command, it says"If illegal block count 1408 * is set, out of range error will be indicated during read/write 1409 * operation (For example, data transfer is stopped at user area 1410 * boundary)." In another word, we could expect a out of range error 1411 * in the response for the following CMD18/25. And if argument of 1412 * CMD23 + the argument of CMD18/25 exceed the max number of blocks, 1413 * we could also expect to get a -ETIMEDOUT or any error number from 1414 * the host drivers due to missing data response(for write)/data(for 1415 * read), as the cards will stop the data transfer by itself per the 1416 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode. 1417 */ 1418 1419 if (!brq->stop.error) { 1420 bool oor_with_open_end; 1421 /* If there is no error yet, check R1 response */ 1422 1423 val = brq->stop.resp[0] & CMD_ERRORS; 1424 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc; 1425 1426 if (val && !oor_with_open_end) 1427 brq->stop.error = -EIO; 1428 } 1429 } 1430 1431 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq, 1432 int recovery_mode, bool *do_rel_wr_p, 1433 bool *do_data_tag_p) 1434 { 1435 struct mmc_blk_data *md = mq->blkdata; 1436 struct mmc_card *card = md->queue.card; 1437 struct mmc_blk_request *brq = &mqrq->brq; 1438 struct request *req = mmc_queue_req_to_req(mqrq); 1439 bool do_rel_wr, do_data_tag; 1440 1441 /* 1442 * Reliable writes are used to implement Forced Unit Access and 1443 * are supported only on MMCs. 1444 */ 1445 do_rel_wr = (req->cmd_flags & REQ_FUA) && 1446 rq_data_dir(req) == WRITE && 1447 (md->flags & MMC_BLK_REL_WR); 1448 1449 memset(brq, 0, sizeof(struct mmc_blk_request)); 1450 1451 mmc_crypto_prepare_req(mqrq); 1452 1453 brq->mrq.data = &brq->data; 1454 brq->mrq.tag = req->tag; 1455 1456 brq->stop.opcode = MMC_STOP_TRANSMISSION; 1457 brq->stop.arg = 0; 1458 1459 if (rq_data_dir(req) == READ) { 1460 brq->data.flags = MMC_DATA_READ; 1461 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC; 1462 } else { 1463 brq->data.flags = MMC_DATA_WRITE; 1464 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC; 1465 } 1466 1467 brq->data.blksz = 512; 1468 brq->data.blocks = blk_rq_sectors(req); 1469 brq->data.blk_addr = blk_rq_pos(req); 1470 1471 /* 1472 * The command queue supports 2 priorities: "high" (1) and "simple" (0). 1473 * The eMMC will give "high" priority tasks priority over "simple" 1474 * priority tasks. Here we always set "simple" priority by not setting 1475 * MMC_DATA_PRIO. 1476 */ 1477 1478 /* 1479 * The block layer doesn't support all sector count 1480 * restrictions, so we need to be prepared for too big 1481 * requests. 1482 */ 1483 if (brq->data.blocks > card->host->max_blk_count) 1484 brq->data.blocks = card->host->max_blk_count; 1485 1486 if (brq->data.blocks > 1) { 1487 /* 1488 * Some SD cards in SPI mode return a CRC error or even lock up 1489 * completely when trying to read the last block using a 1490 * multiblock read command. 1491 */ 1492 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) && 1493 (blk_rq_pos(req) + blk_rq_sectors(req) == 1494 get_capacity(md->disk))) 1495 brq->data.blocks--; 1496 1497 /* 1498 * After a read error, we redo the request one (native) sector 1499 * at a time in order to accurately determine which 1500 * sectors can be read successfully. 1501 */ 1502 if (recovery_mode) 1503 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9; 1504 1505 /* 1506 * Some controllers have HW issues while operating 1507 * in multiple I/O mode 1508 */ 1509 if (card->host->ops->multi_io_quirk) 1510 brq->data.blocks = card->host->ops->multi_io_quirk(card, 1511 (rq_data_dir(req) == READ) ? 1512 MMC_DATA_READ : MMC_DATA_WRITE, 1513 brq->data.blocks); 1514 } 1515 1516 if (do_rel_wr) { 1517 mmc_apply_rel_rw(brq, card, req); 1518 brq->data.flags |= MMC_DATA_REL_WR; 1519 } 1520 1521 /* 1522 * Data tag is used only during writing meta data to speed 1523 * up write and any subsequent read of this meta data 1524 */ 1525 do_data_tag = card->ext_csd.data_tag_unit_size && 1526 (req->cmd_flags & REQ_META) && 1527 (rq_data_dir(req) == WRITE) && 1528 ((brq->data.blocks * brq->data.blksz) >= 1529 card->ext_csd.data_tag_unit_size); 1530 1531 if (do_data_tag) 1532 brq->data.flags |= MMC_DATA_DAT_TAG; 1533 1534 mmc_set_data_timeout(&brq->data, card); 1535 1536 brq->data.sg = mqrq->sg; 1537 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq); 1538 1539 /* 1540 * Adjust the sg list so it is the same size as the 1541 * request. 1542 */ 1543 if (brq->data.blocks != blk_rq_sectors(req)) { 1544 int i, data_size = brq->data.blocks << 9; 1545 struct scatterlist *sg; 1546 1547 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) { 1548 data_size -= sg->length; 1549 if (data_size <= 0) { 1550 sg->length += data_size; 1551 i++; 1552 break; 1553 } 1554 } 1555 brq->data.sg_len = i; 1556 } 1557 1558 if (do_rel_wr_p) 1559 *do_rel_wr_p = do_rel_wr; 1560 1561 if (do_data_tag_p) 1562 *do_data_tag_p = do_data_tag; 1563 } 1564 1565 #define MMC_CQE_RETRIES 2 1566 1567 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req) 1568 { 1569 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1570 struct mmc_request *mrq = &mqrq->brq.mrq; 1571 struct request_queue *q = req->q; 1572 struct mmc_host *host = mq->card->host; 1573 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 1574 unsigned long flags; 1575 bool put_card; 1576 int err; 1577 1578 mmc_cqe_post_req(host, mrq); 1579 1580 if (mrq->cmd && mrq->cmd->error) 1581 err = mrq->cmd->error; 1582 else if (mrq->data && mrq->data->error) 1583 err = mrq->data->error; 1584 else 1585 err = 0; 1586 1587 if (err) { 1588 if (mqrq->retries++ < MMC_CQE_RETRIES) 1589 blk_mq_requeue_request(req, true); 1590 else 1591 blk_mq_end_request(req, BLK_STS_IOERR); 1592 } else if (mrq->data) { 1593 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered)) 1594 blk_mq_requeue_request(req, true); 1595 else 1596 __blk_mq_end_request(req, BLK_STS_OK); 1597 } else if (mq->in_recovery) { 1598 blk_mq_requeue_request(req, true); 1599 } else { 1600 blk_mq_end_request(req, BLK_STS_OK); 1601 } 1602 1603 spin_lock_irqsave(&mq->lock, flags); 1604 1605 mq->in_flight[issue_type] -= 1; 1606 1607 put_card = (mmc_tot_in_flight(mq) == 0); 1608 1609 mmc_cqe_check_busy(mq); 1610 1611 spin_unlock_irqrestore(&mq->lock, flags); 1612 1613 if (!mq->cqe_busy) 1614 blk_mq_run_hw_queues(q, true); 1615 1616 if (put_card) 1617 mmc_put_card(mq->card, &mq->ctx); 1618 } 1619 1620 void mmc_blk_cqe_recovery(struct mmc_queue *mq) 1621 { 1622 struct mmc_card *card = mq->card; 1623 struct mmc_host *host = card->host; 1624 int err; 1625 1626 pr_debug("%s: CQE recovery start\n", mmc_hostname(host)); 1627 1628 err = mmc_cqe_recovery(host); 1629 if (err) 1630 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY); 1631 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY); 1632 1633 pr_debug("%s: CQE recovery done\n", mmc_hostname(host)); 1634 } 1635 1636 static void mmc_blk_cqe_req_done(struct mmc_request *mrq) 1637 { 1638 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 1639 brq.mrq); 1640 struct request *req = mmc_queue_req_to_req(mqrq); 1641 struct request_queue *q = req->q; 1642 struct mmc_queue *mq = q->queuedata; 1643 1644 /* 1645 * Block layer timeouts race with completions which means the normal 1646 * completion path cannot be used during recovery. 