xref: /linux/drivers/memory/samsung/exynos5422-dmc.c (revision 48dea9a700c8728cc31a1dd44588b97578de86ee)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4  * Author: Lukasz Luba <l.luba@partner.samsung.com>
5  */
6 
7 #include <linux/clk.h>
8 #include <linux/devfreq.h>
9 #include <linux/devfreq-event.h>
10 #include <linux/device.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/mfd/syscon.h>
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/of_device.h>
17 #include <linux/pm_opp.h>
18 #include <linux/platform_device.h>
19 #include <linux/regmap.h>
20 #include <linux/regulator/consumer.h>
21 #include <linux/slab.h>
22 #include "../jedec_ddr.h"
23 #include "../of_memory.h"
24 
25 static int irqmode;
26 module_param(irqmode, int, 0644);
27 MODULE_PARM_DESC(irqmode, "Enable IRQ mode (0=off [default], 1=on)");
28 
29 #define EXYNOS5_DREXI_TIMINGAREF		(0x0030)
30 #define EXYNOS5_DREXI_TIMINGROW0		(0x0034)
31 #define EXYNOS5_DREXI_TIMINGDATA0		(0x0038)
32 #define EXYNOS5_DREXI_TIMINGPOWER0		(0x003C)
33 #define EXYNOS5_DREXI_TIMINGROW1		(0x00E4)
34 #define EXYNOS5_DREXI_TIMINGDATA1		(0x00E8)
35 #define EXYNOS5_DREXI_TIMINGPOWER1		(0x00EC)
36 #define CDREX_PAUSE				(0x2091c)
37 #define CDREX_LPDDR3PHY_CON3			(0x20a20)
38 #define CDREX_LPDDR3PHY_CLKM_SRC		(0x20700)
39 #define EXYNOS5_TIMING_SET_SWI			BIT(28)
40 #define USE_MX_MSPLL_TIMINGS			(1)
41 #define USE_BPLL_TIMINGS			(0)
42 #define EXYNOS5_AREF_NORMAL			(0x2e)
43 
44 #define DREX_PPCCLKCON		(0x0130)
45 #define DREX_PEREV2CONFIG	(0x013c)
46 #define DREX_PMNC_PPC		(0xE000)
47 #define DREX_CNTENS_PPC		(0xE010)
48 #define DREX_CNTENC_PPC		(0xE020)
49 #define DREX_INTENS_PPC		(0xE030)
50 #define DREX_INTENC_PPC		(0xE040)
51 #define DREX_FLAG_PPC		(0xE050)
52 #define DREX_PMCNT2_PPC		(0xE130)
53 
54 /*
55  * A value for register DREX_PMNC_PPC which should be written to reset
56  * the cycle counter CCNT (a reference wall clock). It sets zero to the
57  * CCNT counter.
58  */
59 #define CC_RESET		BIT(2)
60 
61 /*
62  * A value for register DREX_PMNC_PPC which does the reset of all performance
63  * counters to zero.
64  */
65 #define PPC_COUNTER_RESET	BIT(1)
66 
67 /*
68  * Enables all configured counters (including cycle counter). The value should
69  * be written to the register DREX_PMNC_PPC.
70  */
71 #define PPC_ENABLE		BIT(0)
72 
73 /* A value for register DREX_PPCCLKCON which enables performance events clock.
74  * Must be written before first access to the performance counters register
75  * set, otherwise it could crash.
76  */
77 #define PEREV_CLK_EN		BIT(0)
78 
79 /*
80  * Values which are used to enable counters, interrupts or configure flags of
81  * the performance counters. They configure counter 2 and cycle counter.
82  */
83 #define PERF_CNT2		BIT(2)
84 #define PERF_CCNT		BIT(31)
85 
86 /*
87  * Performance event types which are used for setting the preferred event
88  * to track in the counters.
89  * There is a set of different types, the values are from range 0 to 0x6f.
90  * These settings should be written to the configuration register which manages
91  * the type of the event (register DREX_PEREV2CONFIG).
92  */
93 #define READ_TRANSFER_CH0	(0x6d)
94 #define READ_TRANSFER_CH1	(0x6f)
95 
96 #define PERF_COUNTER_START_VALUE 0xff000000
97 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
98 
99 /**
100  * struct dmc_opp_table - Operating level desciption
101  *
102  * Covers frequency and voltage settings of the DMC operating mode.
