xref: /linux/drivers/memory/samsung/exynos5422-dmc.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6 
7 #include <linux/cleanup.h>
8 #include <linux/clk.h>
9 #include <linux/devfreq.h>
10 #include <linux/devfreq-event.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/of.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23 #include "../jedec_ddr.h"
24 #include "../of_memory.h"
25 
26 static int irqmode;
27 module_param(irqmode, int, 0644);
28 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
29 
30 #define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
31 #define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
32 #define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
33 #define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
34 #define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
35 #define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
36 #define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
37 #define CDREX_PAUSE				(0x2091c)
38 #define CDREX_LPDDR3PHY_CON3			(0x20a20)
39 #define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
40 #define EXYNOS5_TIMING_SET_SWI			BIT(28)
41 #define USE_MX_MSPLL_TIMINGS			(1)
42 #define USE_BPLL_TIMINGS			(0)
43 #define EXYNOS5_AREF_NORMAL			(0x2e)
44 
45 #define DREX_PPCCLKCON		(0x0130)
46 #define DREX_PEREV2CONFIG	(0x013c)
47 #define DREX_PMNC_PPC		(0xE000)
48 #define DREX_CNTENS_PPC		(0xE010)
49 #define DREX_CNTENC_PPC		(0xE020)
50 #define DREX_INTENS_PPC		(0xE030)
51 #define DREX_INTENC_PPC		(0xE040)
52 #define DREX_FLAG_PPC		(0xE050)
53 #define DREX_PMCNT2_PPC		(0xE130)
54 
55 /*
56  * A value for register DREX_PMNC_PPC which should be written to reset
57  * the cycle counter CCNT (a reference wall clock). It sets zero to the
58  * CCNT counter.
59  */
60 #define CC_RESET		BIT(2)
61 
62 /*
63  * A value for register DREX_PMNC_PPC which does the reset of all performance
64  * counters to zero.
65  */
66 #define PPC_COUNTER_RESET	BIT(1)
67 
68 /*
69  * Enables all configured counters (including cycle counter). The value should
70  * be written to the register DREX_PMNC_PPC.
71  */
72 #define PPC_ENABLE		BIT(0)
73 
74 /* A value for register DREX_PPCCLKCON which enables performance events clock.
75  * Must be written before first access to the performance counters register
76  * set, otherwise it could crash.
77  */
78 #define PEREV_CLK_EN		BIT(0)
79 
80 /*
81  * Values which are used to enable counters, interrupts or configure flags of
82  * the performance counters. They configure counter 2 and cycle counter.
83  */
84 #define PERF_CNT2		BIT(2)
85 #define PERF_CCNT		BIT(31)
86 
87 /*
88  * Performance event types which are used for setting the preferred event
89  * to track in the counters.
90  * There is a set of different types, the values are from range 0 to 0x6f.
91  * These settings should be written to the configuration register which manages
92  * the type of the event (register DREX_PEREV2CONFIG).
93  */
94 #define READ_TRANSFER_CH0	(0x6d)
95 #define READ_TRANSFER_CH1	(0x6f)
96 
97 #define PERF_COUNTER_START_VALUE 0xff000000
98 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
99 
100 /**
101  * struct dmc_opp_table - Operating level desciption
102  * @freq_hz:		target frequency in Hz
103  * @volt_uv:		target voltage in uV
104  *
105  * Covers frequency and voltage settings of the DMC operating mode.
106  */
107 struct dmc_opp_table {
108 	u32 freq_hz;
109 	u32 volt_uv;
110 };
111 
112 /**
113  * struct exynos5_dmc - main structure describing DMC device
114  * @dev:		DMC device
115  * @df:			devfreq device structure returned by devfreq framework
116  * @gov_data:		configuration of devfreq governor
117  * @base_drexi0:	DREX0 registers mapping
118  * @base_drexi1:	DREX1 registers mapping
119  * @clk_regmap:		regmap for clock controller registers
120  * @lock:		protects curr_rate and frequency/voltage setting section
121  * @curr_rate:		current frequency
122  * @curr_volt:		current voltage
123  * @opp:		OPP table
124  * @opp_count:		number of 'opp' elements
125  * @timings_arr_size:	number of 'timings' elements
126  * @timing_row:		values for timing row register, for each OPP
127  * @timing_data:	values for timing data register, for each OPP
128  * @timing_power:	balues for timing power register, for each OPP
129  * @timings:		DDR memory timings, from device tree
130  * @min_tck:		DDR memory minimum timing values, from device tree
131  * @bypass_timing_row:	value for timing row register for bypass timings
132  * @bypass_timing_data:	value for timing data register for bypass timings
133  * @bypass_timing_power:	value for timing power register for bypass
134  *				timings
135  * @vdd_mif:		Memory interface regulator
136  * @fout_spll:		clock: SPLL
137  * @fout_bpll:		clock: BPLL
138  * @mout_spll:		clock: mux SPLL
139  * @mout_bpll:		clock: mux BPLL
140  * @mout_mclk_cdrex:	clock: mux mclk_cdrex
141  * @mout_mx_mspll_ccore:	clock: mux mx_mspll_ccore
142  * @counter:		devfreq events
143  * @num_counters:	number of 'counter' elements
144  * @last_overflow_ts:	time (in ns) of last overflow of each DREX
145  * @load:		utilization in percents
146  * @total:		total time between devfreq events
147  * @in_irq_mode:	whether running in interrupt mode (true)
148  *			or polling (false)
149  *
150  * The main structure for the Dynamic Memory Controller which covers clocks,
151  * memory regions, HW information, parameters and current operating mode.
