xref: /linux/drivers/memory/samsung/exynos5422-dmc.c (revision d51e6a69f4e9e81cf75bbfdccce60d47e31ad901)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/io.h>
12 #include <linux/mfd/syscon.h>
13 #include <linux/module.h>
14 #include <linux/of_device.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/slab.h>
20 #include "../jedec_ddr.h"
21 #include "../of_memory.h"
22 
23 #define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
24 #define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
25 #define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
26 #define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
27 #define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
28 #define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
29 #define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
30 #define CDREX_PAUSE				(0x2091c)
31 #define CDREX_LPDDR3PHY_CON3			(0x20a20)
32 #define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
33 #define EXYNOS5_TIMING_SET_SWI			BIT(28)
34 #define USE_MX_MSPLL_TIMINGS			(1)
35 #define USE_BPLL_TIMINGS			(0)
36 #define EXYNOS5_AREF_NORMAL			(0x2e)
37 
38 /**
39  * struct dmc_opp_table - Operating level desciption
40  *
41  * Covers frequency and voltage settings of the DMC operating mode.
42  */
43 struct dmc_opp_table {
44 	u32 freq_hz;
45 	u32 volt_uv;
46 };
47 
48 /**
49  * struct exynos5_dmc - main structure describing DMC device
50  *
51  * The main structure for the Dynamic Memory Controller which covers clocks,
52  * memory regions, HW information, parameters and current operating mode.
53  */
54 struct exynos5_dmc {
55 	struct device *dev;
56 	struct devfreq *df;
57 	struct devfreq_simple_ondemand_data gov_data;
58 	void __iomem *base_drexi0;
59 	void __iomem *base_drexi1;
60 	struct regmap *clk_regmap;
61 	struct mutex lock;
62 	unsigned long curr_rate;
63 	unsigned long curr_volt;
64 	unsigned long bypass_rate;
65 	struct dmc_opp_table *opp;
66 	struct dmc_opp_table opp_bypass;
67 	int opp_count;
68 	u32 timings_arr_size;
69 	u32 *timing_row;
70 	u32 *timing_data;
71 	u32 *timing_power;
72 	const struct lpddr3_timings *timings;
73 	const struct lpddr3_min_tck *min_tck;
74 	u32 bypass_timing_row;
75 	u32 bypass_timing_data;
76 	u32 bypass_timing_power;
77 	struct regulator *vdd_mif;
78 	struct clk *fout_spll;
79 	struct clk *fout_bpll;
80 	struct clk *mout_spll;
81 	struct clk *mout_bpll;
82 	struct clk *mout_mclk_cdrex;
83 	struct clk *mout_mx_mspll_ccore;
84 	struct clk *mx_mspll_ccore_phy;
85 	struct clk *mout_mx_mspll_ccore_phy;
86 	struct devfreq_event_dev **counter;
87 	int num_counters;
88 };
89 
90 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
91 	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
92 
93 #define TIMING_VAL2REG(timing, t_val)			\
94 ({							\
95 		u32 __val;				\
96 		__val = (t_val) << (timing)->bit_beg;	\
97 		__val;					\
98 })
99 
100 struct timing_reg {
101 	char *name;
102 	int bit_beg;
103 	int bit_end;
104 	unsigned int val;
105 };
106 
107 static const struct timing_reg timing_row[] = {
108 	TIMING_FIELD("tRFC", 24, 31),
109 	TIMING_FIELD("tRRD", 20, 23),
110 	TIMING_FIELD("tRP", 16, 19),
111 	TIMING_FIELD("tRCD", 12, 15),
112 	TIMING_FIELD("tRC", 6, 11),
113 	TIMING_FIELD("tRAS", 0, 5),
114 };
115 
116 static const struct timing_reg timing_data[] = {
117 	TIMING_FIELD("tWTR", 28, 31),
118 	TIMING_FIELD("tWR", 24, 27),
119 	TIMING_FIELD("tRTP", 20, 23),
120 	TIMING_FIELD("tW2W-C2C", 14, 14),
121 	TIMING_FIELD("tR2R-C2C", 12, 12),
122 	TIMING_FIELD("WL", 8, 11),
123 	TIMING_FIELD("tDQSCK", 4, 7),
124 	TIMING_FIELD("RL", 0, 3),
125 };
126 
127 static const struct timing_reg timing_power[] = {
128 	TIMING_FIELD("tFAW", 26, 31),
129 	TIMING_FIELD("tXSR", 16, 25),
130 	TIMING_FIELD("tXP", 8, 15),
131 	TIMING_FIELD("tCKE", 4, 7),
132 	TIMING_FIELD("tMRD", 0, 3),
133 };
134 
135 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
136 		      ARRAY_SIZE(timing_power))
137 
138 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
139 {
140 	int i, ret;
141 
142 	for (i = 0; i < dmc->num_counters; i++) {
143 		if (!dmc->counter[i])
144 			continue;
145 		ret = devfreq_event_set_event(dmc->counter[i]);
146 		if (ret < 0)
147 			return ret;
148 	}
149 	return 0;
150 }
151 
152 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
153 {
154 	int i, ret;
155 
156 	for (i = 0; i < dmc->num_counters; i++) {
157 		if (!dmc->counter[i])
158 			continue;
159 		ret = devfreq_event_enable_edev(dmc->counter[i]);
160 		if (ret < 0)
161 			return ret;
162 	}
163 	return 0;
164 }
165 
166 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
167 {
168 	int i, ret;
169 
170 	for (i = 0; i < dmc->num_counters; i++) {
171 		if (!dmc->counter[i])
172 			continue;
173 		ret = devfreq_event_disable_edev(dmc->counter[i]);
174 		if (ret < 0)
175 			return ret;
176 	}
177 	return 0;
178 }
179 
180 /**
181  * find_target_freq_id() - Finds requested frequency in local DMC configuration
182  * @dmc:	device for which the information is checked
183  * @target_rate:	requested frequency in KHz
184  *
185  * Seeks in the local DMC driver structure for the requested frequency value
186  * and returns index or error value.