103  */
104 struct dmc_opp_table {
105 	u32 freq_hz;
106 	u32 volt_uv;
107 };
108 
109 /**
110  * struct exynos5_dmc - main structure describing DMC device
111  *
112  * The main structure for the Dynamic Memory Controller which covers clocks,
113  * memory regions, HW information, parameters and current operating mode.
114  */
115 struct exynos5_dmc {
116 	struct device *dev;
117 	struct devfreq *df;
118 	struct devfreq_simple_ondemand_data gov_data;
119 	void __iomem *base_drexi0;
120 	void __iomem *base_drexi1;
121 	struct regmap *clk_regmap;
122 	struct mutex lock;
123 	unsigned long curr_rate;
124 	unsigned long curr_volt;
125 	unsigned long bypass_rate;
126 	struct dmc_opp_table *opp;
127 	struct dmc_opp_table opp_bypass;
128 	int opp_count;
129 	u32 timings_arr_size;
130 	u32 *timing_row;
131 	u32 *timing_data;
132 	u32 *timing_power;
133 	const struct lpddr3_timings *timings;
134 	const struct lpddr3_min_tck *min_tck;
135 	u32 bypass_timing_row;
136 	u32 bypass_timing_data;
137 	u32 bypass_timing_power;
138 	struct regulator *vdd_mif;
139 	struct clk *fout_spll;
140 	struct clk *fout_bpll;
141 	struct clk *mout_spll;
142 	struct clk *mout_bpll;
143 	struct clk *mout_mclk_cdrex;
144 	struct clk *mout_mx_mspll_ccore;
145 	struct clk *mx_mspll_ccore_phy;
146 	struct clk *mout_mx_mspll_ccore_phy;
147 	struct devfreq_event_dev **counter;
148 	int num_counters;
149 	u64 last_overflow_ts[2];
150 	unsigned long load;
151 	unsigned long total;
152 	bool in_irq_mode;
153 };
154 
155 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
156 	{ .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
157 
158 #define TIMING_VAL2REG(timing, t_val)			\
159 ({							\
160 		u32 __val;				\
161 		__val = (t_val) << (timing)->bit_beg;	\
162 		__val;					\
163 })
164 
165 struct timing_reg {
166 	char *name;
167 	int bit_beg;
168 	int bit_end;
169 	unsigned int val;
170 };
171 
172 static const struct timing_reg timing_row[] = {
173 	TIMING_FIELD("tRFC", 24, 31),
174 	TIMING_FIELD("tRRD", 20, 23),
175 	TIMING_FIELD("tRP", 16, 19),
176 	TIMING_FIELD("tRCD", 12, 15),
177 	TIMING_FIELD("tRC", 6, 11),
178 	TIMING_FIELD("tRAS", 0, 5),
179 };
180 
181 static const struct timing_reg timing_data[] = {
182 	TIMING_FIELD("tWTR", 28, 31),
183 	TIMING_FIELD("tWR", 24, 27),
184 	TIMING_FIELD("tRTP", 20, 23),
185 	TIMING_FIELD("tW2W-C2C", 14, 14),
186 	TIMING_FIELD("tR2R-C2C", 12, 12),
187 	TIMING_FIELD("WL", 8, 11),
188 	TIMING_FIELD("tDQSCK", 4, 7),
189 	TIMING_FIELD("RL", 0, 3),
190 };
191 
192 static const struct timing_reg timing_power[] = {
193 	TIMING_FIELD("tFAW", 26, 31),
194 	TIMING_FIELD("tXSR", 16, 25),
195 	TIMING_FIELD("tXP", 8, 15),
196 	TIMING_FIELD("tCKE", 4, 7),
197 	TIMING_FIELD("tMRD", 0, 3),
198 };
199 
200 #define TIMING_COUNT (ARRAY_SIZE(timing_row) + ARRAY_SIZE(timing_data) + \
201 		      ARRAY_SIZE(timing_power))
202 
203 static int exynos5_counters_set_event(struct exynos5_dmc *dmc)
204 {
205 	int i, ret;
206 
207 	for (i = 0; i < dmc->num_counters; i++) {
208 		if (!dmc->counter[i])
209 			continue;
210 		ret = devfreq_event_set_event(dmc->counter[i]);
211 		if (ret < 0)
212 			return ret;
213 	}
214 	return 0;
215 }
216 
217 static int exynos5_counters_enable_edev(struct exynos5_dmc *dmc)
218 {
219 	int i, ret;
220 
221 	for (i = 0; i < dmc->num_counters; i++) {
222 		if (!dmc->counter[i])
223 			continue;
224 		ret = devfreq_event_enable_edev(dmc->counter[i]);
225 		if (ret < 0)
226 			return ret;
227 	}
228 	return 0;
229 }
230 
231 static int exynos5_counters_disable_edev(struct exynos5_dmc *dmc)
232 {
233 	int i, ret;
234 