1647 */ 1648 if (mq->in_recovery) 1649 mmc_blk_cqe_complete_rq(mq, req); 1650 else if (likely(!blk_should_fake_timeout(req->q))) 1651 blk_mq_complete_request(req); 1652 } 1653 1654 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq) 1655 { 1656 mrq->done = mmc_blk_cqe_req_done; 1657 mrq->recovery_notifier = mmc_cqe_recovery_notifier; 1658 1659 return mmc_cqe_start_req(host, mrq); 1660 } 1661 1662 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq, 1663 struct request *req) 1664 { 1665 struct mmc_blk_request *brq = &mqrq->brq; 1666 1667 memset(brq, 0, sizeof(*brq)); 1668 1669 brq->mrq.cmd = &brq->cmd; 1670 brq->mrq.tag = req->tag; 1671 1672 return &brq->mrq; 1673 } 1674 1675 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req) 1676 { 1677 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1678 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req); 1679 1680 mrq->cmd->opcode = MMC_SWITCH; 1681 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) | 1682 (EXT_CSD_FLUSH_CACHE << 16) | 1683 (1 << 8) | 1684 EXT_CSD_CMD_SET_NORMAL; 1685 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B; 1686 1687 return mmc_blk_cqe_start_req(mq->card->host, mrq); 1688 } 1689 1690 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1691 { 1692 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1693 struct mmc_host *host = mq->card->host; 1694 int err; 1695 1696 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 1697 mqrq->brq.mrq.done = mmc_blk_hsq_req_done; 1698 mmc_pre_req(host, &mqrq->brq.mrq); 1699 1700 err = mmc_cqe_start_req(host, &mqrq->brq.mrq); 1701 if (err) 1702 mmc_post_req(host, &mqrq->brq.mrq, err); 1703 1704 return err; 1705 } 1706 1707 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req) 1708 { 1709 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1710 struct mmc_host *host = mq->card->host; 1711 1712 if (host->hsq_enabled) 1713 return mmc_blk_hsq_issue_rw_rq(mq, req); 1714 1715 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL); 1716 1717 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq); 1718 } 1719 1720 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq, 1721 struct mmc_card *card, 1722 int recovery_mode, 1723 struct mmc_queue *mq) 1724 { 1725 u32 readcmd, writecmd; 1726 struct mmc_blk_request *brq = &mqrq->brq; 1727 struct request *req = mmc_queue_req_to_req(mqrq); 1728 struct mmc_blk_data *md = mq->blkdata; 1729 bool do_rel_wr, do_data_tag; 1730 1731 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag); 1732 1733 brq->mrq.cmd = &brq->cmd; 1734 1735 brq->cmd.arg = blk_rq_pos(req); 1736 if (!mmc_card_blockaddr(card)) 1737 brq->cmd.arg <<= 9; 1738 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC; 1739 1740 if (brq->data.blocks > 1 || do_rel_wr) { 1741 /* SPI multiblock writes terminate using a special 1742 * token, not a STOP_TRANSMISSION request. 1743 */ 1744 if (!mmc_host_is_spi(card->host) || 1745 rq_data_dir(req) == READ) 1746 brq->mrq.stop = &brq->stop; 1747 readcmd = MMC_READ_MULTIPLE_BLOCK; 1748 writecmd = MMC_WRITE_MULTIPLE_BLOCK; 1749 } else { 1750 brq->mrq.stop = NULL; 1751 readcmd = MMC_READ_SINGLE_BLOCK; 1752 writecmd = MMC_WRITE_BLOCK; 1753 } 1754 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd; 1755 1756 /* 1757 * Pre-defined multi-block transfers are preferable to 1758 * open ended-ones (and necessary for reliable writes). 1759 * However, it is not sufficient to just send CMD23, 1760 * and avoid the final CMD12, as on an error condition 1761 * CMD12 (stop) needs to be sent anyway. This, coupled 1762 * with Auto-CMD23 enhancements provided by some 1763 * hosts, means that the complexity of dealing 1764 * with this is best left to the host. If CMD23 is 1765 * supported by card and host, we'll fill sbc in and let 1766 * the host deal with handling it correctly. This means 1767 * that for hosts that don't expose MMC_CAP_CMD23, no 1768 * change of behavior will be observed. 1769 * 1770 * N.B: Some MMC cards experience perf degradation. 1771 * We'll avoid using CMD23-bounded multiblock writes for 1772 * these, while retaining features like reliable writes. 1773 */ 1774 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) && 1775 (do_rel_wr || !mmc_card_blk_no_cmd23(card) || do_data_tag)) { 1776 brq->sbc.opcode = MMC_SET_BLOCK_COUNT; 1777 brq->sbc.arg = brq->data.blocks | 1778 (do_rel_wr ? (1 << 31) : 0) | 1779 (do_data_tag ? (1 << 29) : 0); 1780 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC; 1781 brq->mrq.sbc = &brq->sbc; 1782 } 1783 1784 if (mmc_card_ult_capacity(card)) { 1785 brq->cmd.ext_addr = blk_rq_pos(req) >> 32; 1786 brq->cmd.has_ext_addr = true; 1787 } 1788 } 1789 1790 #define MMC_MAX_RETRIES 5 1791 #define MMC_DATA_RETRIES 2 1792 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1) 1793 1794 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout) 1795 { 1796 struct mmc_command cmd = { 1797 .opcode = MMC_STOP_TRANSMISSION, 1798 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC, 1799 /* Some hosts wait for busy anyway, so provide a busy timeout */ 1800 .busy_timeout = timeout, 1801 }; 1802 1803 return mmc_wait_for_cmd(card->host, &cmd, 5); 1804 } 1805 1806 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req) 1807 { 1808 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1809 struct mmc_blk_request *brq = &mqrq->brq; 1810 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data); 1811 int err; 1812 1813 mmc_retune_hold_now(card->host); 1814 1815 mmc_blk_send_stop(card, timeout); 1816 1817 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO); 1818 1819 mmc_retune_release(card->host); 1820 1821 return err; 1822 } 1823 1824 #define MMC_READ_SINGLE_RETRIES 2 1825 1826 /* Single (native) sector read during recovery */ 1827 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req) 1828 { 1829 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1830 struct mmc_request *mrq = &mqrq->brq.mrq; 1831 struct mmc_card *card = mq->card; 1832 struct mmc_host *host = card->host; 1833 blk_status_t error = BLK_STS_OK; 1834 size_t bytes_per_read = queue_physical_block_size(mq->queue); 1835 1836 do { 1837 u32 status; 1838 int err; 1839 int retries = 0; 1840 1841 while (retries++ <= MMC_READ_SINGLE_RETRIES) { 1842 mmc_blk_rw_rq_prep(mqrq, card, 1, mq); 1843 1844 mmc_wait_for_req(host, mrq); 1845 1846 err = mmc_send_status(card, &status); 1847 if (err) 1848 goto error_exit; 1849 1850 if (!mmc_host_is_spi(host) && 1851 !mmc_ready_for_data(status)) { 1852 err = mmc_blk_fix_state(card, req); 1853 if (err) 1854 goto error_exit; 1855 } 1856 1857 if (!mrq->cmd->error) 1858 break; 1859 } 1860 1861 if (mrq->cmd->error || 1862 mrq->data->error || 1863 (!mmc_host_is_spi(host) && 1864 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS))) 1865 error = BLK_STS_IOERR; 1866 else 1867 error = BLK_STS_OK; 1868 1869 } while (blk_update_request(req, error, bytes_per_read)); 1870 1871 return; 1872 1873 error_exit: 1874 mrq->data->bytes_xfered = 0; 1875 blk_update_request(req, BLK_STS_IOERR, bytes_per_read); 1876 /* Let it try the remaining request again */ 1877 if (mqrq->retries > MMC_MAX_RETRIES - 1) 1878 mqrq->retries = MMC_MAX_RETRIES - 1; 1879 } 1880 1881 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq) 1882 { 1883 return !!brq->mrq.sbc; 1884 } 1885 1886 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq) 1887 { 1888 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR; 1889 } 1890 1891 /* 1892 * Check for errors the host controller driver might not have seen such as 1893 * response mode errors or invalid card state. 