187  */
188 static int find_target_freq_idx(struct exynos5_dmc *dmc,
189 				unsigned long target_rate)
190 {
191 	int i;
192 
193 	for (i = dmc->opp_count - 1; i >= 0; i--)
194 		if (dmc->opp[i].freq_hz <= target_rate)
195 			return i;
196 
197 	return -EINVAL;
198 }
199 
200 /**
201  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
202  * @dmc:	device for which the new settings is going to be applied
203  * @set:	boolean variable passing set value
204  *
205  * Changes the register set, which holds timing parameters.
206  * There is two register sets: 0 and 1. The register set 0
207  * is used in normal operation when the clock is provided from main PLL.
208  * The bank register set 1 is used when the main PLL frequency is going to be
209  * changed and the clock is taken from alternative, stable source.
210  * This function switches between these banks according to the
211  * currently used clock source.
212  */
213 static void exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
214 {
215 	unsigned int reg;
216 	int ret;
217 
218 	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
219 
220 	if (set)
221 		reg |= EXYNOS5_TIMING_SET_SWI;
222 	else
223 		reg &= ~EXYNOS5_TIMING_SET_SWI;
224 
225 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
226 }
227 
228 /**
229  * exynos5_init_freq_table() - Initialized PM OPP framework
230  * @dmc:	DMC device for which the frequencies are used for OPP init
231  * @profile:	devfreq device's profile
232  *
233  * Populate the devfreq device's OPP table based on current frequency, voltage.
234  */
235 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
236 				   struct devfreq_dev_profile *profile)
237 {
238 	int i, ret;
239 	int idx;
240 	unsigned long freq;
241 
242 	ret = dev_pm_opp_of_add_table(dmc->dev);
243 	if (ret < 0) {
244 		dev_err(dmc->dev, "Failed to get OPP table\n");
245 		return ret;
246 	}
247 
248 	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
249 
250 	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
251 				      sizeof(struct dmc_opp_table), GFP_KERNEL);
252 	if (!dmc->opp)
253 		goto err_opp;
254 
255 	idx = dmc->opp_count - 1;
256 	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
257 		struct dev_pm_opp *opp;
258 
259 		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
260 		if (IS_ERR(opp))
261 			goto err_opp;
262 
263 		dmc->opp[idx - i].freq_hz = freq;
264 		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
265 
266 		dev_pm_opp_put(opp);
267 	}
268 
269 	return 0;
270 
271 err_opp:
272 	dev_pm_opp_of_remove_table(dmc->dev);
273 
274 	return -EINVAL;
275 }
276 
277 /**
278  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
279  * @dmc:	device for which the new settings is going to be applied
280  * @param:	DRAM parameters which passes timing data
281  *
282  * Low-level function for changing timings for DRAM memory clocking from
283  * 'bypass' clock source (fixed frequency @400MHz).
284  * It uses timing bank registers set 1.
285  */
286 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
287 {
288 	writel(EXYNOS5_AREF_NORMAL,
289 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
290 
291 	writel(dmc->bypass_timing_row,
292 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
293 	writel(dmc->bypass_timing_row,
294 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
295 	writel(dmc->bypass_timing_data,
296 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
297 	writel(dmc->bypass_timing_data,
298 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
299 	writel(dmc->bypass_timing_power,
300 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
301 	writel(dmc->bypass_timing_power,
302 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
303 }
304 
305 /**
306  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
307  * @dmc:	device for which the new settings is going to be applied
308  * @target_rate:	target frequency of the DMC
309  *
310  * Low-level function for changing timings for DRAM memory operating from main
311  * clock source (BPLL), which can have different frequencies. Thus, each
312  * frequency must have corresponding timings register values in order to keep
313  * the needed delays.
