1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This is for all the tests relating directly to heap memory, including
4 * page allocation and slab allocations.
5 */
6 #include "lkdtm.h"
7 #include <linux/kfence.h>
8 #include <linux/slab.h>
9 #include <linux/vmalloc.h>
10 #include <linux/sched.h>
11
12 static struct kmem_cache *double_free_cache;
13 static struct kmem_cache *a_cache;
14 static struct kmem_cache *b_cache;
15
16 /*
17 * Using volatile here means the compiler cannot ever make assumptions
18 * about this value. This means compile-time length checks involving
19 * this variable cannot be performed; only run-time checks.
20 */
21 static volatile int __offset = 1;
22
23 /*
24 * If there aren't guard pages, it's likely that a consecutive allocation will
25 * let us overflow into the second allocation without overwriting something real.
26 *
27 * This should always be caught because there is an unconditional unmapped
28 * page after vmap allocations.
29 */
lkdtm_VMALLOC_LINEAR_OVERFLOW(void)30 static void lkdtm_VMALLOC_LINEAR_OVERFLOW(void)
31 {
32 char *one, *two;
33
34 one = vzalloc(PAGE_SIZE);
35 OPTIMIZER_HIDE_VAR(one);
36 two = vzalloc(PAGE_SIZE);
37
38 pr_info("Attempting vmalloc linear overflow ...\n");
39 memset(one, 0xAA, PAGE_SIZE + __offset);
40
41 vfree(two);
42 vfree(one);
43 }
44
45 /*
46 * This tries to stay within the next largest power-of-2 kmalloc cache
47 * to avoid actually overwriting anything important if it's not detected
48 * correctly.
49 *
50 * This should get caught by either memory tagging, KASan, or by using
51 * CONFIG_SLUB_DEBUG=y and slab_debug=ZF (or CONFIG_SLUB_DEBUG_ON=y).
52 */
lkdtm_SLAB_LINEAR_OVERFLOW(void)53 static void lkdtm_SLAB_LINEAR_OVERFLOW(void)
54 {
55 size_t len = 1020;
56 u32 *data = kmalloc(len, GFP_KERNEL);
57 if (!data)
58 return;
59
60 pr_info("Attempting slab linear overflow ...\n");
61 OPTIMIZER_HIDE_VAR(data);
62 data[1024 / sizeof(u32)] = 0x12345678;
63 kfree(data);
64 }
65
lkdtm_WRITE_AFTER_FREE(void)66 static void lkdtm_WRITE_AFTER_FREE(void)
67 {
68 int *base, *again;
69 size_t len = 1024;
70 /*
71 * The slub allocator uses the first word to store the free
72 * pointer in some configurations. Use the middle of the
73 * allocation to avoid running into the freelist
74 */
75 size_t offset = (len / sizeof(*base)) / 2;
76
77 base = kmalloc(len, GFP_KERNEL);
78 if (!base)
79 return;
80 pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]);
81 pr_info("Attempting bad write to freed memory at %p\n",
82 &base[offset]);
83 kfree(base);
84 base[offset] = 0x0abcdef0;
85 /* Attempt to notice the overwrite. */
86 again = kmalloc(len, GFP_KERNEL);
87 kfree(again);
88 if (again != base)
89 pr_info("Hmm, didn't get the same memory range.\n");
90 }
91
lkdtm_READ_AFTER_FREE(void)92 static void lkdtm_READ_AFTER_FREE(void)
93 {
94 int *base, *val, saw;
95 size_t len = 1024;
96 /*
97 * The slub allocator will use the either the first word or
98 * the middle of the allocation to store the free pointer,
99 * depending on configurations. Store in the second word to
100 * avoid running into the freelist.
101 */
102 size_t offset = sizeof(*base);
103
104 base = kmalloc(len, GFP_KERNEL);
105 if (!base) {
106 pr_info("Unable to allocate base memory.\n");
107 return;
108 }
109
110 val = kmalloc(len, GFP_KERNEL);
111 if (!val) {
112 pr_info("Unable to allocate val memory.\n");
113 kfree(base);
114 return;
115 }
116
117 *val = 0x12345678;
118 base[offset] = *val;
119 pr_info("Value in memory before free: %x\n", base[offset]);
120
121 kfree(base);
122
123 pr_info("Attempting bad read from freed memory\n");
124 saw = base[offset];
125 if (saw != *val) {
126 /* Good! Poisoning happened, so declare a win. */
127 pr_info("Memory correctly poisoned (%x)\n", saw);
128 } else {
129 pr_err("FAIL: Memory was not poisoned!\n");
130 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
131 }
132
133 kfree(val);
134 }
135
lkdtm_KFENCE_READ_AFTER_FREE(void)136 static void lkdtm_KFENCE_READ_AFTER_FREE(void)
137 {
138 int *base, val, saw;
139 unsigned long timeout, resched_after;
140 size_t len = 1024;
141 /*
142 * The slub allocator will use the either the first word or
143 * the middle of the allocation to store the free pointer,
144 * depending on configurations. Store in the second word to
145 * avoid running into the freelist.