1894 */ 1895 static bool mmc_blk_status_error(struct request *req, u32 status) 1896 { 1897 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1898 struct mmc_blk_request *brq = &mqrq->brq; 1899 struct mmc_queue *mq = req->q->queuedata; 1900 u32 stop_err_bits; 1901 1902 if (mmc_host_is_spi(mq->card->host)) 1903 return false; 1904 1905 stop_err_bits = mmc_blk_stop_err_bits(brq); 1906 1907 return brq->cmd.resp[0] & CMD_ERRORS || 1908 brq->stop.resp[0] & stop_err_bits || 1909 status & stop_err_bits || 1910 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status)); 1911 } 1912 1913 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq) 1914 { 1915 return !brq->sbc.error && !brq->cmd.error && 1916 !(brq->cmd.resp[0] & CMD_ERRORS); 1917 } 1918 1919 /* 1920 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple 1921 * policy: 1922 * 1. A request that has transferred at least some data is considered 1923 * successful and will be requeued if there is remaining data to 1924 * transfer. 1925 * 2. Otherwise the number of retries is incremented and the request 1926 * will be requeued if there are remaining retries. 1927 * 3. Otherwise the request will be errored out. 1928 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and 1929 * mqrq->retries. So there are only 4 possible actions here: 1930 * 1. do not accept the bytes_xfered value i.e. set it to zero 1931 * 2. change mqrq->retries to determine the number of retries 1932 * 3. try to reset the card 1933 * 4. read one sector at a time 1934 */ 1935 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req) 1936 { 1937 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 1938 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 1939 struct mmc_blk_request *brq = &mqrq->brq; 1940 struct mmc_blk_data *md = mq->blkdata; 1941 struct mmc_card *card = mq->card; 1942 u32 status; 1943 u32 blocks; 1944 int err; 1945 1946 /* 1947 * Some errors the host driver might not have seen. Set the number of 1948 * bytes transferred to zero in that case. 1949 */ 1950 err = __mmc_send_status(card, &status, 0); 1951 if (err || mmc_blk_status_error(req, status)) 1952 brq->data.bytes_xfered = 0; 1953 1954 mmc_retune_release(card->host); 1955 1956 /* 1957 * Try again to get the status. This also provides an opportunity for 1958 * re-tuning. 1959 */ 1960 if (err) 1961 err = __mmc_send_status(card, &status, 0); 1962 1963 /* 1964 * Nothing more to do after the number of bytes transferred has been 1965 * updated and there is no card. 1966 */ 1967 if (err && mmc_detect_card_removed(card->host)) 1968 return; 1969 1970 /* Try to get back to "tran" state */ 1971 if (!mmc_host_is_spi(mq->card->host) && 1972 (err || !mmc_ready_for_data(status))) 1973 err = mmc_blk_fix_state(mq->card, req); 1974 1975 /* 1976 * Special case for SD cards where the card might record the number of 1977 * blocks written. 1978 */ 1979 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) && 1980 rq_data_dir(req) == WRITE) { 1981 if (mmc_sd_num_wr_blocks(card, &blocks)) 1982 brq->data.bytes_xfered = 0; 1983 else 1984 brq->data.bytes_xfered = blocks << 9; 1985 } 1986 1987 /* Reset if the card is in a bad state */ 1988 if (!mmc_host_is_spi(mq->card->host) && 1989 err && mmc_blk_reset(md, card->host, type)) { 1990 pr_err("%s: recovery failed!\n", req->q->disk->disk_name); 1991 mqrq->retries = MMC_NO_RETRIES; 1992 return; 1993 } 1994 1995 /* 1996 * If anything was done, just return and if there is anything remaining 1997 * on the request it will get requeued. 1998 */ 1999 if (brq->data.bytes_xfered) 2000 return; 2001 2002 /* Reset before last retry */ 2003 if (mqrq->retries + 1 == MMC_MAX_RETRIES && 2004 mmc_blk_reset(md, card->host, type)) 2005 return; 2006 2007 /* Command errors fail fast, so use all MMC_MAX_RETRIES */ 2008 if (brq->sbc.error || brq->cmd.error) 2009 return; 2010 2011 /* Reduce the remaining retries for data errors */ 2012 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) { 2013 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES; 2014 return; 2015 } 2016 2017 if (rq_data_dir(req) == READ && brq->data.blocks > 2018 queue_physical_block_size(mq->queue) >> 9) { 2019 /* Read one (native) sector at a time */ 2020 mmc_blk_read_single(mq, req); 2021 return; 2022 } 2023 } 2024 2025 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq) 2026 { 2027 mmc_blk_eval_resp_error(brq); 2028 2029 return brq->sbc.error || brq->cmd.error || brq->stop.error || 2030 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS; 2031 } 2032 2033 static int mmc_spi_err_check(struct mmc_card *card) 2034 { 2035 u32 status = 0; 2036 int err; 2037 2038 /* 2039 * SPI does not have a TRAN state we have to wait on, instead the 2040 * card is ready again when it no longer holds the line LOW. 2041 * We still have to ensure two things here before we know the write 2042 * was successful: 2043 * 1. The card has not disconnected during busy and we actually read our 2044 * own pull-up, thinking it was still connected, so ensure it 2045 * still responds. 2046 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a 2047 * just reconnected card after being disconnected during busy. 2048 */ 2049 err = __mmc_send_status(card, &status, 0); 2050 if (err) 2051 return err; 2052 /* All R1 and R2 bits of SPI are errors in our case */ 2053 if (status) 2054 return -EIO; 2055 return 0; 2056 } 2057 2058 static int mmc_blk_busy_cb(void *cb_data, bool *busy) 2059 { 2060 struct mmc_blk_busy_data *data = cb_data; 2061 u32 status = 0; 2062 int err; 2063 2064 err = mmc_send_status(data->card, &status); 2065 if (err) 2066 return err; 2067 2068 /* Accumulate response error bits. */ 2069 data->status |= status; 2070 2071 *busy = !mmc_ready_for_data(status); 2072 return 0; 2073 } 2074 2075 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req) 2076 { 2077 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2078 struct mmc_blk_busy_data cb_data; 2079 int err; 2080 2081 if (rq_data_dir(req) == READ) 2082 return 0; 2083 2084 if (mmc_host_is_spi(card->host)) { 2085 err = mmc_spi_err_check(card); 2086 if (err) 2087 mqrq->brq.data.bytes_xfered = 0; 2088 return err; 2089 } 2090 2091 cb_data.card = card; 2092 cb_data.status = 0; 2093 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS, 2094 &mmc_blk_busy_cb, &cb_data); 2095 2096 /* 2097 * Do not assume data transferred correctly if there are any error bits 2098 * set. 2099 */ 2100 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) { 2101 mqrq->brq.data.bytes_xfered = 0; 2102 err = err ? err : -EIO; 2103 } 2104 2105 /* Copy the exception bit so it will be seen later on */ 2106 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT) 2107 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT; 2108 2109 return err; 2110 } 2111 2112 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq, 2113 struct request *req) 2114 { 2115 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE; 2116 2117 mmc_blk_reset_success(mq->blkdata, type); 2118 } 2119 2120 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req) 2121 { 2122 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2123 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered; 2124 2125 if (nr_bytes) { 2126 if (blk_update_request(req, BLK_STS_OK, nr_bytes)) 2127 blk_mq_requeue_request(req, true); 2128 else 2129 __blk_mq_end_request(req, BLK_STS_OK); 2130 } else if (!blk_rq_bytes(req)) { 2131 __blk_mq_end_request(req, BLK_STS_IOERR); 2132 } else if (mqrq->retries++ < MMC_MAX_RETRIES) { 2133 blk_mq_requeue_request(req, true); 2134 } else { 2135 if (mmc_card_removed(mq->card)) 2136 req->rq_flags |= RQF_QUIET; 2137 blk_mq_end_request(req, BLK_STS_IOERR); 2138 } 2139 } 2140 2141 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq, 2142 