152  */
153 struct exynos5_dmc {
154 	struct device *dev;
155 	struct devfreq *df;
156 	struct devfreq_simple_ondemand_data gov_data;
157 	void __iomem *base_drexi0;
158 	void __iomem *base_drexi1;
159 	struct regmap *clk_regmap;
160 	/* Protects curr_rate and frequency/voltage setting section */
161 	struct mutex lock;
162 	unsigned long curr_rate;
163 	unsigned long curr_volt;
164 	struct dmc_opp_table *opp;
165 	int opp_count;
166 	u32 timings_arr_size;
167 	u32 *timing_row;
168 	u32 *timing_data;
169 	u32 *timing_power;
170 	const struct lpddr3_timings *timings;
171 	const struct lpddr3_min_tck *min_tck;
172 	u32 bypass_timing_row;
173 	u32 bypass_timing_data;
174 	u32 bypass_timing_power;
175 	struct regulator *vdd_mif;
176 	struct clk *fout_spll;
177 	struct clk *fout_bpll;
178 	struct clk *mout_spll;
179 	struct clk *mout_bpll;
180 	struct clk *mout_mclk_cdrex;
181 	struct clk *mout_mx_mspll_ccore;
182 	struct devfreq_event_dev **counter;
183 	int num_counters;
184 	u64 last_overflow_ts[2];
185 	unsigned long load;
186 	unsigned long total;
187 	bool in_irq_mode;
188 };
189 
190 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
191 	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
192 
193 #define TIMING_VAL2REG(timing, t_val)			\
194 ({							\
195 		u32 __val;				\
196 		__val = (t_val) << (timing)->bit_beg;	\
197 		__val;					\
198 })
199 
200 struct timing_reg {
201 	char *name;
202 	int bit_beg;
203 	int bit_end;
204 	unsigned int val;
205 };
206 
207 static const struct timing_reg timing_row_reg_fields[] = {
208 	TIMING_FIELD("tRFC", 24, 31),
209 	TIMING_FIELD("tRRD", 20, 23),
210 	TIMING_FIELD("tRP", 16, 19),
211 	TIMING_FIELD("tRCD", 12, 15),
212 	TIMING_FIELD("tRC", 6, 11),
213 	TIMING_FIELD("tRAS", 0, 5),
214 };
215 
216 static const struct timing_reg timing_data_reg_fields[] = {
217 	TIMING_FIELD("tWTR", 28, 31),
218 	TIMING_FIELD("tWR", 24, 27),
219 	TIMING_FIELD("tRTP", 20, 23),
220 	TIMING_FIELD("tW2W-C2C", 14, 14),
221 	TIMING_FIELD("tR2R-C2C", 12, 12),
222 	TIMING_FIELD("WL", 8, 11),
223 	TIMING_FIELD("tDQSCK", 4, 7),
224 	TIMING_FIELD("RL", 0, 3),
225 };
226 
227 static const struct timing_reg timing_power_reg_fields[] = {
228 	TIMING_FIELD("tFAW", 26, 31),
229 	TIMING_FIELD("tXSR", 16, 25),
230 	TIMING_FIELD("tXP", 8, 15),
231 	TIMING_FIELD("tCKE", 4, 7),
232 	TIMING_FIELD("tMRD", 0, 3),
233 };
234 
235 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
236 		      ARRAY_SIZE(timing_data_reg_fields) + \
237 		      ARRAY_SIZE(timing_power_reg_fields))
238 
239 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
240 {
241 	int i, ret;
242 
243 	for (i = 0; i < dmc->num_counters; i++) {
244 		if (!dmc->counter[i])
245 			continue;
246 		ret = devfreq_event_set_event(dmc->counter[i]);
247 		if (ret < 0)
248 			return ret;
249 	}
250 	return 0;
251 }
252 
253 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
254 {
255 	int i, ret;
256 
257 	for (i = 0; i < dmc->num_counters; i++) {
258 		if (!dmc->counter[i])
259 			continue;
260 		ret = devfreq_event_enable_edev(dmc->counter[i]);
261 		if (ret < 0)
262 			return ret;
263 	}
264 	return 0;
265 }
266 
267 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
268 {
269 	int i, ret;
270 
271 	for (i = 0; i < dmc->num_counters; i++) {
272 		if (!dmc->counter[i])
273 			continue;
274 		ret = devfreq_event_disable_edev(dmc->counter[i]);
275 		if (ret < 0)
276 			return ret;
277 	}
278 	return 0;
279 }
280 
281 /**
282  * find_target_freq_idx() - Finds requested frequency in local DMC configuration
283  * @dmc:	device for which the information is checked
284  * @target_rate:	requested frequency in KHz
285  *
286  * Seeks in the local DMC driver structure for the requested frequency value
287  * and returns index or error value.
288  */
289 static int find_target_freq_idx(struct exynos5_dmc *dmc,
290 				unsigned long target_rate)
291 {
292 	int i;
293 
294 	for (i = dmc->opp_count - 1; i >= 0; i--)
295 		if (dmc->opp[i].freq_hz <= target_rate)
296 			return i;
297 
298 	return -EINVAL;
299 }
300 
301 /**
302  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
303  * @dmc:	device for which the new settings is going to be applied
304  * @set:	boolean variable passing set value
305  *
306  * Changes the register set, which holds timing parameters.
307  * There is two register sets: 0 and 1. The register set 0
308  * is used in normal operation when the clock is provided from main PLL.
309  * The bank register set 1 is used when the main PLL frequency is going to be
310  * changed and the clock is taken from alternative, stable source.
311  * This function switches between these banks according to the
312  * currently used clock source.
313  */
314 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
315 {
316 	unsigned int reg;
317 	int ret;
318 
319 	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
320 	if (ret)
321 		return ret;
322 
323 	if (set)
324 		reg |= EXYNOS5_TIMING_SET_SWI;
325 	else
326 		reg &= ~EXYNOS5_TIMING_SET_SWI;
327 
328 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
329 
330 	return 0;
331 }
332 
333 /**
334  * exynos5_init_freq_table() - Initialized PM OPP framework
335  * @dmc:	DMC device for which the frequencies are used for OPP init
336  * @profile:	devfreq device's profile
337  *
338  * Populate the devfreq device's OPP table based on current frequency, voltage.
339  */
340 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
341 				   struct devfreq_dev_profile *profile)
342 {
343 	struct device *dev = dmc->dev;
344 	int i, ret;
345 	int idx;
346 	unsigned long freq;
347 
348 	ret = devm_pm_opp_of_add_table(dev);
349 	if (ret < 0) {
350 		dev_err(dev, "Failed to get OPP table\n");
351 		return ret;
352 	}
353 
354 	dmc->opp_count = dev_pm_opp_get_opp_count(dev);
355 
356 	dmc->opp = devm_kmalloc_array(dev, dmc->opp_count,
357 				      sizeof(struct dmc_opp_table), GFP_KERNEL);
358 	if (!dmc->opp)
359 		return -ENOMEM;
360 
361 	idx = dmc->opp_count - 1;
362 	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
363 		struct dev_pm_opp *opp;
364 
365 		opp = dev_pm_opp_find_freq_floor(dev, &freq);
366 		if (IS_ERR(opp))
367 			return PTR_ERR(opp);
368 
369 		dmc->opp[idx - i].freq_hz = freq;
370 		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
371 
372 		dev_pm_opp_put(opp);
373 	}
374 
375 	return 0;
376 }
377 
378 /**
379  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
380  * @dmc:	device for which the new settings is going to be applied
381  *
382  * Low-level function for changing timings for DRAM memory clocking from
383  * 'bypass' clock source (fixed frequency @400MHz).