314  * It uses timing bank registers set 0.
315  */
316 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
317 				       unsigned long target_rate)
318 {
319 	int idx;
320 
321 	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
322 		if (dmc->opp[idx].freq_hz <= target_rate)
323 			break;
324 
325 	if (idx < 0)
326 		return -EINVAL;
327 
328 	writel(EXYNOS5_AREF_NORMAL,
329 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
330 
331 	writel(dmc->timing_row[idx],
332 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
333 	writel(dmc->timing_row[idx],
334 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
335 	writel(dmc->timing_data[idx],
336 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
337 	writel(dmc->timing_data[idx],
338 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
339 	writel(dmc->timing_power[idx],
340 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
341 	writel(dmc->timing_power[idx],
342 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
343 
344 	return 0;
345 }
346 
347 /**
348  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
349  * @dmc:	device for which it is going to be set
350  * @target_volt:	new voltage which is chosen to be final
351  *
352  * Function tries to align voltage to the safe level for 'normal' mode.
353  * It checks the need of higher voltage and changes the value. The target
354  * voltage might be lower that currently set and still the system will be
355  * stable.
356  */
357 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
358 					    unsigned long target_volt)
359 {
360 	int ret = 0;
361 
362 	if (dmc->curr_volt <= target_volt)
363 		return 0;
364 
365 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
366 				    target_volt);
367 	if (!ret)
368 		dmc->curr_volt = target_volt;
369 
370 	return ret;
371 }
372 
373 /**
374  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
375  * @dmc:	device for which it is going to be set
376  * @target_volt:	new voltage which is chosen to be final
377  *
378  * Function tries to align voltage to the safe level for the 'bypass' mode.
379  * It checks the need of higher voltage and changes the value.
380  * The target voltage must not be less than currently needed, because
381  * for current frequency the device might become unstable.
382  */
383 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
384 					    unsigned long target_volt)
385 {
386 	int ret = 0;
387 	unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
388 
389 	target_volt = max(bypass_volt, target_volt);
390 
391 	if (dmc->curr_volt >= target_volt)
392 		return 0;
393 
394 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
395 				    target_volt);
396 	if (!ret)
397 		dmc->curr_volt = target_volt;
398 
399 	return ret;
400 }
401 
402 /**
403  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
404  * @dmc:	device for which it is going to be set
405  * @target_rate:	new frequency which is chosen to be final
406  *
407  * Function changes the DRAM timings for the temporary 'bypass' mode.
408  */
409 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
410 						 unsigned long target_rate)
411 {
412 	int idx = find_target_freq_idx(dmc, target_rate);
413 
414 	if (idx < 0)
415 		return -EINVAL;
416 
417 	exynos5_set_bypass_dram_timings(dmc);
418 
419 	return 0;
420 }
421 
422 /**
423  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
424  * @dmc:	DMC device for which the switching is going to happen
425  * @target_rate:	new frequency which is going to be set as a final
426  * @target_volt:	new voltage which is going to be set as a final
427  *
428  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
429  * This mode is used only temporary but if required, changes voltage and timings
430  * for DRAM chips. It switches the main clock to stable clock source for the
431  * period of the main PLL reconfiguration.
432  */
433 static int
434 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
435 					   unsigned long target_rate,
436 					   unsigned long target_volt)
437 {
438 	int ret;
439 
440 	/*
441 	 * Having higher voltage for a particular frequency does not harm
442 	 * the chip. Use it for the temporary frequency change when one
443 	 * voltage manipulation might be avoided.
444 	 */
445 	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
446 	if (ret)
447 		return ret;
448 
449 	/*
450 	 * Longer delays for DRAM does not cause crash, the opposite does.
451 	 */
452 	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
453 	if (ret)
454 		return ret;
455 
456 	/*
457 	 * Delays are long enough, so use them for the new coming clock.
458 	 */
459 	exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
460 
461 	return ret;
462 }
463 
464 /**
465  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
466  * using safe procedure
467  * @dmc:	device for which the frequency is going to be changed
468  * @target_rate:	requested new frequency
469  * @target_volt:	requested voltage which corresponds to the new frequency
470  *
471  * The DMC frequency change procedure requires a few steps.
472  * The main requirement is to change the clock source in the clk mux
473  * for the time of main clock PLL locking. The assumption is that the
474  * alternative clock source set as parent is stable.
475  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
476  * clock. This requires alignment in DRAM timing parameters for the new
477  * T-period. There is two bank sets for keeping DRAM
478  * timings: set 0 and set 1. The set 0 is used when main clock source is
479  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
480  * the two bank sets is part of the process.
481  * The voltage must also be aligned to the minimum required level. There is
482  * this intermediate step with switching to 'bypass' parent clock source.
483  * if the old voltage is lower, it requires an increase of the voltage level.
