1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
5 */
6
7 #include <linux/cleanup.h>
8 #include <linux/clk.h>
9 #include <linux/devfreq.h>
10 #include <linux/devfreq-event.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/of.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23 #include "../jedec_ddr.h"
24 #include "../of_memory.h"
25
26 static int irqmode;
27 module_param(irqmode, int, 0644);
28 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
29
30 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
31 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
32 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
33 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
34 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
35 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
36 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
37 #define CDREX_PAUSE (0x2091c)
38 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
39 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
40 #define EXYNOS5_TIMING_SET_SWI BIT(28)
41 #define USE_MX_MSPLL_TIMINGS (1)
42 #define USE_BPLL_TIMINGS (0)
43 #define EXYNOS5_AREF_NORMAL (0x2e)
44
45 #define DREX_PPCCLKCON (0x0130)
46 #define DREX_PEREV2CONFIG (0x013c)
47 #define DREX_PMNC_PPC (0xE000)
48 #define DREX_CNTENS_PPC (0xE010)
49 #define DREX_CNTENC_PPC (0xE020)
50 #define DREX_INTENS_PPC (0xE030)
51 #define DREX_INTENC_PPC (0xE040)
52 #define DREX_FLAG_PPC (0xE050)
53 #define DREX_PMCNT2_PPC (0xE130)
54
55 /*
56 * A value for register DREX_PMNC_PPC which should be written to reset
57 * the cycle counter CCNT (a reference wall clock). It sets zero to the
58 * CCNT counter.
59 */
60 #define CC_RESET BIT(2)
61
62 /*
63 * A value for register DREX_PMNC_PPC which does the reset of all performance
64 * counters to zero.
65 */
66 #define PPC_COUNTER_RESET BIT(1)
67
68 /*
69 * Enables all configured counters (including cycle counter). The value should
70 * be written to the register DREX_PMNC_PPC.
71 */
72 #define PPC_ENABLE BIT(0)
73
74 /* A value for register DREX_PPCCLKCON which enables performance events clock.
75 * Must be written before first access to the performance counters register
76 * set, otherwise it could crash.
77 */
78 #define PEREV_CLK_EN BIT(0)
79
80 /*
81 * Values which are used to enable counters, interrupts or configure flags of
82 * the performance counters. They configure counter 2 and cycle counter.
83 */
84 #define PERF_CNT2 BIT(2)
85 #define PERF_CCNT BIT(31)
86
87 /*
88 * Performance event types which are used for setting the preferred event
89 * to track in the counters.
90 * There is a set of different types, the values are from range 0 to 0x6f.
91 * These settings should be written to the configuration register which manages
92 * the type of the event (register DREX_PEREV2CONFIG).
93 */
94 #define READ_TRANSFER_CH0 (0x6d)
95 #define READ_TRANSFER_CH1 (0x6f)
96
97 #define PERF_COUNTER_START_VALUE 0xff000000
98 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
99
100 /**
101 * struct dmc_opp_table - Operating level desciption
102 * @freq_hz: target frequency in Hz
103 * @volt_uv: target voltage in uV
104 *
105 * Covers frequency and voltage settings of the DMC operating mode.
106 */
107 struct dmc_opp_table {
108 u32 freq_hz;
109 u32 volt_uv;
110 };
111
112 /**
113 * struct exynos5_dmc - main structure describing DMC device
114 * @dev: DMC device
115 * @df: devfreq device structure returned by devfreq framework
116 * @gov_data: configuration of devfreq governor
117 * @base_drexi0: DREX0 registers mapping
118 * @base_drexi1: DREX1 registers mapping
119 * @clk_regmap: regmap for clock controller registers
120 * @lock: protects curr_rate and frequency/voltage setting section
121 * @curr_rate: current frequency
122 * @curr_volt: current voltage
123 * @opp: OPP table
124 * @opp_count: number of 'opp' elements
125 * @timings_arr_size: number of 'timings' elements
126 * @timing_row: values for timing row register, for each OPP
127 * @timing_data: values for timing data register, for each OPP
128 * @timing_power: balues for timing power register, for each OPP
129 * @timings: DDR memory timings, from device tree
130 * @min_tck: DDR memory minimum timing values, from device tree
131 * @bypass_timing_row: value for timing row register for bypass timings
132 * @bypass_timing_data: value for timing data register for bypass timings
133 * @bypass_timing_power: value for timing power register for bypass
134 * timings
135 * @vdd_mif: Memory interface regulator
136 * @fout_spll: clock: SPLL
137 * @fout_bpll: clock: BPLL
138 * @mout_spll: clock: mux SPLL
139 * @mout_bpll: clock: mux BPLL
140 * @mout_mclk_cdrex: clock: mux mclk_cdrex
141 * @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore
142 * @counter: devfreq events
143 * @num_counters: number of 'counter' elements
144 * @last_overflow_ts: time (in ns) of last overflow of each DREX
145 * @load: utilization in percents
146 * @total: total time between devfreq events
147 * @in_irq_mode: whether running in interrupt mode (true)
148 * or polling (false)
149 *
150 * The main structure for the Dynamic Memory Controller which covers clocks,
151 * memory regions, HW information, parameters and current operating mode.