384  * It uses timing bank registers set 1.
385  */
386 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
387 {
388 	writel(EXYNOS5_AREF_NORMAL,
389 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
390 
391 	writel(dmc->bypass_timing_row,
392 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
393 	writel(dmc->bypass_timing_row,
394 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
395 	writel(dmc->bypass_timing_data,
396 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
397 	writel(dmc->bypass_timing_data,
398 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
399 	writel(dmc->bypass_timing_power,
400 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
401 	writel(dmc->bypass_timing_power,
402 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
403 }
404 
405 /**
406  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
407  * @dmc:	device for which the new settings is going to be applied
408  * @target_rate:	target frequency of the DMC
409  *
410  * Low-level function for changing timings for DRAM memory operating from main
411  * clock source (BPLL), which can have different frequencies. Thus, each
412  * frequency must have corresponding timings register values in order to keep
413  * the needed delays.
414  * It uses timing bank registers set 0.
415  */
416 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
417 				       unsigned long target_rate)
418 {
419 	int idx;
420 
421 	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
422 		if (dmc->opp[idx].freq_hz <= target_rate)
423 			break;
424 
425 	if (idx < 0)
426 		return -EINVAL;
427 
428 	writel(EXYNOS5_AREF_NORMAL,
429 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
430 
431 	writel(dmc->timing_row[idx],
432 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
433 	writel(dmc->timing_row[idx],
434 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
435 	writel(dmc->timing_data[idx],
436 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
437 	writel(dmc->timing_data[idx],
438 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
439 	writel(dmc->timing_power[idx],
440 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
441 	writel(dmc->timing_power[idx],
442 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
443 
444 	return 0;
445 }
446 
447 /**
448  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
449  * @dmc:	device for which it is going to be set
450  * @target_volt:	new voltage which is chosen to be final
451  *
452  * Function tries to align voltage to the safe level for 'normal' mode.
453  * It checks the need of higher voltage and changes the value. The target
454  * voltage might be lower that currently set and still the system will be
455  * stable.
456  */
457 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
458 					    unsigned long target_volt)
459 {
460 	int ret = 0;
461 
462 	if (dmc->curr_volt <= target_volt)
463 		return 0;
464 
465 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
466 				    target_volt);
467 	if (!ret)
468 		dmc->curr_volt = target_volt;
469 
470 	return ret;
471 }
472 
473 /**
474  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
475  * @dmc:	device for which it is going to be set
476  * @target_volt:	new voltage which is chosen to be final
477  *
478  * Function tries to align voltage to the safe level for the 'bypass' mode.
479  * It checks the need of higher voltage and changes the value.
480  * The target voltage must not be less than currently needed, because
481  * for current frequency the device might become unstable.
482  */
483 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
484 					    unsigned long target_volt)
485 {
486 	int ret = 0;
487 
488 	if (dmc->curr_volt >= target_volt)
489 		return 0;
490 
491 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
492 				    target_volt);
493 	if (!ret)
494 		dmc->curr_volt = target_volt;
495 
496 	return ret;
497 }
498 
499 /**
500  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
501  * @dmc:	device for which it is going to be set
502  * @target_rate:	new frequency which is chosen to be final
503  *
504  * Function changes the DRAM timings for the temporary 'bypass' mode.
505  */
506 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
507 						 unsigned long target_rate)
508 {
509 	int idx = find_target_freq_idx(dmc, target_rate);
510 
511 	if (idx < 0)
512 		return -EINVAL;
513 
514 	exynos5_set_bypass_dram_timings(dmc);
515 
516 	return 0;
517 }
518 
519 /**
520  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
521  * @dmc:	DMC device for which the switching is going to happen
522  * @target_rate:	new frequency which is going to be set as a final
523  * @target_volt:	new voltage which is going to be set as a final
524  *
525  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
526  * This mode is used only temporary but if required, changes voltage and timings
527  * for DRAM chips. It switches the main clock to stable clock source for the
528  * period of the main PLL reconfiguration.
529  */
530 static int
531 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
532 					   unsigned long target_rate,
533 					   unsigned long target_volt)
534 {
535 	int ret;
536 
537 	/*
538 	 * Having higher voltage for a particular frequency does not harm
539 	 * the chip. Use it for the temporary frequency change when one
540 	 * voltage manipulation might be avoided.
541 	 */
542 	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
543 	if (ret)
544 		return ret;
545 
546 	/*
547 	 * Longer delays for DRAM does not cause crash, the opposite does.
548 	 */
549 	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
550 	if (ret)
551 		return ret;
552 
553 	/*
554 	 * Delays are long enough, so use them for the new coming clock.
555 	 */
556 	ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
557 
558 	return ret;
559 }
560 
561 /**
562  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
563  * using safe procedure
564  * @dmc:	device for which the frequency is going to be changed
565  * @target_rate:	requested new frequency
566  * @target_volt:	requested voltage which corresponds to the new frequency
567  *
568  * The DMC frequency change procedure requires a few steps.
569  * The main requirement is to change the clock source in the clk mux
570  * for the time of main clock PLL locking. The assumption is that the
571  * alternative clock source set as parent is stable.
572  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
573  * clock. This requires alignment in DRAM timing parameters for the new
574  * T-period. There is two bank sets for keeping DRAM
575  * timings: set 0 and set 1. The set 0 is used when main clock source is
576  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
577  * the two bank sets is part of the process.
578  * The voltage must also be aligned to the minimum required level. There is
579  * this intermediate step with switching to 'bypass' parent clock source.
580  * if the old voltage is lower, it requires an increase of the voltage level.
581  * The complexity of the voltage manipulation is hidden in low level function.
582  * In this function there is last alignment of the voltage level at the end.
583  */
584 static int
585 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
586 				 unsigned long target_rate,
587 				 unsigned long target_volt)
588 {
589 	int ret;
590 
591 	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
592 							 target_volt);
593 	if (ret)
594 		return ret;
595 
596 	/*
597 	 * Voltage is set at least to a level needed for this frequency,
598 	 * so switching clock source is safe now.