484  * The complexity of the voltage manipulation is hidden in low level function.
485  * In this function there is last alignment of the voltage level at the end.
486  */
487 static int
488 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
489 				 unsigned long target_rate,
490 				 unsigned long target_volt)
491 {
492 	int ret;
493 
494 	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
495 							 target_volt);
496 	if (ret)
497 		return ret;
498 
499 	/*
500 	 * Voltage is set at least to a level needed for this frequency,
501 	 * so switching clock source is safe now.
502 	 */
503 	clk_prepare_enable(dmc->fout_spll);
504 	clk_prepare_enable(dmc->mout_spll);
505 	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
506 
507 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
508 	if (ret)
509 		goto disable_clocks;
510 
511 	/*
512 	 * We are safe to increase the timings for current bypass frequency.
513 	 * Thanks to this the settings will be ready for the upcoming clock
514 	 * source change.
515 	 */
516 	exynos5_dram_change_timings(dmc, target_rate);
517 
518 	clk_set_rate(dmc->fout_bpll, target_rate);
519 
520 	exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
521 
522 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
523 	if (ret)
524 		goto disable_clocks;
525 
526 	/*
527 	 * Make sure if the voltage is not from 'bypass' settings and align to
528 	 * the right level for power efficiency.
529 	 */
530 	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
531 
532 disable_clocks:
533 	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
534 	clk_disable_unprepare(dmc->mout_spll);
535 	clk_disable_unprepare(dmc->fout_spll);
536 
537 	return ret;
538 }
539 
540 /**
541  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
542  * table.
543  * @dmc:	device for which the frequency is going to be changed
544  * @freq:       requested frequency in KHz
545  * @target_rate:	returned frequency which is the same or lower than
546  *			requested
547  * @target_volt:	returned voltage which corresponds to the returned
548  *			frequency
549  *
550  * Function gets requested frequency and checks OPP framework for needed
551  * frequency and voltage. It populates the values 'target_rate' and
552  * 'target_volt' or returns error value when OPP framework fails.
553  */
554 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
555 				     unsigned long *freq,
556 				     unsigned long *target_rate,
557 				     unsigned long *target_volt, u32 flags)
558 {
559 	struct dev_pm_opp *opp;
560 
561 	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
562 	if (IS_ERR(opp))
563 		return PTR_ERR(opp);
564 
565 	*target_rate = dev_pm_opp_get_freq(opp);
566 	*target_volt = dev_pm_opp_get_voltage(opp);
567 	dev_pm_opp_put(opp);
568 
569 	return 0;
570 }
571 
572 /**
573  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
574  * @dev:	device for which the frequency is going to be changed
575  * @freq:	requested frequency in KHz
576  * @flags:	flags provided for this frequency change request
577  *
578  * An entry function provided to the devfreq framework which provides frequency
579  * change of the DMC. The function gets the possible rate from OPP table based
580  * on requested frequency. It calls the next function responsible for the
581  * frequency and voltage change. In case of failure, does not set 'curr_rate'
582  * and returns error value to the framework.
583  */
584 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
585 			      u32 flags)
586 {
587 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
588 	unsigned long target_rate = 0;
589 	unsigned long target_volt = 0;
590 	int ret;
591 
592 	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
593 					flags);
594 
595 	if (ret)
596 		return ret;
597 
598 	if (target_rate == dmc->curr_rate)
599 		return 0;
600 
601 	mutex_lock(&dmc->lock);
602 
603 	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
604 
605 	if (ret) {
606 		mutex_unlock(&dmc->lock);
607 		return ret;
608 	}
609 
610 	dmc->curr_rate = target_rate;
611 
612 	mutex_unlock(&dmc->lock);
613 	return 0;
614 }
615 
616 /**
617  * exynos5_counters_get() - Gets the performance counters values.
618  * @dmc:	device for which the counters are going to be checked
619  * @load_count:	variable which is populated with counter value
620  * @total_count:	variable which is used as 'wall clock' reference
621  *
622  * Function which provides performance counters values. It sums up counters for
623  * two DMC channels. The 'total_count' is used as a reference and max value.
624  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
625  */
626 static int exynos5_counters_get(struct exynos5_dmc *dmc,
627 				unsigned long *load_count,
628 				unsigned long *total_count)
629 {
630 	unsigned long total = 0;
631 	struct devfreq_event_data event;
632 	int ret, i;
633 
634 	*load_count = 0;
635 
636 	/* Take into account only read+write counters, but stop all */
637 	for (i = 0; i < dmc->num_counters; i++) {
638 		if (!dmc->counter[i])
639 			continue;
640 
641 		ret = devfreq_event_get_event(dmc->counter[i], &event);
642 		if (ret < 0)
643 			return ret;
644 
645 		*load_count += event.load_count;
646 
647 		if (total < event.total_count)
648 			total = event.total_count;
649 	}
650 
651 	*total_count = total;
652 
653 	return 0;
654 }
655 
656 /**
657  * exynos5_dmc_get_status() - Read current DMC performance statistics.