235 	for (i = 0; i < dmc->num_counters; i++) {
236 		if (!dmc->counter[i])
237 			continue;
238 		ret = devfreq_event_disable_edev(dmc->counter[i]);
239 		if (ret < 0)
240 			return ret;
241 	}
242 	return 0;
243 }
244 
245 /**
246  * find_target_freq_id() - Finds requested frequency in local DMC configuration
247  * @dmc:	device for which the information is checked
248  * @target_rate:	requested frequency in KHz
249  *
250  * Seeks in the local DMC driver structure for the requested frequency value
251  * and returns index or error value.
252  */
253 static int find_target_freq_idx(struct exynos5_dmc *dmc,
254 				unsigned long target_rate)
255 {
256 	int i;
257 
258 	for (i = dmc->opp_count - 1; i >= 0; i--)
259 		if (dmc->opp[i].freq_hz <= target_rate)
260 			return i;
261 
262 	return -EINVAL;
263 }
264 
265 /**
266  * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
267  * @dmc:	device for which the new settings is going to be applied
268  * @set:	boolean variable passing set value
269  *
270  * Changes the register set, which holds timing parameters.
271  * There is two register sets: 0 and 1. The register set 0
272  * is used in normal operation when the clock is provided from main PLL.
273  * The bank register set 1 is used when the main PLL frequency is going to be
274  * changed and the clock is taken from alternative, stable source.
275  * This function switches between these banks according to the
276  * currently used clock source.
277  */
278 static int exynos5_switch_timing_regs(struct exynos5_dmc *dmc, bool set)
279 {
280 	unsigned int reg;
281 	int ret;
282 
283 	ret = regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, &reg);
284 	if (ret)
285 		return ret;
286 
287 	if (set)
288 		reg |= EXYNOS5_TIMING_SET_SWI;
289 	else
290 		reg &= ~EXYNOS5_TIMING_SET_SWI;
291 
292 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CON3, reg);
293 
294 	return 0;
295 }
296 
297 /**
298  * exynos5_init_freq_table() - Initialized PM OPP framework
299  * @dmc:	DMC device for which the frequencies are used for OPP init
300  * @profile:	devfreq device's profile
301  *
302  * Populate the devfreq device's OPP table based on current frequency, voltage.
303  */
304 static int exynos5_init_freq_table(struct exynos5_dmc *dmc,
305 				   struct devfreq_dev_profile *profile)
306 {
307 	int i, ret;
308 	int idx;
309 	unsigned long freq;
310 
311 	ret = dev_pm_opp_of_add_table(dmc->dev);
312 	if (ret < 0) {
313 		dev_err(dmc->dev, "Failed to get OPP table\n");
314 		return ret;
315 	}
316 
317 	dmc->opp_count = dev_pm_opp_get_opp_count(dmc->dev);
318 
319 	dmc->opp = devm_kmalloc_array(dmc->dev, dmc->opp_count,
320 				      sizeof(struct dmc_opp_table), GFP_KERNEL);
321 	if (!dmc->opp)
322 		goto err_opp;
323 
324 	idx = dmc->opp_count - 1;
325 	for (i = 0, freq = ULONG_MAX; i < dmc->opp_count; i++, freq--) {
326 		struct dev_pm_opp *opp;
327 
328 		opp = dev_pm_opp_find_freq_floor(dmc->dev, &freq);
329 		if (IS_ERR(opp))
330 			goto err_opp;
331 
332 		dmc->opp[idx - i].freq_hz = freq;
333 		dmc->opp[idx - i].volt_uv = dev_pm_opp_get_voltage(opp);
334 
335 		dev_pm_opp_put(opp);
336 	}
337 
338 	return 0;
339 
340 err_opp:
341 	dev_pm_opp_of_remove_table(dmc->dev);
342 
343 	return -EINVAL;
344 }
345 
346 /**
347  * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
348  * @dmc:	device for which the new settings is going to be applied
349  * @param:	DRAM parameters which passes timing data
350  *
351  * Low-level function for changing timings for DRAM memory clocking from
352  * 'bypass' clock source (fixed frequency @400MHz).