struct mmc_queue_req *mqrq) 2143 { 2144 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) && 2145 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT || 2146 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT); 2147 } 2148 2149 static void mmc_blk_urgent_bkops(struct mmc_queue *mq, 2150 struct mmc_queue_req *mqrq) 2151 { 2152 if (mmc_blk_urgent_bkops_needed(mq, mqrq)) 2153 mmc_run_bkops(mq->card); 2154 } 2155 2156 static void mmc_blk_hsq_req_done(struct mmc_request *mrq) 2157 { 2158 struct mmc_queue_req *mqrq = 2159 container_of(mrq, struct mmc_queue_req, brq.mrq); 2160 struct request *req = mmc_queue_req_to_req(mqrq); 2161 struct request_queue *q = req->q; 2162 struct mmc_queue *mq = q->queuedata; 2163 struct mmc_host *host = mq->card->host; 2164 unsigned long flags; 2165 2166 if (mmc_blk_rq_error(&mqrq->brq) || 2167 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2168 spin_lock_irqsave(&mq->lock, flags); 2169 mq->recovery_needed = true; 2170 mq->recovery_req = req; 2171 spin_unlock_irqrestore(&mq->lock, flags); 2172 2173 host->cqe_ops->cqe_recovery_start(host); 2174 2175 schedule_work(&mq->recovery_work); 2176 return; 2177 } 2178 2179 mmc_blk_rw_reset_success(mq, req); 2180 2181 /* 2182 * Block layer timeouts race with completions which means the normal 2183 * completion path cannot be used during recovery. 2184 */ 2185 if (mq->in_recovery) 2186 mmc_blk_cqe_complete_rq(mq, req); 2187 else if (likely(!blk_should_fake_timeout(req->q))) 2188 blk_mq_complete_request(req); 2189 } 2190 2191 void mmc_blk_mq_complete(struct request *req) 2192 { 2193 struct mmc_queue *mq = req->q->queuedata; 2194 struct mmc_host *host = mq->card->host; 2195 2196 if (host->cqe_enabled) 2197 mmc_blk_cqe_complete_rq(mq, req); 2198 else if (likely(!blk_should_fake_timeout(req->q))) 2199 mmc_blk_mq_complete_rq(mq, req); 2200 } 2201 2202 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq, 2203 struct request *req) 2204 { 2205 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2206 struct mmc_host *host = mq->card->host; 2207 2208 if (mmc_blk_rq_error(&mqrq->brq) || 2209 mmc_blk_card_busy(mq->card, req)) { 2210 mmc_blk_mq_rw_recovery(mq, req); 2211 } else { 2212 mmc_blk_rw_reset_success(mq, req); 2213 mmc_retune_release(host); 2214 } 2215 2216 mmc_blk_urgent_bkops(mq, mqrq); 2217 } 2218 2219 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type) 2220 { 2221 unsigned long flags; 2222 bool put_card; 2223 2224 spin_lock_irqsave(&mq->lock, flags); 2225 2226 mq->in_flight[issue_type] -= 1; 2227 2228 put_card = (mmc_tot_in_flight(mq) == 0); 2229 2230 spin_unlock_irqrestore(&mq->lock, flags); 2231 2232 if (put_card) 2233 mmc_put_card(mq->card, &mq->ctx); 2234 } 2235 2236 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req, 2237 bool can_sleep) 2238 { 2239 enum mmc_issue_type issue_type = mmc_issue_type(mq, req); 2240 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2241 struct mmc_request *mrq = &mqrq->brq.mrq; 2242 struct mmc_host *host = mq->card->host; 2243 2244 mmc_post_req(host, mrq, 0); 2245 2246 /* 2247 * Block layer timeouts race with completions which means the normal 2248 * completion path cannot be used during recovery. 2249 */ 2250 if (mq->in_recovery) { 2251 mmc_blk_mq_complete_rq(mq, req); 2252 } else if (likely(!blk_should_fake_timeout(req->q))) { 2253 if (can_sleep) 2254 blk_mq_complete_request_direct(req, mmc_blk_mq_complete); 2255 else 2256 blk_mq_complete_request(req); 2257 } 2258 2259 mmc_blk_mq_dec_in_flight(mq, issue_type); 2260 } 2261 2262 void mmc_blk_mq_recovery(struct mmc_queue *mq) 2263 { 2264 struct request *req = mq->recovery_req; 2265 struct mmc_host *host = mq->card->host; 2266 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2267 2268 mq->recovery_req = NULL; 2269 mq->rw_wait = false; 2270 2271 if (mmc_blk_rq_error(&mqrq->brq)) { 2272 mmc_retune_hold_now(host); 2273 mmc_blk_mq_rw_recovery(mq, req); 2274 } 2275 2276 mmc_blk_urgent_bkops(mq, mqrq); 2277 2278 mmc_blk_mq_post_req(mq, req, true); 2279 } 2280 2281 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq, 2282 struct request **prev_req) 2283 { 2284 if (mmc_host_can_done_complete(mq->card->host)) 2285 return; 2286 2287 mutex_lock(&mq->complete_lock); 2288 2289 if (!mq->complete_req) 2290 goto out_unlock; 2291 2292 mmc_blk_mq_poll_completion(mq, mq->complete_req); 2293 2294 if (prev_req) 2295 *prev_req = mq->complete_req; 2296 else 2297 mmc_blk_mq_post_req(mq, mq->complete_req, true); 2298 2299 mq->complete_req = NULL; 2300 2301 out_unlock: 2302 mutex_unlock(&mq->complete_lock); 2303 } 2304 2305 void mmc_blk_mq_complete_work(struct work_struct *work) 2306 { 2307 struct mmc_queue *mq = container_of(work, struct mmc_queue, 2308 complete_work); 2309 2310 mmc_blk_mq_complete_prev_req(mq, NULL); 2311 } 2312 2313 static void mmc_blk_mq_req_done(struct mmc_request *mrq) 2314 { 2315 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req, 2316 brq.mrq); 2317 struct request *req = mmc_queue_req_to_req(mqrq); 2318 struct request_queue *q = req->q; 2319 struct mmc_queue *mq = q->queuedata; 2320 struct mmc_host *host = mq->card->host; 2321 unsigned long flags; 2322 2323 if (!mmc_host_can_done_complete(host)) { 2324 bool waiting; 2325 2326 /* 2327 * We cannot complete the request in this context, so record 2328 * that there is a request to complete, and that a following 2329 * request does not need to wait (although it does need to 2330 * complete complete_req first). 2331 */ 2332 spin_lock_irqsave(&mq->lock, flags); 2333 mq->complete_req = req; 2334 mq->rw_wait = false; 2335 waiting = mq->waiting; 2336 spin_unlock_irqrestore(&mq->lock, flags); 2337 2338 /* 2339 * If 'waiting' then the waiting task will complete this 2340 * request, otherwise queue a work to do it. Note that 2341 * complete_work may still race with the dispatch of a following 2342 * request. 2343 */ 2344 if (waiting) 2345 wake_up(&mq->wait); 2346 else 2347 queue_work(mq->card->complete_wq, &mq->complete_work); 2348 2349 return; 2350 } 2351 2352 /* Take the recovery path for errors or urgent background operations */ 2353 if (mmc_blk_rq_error(&mqrq->brq) || 2354 mmc_blk_urgent_bkops_needed(mq, mqrq)) { 2355 spin_lock_irqsave(&mq->lock, flags); 2356 mq->recovery_needed = true; 2357 mq->recovery_req = req; 2358 spin_unlock_irqrestore(&mq->lock, flags); 2359 wake_up(&mq->wait); 2360 schedule_work(&mq->recovery_work); 2361 return; 2362 } 2363 2364 mmc_blk_rw_reset_success(mq, req); 2365 2366 mq->rw_wait = false; 2367 wake_up(&mq->wait); 2368 2369 /* context unknown */ 2370 mmc_blk_mq_post_req(mq, req, false); 2371 } 2372 2373 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err) 2374 { 2375 unsigned long flags; 2376 bool done; 2377 2378 /* 2379 * Wait while there is another request in progress, but not if recovery 2380 * is needed. Also indicate whether there is a request waiting to start. 