658  * @dev:	device for which the statistics are requested
659  * @stat:	structure which has statistic fields
660  *
661  * Function reads the DMC performance counters and calculates 'busy_time'
662  * and 'total_time'. To protect from overflow, the values are shifted right
663  * by 10. After read out the counters are setup to count again.
664  */
665 static int exynos5_dmc_get_status(struct device *dev,
666 				  struct devfreq_dev_status *stat)
667 {
668 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
669 	unsigned long load, total;
670 	int ret;
671 
672 	ret = exynos5_counters_get(dmc, &load, &total);
673 	if (ret < 0)
674 		return -EINVAL;
675 
676 	/* To protect from overflow in calculation ratios, divide by 1024 */
677 	stat->busy_time = load >> 10;
678 	stat->total_time = total >> 10;
679 
680 	ret = exynos5_counters_set_event(dmc);
681 	if (ret < 0) {
682 		dev_err(dev, "could not set event counter\n");
683 		return ret;
684 	}
685 
686 	return 0;
687 }
688 
689 /**
690  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
691  * @dev:	device for which the framework checks operating frequency
692  * @freq:	returned frequency value
693  *
694  * It returns the currently used frequency of the DMC. The real operating
695  * frequency might be lower when the clock source value could not be divided
696  * to the requested value.
697  */
698 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
699 {
700 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
701 
702 	mutex_lock(&dmc->lock);
703 	*freq = dmc->curr_rate;
704 	mutex_unlock(&dmc->lock);
705 
706 	return 0;
707 }
708 
709 /**
710  * exynos5_dmc_df_profile - Devfreq governor's profile structure
711  *
712  * It provides to the devfreq framework needed functions and polling period.
713  */
714 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
715 	.polling_ms = 500,
716 	.target = exynos5_dmc_target,
717 	.get_dev_status = exynos5_dmc_get_status,
718 	.get_cur_freq = exynos5_dmc_get_cur_freq,
719 };
720 
721 /**
722  * exynos5_dmc_align_initial_frequency() - Align initial frequency value
723  * @dmc:	device for which the frequency is going to be set
724  * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
725  *
726  * The initial bootloader frequency, which is present during boot, might be
727  * different that supported frequency values in the driver. It is possible
728  * due to different PLL settings or used PLL as a source.
729  * This function provides the 'initial_freq' for the devfreq framework
730  * statistics engine which supports only registered values. Thus, some alignment
731  * must be made.
732  */
733 static unsigned long
734 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
735 			    unsigned long bootloader_init_freq)
736 {
737 	unsigned long aligned_freq;
738 	int idx;
739 
740 	idx = find_target_freq_idx(dmc, bootloader_init_freq);
741 	if (idx >= 0)
742 		aligned_freq = dmc->opp[idx].freq_hz;
743 	else
744 		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
745 
746 	return aligned_freq;
747 }
748 
749 /**
750  * create_timings_aligned() - Create register values and align with standard
751  * @dmc:	device for which the frequency is going to be set
752  * @idx:	speed bin in the OPP table
753  * @clk_period_ps:	the period of the clock, known as tCK
754  *
755  * The function calculates timings and creates a register value ready for
756  * a frequency transition. The register contains a few timings. They are
757  * shifted by a known offset. The timing value is calculated based on memory
758  * specyfication: minimal time required and minimal cycles required.