146 */
147 size_t offset = sizeof(*base);
148
149 /*
150 * 100x the sample interval should be more than enough to ensure we get
151 * a KFENCE allocation eventually.
152 */
153 timeout = jiffies + msecs_to_jiffies(100 * kfence_sample_interval);
154 /*
155 * Especially for non-preemption kernels, ensure the allocation-gate
156 * timer can catch up: after @resched_after, every failed allocation
157 * attempt yields, to ensure the allocation-gate timer is scheduled.
158 */
159 resched_after = jiffies + msecs_to_jiffies(kfence_sample_interval);
160 do {
161 base = kmalloc(len, GFP_KERNEL);
162 if (!base) {
163 pr_err("FAIL: Unable to allocate kfence memory!\n");
164 return;
165 }
166
167 if (is_kfence_address(base)) {
168 val = 0x12345678;
169 base[offset] = val;
170 pr_info("Value in memory before free: %x\n", base[offset]);
171
172 kfree(base);
173
174 pr_info("Attempting bad read from freed memory\n");
175 saw = base[offset];
176 if (saw != val) {
177 /* Good! Poisoning happened, so declare a win. */
178 pr_info("Memory correctly poisoned (%x)\n", saw);
179 } else {
180 pr_err("FAIL: Memory was not poisoned!\n");
181 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
182 }
183 return;
184 }
185
186 kfree(base);
187 if (time_after(jiffies, resched_after))
188 cond_resched();
189 } while (time_before(jiffies, timeout));
190
191 pr_err("FAIL: kfence memory never allocated!\n");
192 }
193
lkdtm_WRITE_BUDDY_AFTER_FREE(void)194 static void lkdtm_WRITE_BUDDY_AFTER_FREE(void)
195 {
196 unsigned long p = __get_free_page(GFP_KERNEL);
197 if (!p) {
198 pr_info("Unable to allocate free page\n");
199 return;
200 }
201
202 pr_info("Writing to the buddy page before free\n");
203 memset((void *)p, 0x3, PAGE_SIZE);
204 free_page(p);
205 schedule();
206 pr_info("Attempting bad write to the buddy page after free\n");
207 memset((void *)p, 0x78, PAGE_SIZE);
208 /* Attempt to notice the overwrite. */
209 p = __get_free_page(GFP_KERNEL);
210 free_page(p);
211 schedule();
212 }
213
lkdtm_READ_BUDDY_AFTER_FREE(void)214 static void lkdtm_READ_BUDDY_AFTER_FREE(void)
215 {
216 unsigned long p = __get_free_page(GFP_KERNEL);
217 int saw, *val;
218 int *base;
219
220 if (!p) {
221 pr_info("Unable to allocate free page\n");
222 return;
223 }
224
225 val = kmalloc(1024, GFP_KERNEL);
226 if (!val) {
227 pr_info("Unable to allocate val memory.\n");
228 free_page(p);
229 return;
230 }
231
232 base = (int *)p;
233
234 *val = 0x12345678;
235 base[0] = *val;
236 pr_info("Value in memory before free: %x\n", base[0]);
237 free_page(p);
238 pr_info("Attempting to read from freed memory\n");
239 saw = base[0];
240 if (saw != *val) {
241 /* Good! Poisoning happened, so declare a win. */
242 pr_info("Memory correctly poisoned (%x)\n", saw);
243 } else {
244 pr_err("FAIL: Buddy page was not poisoned!\n");
245 pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free");
246 }
247
248 kfree(val);
249 }
250
lkdtm_SLAB_INIT_ON_ALLOC(void)251 static void lkdtm_SLAB_INIT_ON_ALLOC(void)
252 {
253 u8 *first;
254 u8 *val;
255
256 first = kmalloc(512, GFP_KERNEL);
257 if (!first) {
258 pr_info("Unable to allocate 512 bytes the first time.\n");
259 return;
260 }
261
262 memset(first, 0xAB, 512);
263 kfree(first);
264
265 val = kmalloc(512, GFP_KERNEL);
266 if (!val) {
267 pr_info("Unable to allocate 512 bytes the second time.\n");
268 return;
269 }
270 if (val != first) {
271 pr_warn("Reallocation missed clobbered memory.\n");
272 }
273
274 if (memchr(val, 0xAB, 512) == NULL) {
275 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
276 } else {