599 	 */
600 	clk_prepare_enable(dmc->fout_spll);
601 	clk_prepare_enable(dmc->mout_spll);
602 	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
603 
604 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
605 	if (ret)
606 		goto disable_clocks;
607 
608 	/*
609 	 * We are safe to increase the timings for current bypass frequency.
610 	 * Thanks to this the settings will be ready for the upcoming clock
611 	 * source change.
612 	 */
613 	exynos5_dram_change_timings(dmc, target_rate);
614 
615 	clk_set_rate(dmc->fout_bpll, target_rate);
616 
617 	ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
618 	if (ret)
619 		goto disable_clocks;
620 
621 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
622 	if (ret)
623 		goto disable_clocks;
624 
625 	/*
626 	 * Make sure if the voltage is not from 'bypass' settings and align to
627 	 * the right level for power efficiency.
628 	 */
629 	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
630 
631 disable_clocks:
632 	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
633 	clk_disable_unprepare(dmc->mout_spll);
634 	clk_disable_unprepare(dmc->fout_spll);
635 
636 	return ret;
637 }
638 
639 /**
640  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
641  * table.
642  * @dmc:	device for which the frequency is going to be changed
643  * @freq:       requested frequency in KHz
644  * @target_rate:	returned frequency which is the same or lower than
645  *			requested
646  * @target_volt:	returned voltage which corresponds to the returned
647  *			frequency
648  * @flags:	devfreq flags provided for this frequency change request
649  *
650  * Function gets requested frequency and checks OPP framework for needed
651  * frequency and voltage. It populates the values 'target_rate' and
652  * 'target_volt' or returns error value when OPP framework fails.
653  */
654 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
655 				     unsigned long *freq,
656 				     unsigned long *target_rate,
657 				     unsigned long *target_volt, u32 flags)
658 {
659 	struct dev_pm_opp *opp;
660 
661 	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
662 	if (IS_ERR(opp))
663 		return PTR_ERR(opp);
664 
665 	*target_rate = dev_pm_opp_get_freq(opp);
666 	*target_volt = dev_pm_opp_get_voltage(opp);
667 	dev_pm_opp_put(opp);
668 
669 	return 0;
670 }
671 
672 /**
673  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
674  * @dev:	device for which the frequency is going to be changed
675  * @freq:	requested frequency in KHz
676  * @flags:	flags provided for this frequency change request
677  *
678  * An entry function provided to the devfreq framework which provides frequency
679  * change of the DMC. The function gets the possible rate from OPP table based
680  * on requested frequency. It calls the next function responsible for the
681  * frequency and voltage change. In case of failure, does not set 'curr_rate'
682  * and returns error value to the framework.
683  */
684 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
685 			      u32 flags)
686 {
687 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
688 	unsigned long target_rate = 0;
689 	unsigned long target_volt = 0;
690 	int ret;
691 
692 	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
693 					flags);
694 
695 	if (ret)
696 		return ret;
697 
698 	if (target_rate == dmc->curr_rate)
699 		return 0;
700 
701 	mutex_lock(&dmc->lock);
702 
703 	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
704 
705 	if (ret) {
706 		mutex_unlock(&dmc->lock);
707 		return ret;
708 	}
709 
710 	dmc->curr_rate = target_rate;
711 
712 	mutex_unlock(&dmc->lock);
713 	return 0;
714 }
715 
716 /**
717  * exynos5_counters_get() - Gets the performance counters values.
718  * @dmc:	device for which the counters are going to be checked
719  * @load_count:	variable which is populated with counter value
720  * @total_count:	variable which is used as 'wall clock' reference
721  *
722  * Function which provides performance counters values. It sums up counters for
723  * two DMC channels. The 'total_count' is used as a reference and max value.
724  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
725  */
726 static int exynos5_counters_get(struct exynos5_dmc *dmc,
727 				unsigned long *load_count,
728 				unsigned long *total_count)
729 {
730 	unsigned long total = 0;
731 	struct devfreq_event_data event;
732 	int ret, i;
733 
734 	*load_count = 0;
735 
736 	/* Take into account only read+write counters, but stop all */
737 	for (i = 0; i < dmc->num_counters; i++) {
738 		if (!dmc->counter[i])
739 			continue;
740 
741 		ret = devfreq_event_get_event(dmc->counter[i], &event);
742 		if (ret < 0)
743 			return ret;
744 
745 		*load_count += event.load_count;
746 
747 		if (total < event.total_count)
748 			total = event.total_count;
749 	}
750 
751 	*total_count = total;
752 
753 	return 0;
754 }
755 
756 /**
757  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
758  * @dmc:	device for which the counters are going to be checked
759  * @beg_value:	initial value for the counter
760  *
761  * Function which enables needed counters, interrupts and sets initial values
762  * then starts the counters.
763  */
764 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
765 					  u32 beg_value)
766 {
767 	/* Enable interrupts for counter 2 */
768 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
769 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
770 
771 	/* Enable counter 2 and CCNT  */
772 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
773 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
774 
775 	/* Clear overflow flag for all counters */
776 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
777 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
778 
779 	/* Reset all counters */
780 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
781 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
782 
783 	/*
784 	 * Set start value for the counters, the number of samples that
785 	 * will be gathered is calculated as: 0xffffffff - beg_value
786 	 */
787 	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
788 	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
789 
790 	/* Start all counters */
791 	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
792 	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
793 }
794 
795 /**
796  * exynos5_dmc_perf_events_calc() - Calculate utilization
797  * @dmc:	device for which the counters are going to be checked
798  * @diff_ts:	time between last interrupt and current one
799  *
800  * Function which calculates needed utilization for the devfreq governor.
801  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
802  * between interrupts, which approximates utilization.
803  */
804 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
805 {
806 	/*
807 	 * This is a simple algorithm for managing traffic on DMC.
808 	 * When there is almost no load the counters overflow every 4s,
809 	 * no mater the DMC frequency.
810 	 * The high load might be approximated using linear function.
811 	 * Knowing that, simple calculation can provide 'busy_time' and
812 	 * 'total_time' to the devfreq governor which picks up target
813 	 * frequency.
814 	 * We want a fast ramp up and slow decay in frequency change function.
815 	 */
816 	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
817 		/*
818 		 * Set higher utilization for the simple_ondemand governor.
819 		 * The governor should increase the frequency of the DMC.
820 		 */
821 		dmc->load = 70;
822 		dmc->total = 100;
823 	} else {
824 		/*
825 		 * Set low utilization for the simple_ondemand governor.