152 */
153 struct exynos5_dmc {
154 struct device *dev;
155 struct devfreq *df;
156 struct devfreq_simple_ondemand_data gov_data;
157 void __iomem *base_drexi0;
158 void __iomem *base_drexi1;
159 struct regmap *clk_regmap;
160 /* Protects curr_rate and frequency/voltage setting section */
161 struct mutex lock;
162 unsigned long curr_rate;
163 unsigned long curr_volt;
164 struct dmc_opp_table *opp;
165 int opp_count;
166 u32 timings_arr_size;
167 u32 *timing_row;
168 u32 *timing_data;
169 u32 *timing_power;
170 const struct lpddr3_timings *timings;
171 const struct lpddr3_min_tck *min_tck;
172 u32 bypass_timing_row;
173 u32 bypass_timing_data;
174 u32 bypass_timing_power;
175 struct regulator *vdd_mif;
176 struct clk *fout_spll;
177 struct clk *fout_bpll;
178 struct clk *mout_spll;
179 struct clk *mout_bpll;
180 struct clk *mout_mclk_cdrex;
181 struct clk *mout_mx_mspll_ccore;
182 struct devfreq_event_dev **counter;
183 int num_counters;
184 u64 last_overflow_ts[2];
185 unsigned long load;
186 unsigned long total;
187 bool in_irq_mode;
188 };
189
190 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
191 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
192
193 #define TIMING_VAL2REG(timing, t_val) \
194 ({ \
195 u32 __val; \
196 __val = (t_val) << (timing)->bit_beg; \
197 __val; \
198 })
199
200 struct timing_reg {
201 char *name;
202 int bit_beg;
203 int bit_end;
204 unsigned int val;
205 };
206
207 static const struct timing_reg timing_row_reg_fields[] = {
208 TIMING_FIELD("tRFC", 24, 31),
209 TIMING_FIELD("tRRD", 20, 23),
210 TIMING_FIELD("tRP", 16, 19),
211 TIMING_FIELD("tRCD", 12, 15),
212 TIMING_FIELD("tRC", 6, 11),
213 TIMING_FIELD("tRAS", 0, 5),
214 };
215
216 static const struct timing_reg timing_data_reg_fields[] = {
217 TIMING_FIELD("tWTR", 28, 31),
218 TIMING_FIELD("tWR", 24, 27),
219 TIMING_FIELD("tRTP", 20, 23),
220 TIMING_FIELD("tW2W-C2C", 14, 14),
221 TIMING_FIELD("tR2R-C2C", 12, 12),
222 TIMING_FIELD("WL", 8, 11),
223 TIMING_FIELD("tDQSCK", 4, 7),
224 TIMING_FIELD("RL", 0, 3),
225 };
226
227 static const struct timing_reg timing_power_reg_fields[] = {
228 TIMING_FIELD("tFAW", 26, 31),
229 TIMING_FIELD("tXSR", 16, 25),
230 TIMING_FIELD("tXP", 8, 15),
231 TIMING_FIELD("tCKE", 4, 7),
232 TIMING_FIELD("tMRD", 0, 3),
233 };
234
235 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
236 ARRAY_SIZE(timing_data_reg_fields) + \
237 ARRAY_SIZE(timing_power_reg_fields))
238
exynos5_counters_set_event(struct exynos5_dmc * dmc)239 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
240 {
241 int i, ret;
242
243 for (i = 0; i < dmc->num_counters; i++) {
244 if (!dmc->counter[i])
245 continue;
246 ret = devfreq_event_set_event(dmc->counter[i]);
247 if (ret < 0)
248 return ret;
249 }
250 return 0;
251 }
252
exynos5_counters_enable_edev(struct exynos5_dmc * dmc)253 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
254 {
255 int i, ret;
256
257 for (i = 0; i < dmc->num_counters; i++) {
258 if (!dmc->counter[i])
259 continue;
260 ret = devfreq_event_enable_edev(dmc->counter[i]);
261 if (ret < 0)
262 return ret;
263 }
264 return 0;
265 }
266
exynos5_counters_disable_edev(struct exynos5_dmc * dmc)267 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
268 {
269 int i, ret;
270
271 for (i = 0; i < dmc->num_counters; i++) {
272 if (!dmc->counter[i])
273 continue;
274 ret = devfreq_event_disable_edev(dmc->counter[i]);
275 if (ret < 0)
276 return ret;
277 }
278 return 0;
279 }
280
281 /**
282 * find_target_freq_idx() - Finds requested frequency in local DMC configuration
283 * @dmc: device for which the information is checked
284 * @target_rate: requested frequency in KHz
285 *
286 * Seeks in the local DMC driver structure for the requested frequency value
287 * and returns index or error value.
288 */
find_target_freq_idx(struct exynos5_dmc * dmc,unsigned long target_rate)289 static int find_target_freq_idx(struct exynos5_dmc *dmc,
290 unsigned long target_rate)
291 {
292 int i;
293
294 for (i = dmc->opp_count - 1; i >= 0; i--)
295 if (dmc->opp[i].freq_hz <= target_rate)
296 return i;
297
298 return -EINVAL;
299 }
300
301 /**
302 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
303 * @dmc: device for which the new settings is going to be applied
304 * @set: boolean variable passing set value
305 *
306 * Changes the register set, which holds timing parameters.
307 * There is two register sets: 0 and 1. The register set 0
308 * is used in normal operation when the clock is provided from main PLL.
309 * The bank register set 1 is used when the main PLL frequency is going to be
310 * changed and the clock is taken from alternative, stable source.
311 * This function switches between these banks according to the
312 * currently used clock source.
313 */
exynos5_switch_timing_regs(struct exynos5_dmc * dmc,bool set)314 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
315 {
316 unsigned int reg;
317 int ret;
318
319 ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, ®);
320 if (ret)
321 return ret;
322
323 if (set)
324 reg |= EXYNOS5_TIMING_SET_SWI;
325 else
326 reg &= ~EXYNOS5_TIMING_SET_SWI;
327
328 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
329
330 return 0;
331 }
332
333 /**
334 * exynos5_init_freq_table() - Initialized PM OPP framework
335 * @dmc: DMC device for which the frequencies are used for OPP init
336 * @profile: devfreq device's profile
337 *
338 * Populate the devfreq device's OPP table based on current frequency, voltage.
339 */
exynos5_init_freq_table(struct exynos5_dmc * dmc,struct devfreq_dev_profile * profile)340 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
341 struct devfreq_dev_profile *profile)
342 {
343 struct device *dev = dmc->dev;
344 int i, ret;
345 int idx;
346 unsigned long freq;
347
348 ret = devm_pm_opp_of_add_table(dev);
349 if (ret < 0) {
350 dev_err(dev, "Failed to get OPP table\n");
351 return ret;
352 }
353
354 dmc->opp_count = dev_pm_opp_get_opp_count(dev);
355
356 dmc->opp = devm_kmalloc_array(dev, dmc->opp_count,
357 sizeof(struct dmc_opp_table), GFP_KERNEL);
358 if (!dmc->opp)
359 return -ENOMEM;
360
361 idx = dmc->opp_count - 1;
362 for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
363 struct dev_pm_opp *opp;
364
365 opp = dev_pm_opp_find_freq_floor(dev, &freq);
366 if (IS_ERR(opp))
367 return PTR_ERR(opp);
368
369 dmc->opp[idx - i].freq_hz = freq;
370 dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
371
372 dev_pm_opp_put(opp);
373 }
374
375 return 0;
376 }
377
378 /**
379 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
380 * @dmc: device for which the new settings is going to be applied
381 *
382 * Low-level function for changing timings for DRAM memory clocking from
383 * 'bypass' clock source (fixed frequency @400MHz).
384 * It uses timing bank registers set 1.