2381 */ 2382 spin_lock_irqsave(&mq->lock, flags); 2383 if (mq->recovery_needed) { 2384 *err = -EBUSY; 2385 done = true; 2386 } else { 2387 done = !mq->rw_wait; 2388 } 2389 mq->waiting = !done; 2390 spin_unlock_irqrestore(&mq->lock, flags); 2391 2392 return done; 2393 } 2394 2395 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req) 2396 { 2397 int err = 0; 2398 2399 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err)); 2400 2401 /* Always complete the previous request if there is one */ 2402 mmc_blk_mq_complete_prev_req(mq, prev_req); 2403 2404 return err; 2405 } 2406 2407 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq, 2408 struct request *req) 2409 { 2410 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req); 2411 struct mmc_host *host = mq->card->host; 2412 struct request *prev_req = NULL; 2413 int err = 0; 2414 2415 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq); 2416 2417 mqrq->brq.mrq.done = mmc_blk_mq_req_done; 2418 2419 mmc_pre_req(host, &mqrq->brq.mrq); 2420 2421 err = mmc_blk_rw_wait(mq, &prev_req); 2422 if (err) 2423 goto out_post_req; 2424 2425 mq->rw_wait = true; 2426 2427 err = mmc_start_request(host, &mqrq->brq.mrq); 2428 2429 if (prev_req) 2430 mmc_blk_mq_post_req(mq, prev_req, true); 2431 2432 if (err) 2433 mq->rw_wait = false; 2434 2435 /* Release re-tuning here where there is no synchronization required */ 2436 if (err || mmc_host_can_done_complete(host)) 2437 mmc_retune_release(host); 2438 2439 out_post_req: 2440 if (err) 2441 mmc_post_req(host, &mqrq->brq.mrq, err); 2442 2443 return err; 2444 } 2445 2446 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host) 2447 { 2448 if (host->cqe_enabled) 2449 return host->cqe_ops->cqe_wait_for_idle(host); 2450 2451 return mmc_blk_rw_wait(mq, NULL); 2452 } 2453 2454 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req) 2455 { 2456 struct mmc_blk_data *md = mq->blkdata; 2457 struct mmc_card *card = md->queue.card; 2458 struct mmc_host *host = card->host; 2459 int ret; 2460 2461 ret = mmc_blk_part_switch(card, md->part_type); 2462 if (ret) 2463 return MMC_REQ_FAILED_TO_START; 2464 2465 switch (mmc_issue_type(mq, req)) { 2466 case MMC_ISSUE_SYNC: 2467 ret = mmc_blk_wait_for_idle(mq, host); 2468 if (ret) 2469 return MMC_REQ_BUSY; 2470 switch (req_op(req)) { 2471 case REQ_OP_DRV_IN: 2472 case REQ_OP_DRV_OUT: 2473 mmc_blk_issue_drv_op(mq, req); 2474 break; 2475 case REQ_OP_DISCARD: 2476 mmc_blk_issue_discard_rq(mq, req); 2477 break; 2478 case REQ_OP_SECURE_ERASE: 2479 mmc_blk_issue_secdiscard_rq(mq, req); 2480 break; 2481 case REQ_OP_WRITE_ZEROES: 2482 mmc_blk_issue_trim_rq(mq, req); 2483 break; 2484 case REQ_OP_FLUSH: 2485 mmc_blk_issue_flush(mq, req); 2486 break; 2487 default: 2488 WARN_ON_ONCE(1); 2489 return MMC_REQ_FAILED_TO_START; 2490 } 2491 return MMC_REQ_FINISHED; 2492 case MMC_ISSUE_DCMD: 2493 case MMC_ISSUE_ASYNC: 2494 switch (req_op(req)) { 2495 case REQ_OP_FLUSH: 2496 if (!mmc_cache_enabled(host)) { 2497 blk_mq_end_request(req, BLK_STS_OK); 2498 return MMC_REQ_FINISHED; 2499 } 2500 ret = mmc_blk_cqe_issue_flush(mq, req); 2501 break; 2502 case REQ_OP_WRITE: 2503 card->written_flag = true; 2504 fallthrough; 2505 case REQ_OP_READ: 2506 if (host->cqe_enabled) 2507 ret = mmc_blk_cqe_issue_rw_rq(mq, req); 2508 else 2509 ret = mmc_blk_mq_issue_rw_rq(mq, req); 2510 break; 2511 default: 2512 WARN_ON_ONCE(1); 2513 ret = -EINVAL; 2514 } 2515 if (!ret) 2516 return MMC_REQ_STARTED; 2517 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START; 2518 default: 2519 WARN_ON_ONCE(1); 2520 return MMC_REQ_FAILED_TO_START; 2521 } 2522 } 2523 2524 static inline int mmc_blk_readonly(struct mmc_card *card) 2525 { 2526 return mmc_card_readonly(card) || 2527 !(card->csd.cmdclass & CCC_BLOCK_WRITE); 2528 } 2529 2530 /* 2531 * Search for a declared partitions node for the disk in mmc-card related node. 2532 * 2533 * This is to permit support for partition table defined in DT in special case 2534 * where a partition table is not written in the disk and is expected to be 2535 * passed from the running system. 2536 * 2537 * For the user disk, "partitions" node is searched. 2538 * For the special HW disk, "partitions-" node with the appended name is used 2539 * following this conversion table (to adhere to JEDEC naming) 2540 * - boot0 -> partitions-boot1 2541 * - boot1 -> partitions-boot2 2542 * - gp0 -> partitions-gp1 2543 * - gp1 -> partitions-gp2 2544 * - gp2 -> partitions-gp3 2545 * - gp3 -> partitions-gp4 2546 */ 2547 static struct fwnode_handle *mmc_blk_get_partitions_node(struct device *mmc_dev, 2548 const char *subname) 2549 { 2550 const char *node_name = "partitions"; 2551 2552 if (subname) { 2553 mmc_dev = mmc_dev->parent; 2554 2555 /* 2556 * Check if we are allocating a BOOT disk boot0/1 disk. 2557 * In DT we use the JEDEC naming boot1/2. 2558 */ 2559 if (!strcmp(subname, "boot0")) 2560 node_name = "partitions-boot1"; 2561 if (!strcmp(subname, "boot1")) 2562 node_name = "partitions-boot2"; 2563 /* 2564 * Check if we are allocating a GP disk gp0/1/2/3 disk. 2565 * In DT we use the JEDEC naming gp1/2/3/4. 2566 */ 2567 if (!strcmp(subname, "gp0")) 2568 node_name = "partitions-gp1"; 2569 if (!strcmp(subname, "gp1")) 2570 node_name = "partitions-gp2"; 2571 if (!strcmp(subname, "gp2")) 2572 node_name = "partitions-gp3"; 2573 if (!strcmp(subname, "gp3")) 2574 node_name = "partitions-gp4"; 2575 } 2576 2577 return device_get_named_child_node(mmc_dev, node_name); 2578 } 2579 2580 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card, 2581 struct device *parent, 2582 sector_t size, 2583 bool default_ro, 2584 const char *subname, 2585 int area_type, 2586 unsigned int part_type) 2587 { 2588 struct fwnode_handle *disk_fwnode; 2589 struct mmc_blk_data *md; 2590 int devidx, ret; 2591 char cap_str[10]; 2592 unsigned int features = 0; 2593 2594 devidx = ida_alloc_max(&mmc_blk_ida, max_devices - 1, GFP_KERNEL); 2595 if (devidx < 0) { 2596 /* 2597 * We get -ENOSPC because there are no more any available 2598 * devidx. The reason may be that, either userspace haven't yet 2599 * unmounted the partitions, which postpones mmc_blk_release() 2600 * from being called, or the device has more partitions than 2601 * what we support. 2602 */ 2603 if (devidx == -ENOSPC) 2604 dev_err(mmc_dev(card->host), 2605 "no more device IDs available\n"); 2606 2607 return ERR_PTR(devidx); 2608 } 2609 2610 md = kzalloc(sizeof(*md), GFP_KERNEL); 2611 if (!md) { 2612 ret = -ENOMEM; 2613 goto out; 2614 } 2615 2616 md->area_type = area_type; 2617 2618 /* 2619 * Set the read-only status based on the supported commands 2620 * and the write protect switch. 2621 */ 2622 md->read_only = mmc_blk_readonly(card); 2623 2624 if (mmc_host_can_cmd23(card->host) && mmc_card_can_cmd23(card)) 2625 md->flags |= MMC_BLK_CMD23; 2626 2627 if (md->flags & MMC_BLK_CMD23 && 2628 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) || 2629 card->ext_csd.rel_sectors)) { 2630 md->flags |= MMC_BLK_REL_WR; 2631 features |= (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA); 2632 } else if (mmc_cache_enabled(card->host)) { 2633 features |= BLK_FEAT_WRITE_CACHE; 2634 } 2635 2636 md->disk = mmc_init_queue(&md->queue, card, features); 2637 if (IS_ERR(md->disk)) { 2638 ret = PTR_ERR(md->disk); 2639 goto err_kfree; 2640 } 2641 2642 INIT_LIST_HEAD(&md->part); 2643 INIT_LIST_HEAD(&md->rpmbs); 2644 kref_init(&md->kref); 2645 2646 md->queue.blkdata = md; 2647 md->part_type = part_type; 2648 2649 md->disk->major = MMC_BLOCK_MAJOR; 2650 md->disk->minors = perdev_minors; 2651 md->disk->first_minor = devidx * perdev_minors; 2652 md->disk->fops = &mmc_bdops; 2653 md->disk->private_data = md; 2654 md->parent = parent; 2655 set_disk_ro(md->disk, md->read_only || default_ro); 2656 if (area_type & MMC_BLK_DATA_AREA_RPMB) 2657 md->disk->flags |= GENHD_FL_NO_PART; 2658 2659 /* 2660 * As discussed on lkml, GENHD_FL_REMOVABLE should: 2661 * 2662 * - be set for removable media with permanent block devices 2663 * - be unset for removable block devices with permanent media 2664 * 2665 * Since MMC block devices clearly fall under the second 2666 * case, we do not set GENHD_FL_REMOVABLE. Userspace 2667 * should use the block device creation/destruction hotplug 2668 * messages to tell when the card is present. 