826 		 * The governor should decrease the frequency of the DMC.
827 		 */
828 		dmc->load = 35;
829 		dmc->total = 100;
830 	}
831 
832 	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
833 }
834 
835 /**
836  * exynos5_dmc_perf_events_check() - Checks the status of the counters
837  * @dmc:	device for which the counters are going to be checked
838  *
839  * Function which is called from threaded IRQ to check the counters state
840  * and to call approximation for the needed utilization.
841  */
842 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
843 {
844 	u32 val;
845 	u64 diff_ts, ts;
846 
847 	ts = ktime_get_ns();
848 
849 	/* Stop all counters */
850 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
851 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
852 
853 	/* Check the source in interrupt flag registers (which channel) */
854 	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
855 	if (val) {
856 		diff_ts = ts - dmc->last_overflow_ts[0];
857 		dmc->last_overflow_ts[0] = ts;
858 		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
859 	} else {
860 		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
861 		diff_ts = ts - dmc->last_overflow_ts[1];
862 		dmc->last_overflow_ts[1] = ts;
863 		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
864 	}
865 
866 	exynos5_dmc_perf_events_calc(dmc, diff_ts);
867 
868 	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
869 }
870 
871 /**
872  * exynos5_dmc_enable_perf_events() - Enable performance events
873  * @dmc:	device for which the counters are going to be checked
874  *
875  * Function which is setup needed environment and enables counters.
876  */
877 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
878 {
879 	u64 ts;
880 
881 	/* Enable Performance Event Clock */
882 	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
883 	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
884 
885 	/* Select read transfers as performance event2 */
886 	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
887 	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
888 
889 	ts = ktime_get_ns();
890 	dmc->last_overflow_ts[0] = ts;
891 	dmc->last_overflow_ts[1] = ts;
892 
893 	/* Devfreq shouldn't be faster than initialization, play safe though. */
894 	dmc->load = 99;
895 	dmc->total = 100;
896 }
897 
898 /**
899  * exynos5_dmc_disable_perf_events() - Disable performance events
900  * @dmc:	device for which the counters are going to be checked
901  *
902  * Function which stops, disables performance event counters and interrupts.
903  */
904 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
905 {
906 	/* Stop all counters */
907 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
908 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
909 
910 	/* Disable interrupts for counter 2 */
911 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
912 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
913 
914 	/* Disable counter 2 and CCNT  */
915 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
916 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
917 
918 	/* Clear overflow flag for all counters */
919 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
920 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
921 }
922 
923 /**
924  * exynos5_dmc_get_status() - Read current DMC performance statistics.
925  * @dev:	device for which the statistics are requested
926  * @stat:	structure which has statistic fields
927  *
928  * Function reads the DMC performance counters and calculates 'busy_time'
929  * and 'total_time'. To protect from overflow, the values are shifted right
930  * by 10. After read out the counters are setup to count again.
931  */
932 static int exynos5_dmc_get_status(struct device *dev,
933 				  struct devfreq_dev_status *stat)
934 {
935 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
936 	unsigned long load, total;
937 	int ret;
938 
939 	if (dmc->in_irq_mode) {
940 		mutex_lock(&dmc->lock);
941 		stat->current_frequency = dmc->curr_rate;
942 		mutex_unlock(&dmc->lock);
943 
944 		stat->busy_time = dmc->load;
945 		stat->total_time = dmc->total;
946 	} else {
947 		ret = exynos5_counters_get(dmc, &load, &total);
948 		if (ret < 0)
949 			return -EINVAL;
950 
951 		/* To protect from overflow, divide by 1024 */
952 		stat->busy_time = load >> 10;
953 		stat->total_time = total >> 10;
954 
955 		ret = exynos5_counters_set_event(dmc);
956 		if (ret < 0) {
957 			dev_err(dev, "could not set event counter\n");
958 			return ret;
959 		}
960 	}
961 
962 	return 0;
963 }
964 
965 /**
966  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
967  * @dev:	device for which the framework checks operating frequency
968  * @freq:	returned frequency value
969  *
970  * It returns the currently used frequency of the DMC. The real operating
971  * frequency might be lower when the clock source value could not be divided
972  * to the requested value.
973  */
974 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
975 {
976 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
977 
978 	mutex_lock(&dmc->lock);
979 	*freq = dmc->curr_rate;
980 	mutex_unlock(&dmc->lock);
981 
982 	return 0;
983 }
984 
985 /*
986  * exynos5_dmc_df_profile - Devfreq governor's profile structure
987  *
988  * It provides to the devfreq framework needed functions and polling period.
989  */
990 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
991 	.timer = DEVFREQ_TIMER_DELAYED,
992 	.target = exynos5_dmc_target,
993 	.get_dev_status = exynos5_dmc_get_status,
994 	.get_cur_freq = exynos5_dmc_get_cur_freq,
995 };
996 
997 /**
998  * exynos5_dmc_align_init_freq() - Align initial frequency value
999  * @dmc:	device for which the frequency is going to be set
1000  * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
1001  *
1002  * The initial bootloader frequency, which is present during boot, might be
1003  * different that supported frequency values in the driver. It is possible
1004  * due to different PLL settings or used PLL as a source.
1005  * This function provides the 'initial_freq' for the devfreq framework
1006  * statistics engine which supports only registered values. Thus, some alignment
1007  * must be made.
1008  */
1009 static unsigned long
1010 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
1011 			    unsigned long bootloader_init_freq)
1012 {
1013 	unsigned long aligned_freq;
1014 	int idx;
1015 
1016 	idx = find_target_freq_idx(dmc, bootloader_init_freq);
1017 	if (idx >= 0)
1018 		aligned_freq = dmc->opp[idx].freq_hz;
1019 	else
1020 		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
1021 
1022 	return aligned_freq;
1023 }
1024 
1025 /**
1026  * create_timings_aligned() - Create register values and align with standard
1027  * @dmc:	device for which the frequency is going to be set
1028  * @reg_timing_row:	array to fill with values for timing row register
1029  * @reg_timing_data:	array to fill with values for timing data register
1030  * @reg_timing_power:	array to fill with values for timing power register
1031  * @clk_period_ps:	the period of the clock, known as tCK
1032  *
1033  * The function calculates timings and creates a register value ready for
1034  * a frequency transition. The register contains a few timings. They are
1035  * shifted by a known offset. The timing value is calculated based on memory
1036  * specyfication: minimal time required and minimal cycles required.