353  * It uses timing bank registers set 1.
354  */
355 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc *dmc)
356 {
357 	writel(EXYNOS5_AREF_NORMAL,
358 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
359 
360 	writel(dmc->bypass_timing_row,
361 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW1);
362 	writel(dmc->bypass_timing_row,
363 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW1);
364 	writel(dmc->bypass_timing_data,
365 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA1);
366 	writel(dmc->bypass_timing_data,
367 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA1);
368 	writel(dmc->bypass_timing_power,
369 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER1);
370 	writel(dmc->bypass_timing_power,
371 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER1);
372 }
373 
374 /**
375  * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
376  * @dmc:	device for which the new settings is going to be applied
377  * @target_rate:	target frequency of the DMC
378  *
379  * Low-level function for changing timings for DRAM memory operating from main
380  * clock source (BPLL), which can have different frequencies. Thus, each
381  * frequency must have corresponding timings register values in order to keep
382  * the needed delays.
383  * It uses timing bank registers set 0.
384  */
385 static int exynos5_dram_change_timings(struct exynos5_dmc *dmc,
386 				       unsigned long target_rate)
387 {
388 	int idx;
389 
390 	for (idx = dmc->opp_count - 1; idx >= 0; idx--)
391 		if (dmc->opp[idx].freq_hz <= target_rate)
392 			break;
393 
394 	if (idx < 0)
395 		return -EINVAL;
396 
397 	writel(EXYNOS5_AREF_NORMAL,
398 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGAREF);
399 
400 	writel(dmc->timing_row[idx],
401 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGROW0);
402 	writel(dmc->timing_row[idx],
403 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGROW0);
404 	writel(dmc->timing_data[idx],
405 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGDATA0);
406 	writel(dmc->timing_data[idx],
407 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGDATA0);
408 	writel(dmc->timing_power[idx],
409 	       dmc->base_drexi0 + EXYNOS5_DREXI_TIMINGPOWER0);
410 	writel(dmc->timing_power[idx],
411 	       dmc->base_drexi1 + EXYNOS5_DREXI_TIMINGPOWER0);
412 
413 	return 0;
414 }
415 
416 /**
417  * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
418  * @dmc:	device for which it is going to be set
419  * @target_volt:	new voltage which is chosen to be final
420  *
421  * Function tries to align voltage to the safe level for 'normal' mode.
422  * It checks the need of higher voltage and changes the value. The target
423  * voltage might be lower that currently set and still the system will be
424  * stable.
425  */
426 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc *dmc,
427 					    unsigned long target_volt)
428 {
429 	int ret = 0;
430 
431 	if (dmc->curr_volt <= target_volt)
432 		return 0;
433 
434 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
435 				    target_volt);
436 	if (!ret)
437 		dmc->curr_volt = target_volt;
438 
439 	return ret;
440 }
441 
442 /**
443  * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
444  * @dmc:	device for which it is going to be set
445  * @target_volt:	new voltage which is chosen to be final
446  *
447  * Function tries to align voltage to the safe level for the 'bypass' mode.
448  * It checks the need of higher voltage and changes the value.
449  * The target voltage must not be less than currently needed, because
450  * for current frequency the device might become unstable.
451  */
452 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc *dmc,
453 					    unsigned long target_volt)
454 {
455 	int ret = 0;
456 	unsigned long bypass_volt = dmc->opp_bypass.volt_uv;
457 
458 	target_volt = max(bypass_volt, target_volt);
459 
460 	if (dmc->curr_volt >= target_volt)
461 		return 0;
462 
463 	ret = regulator_set_voltage(dmc->vdd_mif, target_volt,
464 				    target_volt);
465 	if (!ret)
466 		dmc->curr_volt = target_volt;
467 
468 	return ret;
469 }
470 
471 /**
472  * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
473  * @dmc:	device for which it is going to be set
474  * @target_rate:	new frequency which is chosen to be final
475  *
476  * Function changes the DRAM timings for the temporary 'bypass' mode.