2669 */ 2670 2671 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name), 2672 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2673 2674 set_capacity(md->disk, size); 2675 2676 string_get_size((u64)size, 512, STRING_UNITS_2, 2677 cap_str, sizeof(cap_str)); 2678 pr_info("%s: %s %s %s%s\n", 2679 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card), 2680 cap_str, md->read_only ? " (ro)" : ""); 2681 2682 /* used in ->open, must be set before add_disk: */ 2683 if (area_type == MMC_BLK_DATA_AREA_MAIN) 2684 dev_set_drvdata(&card->dev, md); 2685 disk_fwnode = mmc_blk_get_partitions_node(parent, subname); 2686 ret = add_disk_fwnode(md->parent, md->disk, mmc_disk_attr_groups, 2687 disk_fwnode); 2688 if (ret) 2689 goto err_put_disk; 2690 return md; 2691 2692 err_put_disk: 2693 put_disk(md->disk); 2694 blk_mq_free_tag_set(&md->queue.tag_set); 2695 err_kfree: 2696 kfree(md); 2697 out: 2698 ida_free(&mmc_blk_ida, devidx); 2699 return ERR_PTR(ret); 2700 } 2701 2702 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card) 2703 { 2704 sector_t size; 2705 2706 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) { 2707 /* 2708 * The EXT_CSD sector count is in number or 512 byte 2709 * sectors. 2710 */ 2711 size = card->ext_csd.sectors; 2712 } else { 2713 /* 2714 * The CSD capacity field is in units of read_blkbits. 2715 * set_capacity takes units of 512 bytes. 2716 */ 2717 size = (typeof(sector_t))card->csd.capacity 2718 << (card->csd.read_blkbits - 9); 2719 } 2720 2721 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL, 2722 MMC_BLK_DATA_AREA_MAIN, 0); 2723 } 2724 2725 static int mmc_blk_alloc_part(struct mmc_card *card, 2726 struct mmc_blk_data *md, 2727 unsigned int part_type, 2728 sector_t size, 2729 bool default_ro, 2730 const char *subname, 2731 int area_type) 2732 { 2733 struct mmc_blk_data *part_md; 2734 2735 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro, 2736 subname, area_type, part_type); 2737 if (IS_ERR(part_md)) 2738 return PTR_ERR(part_md); 2739 list_add(&part_md->part, &md->part); 2740 2741 return 0; 2742 } 2743 2744 /** 2745 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev 2746 * @filp: the character device file 2747 * @cmd: the ioctl() command 2748 * @arg: the argument from userspace 2749 * 2750 * This will essentially just redirect the ioctl()s coming in over to 2751 * the main block device spawning the RPMB character device. 2752 */ 2753 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd, 2754 unsigned long arg) 2755 { 2756 struct mmc_rpmb_data *rpmb = filp->private_data; 2757 int ret; 2758 2759 switch (cmd) { 2760 case MMC_IOC_CMD: 2761 ret = mmc_blk_ioctl_cmd(rpmb->md, 2762 (struct mmc_ioc_cmd __user *)arg, 2763 rpmb); 2764 break; 2765 case MMC_IOC_MULTI_CMD: 2766 ret = mmc_blk_ioctl_multi_cmd(rpmb->md, 2767 (struct mmc_ioc_multi_cmd __user *)arg, 2768 rpmb); 2769 break; 2770 default: 2771 ret = -EINVAL; 2772 break; 2773 } 2774 2775 return ret; 2776 } 2777 2778 #ifdef CONFIG_COMPAT 2779 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd, 2780 unsigned long arg) 2781 { 2782 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)); 2783 } 2784 #endif 2785 2786 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp) 2787 { 2788 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2789 struct mmc_rpmb_data, chrdev); 2790 2791 get_device(&rpmb->dev); 2792 filp->private_data = rpmb; 2793 2794 return nonseekable_open(inode, filp); 2795 } 2796 2797 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp) 2798 { 2799 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev, 2800 struct mmc_rpmb_data, chrdev); 2801 2802 put_device(&rpmb->dev); 2803 2804 return 0; 2805 } 2806 2807 static const struct file_operations mmc_rpmb_fileops = { 2808 .release = mmc_rpmb_chrdev_release, 2809 .open = mmc_rpmb_chrdev_open, 2810 .owner = THIS_MODULE, 2811 .unlocked_ioctl = mmc_rpmb_ioctl, 2812 #ifdef CONFIG_COMPAT 2813 .compat_ioctl = mmc_rpmb_ioctl_compat, 2814 #endif 2815 }; 2816 2817 static void mmc_blk_rpmb_device_release(struct device *dev) 2818 { 2819 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2820 2821 rpmb_dev_unregister(rpmb->rdev); 2822 mmc_blk_put(rpmb->md); 2823 ida_free(&mmc_rpmb_ida, rpmb->id); 2824 kfree(rpmb); 2825 } 2826 2827 static void free_idata(struct mmc_blk_ioc_data **idata, unsigned int cmd_count) 2828 { 2829 unsigned int n; 2830 2831 for (n = 0; n < cmd_count; n++) 2832 kfree(idata[n]); 2833 kfree(idata); 2834 } 2835 2836 static struct mmc_blk_ioc_data **alloc_idata(struct mmc_rpmb_data *rpmb, 2837 unsigned int cmd_count) 2838 { 2839 struct mmc_blk_ioc_data **idata; 2840 unsigned int n; 2841 2842 idata = kcalloc(cmd_count, sizeof(*idata), GFP_KERNEL); 2843 if (!idata) 2844 return NULL; 2845 2846 for (n = 0; n < cmd_count; n++) { 2847 idata[n] = kcalloc(1, sizeof(**idata), GFP_KERNEL); 2848 if (!idata[n]) { 2849 free_idata(idata, n); 2850 return NULL; 2851 } 2852 idata[n]->rpmb = rpmb; 2853 } 2854 2855 return idata; 2856 } 2857 2858 static void set_idata(struct mmc_blk_ioc_data *idata, u32 opcode, 2859 int write_flag, u8 *buf, unsigned int buf_bytes) 2860 { 2861 /* 2862 * The size of an RPMB frame must match what's expected by the 2863 * hardware. 2864 */ 2865 static_assert(!CHECK_SIZE_NEQ(512), "RPMB frame size must be 512 bytes"); 2866 2867 idata->ic.opcode = opcode; 2868 idata->ic.flags = MMC_RSP_R1 | MMC_CMD_ADTC; 2869 idata->ic.write_flag = write_flag; 2870 idata->ic.blksz = RPMB_FRAME_SIZE; 2871 idata->ic.blocks = buf_bytes / idata->ic.blksz; 2872 idata->buf = buf; 2873 idata->buf_bytes = buf_bytes; 2874 } 2875 2876 static int mmc_route_rpmb_frames(struct device *dev, u8 *req, 2877 unsigned int req_len, u8 *resp, 2878 unsigned int resp_len) 2879 { 2880 struct rpmb_frame *frm = (struct rpmb_frame *)req; 2881 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev); 2882 struct mmc_blk_data *md = rpmb->md; 2883 struct mmc_blk_ioc_data **idata; 2884 struct mmc_queue_req *mq_rq; 2885 unsigned int cmd_count; 2886 struct request *rq; 2887 u16 req_type; 2888 bool write; 2889 int ret; 2890 2891 if (IS_ERR(md->queue.card)) 2892 return PTR_ERR(md->queue.card); 2893 2894 if (req_len < RPMB_FRAME_SIZE) 2895 return -EINVAL; 2896 2897 req_type = be16_to_cpu(frm->req_resp); 2898 switch (req_type) { 2899 case RPMB_PROGRAM_KEY: 2900 if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len)) 2901 return -EINVAL; 2902 write = true; 2903 break; 2904 case RPMB_GET_WRITE_COUNTER: 2905 if (CHECK_SIZE_NEQ(req_len) || CHECK_SIZE_NEQ(resp_len)) 2906 return -EINVAL; 2907 write = false; 2908 break; 2909 case RPMB_WRITE_DATA: 2910 if (!CHECK_SIZE_ALIGNED(req_len) || CHECK_SIZE_NEQ(resp_len)) 2911 return -EINVAL; 2912 write = true; 2913 break; 2914 case RPMB_READ_DATA: 2915 if (CHECK_SIZE_NEQ(req_len) || !CHECK_SIZE_ALIGNED(resp_len)) 2916 return -EINVAL; 2917 write = false; 2918 break; 2919 default: 2920 return -EINVAL; 2921 } 2922 2923 /* Write operations require 3 commands, read operations require 2 */ 2924 cmd_count = write ? 