1037  */
1038 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1039 				  u32 *reg_timing_data, u32 *reg_timing_power,
1040 				  u32 clk_period_ps)
1041 {
1042 	u32 val;
1043 	const struct timing_reg *reg;
1044 
1045 	if (clk_period_ps == 0)
1046 		return -EINVAL;
1047 
1048 	*reg_timing_row = 0;
1049 	*reg_timing_data = 0;
1050 	*reg_timing_power = 0;
1051 
1052 	val = dmc->timings->tRFC / clk_period_ps;
1053 	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1054 	val = max(val, dmc->min_tck->tRFC);
1055 	reg = &timing_row_reg_fields[0];
1056 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1057 
1058 	val = dmc->timings->tRRD / clk_period_ps;
1059 	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1060 	val = max(val, dmc->min_tck->tRRD);
1061 	reg = &timing_row_reg_fields[1];
1062 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1063 
1064 	val = dmc->timings->tRPab / clk_period_ps;
1065 	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1066 	val = max(val, dmc->min_tck->tRPab);
1067 	reg = &timing_row_reg_fields[2];
1068 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1069 
1070 	val = dmc->timings->tRCD / clk_period_ps;
1071 	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1072 	val = max(val, dmc->min_tck->tRCD);
1073 	reg = &timing_row_reg_fields[3];
1074 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1075 
1076 	val = dmc->timings->tRC / clk_period_ps;
1077 	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1078 	val = max(val, dmc->min_tck->tRC);
1079 	reg = &timing_row_reg_fields[4];
1080 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1081 
1082 	val = dmc->timings->tRAS / clk_period_ps;
1083 	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1084 	val = max(val, dmc->min_tck->tRAS);
1085 	reg = &timing_row_reg_fields[5];
1086 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1087 
1088 	/* data related timings */
1089 	val = dmc->timings->tWTR / clk_period_ps;
1090 	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1091 	val = max(val, dmc->min_tck->tWTR);
1092 	reg = &timing_data_reg_fields[0];
1093 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1094 
1095 	val = dmc->timings->tWR / clk_period_ps;
1096 	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1097 	val = max(val, dmc->min_tck->tWR);
1098 	reg = &timing_data_reg_fields[1];
1099 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1100 
1101 	val = dmc->timings->tRTP / clk_period_ps;
1102 	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1103 	val = max(val, dmc->min_tck->tRTP);
1104 	reg = &timing_data_reg_fields[2];
1105 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1106 
1107 	val = dmc->timings->tW2W_C2C / clk_period_ps;
1108 	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1109 	val = max(val, dmc->min_tck->tW2W_C2C);
1110 	reg = &timing_data_reg_fields[3];
1111 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1112 
1113 	val = dmc->timings->tR2R_C2C / clk_period_ps;
1114 	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1115 	val = max(val, dmc->min_tck->tR2R_C2C);
1116 	reg = &timing_data_reg_fields[4];
1117 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1118 
1119 	val = dmc->timings->tWL / clk_period_ps;
1120 	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1121 	val = max(val, dmc->min_tck->tWL);
1122 	reg = &timing_data_reg_fields[5];
1123 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1124 
1125 	val = dmc->timings->tDQSCK / clk_period_ps;
1126 	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1127 	val = max(val, dmc->min_tck->tDQSCK);
1128 	reg = &timing_data_reg_fields[6];
1129 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1130 
1131 	val = dmc->timings->tRL / clk_period_ps;
1132 	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1133 	val = max(val, dmc->min_tck->tRL);
1134 	reg = &timing_data_reg_fields[7];
1135 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1136 
1137 	/* power related timings */
1138 	val = dmc->timings->tFAW / clk_period_ps;
1139 	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1140 	val = max(val, dmc->min_tck->tFAW);
1141 	reg = &timing_power_reg_fields[0];
1142 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1143 
1144 	val = dmc->timings->tXSR / clk_period_ps;
1145 	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1146 	val = max(val, dmc->min_tck->tXSR);
1147 	reg = &timing_power_reg_fields[1];
1148 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1149 
1150 	val = dmc->timings->tXP / clk_period_ps;
1151 	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1152 	val = max(val, dmc->min_tck->tXP);
1153 	reg = &timing_power_reg_fields[2];
1154 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1155 
1156 	val = dmc->timings->tCKE / clk_period_ps;
1157 	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1158 	val = max(val, dmc->min_tck->tCKE);
1159 	reg = &timing_power_reg_fields[3];
1160 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1161 
1162 	val = dmc->timings->tMRD / clk_period_ps;
1163 	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1164 	val = max(val, dmc->min_tck->tMRD);
1165 	reg = &timing_power_reg_fields[4];
1166 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1167 
1168 	return 0;
1169 }
1170 
1171 /**
1172  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1173  * @dmc:        device for which the frequency is going to be set
1174  *
1175  * The function parses DT entries with DRAM information.
1176  */
1177 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1178 {
1179 	int ret = 0;
1180 	struct device *dev = dmc->dev;
1181 	int idx;
1182 	u32 freq_mhz, clk_period_ps;
1183 
1184 	struct device_node *np_ddr __free(device_node) =
1185 		of_parse_phandle(dev->of_node, "device-handle", 0);
1186 	if (!np_ddr) {
1187 		dev_warn(dev, "could not find 'device-handle' in DT\n");
1188 		return -EINVAL;
1189 	}
1190 
1191 	dmc->timing_row = devm_kmalloc_array(dev, TIMING_COUNT,
1192 					     sizeof(u32), GFP_KERNEL);
1193 	if (!dmc->timing_row)
1194 		return -ENOMEM;
1195 
1196 	dmc->timing_data = devm_kmalloc_array(dev, TIMING_COUNT,
1197 					      sizeof(u32), GFP_KERNEL);
1198 	if (!dmc->timing_data)
1199 		return -ENOMEM;
1200 
1201 	dmc->timing_power = devm_kmalloc_array(dev, TIMING_COUNT,
1202 					       sizeof(u32), GFP_KERNEL);
1203 	if (!dmc->timing_power)
1204 		return -ENOMEM;
1205 
1206 	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dev,
1207 						 DDR_TYPE_LPDDR3,
1208 						 &dmc->timings_arr_size);
1209 	if (!dmc->timings) {
1210 		dev_warn(dev, "could not get timings from DT\n");
1211 		return -EINVAL;
1212 	}
1213 
1214 	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dev);
1215 	if (!dmc->min_tck) {
1216 		dev_warn(dev, "could not get tck from DT\n");
1217 		return -EINVAL;
1218 	}
1219 
1220 	/* Sorted array of OPPs with frequency ascending */
1221 	for (idx = 0; idx < dmc->opp_count; idx++) {
1222 		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1223 		clk_period_ps = 1000000 / freq_mhz;
1224 
1225 		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1226 					     &dmc->timing_data[idx],
1227 					     &dmc->timing_power[idx],
1228 					     clk_period_ps);
1229 	}
1230 
1231 
1232 	/* Take the highest frequency's timings as 'bypass' */
1233 	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1234 	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1235 	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1236 
1237 	return ret;
1238 }
1239 
1240 /**
1241  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242  * @dmc:	DMC structure containing needed fields
1243  *
1244  * Get the needed clocks defined in DT device, enable and set the right parents.