385 */
exynos5_set_bypass_dram_timings(struct exynos5_dmc * dmc)386 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
387 {
388 writel(EXYNOS5_AREF_NORMAL,
389 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390
391 writel(dmc->bypass_timing_row,
392 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
393 writel(dmc->bypass_timing_row,
394 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
395 writel(dmc->bypass_timing_data,
396 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
397 writel(dmc->bypass_timing_data,
398 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
399 writel(dmc->bypass_timing_power,
400 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
401 writel(dmc->bypass_timing_power,
402 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
403 }
404
405 /**
406 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
407 * @dmc: device for which the new settings is going to be applied
408 * @target_rate: target frequency of the DMC
409 *
410 * Low-level function for changing timings for DRAM memory operating from main
411 * clock source (BPLL), which can have different frequencies. Thus, each
412 * frequency must have corresponding timings register values in order to keep
413 * the needed delays.
414 * It uses timing bank registers set 0.
415 */
exynos5_dram_change_timings(struct exynos5_dmc * dmc,unsigned long target_rate)416 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
417 unsigned long target_rate)
418 {
419 int idx;
420
421 for (idx = dmc->opp_count - 1; idx >= 0; idx--)
422 if (dmc->opp[idx].freq_hz <= target_rate)
423 break;
424
425 if (idx < 0)
426 return -EINVAL;
427
428 writel(EXYNOS5_AREF_NORMAL,
429 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
430
431 writel(dmc->timing_row[idx],
432 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
433 writel(dmc->timing_row[idx],
434 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
435 writel(dmc->timing_data[idx],
436 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
437 writel(dmc->timing_data[idx],
438 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
439 writel(dmc->timing_power[idx],
440 dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
441 writel(dmc->timing_power[idx],
442 dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
443
444 return 0;
445 }
446
447 /**
448 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
449 * @dmc: device for which it is going to be set
450 * @target_volt: new voltage which is chosen to be final
451 *
452 * Function tries to align voltage to the safe level for 'normal' mode.
453 * It checks the need of higher voltage and changes the value. The target
454 * voltage might be lower that currently set and still the system will be
455 * stable.
456 */
exynos5_dmc_align_target_voltage(struct exynos5_dmc * dmc,unsigned long target_volt)457 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
458 unsigned long target_volt)
459 {
460 int ret = 0;
461
462 if (dmc->curr_volt <= target_volt)
463 return 0;
464
465 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
466 target_volt);
467 if (!ret)
468 dmc->curr_volt = target_volt;
469
470 return ret;
471 }
472
473 /**
474 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
475 * @dmc: device for which it is going to be set
476 * @target_volt: new voltage which is chosen to be final
477 *
478 * Function tries to align voltage to the safe level for the 'bypass' mode.
479 * It checks the need of higher voltage and changes the value.
480 * The target voltage must not be less than currently needed, because
481 * for current frequency the device might become unstable.
482 */
exynos5_dmc_align_bypass_voltage(struct exynos5_dmc * dmc,unsigned long target_volt)483 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
484 unsigned long target_volt)
485 {
486 int ret = 0;
487
488 if (dmc->curr_volt >= target_volt)
489 return 0;
490
491 ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
492 target_volt);
493 if (!ret)
494 dmc->curr_volt = target_volt;
495
496 return ret;
497 }
498
499 /**
500 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
501 * @dmc: device for which it is going to be set
502 * @target_rate: new frequency which is chosen to be final
503 *
504 * Function changes the DRAM timings for the temporary 'bypass' mode.
505 */
exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc * dmc,unsigned long target_rate)506 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
507 unsigned long target_rate)
508 {
509 int idx = find_target_freq_idx(dmc, target_rate);
510
511 if (idx < 0)
512 return -EINVAL;
513
514 exynos5_set_bypass_dram_timings(dmc);
515
516 return 0;
517 }
518
519 /**
520 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
521 * @dmc: DMC device for which the switching is going to happen
522 * @target_rate: new frequency which is going to be set as a final
523 * @target_volt: new voltage which is going to be set as a final
524 *
525 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
526 * This mode is used only temporary but if required, changes voltage and timings
527 * for DRAM chips. It switches the main clock to stable clock source for the
528 * period of the main PLL reconfiguration.
529 */
530 static int
exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc * dmc,unsigned long target_rate,unsigned long target_volt)531 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
532 unsigned long target_rate,
533 unsigned long target_volt)
534 {
535 int ret;
536
537 /*
538 * Having higher voltage for a particular frequency does not harm
539 * the chip. Use it for the temporary frequency change when one
540 * voltage manipulation might be avoided.
541 */
542 ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
543 if (ret)
544 return ret;
545
546 /*
547 * Longer delays for DRAM does not cause crash, the opposite does.
548 */
549 ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
550 if (ret)
551 return ret;
552
553 /*
554 * Delays are long enough, so use them for the new coming clock.
555 */
556 ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
557
558 return ret;
559 }
560
561 /**
562 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
563 * using safe procedure
564 * @dmc: device for which the frequency is going to be changed
565 * @target_rate: requested new frequency
566 * @target_volt: requested voltage which corresponds to the new frequency
567 *
568 * The DMC frequency change procedure requires a few steps.
569 * The main requirement is to change the clock source in the clk mux
570 * for the time of main clock PLL locking. The assumption is that the
571 * alternative clock source set as parent is stable.
572 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
573 * clock. This requires alignment in DRAM timing parameters for the new
574 * T-period. There is two bank sets for keeping DRAM
575 * timings: set 0 and set 1. The set 0 is used when main clock source is
576 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
577 * the two bank sets is part of the process.
578 * The voltage must also be aligned to the minimum required level. There is
579 * this intermediate step with switching to 'bypass' parent clock source.
580 * if the old voltage is lower, it requires an increase of the voltage level.
581 * The complexity of the voltage manipulation is hidden in low level function.
582 * In this function there is last alignment of the voltage level at the end.
583 */
584 static int
exynos5_dmc_change_freq_and_volt(struct exynos5_dmc * dmc,unsigned long target_rate,unsigned long target_volt)585 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
586 unsigned long target_rate,
587 unsigned long target_volt)
588 {
589 int ret;
590
591 ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
592 target_volt);
593 if (ret)
594 return ret;
595
596 /*
597 * Voltage is set at least to a level needed for this frequency,
598 * so switching clock source is safe now.