3 : 2; 2925 2926 idata = alloc_idata(rpmb, cmd_count); 2927 if (!idata) 2928 return -ENOMEM; 2929 2930 if (write) { 2931 struct rpmb_frame *resp_frm = (struct rpmb_frame *)resp; 2932 2933 /* Send write request frame(s) */ 2934 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 2935 1 | MMC_CMD23_ARG_REL_WR, req, req_len); 2936 2937 /* Send result request frame */ 2938 memset(resp_frm, 0, RPMB_FRAME_SIZE); 2939 resp_frm->req_resp = cpu_to_be16(RPMB_RESULT_READ); 2940 set_idata(idata[1], MMC_WRITE_MULTIPLE_BLOCK, 1, resp, 2941 resp_len); 2942 2943 /* Read response frame */ 2944 set_idata(idata[2], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len); 2945 } else { 2946 /* Send write request frame(s) */ 2947 set_idata(idata[0], MMC_WRITE_MULTIPLE_BLOCK, 1, req, req_len); 2948 2949 /* Read response frame */ 2950 set_idata(idata[1], MMC_READ_MULTIPLE_BLOCK, 0, resp, resp_len); 2951 } 2952 2953 rq = blk_mq_alloc_request(md->queue.queue, REQ_OP_DRV_OUT, 0); 2954 if (IS_ERR(rq)) { 2955 ret = PTR_ERR(rq); 2956 goto out; 2957 } 2958 2959 mq_rq = req_to_mmc_queue_req(rq); 2960 mq_rq->drv_op = MMC_DRV_OP_IOCTL_RPMB; 2961 mq_rq->drv_op_result = -EIO; 2962 mq_rq->drv_op_data = idata; 2963 mq_rq->ioc_count = cmd_count; 2964 blk_execute_rq(rq, false); 2965 ret = req_to_mmc_queue_req(rq)->drv_op_result; 2966 2967 blk_mq_free_request(rq); 2968 2969 out: 2970 free_idata(idata, cmd_count); 2971 return ret; 2972 } 2973 2974 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card, 2975 struct mmc_blk_data *md, 2976 unsigned int part_index, 2977 sector_t size, 2978 const char *subname) 2979 { 2980 int devidx, ret; 2981 char rpmb_name[DISK_NAME_LEN]; 2982 char cap_str[10]; 2983 struct mmc_rpmb_data *rpmb; 2984 2985 /* This creates the minor number for the RPMB char device */ 2986 devidx = ida_alloc_max(&mmc_rpmb_ida, max_devices - 1, GFP_KERNEL); 2987 if (devidx < 0) 2988 return devidx; 2989 2990 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL); 2991 if (!rpmb) { 2992 ida_free(&mmc_rpmb_ida, devidx); 2993 return -ENOMEM; 2994 } 2995 2996 snprintf(rpmb_name, sizeof(rpmb_name), 2997 "mmcblk%u%s", card->host->index, subname ? subname : ""); 2998 2999 rpmb->id = devidx; 3000 rpmb->part_index = part_index; 3001 rpmb->dev.init_name = rpmb_name; 3002 rpmb->dev.bus = &mmc_rpmb_bus_type; 3003 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id); 3004 rpmb->dev.parent = &card->dev; 3005 rpmb->dev.release = mmc_blk_rpmb_device_release; 3006 device_initialize(&rpmb->dev); 3007 dev_set_drvdata(&rpmb->dev, rpmb); 3008 mmc_blk_get(md->disk); 3009 rpmb->md = md; 3010 3011 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops); 3012 rpmb->chrdev.owner = THIS_MODULE; 3013 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev); 3014 if (ret) { 3015 pr_err("%s: could not add character device\n", rpmb_name); 3016 goto out_put_device; 3017 } 3018 3019 list_add(&rpmb->node, &md->rpmbs); 3020 3021 string_get_size((u64)size, 512, STRING_UNITS_2, 3022 cap_str, sizeof(cap_str)); 3023 3024 pr_info("%s: %s %s %s, chardev (%d:%d)\n", 3025 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str, 3026 MAJOR(mmc_rpmb_devt), rpmb->id); 3027 3028 return 0; 3029 3030 out_put_device: 3031 put_device(&rpmb->dev); 3032 return ret; 3033 } 3034 3035 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb) 3036 3037 { 3038 cdev_device_del(&rpmb->chrdev, &rpmb->dev); 3039 put_device(&rpmb->dev); 3040 } 3041 3042 /* MMC Physical partitions consist of two boot partitions and 3043 * up to four general purpose partitions. 3044 * For each partition enabled in EXT_CSD a block device will be allocatedi 3045 * to provide access to the partition. 3046 */ 3047 3048 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md) 3049 { 3050 int idx, ret; 3051 3052 if (!mmc_card_mmc(card)) 3053 return 0; 3054 3055 for (idx = 0; idx < card->nr_parts; idx++) { 3056 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) { 3057 /* 3058 * RPMB partitions does not provide block access, they 3059 * are only accessed using ioctl():s. Thus create 3060 * special RPMB block devices that do not have a 3061 * backing block queue for these. 3062 */ 3063 ret = mmc_blk_alloc_rpmb_part(card, md, 3064 card->part[idx].part_cfg, 3065 card->part[idx].size >> 9, 3066 card->part[idx].name); 3067 if (ret) 3068 return ret; 3069 } else if (card->part[idx].size) { 3070 ret = mmc_blk_alloc_part(card, md, 3071 card->part[idx].part_cfg, 3072 card->part[idx].size >> 9, 3073 card->part[idx].force_ro, 3074 card->part[idx].name, 3075 card->part[idx].area_type); 3076 if (ret) 3077 return ret; 3078 } 3079 } 3080 3081 return 0; 3082 } 3083 3084 static void mmc_blk_remove_req(struct mmc_blk_data *md) 3085 { 3086 /* 3087 * Flush remaining requests and free queues. It is freeing the queue 3088 * that stops new requests from being accepted. 3089 */ 3090 del_gendisk(md->disk); 3091 mmc_cleanup_queue(&md->queue); 3092 mmc_blk_put(md); 3093 } 3094 3095 static void mmc_blk_remove_parts(struct mmc_card *card, 3096 struct mmc_blk_data *md) 3097 { 3098 struct list_head *pos, *q; 3099 struct mmc_blk_data *part_md; 3100 struct mmc_rpmb_data *rpmb; 3101 3102 /* Remove RPMB partitions */ 3103 list_for_each_safe(pos, q, &md->rpmbs) { 3104 rpmb = list_entry(pos, struct mmc_rpmb_data, node); 3105 list_del(pos); 3106 mmc_blk_remove_rpmb_part(rpmb); 3107 } 3108 /* Remove block partitions */ 3109 list_for_each_safe(pos, q, &md->part) { 3110 part_md = list_entry(pos, struct mmc_blk_data, part); 3111 list_del(pos); 3112 mmc_blk_remove_req(part_md); 3113 } 3114 } 3115 3116 #ifdef CONFIG_DEBUG_FS 3117 3118 static int mmc_dbg_card_status_get(void *data, u64 *val) 3119 { 3120 struct mmc_card *card = data; 3121 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3122 struct mmc_queue *mq = &md->queue; 3123 struct request *req; 3124 int ret; 3125 3126 /* Ask the block layer about the card status */ 3127 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 3128 if (IS_ERR(req)) 3129 return PTR_ERR(req); 3130 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS; 3131 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 3132 blk_execute_rq(req, false); 3133 ret = req_to_mmc_queue_req(req)->drv_op_result; 3134 if (ret >= 0) { 3135 *val = ret; 3136 ret = 0; 3137 } 3138 blk_mq_free_request(req); 3139 3140 return ret; 3141 } 3142 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get, 3143 NULL, "%08llx\n"); 3144 3145 /* That is two digits * 512 + 1 for newline */ 3146 #define EXT_CSD_STR_LEN 1025 3147 3148 static int mmc_ext_csd_open(struct inode *inode, struct file *filp) 3149 { 3150 struct mmc_card *card = inode->i_private; 3151 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3152 struct mmc_queue *mq = &md->queue; 3153 struct request *req; 3154 char *buf; 3155 ssize_t n = 0; 3156 u8 *ext_csd; 3157 int err, i; 3158 3159 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL); 3160 if (!buf) 3161 return -ENOMEM; 3162 3163 /* Ask the block layer for the EXT CSD */ 3164 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0); 3165 if (IS_ERR(req)) { 3166 err = PTR_ERR(req); 3167 goto out_free; 3168 } 3169 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD; 3170 req_to_mmc_queue_req(req)->drv_op_result = -EIO; 3171 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd; 3172 blk_execute_rq(req, false); 3173 err = req_to_mmc_queue_req(req)->drv_op_result; 3174 blk_mq_free_request(req); 3175 if (err) { 3176 pr_err("FAILED %d\n", err); 3177 goto out_free; 3178 } 3179 3180 for (i = 0; i < 512; i++) 3181 n += sprintf(buf + n, "%02x", ext_csd[i]); 3182 n += sprintf(buf + n, "\n"); 3183 3184 if (n != EXT_CSD_STR_LEN) { 3185 err = -EINVAL; 3186 kfree(ext_csd); 3187 goto out_free; 3188 } 3189 3190 filp->private_data = buf; 3191 kfree(ext_csd); 3192 return 0; 3193 3194 out_free: 3195 kfree(buf); 3196 return err; 3197 } 3198 3199 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf, 3200 size_t cnt, loff_t *ppos) 3201 { 3202 char *buf = filp->private_data; 3203 3204 return simple_read_from_buffer(ubuf, cnt, ppos, 3205 