1245  * Read current frequency and initialize the initial rate for governor.
1246  */
1247 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1248 {
1249 	int ret;
1250 	struct device *dev = dmc->dev;
1251 	unsigned long target_volt = 0;
1252 	unsigned long target_rate = 0;
1253 	unsigned int tmp;
1254 
1255 	dmc->fout_spll = devm_clk_get(dev, "fout_spll");
1256 	if (IS_ERR(dmc->fout_spll))
1257 		return PTR_ERR(dmc->fout_spll);
1258 
1259 	dmc->fout_bpll = devm_clk_get(dev, "fout_bpll");
1260 	if (IS_ERR(dmc->fout_bpll))
1261 		return PTR_ERR(dmc->fout_bpll);
1262 
1263 	dmc->mout_mclk_cdrex = devm_clk_get(dev, "mout_mclk_cdrex");
1264 	if (IS_ERR(dmc->mout_mclk_cdrex))
1265 		return PTR_ERR(dmc->mout_mclk_cdrex);
1266 
1267 	dmc->mout_bpll = devm_clk_get(dev, "mout_bpll");
1268 	if (IS_ERR(dmc->mout_bpll))
1269 		return PTR_ERR(dmc->mout_bpll);
1270 
1271 	dmc->mout_mx_mspll_ccore = devm_clk_get(dev, "mout_mx_mspll_ccore");
1272 	if (IS_ERR(dmc->mout_mx_mspll_ccore))
1273 		return PTR_ERR(dmc->mout_mx_mspll_ccore);
1274 
1275 	dmc->mout_spll = devm_clk_get(dev, "ff_dout_spll2");
1276 	if (IS_ERR(dmc->mout_spll)) {
1277 		dmc->mout_spll = devm_clk_get(dev, "mout_sclk_spll");
1278 		if (IS_ERR(dmc->mout_spll))
1279 			return PTR_ERR(dmc->mout_spll);
1280 	}
1281 
1282 	/*
1283 	 * Convert frequency to KHz values and set it for the governor.
1284 	 */
1285 	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1286 	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1287 	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1288 
1289 	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1290 					&target_volt, 0);
1291 	if (ret)
1292 		return ret;
1293 
1294 	dmc->curr_volt = target_volt;
1295 
1296 	ret = clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1297 	if (ret)
1298 		return ret;
1299 
1300 	clk_prepare_enable(dmc->fout_bpll);
1301 	clk_prepare_enable(dmc->mout_bpll);
1302 
1303 	/*
1304 	 * Some bootloaders do not set clock routes correctly.
1305 	 * Stop one path in clocks to PHY.
1306 	 */
1307 	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1308 	tmp &= ~(BIT(1) | BIT(0));
1309 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1310 
1311 	return 0;
1312 }
1313 
1314 /**
1315  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316  * @dmc:	DMC for which it does the setup
1317  *
1318  * Initialization of performance counters in DMC for estimating usage.
1319  * The counter's values are used for calculation of a memory bandwidth and based
1320  * on that the governor changes the frequency.
1321  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1322  */
1323 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1324 {
1325 	struct device *dev = dmc->dev;
1326 	int ret, i;
1327 
1328 	dmc->num_counters = devfreq_event_get_edev_count(dev, "devfreq-events");
1329 	if (dmc->num_counters < 0) {
1330 		dev_err(dev, "could not get devfreq-event counters\n");
1331 		return dmc->num_counters;
1332 	}
1333 
1334 	dmc->counter = devm_kcalloc(dev, dmc->num_counters,
1335 				    sizeof(*dmc->counter), GFP_KERNEL);
1336 	if (!dmc->counter)
1337 		return -ENOMEM;
1338 
1339 	for (i = 0; i < dmc->num_counters; i++) {
1340 		dmc->counter[i] =
1341 			devfreq_event_get_edev_by_phandle(dev, "devfreq-events", i);
1342 		if (IS_ERR_OR_NULL(dmc->counter[i]))
1343 			return -EPROBE_DEFER;
1344 	}
1345 
1346 	ret = exynos5_counters_enable_edev(dmc);
1347 	if (ret < 0) {
1348 		dev_err(dev, "could not enable event counter\n");
1349 		return ret;
1350 	}
1351 
1352 	ret = exynos5_counters_set_event(dmc);
1353 	if (ret < 0) {
1354 		exynos5_counters_disable_edev(dmc);
1355 		dev_err(dev, "could not set event counter\n");
1356 		return ret;
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 /**
1363  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1364  * @dmc:	device which is used for changing this feature
1365  *
1366  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1367  * changes its configuration. In such situation access to the memory is blocked
1368  * in DMC automatically. This feature is used when clock frequency change
1369  * request appears and touches clock tree.
1370  */
1371 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1372 {
1373 	unsigned int val;
1374 	int ret;
1375 
1376 	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1377 	if (ret)
1378 		return ret;
1379 
1380 	val |= 1UL;
1381 	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1382 
1383 	return 0;
1384 }
1385 
1386 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1387 {
1388 	int res;
1389 	struct exynos5_dmc *dmc = priv;
1390 
1391 	mutex_lock(&dmc->df->lock);
1392 	exynos5_dmc_perf_events_check(dmc);
1393 	res = update_devfreq(dmc->df);
1394 	mutex_unlock(&dmc->df->lock);
1395 
1396 	if (res)
1397 		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1398 
1399 	return IRQ_HANDLED;
1400 }
1401 
1402 /**
1403  * exynos5_dmc_probe() - Probe function for the DMC driver
1404  * @pdev:	platform device for which the driver is going to be initialized
1405  *
1406  * Initialize basic components: clocks, regulators, performance counters, etc.