599 */
600 clk_prepare_enable(dmc->fout_spll);
601 clk_prepare_enable(dmc->mout_spll);
602 clk_prepare_enable(dmc->mout_mx_mspll_ccore);
603
604 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
605 if (ret)
606 goto disable_clocks;
607
608 /*
609 * We are safe to increase the timings for current bypass frequency.
610 * Thanks to this the settings will be ready for the upcoming clock
611 * source change.
612 */
613 exynos5_dram_change_timings(dmc, target_rate);
614
615 clk_set_rate(dmc->fout_bpll, target_rate);
616
617 ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
618 if (ret)
619 goto disable_clocks;
620
621 ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
622 if (ret)
623 goto disable_clocks;
624
625 /*
626 * Make sure if the voltage is not from 'bypass' settings and align to
627 * the right level for power efficiency.
628 */
629 ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
630
631 disable_clocks:
632 clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
633 clk_disable_unprepare(dmc->mout_spll);
634 clk_disable_unprepare(dmc->fout_spll);
635
636 return ret;
637 }
638
639 /**
640 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
641 * table.
642 * @dmc: device for which the frequency is going to be changed
643 * @freq: requested frequency in KHz
644 * @target_rate: returned frequency which is the same or lower than
645 * requested
646 * @target_volt: returned voltage which corresponds to the returned
647 * frequency
648 * @flags: devfreq flags provided for this frequency change request
649 *
650 * Function gets requested frequency and checks OPP framework for needed
651 * frequency and voltage. It populates the values 'target_rate' and
652 * 'target_volt' or returns error value when OPP framework fails.
653 */
exynos5_dmc_get_volt_freq(struct exynos5_dmc * dmc,unsigned long * freq,unsigned long * target_rate,unsigned long * target_volt,u32 flags)654 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
655 unsigned long *freq,
656 unsigned long *target_rate,
657 unsigned long *target_volt, u32 flags)
658 {
659 struct dev_pm_opp *opp;
660
661 opp = devfreq_recommended_opp(dmc->dev, freq, flags);
662 if (IS_ERR(opp))
663 return PTR_ERR(opp);
664
665 *target_rate = dev_pm_opp_get_freq(opp);
666 *target_volt = dev_pm_opp_get_voltage(opp);
667 dev_pm_opp_put(opp);
668
669 return 0;
670 }
671
672 /**
673 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
674 * @dev: device for which the frequency is going to be changed
675 * @freq: requested frequency in KHz
676 * @flags: flags provided for this frequency change request
677 *
678 * An entry function provided to the devfreq framework which provides frequency
679 * change of the DMC. The function gets the possible rate from OPP table based
680 * on requested frequency. It calls the next function responsible for the
681 * frequency and voltage change. In case of failure, does not set 'curr_rate'
682 * and returns error value to the framework.
683 */
exynos5_dmc_target(struct device * dev,unsigned long * freq,u32 flags)684 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
685 u32 flags)
686 {
687 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
688 unsigned long target_rate = 0;
689 unsigned long target_volt = 0;
690 int ret;
691
692 ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
693 flags);
694
695 if (ret)
696 return ret;
697
698 if (target_rate == dmc->curr_rate)
699 return 0;
700
701 mutex_lock(&dmc->lock);
702
703 ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
704
705 if (ret) {
706 mutex_unlock(&dmc->lock);
707 return ret;
708 }
709
710 dmc->curr_rate = target_rate;
711
712 mutex_unlock(&dmc->lock);
713 return 0;
714 }
715
716 /**
717 * exynos5_counters_get() - Gets the performance counters values.
718 * @dmc: device for which the counters are going to be checked
719 * @load_count: variable which is populated with counter value
720 * @total_count: variable which is used as 'wall clock' reference
721 *
722 * Function which provides performance counters values. It sums up counters for
723 * two DMC channels. The 'total_count' is used as a reference and max value.
724 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
725 */
exynos5_counters_get(struct exynos5_dmc * dmc,unsigned long * load_count,unsigned long * total_count)726 static int exynos5_counters_get(struct exynos5_dmc *dmc,
727 unsigned long *load_count,
728 unsigned long *total_count)
729 {
730 unsigned long total = 0;
731 struct devfreq_event_data event;
732 int ret, i;
733
734 *load_count = 0;
735
736 /* Take into account only read+write counters, but stop all */
737 for (i = 0; i < dmc->num_counters; i++) {
738 if (!dmc->counter[i])
739 continue;
740
741 ret = devfreq_event_get_event(dmc->counter[i], &event);
742 if (ret < 0)
743 return ret;
744
745 *load_count += event.load_count;
746
747 if (total < event.total_count)
748 total = event.total_count;
749 }
750
751 *total_count = total;
752
753 return 0;
754 }
755
756 /**
757 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
758 * @dmc: device for which the counters are going to be checked
759 * @beg_value: initial value for the counter
760 *
761 * Function which enables needed counters, interrupts and sets initial values
762 * then starts the counters.
763 */
exynos5_dmc_start_perf_events(struct exynos5_dmc * dmc,u32 beg_value)764 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
765 u32 beg_value)
766 {
767 /* Enable interrupts for counter 2 */
768 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
769 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
770
771 /* Enable counter 2 and CCNT */
772 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
773 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
774
775 /* Clear overflow flag for all counters */
776 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
777 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
778
779 /* Reset all counters */
780 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
781 writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
782
783 /*
784 * Set start value for the counters, the number of samples that
785 * will be gathered is calculated as: 0xffffffff - beg_value
786 */
787 writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
788 writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
789
790 /* Start all counters */
791 writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
792 writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
793 }
794
795 /**
796 * exynos5_dmc_perf_events_calc() - Calculate utilization
797 * @dmc: device for which the counters are going to be checked
798 * @diff_ts: time between last interrupt and current one
799 *
800 * Function which calculates needed utilization for the devfreq governor.
801 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
802 * between interrupts, which approximates utilization.
803 */
exynos5_dmc_perf_events_calc(struct exynos5_dmc * dmc,u64 diff_ts)804 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
805 {
806 /*
807 * This is a simple algorithm for managing traffic on DMC.
808 * When there is almost no load the counters overflow every 4s,
809 * no mater the DMC frequency.
810 * The high load might be approximated using linear function.
811 * Knowing that, simple calculation can provide 'busy_time' and
812 * 'total_time' to the devfreq governor which picks up target
813 * frequency.
814 * We want a fast ramp up and slow decay in frequency change function.
815 */
816 if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
817 /*
818 * Set higher utilization for the simple_ondemand governor.
819 * The governor should increase the frequency of the DMC.