buf, EXT_CSD_STR_LEN); 3206 } 3207 3208 static int mmc_ext_csd_release(struct inode *inode, struct file *file) 3209 { 3210 kfree(file->private_data); 3211 return 0; 3212 } 3213 3214 static const struct file_operations mmc_dbg_ext_csd_fops = { 3215 .open = mmc_ext_csd_open, 3216 .read = mmc_ext_csd_read, 3217 .release = mmc_ext_csd_release, 3218 .llseek = default_llseek, 3219 }; 3220 3221 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 3222 { 3223 struct dentry *root; 3224 3225 if (!card->debugfs_root) 3226 return; 3227 3228 root = card->debugfs_root; 3229 3230 if (mmc_card_mmc(card) || mmc_card_sd(card)) { 3231 md->status_dentry = 3232 debugfs_create_file_unsafe("status", 0400, root, 3233 card, 3234 &mmc_dbg_card_status_fops); 3235 } 3236 3237 if (mmc_card_mmc(card)) { 3238 md->ext_csd_dentry = 3239 debugfs_create_file("ext_csd", S_IRUSR, root, card, 3240 &mmc_dbg_ext_csd_fops); 3241 } 3242 } 3243 3244 static void mmc_blk_remove_debugfs(struct mmc_card *card, 3245 struct mmc_blk_data *md) 3246 { 3247 if (!card->debugfs_root) 3248 return; 3249 3250 debugfs_remove(md->status_dentry); 3251 md->status_dentry = NULL; 3252 3253 debugfs_remove(md->ext_csd_dentry); 3254 md->ext_csd_dentry = NULL; 3255 } 3256 3257 #else 3258 3259 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md) 3260 { 3261 } 3262 3263 static void mmc_blk_remove_debugfs(struct mmc_card *card, 3264 struct mmc_blk_data *md) 3265 { 3266 } 3267 3268 #endif /* CONFIG_DEBUG_FS */ 3269 3270 static void mmc_blk_rpmb_add(struct mmc_card *card) 3271 { 3272 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3273 struct mmc_rpmb_data *rpmb; 3274 struct rpmb_dev *rdev; 3275 unsigned int n; 3276 u32 cid[4]; 3277 struct rpmb_descr descr = { 3278 .type = RPMB_TYPE_EMMC, 3279 .route_frames = mmc_route_rpmb_frames, 3280 .reliable_wr_count = card->ext_csd.enhanced_rpmb_supported ? 3281 2 : 32, 3282 .capacity = card->ext_csd.raw_rpmb_size_mult, 3283 .dev_id = (void *)cid, 3284 .dev_id_len = sizeof(cid), 3285 }; 3286 3287 /* 3288 * Provice CID as an octet array. The CID needs to be interpreted 3289 * when used as input to derive the RPMB key since some fields 3290 * will change due to firmware updates. 3291 */ 3292 for (n = 0; n < 4; n++) 3293 cid[n] = be32_to_cpu((__force __be32)card->raw_cid[n]); 3294 3295 list_for_each_entry(rpmb, &md->rpmbs, node) { 3296 rdev = rpmb_dev_register(&rpmb->dev, &descr); 3297 if (IS_ERR(rdev)) { 3298 pr_warn("%s: could not register RPMB device\n", 3299 dev_name(&rpmb->dev)); 3300 continue; 3301 } 3302 rpmb->rdev = rdev; 3303 } 3304 } 3305 3306 static int mmc_blk_probe(struct mmc_card *card) 3307 { 3308 struct mmc_blk_data *md; 3309 int ret = 0; 3310 3311 /* 3312 * Check that the card supports the command class(es) we need. 3313 */ 3314 if (!(card->csd.cmdclass & CCC_BLOCK_READ)) 3315 return -ENODEV; 3316 3317 mmc_fixup_device(card, mmc_blk_fixups); 3318 3319 card->complete_wq = alloc_workqueue("mmc_complete", 3320 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3321 if (!card->complete_wq) { 3322 pr_err("Failed to create mmc completion workqueue"); 3323 return -ENOMEM; 3324 } 3325 3326 md = mmc_blk_alloc(card); 3327 if (IS_ERR(md)) { 3328 ret = PTR_ERR(md); 3329 goto out_free; 3330 } 3331 3332 ret = mmc_blk_alloc_parts(card, md); 3333 if (ret) 3334 goto out; 3335 3336 /* Add two debugfs entries */ 3337 mmc_blk_add_debugfs(card, md); 3338 3339 pm_runtime_set_autosuspend_delay(&card->dev, 3000); 3340 pm_runtime_use_autosuspend(&card->dev); 3341 3342 /* 3343 * Don't enable runtime PM for SD-combo cards here. Leave that 3344 * decision to be taken during the SDIO init sequence instead. 3345 */ 3346 if (!mmc_card_sd_combo(card)) { 3347 pm_runtime_set_active(&card->dev); 3348 pm_runtime_enable(&card->dev); 3349 } 3350 3351 mmc_blk_rpmb_add(card); 3352 3353 return 0; 3354 3355 out: 3356 mmc_blk_remove_parts(card, md); 3357 mmc_blk_remove_req(md); 3358 out_free: 3359 destroy_workqueue(card->complete_wq); 3360 return ret; 3361 } 3362 3363 static void mmc_blk_remove(struct mmc_card *card) 3364 { 3365 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3366 3367 mmc_blk_remove_debugfs(card, md); 3368 mmc_blk_remove_parts(card, md); 3369 pm_runtime_get_sync(&card->dev); 3370 if (md->part_curr != md->part_type) { 3371 mmc_claim_host(card->host); 3372 mmc_blk_part_switch(card, md->part_type); 3373 mmc_release_host(card->host); 3374 } 3375 if (!mmc_card_sd_combo(card)) 3376 pm_runtime_disable(&card->dev); 3377 pm_runtime_put_noidle(&card->dev); 3378 mmc_blk_remove_req(md); 3379 destroy_workqueue(card->complete_wq); 3380 } 3381 3382 static int _mmc_blk_suspend(struct mmc_card *card) 3383 { 3384 struct mmc_blk_data *part_md; 3385 struct mmc_blk_data *md = dev_get_drvdata(&card->dev); 3386 3387 if (md) { 3388 mmc_queue_suspend(&md->queue); 3389 list_for_each_entry(part_md, &md->part, part) { 3390 mmc_queue_suspend(&part_md->queue); 3391 } 3392 } 3393 return 0; 3394 } 3395 3396 static void mmc_blk_shutdown(struct mmc_card *card) 3397 { 3398 _mmc_blk_suspend(card); 3399 } 3400 3401 #ifdef CONFIG_PM_SLEEP 3402 static int mmc_blk_suspend(struct device *dev) 3403 { 3404 struct mmc_card *card = mmc_dev_to_card(dev); 3405 3406 return _mmc_blk_suspend(card); 3407 } 3408 3409 static int mmc_blk_resume(struct device *dev) 3410 { 3411 struct mmc_blk_data *part_md; 3412 struct mmc_blk_data *md = dev_get_drvdata(dev); 3413 3414 if (md) { 3415 /* 3416 * Resume involves the card going into idle state, 3417 * so current partition is always the main one. 3418 */ 3419 md->part_curr = md->part_type; 3420 mmc_queue_resume(&md->queue); 3421 list_for_each_entry(part_md, &md->part, part) { 3422 mmc_queue_resume(&part_md->queue); 3423 } 3424 } 3425 return 0; 3426 } 3427 #endif 3428 3429 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume); 3430 3431 static struct mmc_driver mmc_driver = { 3432 .drv = { 3433 .name = "mmcblk", 3434 .pm = &mmc_blk_pm_ops, 3435 }, 3436 .probe = mmc_blk_probe, 3437 .remove = mmc_blk_remove, 3438 .shutdown = mmc_blk_shutdown, 3439 }; 3440 3441 static int __init mmc_blk_init(void) 3442 { 3443 int res; 3444 3445 res = bus_register(&mmc_rpmb_bus_type); 3446 if (res < 0) { 3447 pr_err("mmcblk: could not register RPMB bus type\n"); 3448 return res; 3449 } 3450 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb"); 3451 if (res < 0) { 3452 pr_err("mmcblk: failed to allocate rpmb chrdev region\n"); 3453 goto out_bus_unreg; 3454 } 3455 3456 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS) 3457 pr_info("mmcblk: using %d minors per device\n", perdev_minors); 3458 3459 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors); 3460 3461 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3462 if (res) 3463 goto out_chrdev_unreg; 3464 3465 res = mmc_register_driver(&mmc_driver); 3466 if (res) 3467 goto out_blkdev_unreg; 3468 3469 return 0; 3470 3471 out_blkdev_unreg: 3472 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3473 out_chrdev_unreg: 3474 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3475 out_bus_unreg: 3476 bus_unregister(&mmc_rpmb_bus_type); 3477 return res; 3478 } 3479 3480 static void __exit mmc_blk_exit(void) 3481 { 3482 mmc_unregister_driver(&mmc_driver); 3483 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc"); 3484 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES); 3485 bus_unregister(&mmc_rpmb_bus_type); 3486 } 3487 3488 module_init(mmc_blk_init); 3489 module_exit(mmc_blk_exit); 3490 3491 MODULE_LICENSE("GPL"); 3492 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver"); 3493