1407  * Read out product version and based on the information setup
1408  * internal structures for the controller (frequency and voltage) and for DRAM
1409  * memory parameters: timings for each operating frequency.
1410  * Register new devfreq device for controlling DVFS of the DMC.
1411  */
1412 static int exynos5_dmc_probe(struct platform_device *pdev)
1413 {
1414 	int ret = 0;
1415 	struct device *dev = &pdev->dev;
1416 	struct device_node *np = dev->of_node;
1417 	struct exynos5_dmc *dmc;
1418 	int irq[2];
1419 
1420 	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1421 	if (!dmc)
1422 		return -ENOMEM;
1423 
1424 	mutex_init(&dmc->lock);
1425 
1426 	dmc->dev = dev;
1427 	platform_set_drvdata(pdev, dmc);
1428 
1429 	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1430 	if (IS_ERR(dmc->base_drexi0))
1431 		return PTR_ERR(dmc->base_drexi0);
1432 
1433 	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1434 	if (IS_ERR(dmc->base_drexi1))
1435 		return PTR_ERR(dmc->base_drexi1);
1436 
1437 	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1438 							  "samsung,syscon-clk");
1439 	if (IS_ERR(dmc->clk_regmap))
1440 		return PTR_ERR(dmc->clk_regmap);
1441 
1442 	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1443 	if (ret) {
1444 		dev_warn(dev, "couldn't initialize frequency settings\n");
1445 		return ret;
1446 	}
1447 
1448 	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1449 	if (IS_ERR(dmc->vdd_mif)) {
1450 		ret = PTR_ERR(dmc->vdd_mif);
1451 		return ret;
1452 	}
1453 
1454 	ret = exynos5_dmc_init_clks(dmc);
1455 	if (ret)
1456 		return ret;
1457 
1458 	ret = of_get_dram_timings(dmc);
1459 	if (ret) {
1460 		dev_warn(dev, "couldn't initialize timings settings\n");
1461 		goto remove_clocks;
1462 	}
1463 
1464 	ret = exynos5_dmc_set_pause_on_switching(dmc);
1465 	if (ret) {
1466 		dev_warn(dev, "couldn't get access to PAUSE register\n");
1467 		goto remove_clocks;
1468 	}
1469 
1470 	/* There is two modes in which the driver works: polling or IRQ */
1471 	irq[0] = platform_get_irq_byname(pdev, "drex_0");
1472 	irq[1] = platform_get_irq_byname(pdev, "drex_1");
1473 	if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1474 		ret = devm_request_threaded_irq(dev, irq[0], NULL,
1475 						dmc_irq_thread, IRQF_ONESHOT,
1476 						dev_name(dev), dmc);
1477 		if (ret) {
1478 			dev_err(dev, "couldn't grab IRQ\n");
1479 			goto remove_clocks;
1480 		}
1481 
1482 		ret = devm_request_threaded_irq(dev, irq[1], NULL,
1483 						dmc_irq_thread, IRQF_ONESHOT,
1484 						dev_name(dev), dmc);
1485 		if (ret) {
1486 			dev_err(dev, "couldn't grab IRQ\n");
1487 			goto remove_clocks;
1488 		}
1489 
1490 		/*
1491 		 * Setup default thresholds for the devfreq governor.
1492 		 * The values are chosen based on experiments.
1493 		 */
1494 		dmc->gov_data.upthreshold = 55;
1495 		dmc->gov_data.downdifferential = 5;
1496 
1497 		exynos5_dmc_enable_perf_events(dmc);
1498 
1499 		dmc->in_irq_mode = 1;
1500 	} else {
1501 		ret = exynos5_performance_counters_init(dmc);
1502 		if (ret) {
1503 			dev_warn(dev, "couldn't probe performance counters\n");
1504 			goto remove_clocks;
1505 		}
1506 
1507 		/*
1508 		 * Setup default thresholds for the devfreq governor.
1509 		 * The values are chosen based on experiments.
1510 		 */
1511 		dmc->gov_data.upthreshold = 10;
1512 		dmc->gov_data.downdifferential = 5;
1513 
1514 		exynos5_dmc_df_profile.polling_ms = 100;
1515 	}
1516 
1517 	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1518 					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1519 					  &dmc->gov_data);
1520 
1521 	if (IS_ERR(dmc->df)) {
1522 		ret = PTR_ERR(dmc->df);
1523 		goto err_devfreq_add;
1524 	}
1525 
1526 	if (dmc->in_irq_mode)
1527 		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1528 
1529 	dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1530 
1531 	return 0;
1532 
1533 err_devfreq_add:
1534 	if (dmc->in_irq_mode)
1535 		exynos5_dmc_disable_perf_events(dmc);
1536 	else
1537 		exynos5_counters_disable_edev(dmc);
1538 remove_clocks:
1539 	clk_disable_unprepare(dmc->mout_bpll);
1540 	clk_disable_unprepare(dmc->fout_bpll);
1541 
1542 	return ret;
1543 }
1544 
1545 /**
1546  * exynos5_dmc_remove() - Remove function for the platform device
1547  * @pdev:	platform device which is going to be removed
1548  *
1549  * The function relies on 'devm' framework function which automatically
1550  * clean the device's resources. It just calls explicitly disable function for
1551  * the performance counters.
1552  */
1553 static void exynos5_dmc_remove(struct platform_device *pdev)
1554 {
1555 	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1556 
1557 	if (dmc->in_irq_mode)
1558 		exynos5_dmc_disable_perf_events(dmc);
1559 	else
1560 		exynos5_counters_disable_edev(dmc);
1561 
1562 	clk_disable_unprepare(dmc->mout_bpll);
1563 	clk_disable_unprepare(dmc->fout_bpll);
1564 }
1565 
1566 static const struct of_device_id exynos5_dmc_of_match[] = {
1567 	{ .compatible = "samsung,exynos5422-dmc", },
1568 	{ },
1569 };
1570 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1571 
1572 static struct platform_driver exynos5_dmc_platdrv = {
1573 	.probe	= exynos5_dmc_probe,
1574 	.remove_new = exynos5_dmc_remove,
1575 	.driver = {
1576 		.name	= "exynos5-dmc",
1577 		.of_match_table = exynos5_dmc_of_match,
1578 	},
1579 };
1580 module_platform_driver(exynos5_dmc_platdrv);
1581 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Lukasz Luba");
1584