820 */
821 dmc->load = 70;
822 dmc->total = 100;
823 } else {
824 /*
825 * Set low utilization for the simple_ondemand governor.
826 * The governor should decrease the frequency of the DMC.
827 */
828 dmc->load = 35;
829 dmc->total = 100;
830 }
831
832 dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
833 }
834
835 /**
836 * exynos5_dmc_perf_events_check() - Checks the status of the counters
837 * @dmc: device for which the counters are going to be checked
838 *
839 * Function which is called from threaded IRQ to check the counters state
840 * and to call approximation for the needed utilization.
841 */
exynos5_dmc_perf_events_check(struct exynos5_dmc * dmc)842 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
843 {
844 u32 val;
845 u64 diff_ts, ts;
846
847 ts = ktime_get_ns();
848
849 /* Stop all counters */
850 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
851 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
852
853 /* Check the source in interrupt flag registers (which channel) */
854 val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
855 if (val) {
856 diff_ts = ts - dmc->last_overflow_ts[0];
857 dmc->last_overflow_ts[0] = ts;
858 dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n", val);
859 } else {
860 val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
861 diff_ts = ts - dmc->last_overflow_ts[1];
862 dmc->last_overflow_ts[1] = ts;
863 dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n", val);
864 }
865
866 exynos5_dmc_perf_events_calc(dmc, diff_ts);
867
868 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
869 }
870
871 /**
872 * exynos5_dmc_enable_perf_events() - Enable performance events
873 * @dmc: device for which the counters are going to be checked
874 *
875 * Function which is setup needed environment and enables counters.
876 */
exynos5_dmc_enable_perf_events(struct exynos5_dmc * dmc)877 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
878 {
879 u64 ts;
880
881 /* Enable Performance Event Clock */
882 writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
883 writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
884
885 /* Select read transfers as performance event2 */
886 writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
887 writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
888
889 ts = ktime_get_ns();
890 dmc->last_overflow_ts[0] = ts;
891 dmc->last_overflow_ts[1] = ts;
892
893 /* Devfreq shouldn't be faster than initialization, play safe though. */
894 dmc->load = 99;
895 dmc->total = 100;
896 }
897
898 /**
899 * exynos5_dmc_disable_perf_events() - Disable performance events
900 * @dmc: device for which the counters are going to be checked
901 *
902 * Function which stops, disables performance event counters and interrupts.
903 */
exynos5_dmc_disable_perf_events(struct exynos5_dmc * dmc)904 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
905 {
906 /* Stop all counters */
907 writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
908 writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
909
910 /* Disable interrupts for counter 2 */
911 writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
912 writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
913
914 /* Disable counter 2 and CCNT */
915 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
916 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
917
918 /* Clear overflow flag for all counters */
919 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
920 writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
921 }
922
923 /**
924 * exynos5_dmc_get_status() - Read current DMC performance statistics.
925 * @dev: device for which the statistics are requested
926 * @stat: structure which has statistic fields
927 *
928 * Function reads the DMC performance counters and calculates 'busy_time'
929 * and 'total_time'. To protect from overflow, the values are shifted right
930 * by 10. After read out the counters are setup to count again.
931 */
exynos5_dmc_get_status(struct device * dev,struct devfreq_dev_status * stat)932 static int exynos5_dmc_get_status(struct device *dev,
933 struct devfreq_dev_status *stat)
934 {
935 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
936 unsigned long load, total;
937 int ret;
938
939 if (dmc->in_irq_mode) {
940 mutex_lock(&dmc->lock);
941 stat->current_frequency = dmc->curr_rate;
942 mutex_unlock(&dmc->lock);
943
944 stat->busy_time = dmc->load;
945 stat->total_time = dmc->total;
946 } else {
947 ret = exynos5_counters_get(dmc, &load, &total);
948 if (ret < 0)
949 return -EINVAL;
950
951 /* To protect from overflow, divide by 1024 */
952 stat->busy_time = load >> 10;
953 stat->total_time = total >> 10;
954
955 ret = exynos5_counters_set_event(dmc);
956 if (ret < 0) {
957 dev_err(dev, "could not set event counter\n");
958 return ret;
959 }
960 }
961
962 return 0;
963 }
964
965 /**
966 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
967 * @dev: device for which the framework checks operating frequency
968 * @freq: returned frequency value
969 *
970 * It returns the currently used frequency of the DMC. The real operating
971 * frequency might be lower when the clock source value could not be divided
972 * to the requested value.
973 */
exynos5_dmc_get_cur_freq(struct device * dev,unsigned long * freq)974 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
975 {
976 struct exynos5_dmc *dmc = dev_get_drvdata(dev);
977
978 mutex_lock(&dmc->lock);
979 *freq = dmc->curr_rate;
980 mutex_unlock(&dmc->lock);
981
982 return 0;
983 }
984
985 /*
986 * exynos5_dmc_df_profile - Devfreq governor's profile structure
987 *
988 * It provides to the devfreq framework needed functions and polling period.
989 */
990 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
991 .timer = DEVFREQ_TIMER_DELAYED,
992 .target = exynos5_dmc_target,
993 .get_dev_status = exynos5_dmc_get_status,
994 .get_cur_freq = exynos5_dmc_get_cur_freq,
995 };
996
997 /**
998 * exynos5_dmc_align_init_freq() - Align initial frequency value
999 * @dmc: device for which the frequency is going to be set
1000 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
1001 *
1002 * The initial bootloader frequency, which is present during boot, might be
1003 * different that supported frequency values in the driver. It is possible
1004 * due to different PLL settings or used PLL as a source.
1005 * This function provides the 'initial_freq' for the devfreq framework
1006 * statistics engine which supports only registered values. Thus, some alignment
1007 * must be made.
1008 */
1009 static unsigned long
exynos5_dmc_align_init_freq(struct exynos5_dmc * dmc,unsigned long bootloader_init_freq)1010 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1011 unsigned long bootloader_init_freq)
1012 {
1013 unsigned long aligned_freq;
1014 int idx;
1015
1016 idx = find_target_freq_idx(dmc, bootloader_init_freq);
1017 if (idx >= 0)
1018 aligned_freq = dmc->opp[idx].freq_hz;
1019 else
1020 aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1021
1022 return aligned_freq;
1023 }
1024
1025 /**
1026 * create_timings_aligned() - Create register values and align with standard
1027 * @dmc: device for which the frequency is going to be set
1028 * @reg_timing_row: array to fill with values for timing row register
1029 * @reg_timing_data: array to fill with values for timing data register
1030 * @reg_timing_power: array to fill with values for timing power register
1031 * @clk_period_ps: the period of the clock, known as tCK
1032 *
1033 * The function calculates timings and creates a register value ready for
1034 * a frequency transition. The register contains a few timings. They are
1035 * shifted by a known offset. The timing value is calculated based on memory
1036 * specyfication: minimal time required and minimal cycles required.