759  */
760 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
761 				  u32 *reg_timing_data, u32 *reg_timing_power,
762 				  u32 clk_period_ps)
763 {
764 	u32 val;
765 	const struct timing_reg *reg;
766 
767 	if (clk_period_ps == 0)
768 		return -EINVAL;
769 
770 	*reg_timing_row = 0;
771 	*reg_timing_data = 0;
772 	*reg_timing_power = 0;
773 
774 	val = dmc->timings->tRFC / clk_period_ps;
775 	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
776 	val = max(val, dmc->min_tck->tRFC);
777 	reg = &timing_row[0];
778 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
779 
780 	val = dmc->timings->tRRD / clk_period_ps;
781 	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
782 	val = max(val, dmc->min_tck->tRRD);
783 	reg = &timing_row[1];
784 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
785 
786 	val = dmc->timings->tRPab / clk_period_ps;
787 	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
788 	val = max(val, dmc->min_tck->tRPab);
789 	reg = &timing_row[2];
790 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
791 
792 	val = dmc->timings->tRCD / clk_period_ps;
793 	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
794 	val = max(val, dmc->min_tck->tRCD);
795 	reg = &timing_row[3];
796 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
797 
798 	val = dmc->timings->tRC / clk_period_ps;
799 	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
800 	val = max(val, dmc->min_tck->tRC);
801 	reg = &timing_row[4];
802 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
803 
804 	val = dmc->timings->tRAS / clk_period_ps;
805 	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
806 	val = max(val, dmc->min_tck->tRAS);
807 	reg = &timing_row[5];
808 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
809 
810 	/* data related timings */
811 	val = dmc->timings->tWTR / clk_period_ps;
812 	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
813 	val = max(val, dmc->min_tck->tWTR);
814 	reg = &timing_data[0];
815 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
816 
817 	val = dmc->timings->tWR / clk_period_ps;
818 	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
819 	val = max(val, dmc->min_tck->tWR);
820 	reg = &timing_data[1];
821 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
822 
823 	val = dmc->timings->tRTP / clk_period_ps;
824 	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
825 	val = max(val, dmc->min_tck->tRTP);
826 	reg = &timing_data[2];
827 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
828 
829 	val = dmc->timings->tW2W_C2C / clk_period_ps;
830 	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
831 	val = max(val, dmc->min_tck->tW2W_C2C);
832 	reg = &timing_data[3];
833 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
834 
835 	val = dmc->timings->tR2R_C2C / clk_period_ps;
836 	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
837 	val = max(val, dmc->min_tck->tR2R_C2C);
838 	reg = &timing_data[4];
839 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
840 
841 	val = dmc->timings->tWL / clk_period_ps;
842 	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
843 	val = max(val, dmc->min_tck->tWL);
844 	reg = &timing_data[5];
845 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
846 
847 	val = dmc->timings->tDQSCK / clk_period_ps;
848 	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
849 	val = max(val, dmc->min_tck->tDQSCK);
850 	reg = &timing_data[6];
851 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
852 
853 	val = dmc->timings->tRL / clk_period_ps;
854 	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
855 	val = max(val, dmc->min_tck->tRL);
856 	reg = &timing_data[7];
857 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
858 
859 	/* power related timings */
860 	val = dmc->timings->tFAW / clk_period_ps;
861 	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
862 	val = max(val, dmc->min_tck->tXP);
863 	reg = &timing_power[0];
864 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
865 
866 	val = dmc->timings->tXSR / clk_period_ps;
867 	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
868 	val = max(val, dmc->min_tck->tXSR);
869 	reg = &timing_power[1];
870 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
871 
872 	val = dmc->timings->tXP / clk_period_ps;
873 	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
874 	val = max(val, dmc->min_tck->tXP);
875 	reg = &timing_power[2];
876 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
877 
878 	val = dmc->timings->tCKE / clk_period_ps;
879 	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
880 	val = max(val, dmc->min_tck->tCKE);
881 	reg = &timing_power[3];
882 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
883 
884 	val = dmc->timings->tMRD / clk_period_ps;
885 	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
886 	val = max(val, dmc->min_tck->tMRD);
887 	reg = &timing_power[4];
888 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
889 
890 	return 0;
891 }
892 
893 /**
894  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
895  * @dmc:        device for which the frequency is going to be set
896  *
897  * The function parses DT entries with DRAM information.
898  */
899 static int of_get_dram_timings(struct exynos5_dmc *dmc)
900 {
901 	int ret = 0;
902 	int idx;
903 	struct device_node *np_ddr;
904 	u32 freq_mhz, clk_period_ps;
905 
906 	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
907 	if (!np_ddr) {
908 		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
909 		return -EINVAL;
910 	}
911 
912 	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
913 					     sizeof(u32), GFP_KERNEL);
914 	if (!dmc->timing_row)
915 		return -ENOMEM;
916 
917 	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
918 					      sizeof(u32), GFP_KERNEL);
919 	if (!dmc->timing_data)
920 		return -ENOMEM;
921 
922 	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
923 					       sizeof(u32), GFP_KERNEL);
924 	if (!dmc->timing_power)
925 		return -ENOMEM;
926 
927 	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
928 						 DDR_TYPE_LPDDR3,
929 						 &dmc->timings_arr_size);
930 	if (!dmc->timings) {
931 		of_node_put(np_ddr);
932 		dev_warn(dmc->dev, "could not get timings from DT\n");
933 		return -EINVAL;
934 	}
935 
936 	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
937 	if (!dmc->min_tck) {
938 		of_node_put(np_ddr);
939 		dev_warn(dmc->dev, "could not get tck from DT\n");
940 		return -EINVAL;
941 	}
942 
943 	/* Sorted array of OPPs with frequency ascending */
944 	for (idx = 0; idx < dmc->opp_count; idx++) {
945 		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
946 		clk_period_ps = 1000000 / freq_mhz;
947 
948 		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
949 					     &dmc->timing_data[idx],
950 					     &dmc->timing_power[idx],
951 					     clk_period_ps);
952 	}
953 
954 	of_node_put(np_ddr);
955 
956 	/* Take the highest frequency's timings as 'bypass' */
957 	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
958 	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
959 	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
960 
961 	return ret;
962 }
963 
964 /**
965  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
966  * @dmc:	DMC structure containing needed fields
967  *
968  * Get the needed clocks defined in DT device, enable and set the right parents.