277 pr_err("FAIL: Slab was not initialized\n");
278 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
279 }
280 kfree(val);
281 }
282
lkdtm_BUDDY_INIT_ON_ALLOC(void)283 static void lkdtm_BUDDY_INIT_ON_ALLOC(void)
284 {
285 u8 *first;
286 u8 *val;
287
288 first = (u8 *)__get_free_page(GFP_KERNEL);
289 if (!first) {
290 pr_info("Unable to allocate first free page\n");
291 return;
292 }
293
294 memset(first, 0xAB, PAGE_SIZE);
295 free_page((unsigned long)first);
296
297 val = (u8 *)__get_free_page(GFP_KERNEL);
298 if (!val) {
299 pr_info("Unable to allocate second free page\n");
300 return;
301 }
302
303 if (val != first) {
304 pr_warn("Reallocation missed clobbered memory.\n");
305 }
306
307 if (memchr(val, 0xAB, PAGE_SIZE) == NULL) {
308 pr_info("Memory appears initialized (%x, no earlier values)\n", *val);
309 } else {
310 pr_err("FAIL: Slab was not initialized\n");
311 pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc");
312 }
313 free_page((unsigned long)val);
314 }
315
lkdtm_SLAB_FREE_DOUBLE(void)316 static void lkdtm_SLAB_FREE_DOUBLE(void)
317 {
318 int *val;
319
320 val = kmem_cache_alloc(double_free_cache, GFP_KERNEL);
321 if (!val) {
322 pr_info("Unable to allocate double_free_cache memory.\n");
323 return;
324 }
325
326 /* Just make sure we got real memory. */
327 *val = 0x12345678;
328 pr_info("Attempting double slab free ...\n");
329 kmem_cache_free(double_free_cache, val);
330 kmem_cache_free(double_free_cache, val);
331 }
332
lkdtm_SLAB_FREE_CROSS(void)333 static void lkdtm_SLAB_FREE_CROSS(void)
334 {
335 int *val;
336
337 val = kmem_cache_alloc(a_cache, GFP_KERNEL);
338 if (!val) {
339 pr_info("Unable to allocate a_cache memory.\n");
340 return;
341 }
342
343 /* Just make sure we got real memory. */
344 *val = 0x12345679;
345 pr_info("Attempting cross-cache slab free ...\n");
346 kmem_cache_free(b_cache, val);
347 }
348
lkdtm_SLAB_FREE_PAGE(void)349 static void lkdtm_SLAB_FREE_PAGE(void)
350 {
351 unsigned long p = __get_free_page(GFP_KERNEL);
352
353 pr_info("Attempting non-Slab slab free ...\n");
354 kmem_cache_free(NULL, (void *)p);
355 free_page(p);
356 }
357
358 /*
359 * We have constructors to keep the caches distinctly separated without
360 * needing to boot with "slab_nomerge".
361 */
ctor_double_free(void * region)362 static void ctor_double_free(void *region)
363 { }
ctor_a(void * region)364 static void ctor_a(void *region)
365 { }
ctor_b(void * region)366 static void ctor_b(void *region)
367 { }
368
lkdtm_heap_init(void)369 void __init lkdtm_heap_init(void)
370 {
371 double_free_cache = kmem_cache_create("lkdtm-heap-double_free",
372 64, 0, 0, ctor_double_free);
373 a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a);
374 b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b);
375 }
376
lkdtm_heap_exit(void)377 void __exit lkdtm_heap_exit(void)
378 {
379 kmem_cache_destroy(double_free_cache);
380 kmem_cache_destroy(a_cache);
381 kmem_cache_destroy(b_cache);
382 }
383
384 static struct crashtype crashtypes[] = {
385 CRASHTYPE(SLAB_LINEAR_OVERFLOW),
386 CRASHTYPE(VMALLOC_LINEAR_OVERFLOW),
387 CRASHTYPE(WRITE_AFTER_FREE),
388 CRASHTYPE(READ_AFTER_FREE),
389 CRASHTYPE(KFENCE_READ_AFTER_FREE),
390 CRASHTYPE(WRITE_BUDDY_AFTER_FREE),
391 CRASHTYPE(READ_BUDDY_AFTER_FREE),
392 CRASHTYPE(SLAB_INIT_ON_ALLOC),
393 CRASHTYPE(BUDDY_INIT_ON_ALLOC),
394 CRASHTYPE(SLAB_FREE_DOUBLE),
395 CRASHTYPE(SLAB_FREE_CROSS),
396 CRASHTYPE(SLAB_FREE_PAGE),
397 };
398
399 struct crashtype_category heap_crashtypes = {
400 .crashtypes = crashtypes,
401 .len = ARRAY_SIZE(crashtypes),
402 };
403