1037 */
create_timings_aligned(struct exynos5_dmc * dmc,u32 * reg_timing_row,u32 * reg_timing_data,u32 * reg_timing_power,u32 clk_period_ps)1038 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1039 u32 *reg_timing_data, u32 *reg_timing_power,
1040 u32 clk_period_ps)
1041 {
1042 u32 val;
1043 const struct timing_reg *reg;
1044
1045 if (clk_period_ps == 0)
1046 return -EINVAL;
1047
1048 *reg_timing_row = 0;
1049 *reg_timing_data = 0;
1050 *reg_timing_power = 0;
1051
1052 val = dmc->timings->tRFC / clk_period_ps;
1053 val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1054 val = max(val, dmc->min_tck->tRFC);
1055 reg = &timing_row_reg_fields[0];
1056 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1057
1058 val = dmc->timings->tRRD / clk_period_ps;
1059 val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1060 val = max(val, dmc->min_tck->tRRD);
1061 reg = &timing_row_reg_fields[1];
1062 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1063
1064 val = dmc->timings->tRPab / clk_period_ps;
1065 val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1066 val = max(val, dmc->min_tck->tRPab);
1067 reg = &timing_row_reg_fields[2];
1068 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1069
1070 val = dmc->timings->tRCD / clk_period_ps;
1071 val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1072 val = max(val, dmc->min_tck->tRCD);
1073 reg = &timing_row_reg_fields[3];
1074 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1075
1076 val = dmc->timings->tRC / clk_period_ps;
1077 val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1078 val = max(val, dmc->min_tck->tRC);
1079 reg = &timing_row_reg_fields[4];
1080 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1081
1082 val = dmc->timings->tRAS / clk_period_ps;
1083 val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1084 val = max(val, dmc->min_tck->tRAS);
1085 reg = &timing_row_reg_fields[5];
1086 *reg_timing_row |= TIMING_VAL2REG(reg, val);
1087
1088 /* data related timings */
1089 val = dmc->timings->tWTR / clk_period_ps;
1090 val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1091 val = max(val, dmc->min_tck->tWTR);
1092 reg = &timing_data_reg_fields[0];
1093 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1094
1095 val = dmc->timings->tWR / clk_period_ps;
1096 val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1097 val = max(val, dmc->min_tck->tWR);
1098 reg = &timing_data_reg_fields[1];
1099 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1100
1101 val = dmc->timings->tRTP / clk_period_ps;
1102 val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1103 val = max(val, dmc->min_tck->tRTP);
1104 reg = &timing_data_reg_fields[2];
1105 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1106
1107 val = dmc->timings->tW2W_C2C / clk_period_ps;
1108 val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1109 val = max(val, dmc->min_tck->tW2W_C2C);
1110 reg = &timing_data_reg_fields[3];
1111 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1112
1113 val = dmc->timings->tR2R_C2C / clk_period_ps;
1114 val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1115 val = max(val, dmc->min_tck->tR2R_C2C);
1116 reg = &timing_data_reg_fields[4];
1117 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1118
1119 val = dmc->timings->tWL / clk_period_ps;
1120 val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1121 val = max(val, dmc->min_tck->tWL);
1122 reg = &timing_data_reg_fields[5];
1123 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1124
1125 val = dmc->timings->tDQSCK / clk_period_ps;
1126 val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1127 val = max(val, dmc->min_tck->tDQSCK);
1128 reg = &timing_data_reg_fields[6];
1129 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1130
1131 val = dmc->timings->tRL / clk_period_ps;
1132 val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1133 val = max(val, dmc->min_tck->tRL);
1134 reg = &timing_data_reg_fields[7];
1135 *reg_timing_data |= TIMING_VAL2REG(reg, val);
1136
1137 /* power related timings */
1138 val = dmc->timings->tFAW / clk_period_ps;
1139 val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1140 val = max(val, dmc->min_tck->tFAW);
1141 reg = &timing_power_reg_fields[0];
1142 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1143
1144 val = dmc->timings->tXSR / clk_period_ps;
1145 val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1146 val = max(val, dmc->min_tck->tXSR);
1147 reg = &timing_power_reg_fields[1];
1148 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1149
1150 val = dmc->timings->tXP / clk_period_ps;
1151 val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1152 val = max(val, dmc->min_tck->tXP);
1153 reg = &timing_power_reg_fields[2];
1154 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1155
1156 val = dmc->timings->tCKE / clk_period_ps;
1157 val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1158 val = max(val, dmc->min_tck->tCKE);
1159 reg = &timing_power_reg_fields[3];
1160 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1161
1162 val = dmc->timings->tMRD / clk_period_ps;
1163 val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1164 val = max(val, dmc->min_tck->tMRD);
1165 reg = &timing_power_reg_fields[4];
1166 *reg_timing_power |= TIMING_VAL2REG(reg, val);
1167
1168 return 0;
1169 }
1170
1171 /**
1172 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1173 * @dmc: device for which the frequency is going to be set
1174 *
1175 * The function parses DT entries with DRAM information.