969  * Read current frequency and initialize the initial rate for governor.
970  */
971 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
972 {
973 	int ret;
974 	unsigned long target_volt = 0;
975 	unsigned long target_rate = 0;
976 	unsigned int tmp;
977 
978 	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
979 	if (IS_ERR(dmc->fout_spll))
980 		return PTR_ERR(dmc->fout_spll);
981 
982 	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
983 	if (IS_ERR(dmc->fout_bpll))
984 		return PTR_ERR(dmc->fout_bpll);
985 
986 	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
987 	if (IS_ERR(dmc->mout_mclk_cdrex))
988 		return PTR_ERR(dmc->mout_mclk_cdrex);
989 
990 	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
991 	if (IS_ERR(dmc->mout_bpll))
992 		return PTR_ERR(dmc->mout_bpll);
993 
994 	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
995 						"mout_mx_mspll_ccore");
996 	if (IS_ERR(dmc->mout_mx_mspll_ccore))
997 		return PTR_ERR(dmc->mout_mx_mspll_ccore);
998 
999 	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1000 	if (IS_ERR(dmc->mout_spll)) {
1001 		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1002 		if (IS_ERR(dmc->mout_spll))
1003 			return PTR_ERR(dmc->mout_spll);
1004 	}
1005 
1006 	/*
1007 	 * Convert frequency to KHz values and set it for the governor.
1008 	 */
1009 	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1010 	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1011 	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1012 
1013 	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1014 					&target_volt, 0);
1015 	if (ret)
1016 		return ret;
1017 
1018 	dmc->curr_volt = target_volt;
1019 
1020 	clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1021 
1022 	dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1023 
1024 	clk_prepare_enable(dmc->fout_bpll);
1025 	clk_prepare_enable(dmc->mout_bpll);
1026 
1027 	/*
1028 	 * Some bootloaders do not set clock routes correctly.
1029 	 * Stop one path in clocks to PHY.
1030 	 */
1031 	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1032 	tmp &= ~(BIT(1) | BIT(0));
1033 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1034 
1035 	return 0;
1036 }
1037 
1038 /**
1039  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1040  * @dmc:	DMC for which it does the setup
1041  *
1042  * Initialization of performance counters in DMC for estimating usage.
1043  * The counter's values are used for calculation of a memory bandwidth and based
1044  * on that the governor changes the frequency.
1045  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1046  */
1047 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1048 {
1049 	int counters_size;
1050 	int ret, i;
1051 
1052 	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1053 	if (dmc->num_counters < 0) {
1054 		dev_err(dmc->dev, "could not get devfreq-event counters\n");
1055 		return dmc->num_counters;
1056 	}
1057 
1058 	counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1059 	dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1060 	if (!dmc->counter)
1061 		return -ENOMEM;
1062 
1063 	for (i = 0; i < dmc->num_counters; i++) {
1064 		dmc->counter[i] =
1065 			devfreq_event_get_edev_by_phandle(dmc->dev, i);
1066 		if (IS_ERR_OR_NULL(dmc->counter[i]))
1067 			return -EPROBE_DEFER;
1068 	}
1069 
1070 	ret = exynos5_counters_enable_edev(dmc);
1071 	if (ret < 0) {
1072 		dev_err(dmc->dev, "could not enable event counter\n");
1073 		return ret;
1074 	}
1075 
1076 	ret = exynos5_counters_set_event(dmc);
1077 	if (ret < 0) {
1078 		exynos5_counters_disable_edev(dmc);
1079 		dev_err(dmc->dev, "could not set event counter\n");
1080 		return ret;
1081 	}
1082 
1083 	return 0;
1084 }
1085 
1086 /**
1087  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1088  * @dmc:	device which is used for changing this feature
1089  * @set:	a boolean state passing enable/disable request
1090  *
1091  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1092  * changes its configuration. In such situation access to the memory is blocked
1093  * in DMC automatically. This feature is used when clock frequency change
1094  * request appears and touches clock tree.
1095  */
1096 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1097 {
1098 	unsigned int val;
1099 	int ret;
1100 
1101 	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1102 	if (ret)
1103 		return ret;
1104 
1105 	val |= 1UL;
1106 	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1107 
1108 	return 0;
1109 }
1110 
1111 /**
1112  * exynos5_dmc_probe() - Probe function for the DMC driver
1113  * @pdev:	platform device for which the driver is going to be initialized
1114  *
1115  * Initialize basic components: clocks, regulators, performance counters, etc.
1116  * Read out product version and based on the information setup
1117  * internal structures for the controller (frequency and voltage) and for DRAM
1118  * memory parameters: timings for each operating frequency.