1176 */
of_get_dram_timings(struct exynos5_dmc * dmc)1177 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1178 {
1179 int ret = 0;
1180 struct device *dev = dmc->dev;
1181 int idx;
1182 u32 freq_mhz, clk_period_ps;
1183
1184 struct device_node *np_ddr __free(device_node) =
1185 of_parse_phandle(dev->of_node, "device-handle", 0);
1186 if (!np_ddr) {
1187 dev_warn(dev, "could not find 'device-handle' in DT\n");
1188 return -EINVAL;
1189 }
1190
1191 dmc->timing_row = devm_kmalloc_array(dev, TIMING_COUNT,
1192 sizeof(u32), GFP_KERNEL);
1193 if (!dmc->timing_row)
1194 return -ENOMEM;
1195
1196 dmc->timing_data = devm_kmalloc_array(dev, TIMING_COUNT,
1197 sizeof(u32), GFP_KERNEL);
1198 if (!dmc->timing_data)
1199 return -ENOMEM;
1200
1201 dmc->timing_power = devm_kmalloc_array(dev, TIMING_COUNT,
1202 sizeof(u32), GFP_KERNEL);
1203 if (!dmc->timing_power)
1204 return -ENOMEM;
1205
1206 dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dev,
1207 DDR_TYPE_LPDDR3,
1208 &dmc->timings_arr_size);
1209 if (!dmc->timings) {
1210 dev_warn(dev, "could not get timings from DT\n");
1211 return -EINVAL;
1212 }
1213
1214 dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dev);
1215 if (!dmc->min_tck) {
1216 dev_warn(dev, "could not get tck from DT\n");
1217 return -EINVAL;
1218 }
1219
1220 /* Sorted array of OPPs with frequency ascending */
1221 for (idx = 0; idx < dmc->opp_count; idx++) {
1222 freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1223 clk_period_ps = 1000000 / freq_mhz;
1224
1225 ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1226 &dmc->timing_data[idx],
1227 &dmc->timing_power[idx],
1228 clk_period_ps);
1229 }
1230
1231
1232 /* Take the highest frequency's timings as 'bypass' */
1233 dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1234 dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1235 dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1236
1237 return ret;
1238 }
1239
1240 /**
1241 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242 * @dmc: DMC structure containing needed fields
1243 *
1244 * Get the needed clocks defined in DT device, enable and set the right parents.
1245 * Read current frequency and initialize the initial rate for governor.
1246 */
exynos5_dmc_init_clks(struct exynos5_dmc * dmc)1247 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1248 {
1249 int ret;
1250 struct device *dev = dmc->dev;
1251 unsigned long target_volt = 0;
1252 unsigned long target_rate = 0;
1253 unsigned int tmp;
1254
1255 dmc->fout_spll = devm_clk_get(dev, "fout_spll");
1256 if (IS_ERR(dmc->fout_spll))
1257 return PTR_ERR(dmc->fout_spll);
1258
1259 dmc->fout_bpll = devm_clk_get(dev, "fout_bpll");
1260 if (IS_ERR(dmc->fout_bpll))
1261 return PTR_ERR(dmc->fout_bpll);
1262
1263 dmc->mout_mclk_cdrex = devm_clk_get(dev, "mout_mclk_cdrex");
1264 if (IS_ERR(dmc->mout_mclk_cdrex))
1265 return PTR_ERR(dmc->mout_mclk_cdrex);
1266
1267 dmc->mout_bpll = devm_clk_get(dev, "mout_bpll");
1268 if (IS_ERR(dmc->mout_bpll))
1269 return PTR_ERR(dmc->mout_bpll);
1270
1271 dmc->mout_mx_mspll_ccore = devm_clk_get(dev, "mout_mx_mspll_ccore");
1272 if (IS_ERR(dmc->mout_mx_mspll_ccore))
1273 return PTR_ERR(dmc->mout_mx_mspll_ccore);
1274
1275 dmc->mout_spll = devm_clk_get(dev, "ff_dout_spll2");
1276 if (IS_ERR(dmc->mout_spll)) {
1277 dmc->mout_spll = devm_clk_get(dev, "mout_sclk_spll");
1278 if (IS_ERR(dmc->mout_spll))
1279 return PTR_ERR(dmc->mout_spll);
1280 }
1281
1282 /*
1283 * Convert frequency to KHz values and set it for the governor.
1284 */
1285 dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1286 dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1287 exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1288
1289 ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1290 &target_volt, 0);
1291 if (ret)
1292 return ret;
1293
1294 dmc->curr_volt = target_volt;
1295
1296 ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1297 if (ret)
1298 return ret;
1299
1300 clk_prepare_enable(dmc->fout_bpll);
1301 clk_prepare_enable(dmc->mout_bpll);
1302
1303 /*
1304 * Some bootloaders do not set clock routes correctly.
1305 * Stop one path in clocks to PHY.
1306 */
1307 regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1308 tmp &= ~(BIT(1) | BIT(0));
1309 regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1310
1311 return 0;
1312 }
1313
1314 /**
1315 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316 * @dmc: DMC for which it does the setup
1317 *
1318 * Initialization of performance counters in DMC for estimating usage.
1319 * The counter's values are used for calculation of a memory bandwidth and based
1320 * on that the governor changes the frequency.
1321 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1322 */
exynos5_performance_counters_init(struct exynos5_dmc * dmc)1323 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1324 {
1325 struct device *dev = dmc->dev;
1326 int ret, i;
1327
1328 dmc->num_counters = devfreq_event_get_edev_count(dev, "devfreq-events");
1329 if (dmc->num_counters < 0) {
1330 dev_err(dev, "could not get devfreq-event counters\n");
1331 return dmc->num_counters;
1332 }
1333
1334 dmc->counter = devm_kcalloc(dev, dmc->num_counters,
1335 sizeof(*dmc->counter), GFP_KERNEL);
1336 if (!dmc->counter)
1337 return -ENOMEM;
1338
1339 for (i = 0; i < dmc->num_counters; i++) {
1340 dmc->counter[i] =
1341 devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
1342 if (IS_ERR_OR_NULL(dmc->counter[i]))
1343 return -EPROBE_DEFER;
1344 }
1345
1346 ret = exynos5_counters_enable_edev(dmc);
1347 if (ret < 0) {
1348 dev_err(dev, "could not enable event counter\n");
1349 return ret;
1350 }
1351
1352 ret = exynos5_counters_set_event(dmc);
1353 if (ret < 0) {
1354 exynos5_counters_disable_edev(dmc);
1355 dev_err(dev, "could not set event counter\n");
1356 return ret;
1357 }
1358
1359 return 0;
1360 }
1361
1362 /**
1363 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1364 * @dmc: device which is used for changing this feature
1365 *
1366 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1367 * changes its configuration. In such situation access to the memory is blocked
1368 * in DMC automatically. This feature is used when clock frequency change
1369 * request appears and touches clock tree.
1370 */
exynos5_dmc_set_pause_on_switching(struct exynos5_dmc * dmc)1371 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1372 {
1373 unsigned int val;
1374 int ret;
1375
1376 ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1377 if (ret)
1378 return ret;
1379
1380 val |= 1UL;
1381 regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1382
1383 return 0;
1384 }
1385
dmc_irq_thread(int irq,void * priv)1386 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1387 {
1388 int res;
1389 struct exynos5_dmc *dmc = priv;
1390
1391 mutex_lock(&dmc->df->lock);
1392 exynos5_dmc_perf_events_check(dmc);
1393 res = update_devfreq(dmc->df);
1394 mutex_unlock(&dmc->df->lock);
1395
1396 if (res)
1397 dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1398
1399 return IRQ_HANDLED;
1400 }
1401
1402 /**
1403 * exynos5_dmc_probe() - Probe function for the DMC driver
1404 * @pdev: platform device for which the driver is going to be initialized
1405 *
1406 * Initialize basic components: clocks, regulators, performance counters, etc.
1407 * Read out product version and based on the information setup
1408 * internal structures for the controller (frequency and voltage) and for DRAM
1409 * memory parameters: timings for each operating frequency.
1410 * Register new devfreq device for controlling DVFS of the DMC.
1411 */
exynos5_dmc_probe(struct platform_device * pdev)1412 static int exynos5_dmc_probe(struct platform_device *pdev)
1413 {
1414 int ret = 0;
1415 struct device *dev = &pdev->dev;
1416 struct device_node *np = dev->of_node;
1417 struct exynos5_dmc *dmc;
1418 int irq[2];
1419
1420 dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1421 if (!dmc)
1422 return -ENOMEM;
1423
1424 mutex_init(&dmc->lock);
1425
1426 dmc->dev = dev;
1427 platform_set_drvdata(pdev, dmc);
1428
1429 dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1430 if (IS_ERR(dmc->base_drexi0))
1431 return PTR_ERR(dmc->base_drexi0);
1432
1433 dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1434 if (IS_ERR(dmc->base_drexi1))
1435 return PTR_ERR(dmc->base_drexi1);
1436
1437 dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1438 "samsung,syscon-clk");
1439 if (IS_ERR(dmc->clk_regmap))
1440 return PTR_ERR(dmc->clk_regmap);
1441
1442 ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1443 if (ret) {
1444 dev_warn(dev, "couldn't initialize frequency settings\n");
1445 return ret;
1446 }
1447
1448 dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1449 if (IS_ERR(dmc->vdd_mif)) {
1450 ret = PTR_ERR(dmc->vdd_mif);
1451 return ret;
1452 }
1453
1454 ret = exynos5_dmc_init_clks(dmc);
1455 if (ret)
1456 return ret;
1457
1458 ret = of_get_dram_timings(dmc);
1459 if (ret) {
1460 dev_warn(dev, "couldn't initialize timings settings\n");
1461 goto remove_clocks;
1462 }
1463
1464 ret = exynos5_dmc_set_pause_on_switching(dmc);
1465 if (ret) {
1466 dev_warn(dev, "couldn't get access to PAUSE register\n");
1467 goto remove_clocks;
1468 }
1469
1470 /* There is two modes in which the driver works: polling or IRQ */
1471 irq[0] = platform_get_irq_byname(pdev, "drex_0");
1472 irq[1] = platform_get_irq_byname(pdev, "drex_1");
1473 if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1474 ret = devm_request_threaded_irq(dev, irq[0], NULL,
1475 dmc_irq_thread, IRQF_ONESHOT,
1476 dev_name(dev), dmc);
1477 if (ret) {
1478 dev_err(dev, "couldn't grab IRQ\n");
1479 goto remove_clocks;
1480 }
1481
1482 ret = devm_request_threaded_irq(dev, irq[1], NULL,
1483 dmc_irq_thread, IRQF_ONESHOT,
1484 dev_name(dev), dmc);
1485 if (ret) {
1486 dev_err(dev, "couldn't grab IRQ\n");
1487 goto remove_clocks;
1488 }
1489
1490 /*
1491 * Setup default thresholds for the devfreq governor.
1492 * The values are chosen based on experiments.
1493 */
1494 dmc->gov_data.upthreshold = 55;
1495 dmc->gov_data.downdifferential = 5;
1496
1497 exynos5_dmc_enable_perf_events(dmc);
1498
1499 dmc->in_irq_mode = 1;
1500 } else {
1501 ret = exynos5_performance_counters_init(dmc);
1502 if (ret) {
1503 dev_warn(dev, "couldn't probe performance counters\n");
1504 goto remove_clocks;
1505 }
1506
1507 /*
1508 * Setup default thresholds for the devfreq governor.
1509 * The values are chosen based on experiments.
1510 */
1511 dmc->gov_data.upthreshold = 10;
1512 dmc->gov_data.downdifferential = 5;
1513
1514 exynos5_dmc_df_profile.polling_ms = 100;
1515 }
1516
1517 dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1518 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1519 &dmc->gov_data);
1520
1521 if (IS_ERR(dmc->df)) {
1522 ret = PTR_ERR(dmc->df);
1523 goto err_devfreq_add;
1524 }
1525
1526 if (dmc->in_irq_mode)
1527 exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1528
1529 dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1530
1531 return 0;
1532
1533 err_devfreq_add:
1534 if (dmc->in_irq_mode)
1535 exynos5_dmc_disable_perf_events(dmc);
1536 else
1537 exynos5_counters_disable_edev(dmc);
1538 remove_clocks:
1539 clk_disable_unprepare(dmc->mout_bpll);
1540 clk_disable_unprepare(dmc->fout_bpll);
1541
1542 return ret;
1543 }
1544
1545 /**
1546 * exynos5_dmc_remove() - Remove function for the platform device
1547 * @pdev: platform device which is going to be removed
1548 *
1549 * The function relies on 'devm' framework function which automatically
1550 * clean the device's resources. It just calls explicitly disable function for
1551 * the performance counters.
1552 */
exynos5_dmc_remove(struct platform_device * pdev)1553 static void exynos5_dmc_remove(struct platform_device *pdev)
1554 {
1555 struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1556
1557 if (dmc->in_irq_mode)
1558 exynos5_dmc_disable_perf_events(dmc);
1559 else
1560 exynos5_counters_disable_edev(dmc);
1561
1562 clk_disable_unprepare(dmc->mout_bpll);
1563 clk_disable_unprepare(dmc->fout_bpll);
1564 }
1565
1566 static const struct of_device_id exynos5_dmc_of_match[] = {
1567 { .compatible = "samsung,exynos5422-dmc", },
1568 { },
1569 };
1570 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1571
1572 static struct platform_driver exynos5_dmc_platdrv = {
1573 .probe = exynos5_dmc_probe,
1574 .remove_new = exynos5_dmc_remove,
1575 .driver = {
1576 .name = "exynos5-dmc",
1577 .of_match_table = exynos5_dmc_of_match,
1578 },
1579 };
1580 module_platform_driver(exynos5_dmc_platdrv);
1581 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Lukasz Luba");
1584