1119  * Register new devfreq device for controlling DVFS of the DMC.
1120  */
1121 static int exynos5_dmc_probe(struct platform_device *pdev)
1122 {
1123 	int ret = 0;
1124 	struct device *dev = &pdev->dev;
1125 	struct device_node *np = dev->of_node;
1126 	struct exynos5_dmc *dmc;
1127 	struct resource *res;
1128 
1129 	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1130 	if (!dmc)
1131 		return -ENOMEM;
1132 
1133 	mutex_init(&dmc->lock);
1134 
1135 	dmc->dev = dev;
1136 	platform_set_drvdata(pdev, dmc);
1137 
1138 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1139 	dmc->base_drexi0 = devm_ioremap_resource(dev, res);
1140 	if (IS_ERR(dmc->base_drexi0))
1141 		return PTR_ERR(dmc->base_drexi0);
1142 
1143 	res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1144 	dmc->base_drexi1 = devm_ioremap_resource(dev, res);
1145 	if (IS_ERR(dmc->base_drexi1))
1146 		return PTR_ERR(dmc->base_drexi1);
1147 
1148 	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1149 				"samsung,syscon-clk");
1150 	if (IS_ERR(dmc->clk_regmap))
1151 		return PTR_ERR(dmc->clk_regmap);
1152 
1153 	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1154 	if (ret) {
1155 		dev_warn(dev, "couldn't initialize frequency settings\n");
1156 		return ret;
1157 	}
1158 
1159 	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1160 	if (IS_ERR(dmc->vdd_mif)) {
1161 		ret = PTR_ERR(dmc->vdd_mif);
1162 		return ret;
1163 	}
1164 
1165 	ret = exynos5_dmc_init_clks(dmc);
1166 	if (ret)
1167 		return ret;
1168 
1169 	ret = of_get_dram_timings(dmc);
1170 	if (ret) {
1171 		dev_warn(dev, "couldn't initialize timings settings\n");
1172 		goto remove_clocks;
1173 	}
1174 
1175 	ret = exynos5_performance_counters_init(dmc);
1176 	if (ret) {
1177 		dev_warn(dev, "couldn't probe performance counters\n");
1178 		goto remove_clocks;
1179 	}
1180 
1181 	ret = exynos5_dmc_set_pause_on_switching(dmc);
1182 	if (ret) {
1183 		dev_warn(dev, "couldn't get access to PAUSE register\n");
1184 		goto err_devfreq_add;
1185 	}
1186 
1187 	/*
1188 	 * Setup default thresholds for the devfreq governor.
1189 	 * The values are chosen based on experiments.
1190 	 */
1191 	dmc->gov_data.upthreshold = 30;
1192 	dmc->gov_data.downdifferential = 5;
1193 
1194 	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1195 					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1196 					  &dmc->gov_data);
1197 
1198 	if (IS_ERR(dmc->df)) {
1199 		ret = PTR_ERR(dmc->df);
1200 		goto err_devfreq_add;
1201 	}
1202 
1203 	dev_info(dev, "DMC initialized\n");
1204 
1205 	return 0;
1206 
1207 err_devfreq_add:
1208 	exynos5_counters_disable_edev(dmc);
1209 remove_clocks:
1210 	clk_disable_unprepare(dmc->mout_bpll);
1211 	clk_disable_unprepare(dmc->fout_bpll);
1212 
1213 	return ret;
1214 }
1215 
1216 /**
1217  * exynos5_dmc_remove() - Remove function for the platform device
1218  * @pdev:	platform device which is going to be removed
1219  *
1220  * The function relies on 'devm' framework function which automatically
1221  * clean the device's resources. It just calls explicitly disable function for
1222  * the performance counters.
1223  */
1224 static int exynos5_dmc_remove(struct platform_device *pdev)
1225 {
1226 	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1227 
1228 	exynos5_counters_disable_edev(dmc);
1229 
1230 	clk_disable_unprepare(dmc->mout_bpll);
1231 	clk_disable_unprepare(dmc->fout_bpll);
1232 
1233 	dev_pm_opp_remove_table(dmc->dev);
1234 
1235 	return 0;
1236 }
1237 
1238 static const struct of_device_id exynos5_dmc_of_match[] = {
1239 	{ .compatible = "samsung,exynos5422-dmc", },
1240 	{ },
1241 };
1242 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1243 
1244 static struct platform_driver exynos5_dmc_platdrv = {
1245 	.probe	= exynos5_dmc_probe,
1246 	.remove = exynos5_dmc_remove,
1247 	.driver = {
1248 		.name	= "exynos5-dmc",
1249 		.of_match_table = exynos5_dmc_of_match,
1250 	},
1251 };
1252 module_platform_driver(exynos5_dmc_platdrv);
1253 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1254 MODULE_LICENSE("GPL v2");
1255 MODULE_AUTHOR("Lukasz Luba");
1256