477  */
478 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc *dmc,
479 						 unsigned long target_rate)
480 {
481 	int idx = find_target_freq_idx(dmc, target_rate);
482 
483 	if (idx < 0)
484 		return -EINVAL;
485 
486 	exynos5_set_bypass_dram_timings(dmc);
487 
488 	return 0;
489 }
490 
491 /**
492  * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
493  * @dmc:	DMC device for which the switching is going to happen
494  * @target_rate:	new frequency which is going to be set as a final
495  * @target_volt:	new voltage which is going to be set as a final
496  *
497  * Function configures DMC and clocks for operating in temporary 'bypass' mode.
498  * This mode is used only temporary but if required, changes voltage and timings
499  * for DRAM chips. It switches the main clock to stable clock source for the
500  * period of the main PLL reconfiguration.
501  */
502 static int
503 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc *dmc,
504 					   unsigned long target_rate,
505 					   unsigned long target_volt)
506 {
507 	int ret;
508 
509 	/*
510 	 * Having higher voltage for a particular frequency does not harm
511 	 * the chip. Use it for the temporary frequency change when one
512 	 * voltage manipulation might be avoided.
513 	 */
514 	ret = exynos5_dmc_align_bypass_voltage(dmc, target_volt);
515 	if (ret)
516 		return ret;
517 
518 	/*
519 	 * Longer delays for DRAM does not cause crash, the opposite does.
520 	 */
521 	ret = exynos5_dmc_align_bypass_dram_timings(dmc, target_rate);
522 	if (ret)
523 		return ret;
524 
525 	/*
526 	 * Delays are long enough, so use them for the new coming clock.
527 	 */
528 	ret = exynos5_switch_timing_regs(dmc, USE_MX_MSPLL_TIMINGS);
529 
530 	return ret;
531 }
532 
533 /**
534  * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
535  * using safe procedure
536  * @dmc:	device for which the frequency is going to be changed
537  * @target_rate:	requested new frequency
538  * @target_volt:	requested voltage which corresponds to the new frequency
539  *
540  * The DMC frequency change procedure requires a few steps.
541  * The main requirement is to change the clock source in the clk mux
542  * for the time of main clock PLL locking. The assumption is that the
543  * alternative clock source set as parent is stable.
544  * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
545  * clock. This requires alignment in DRAM timing parameters for the new
546  * T-period. There is two bank sets for keeping DRAM
547  * timings: set 0 and set 1. The set 0 is used when main clock source is
548  * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
549  * the two bank sets is part of the process.
550  * The voltage must also be aligned to the minimum required level. There is
551  * this intermediate step with switching to 'bypass' parent clock source.
552  * if the old voltage is lower, it requires an increase of the voltage level.
553  * The complexity of the voltage manipulation is hidden in low level function.
554  * In this function there is last alignment of the voltage level at the end.
555  */
556 static int
557 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc *dmc,
558 				 unsigned long target_rate,
559 				 unsigned long target_volt)
560 {
561 	int ret;
562 
563 	ret = exynos5_dmc_switch_to_bypass_configuration(dmc, target_rate,
564 							 target_volt);
565 	if (ret)
566 		return ret;
567 
568 	/*
569 	 * Voltage is set at least to a level needed for this frequency,
570 	 * so switching clock source is safe now.
571 	 */
572 	clk_prepare_enable(dmc->fout_spll);
573 	clk_prepare_enable(dmc->mout_spll);
574 	clk_prepare_enable(dmc->mout_mx_mspll_ccore);
575 
576 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_mx_mspll_ccore);
577 	if (ret)
578 		goto disable_clocks;
579 
580 	/*
581 	 * We are safe to increase the timings for current bypass frequency.
582 	 * Thanks to this the settings will be ready for the upcoming clock
583 	 * source change.
584 	 */
585 	exynos5_dram_change_timings(dmc, target_rate);
586 
587 	clk_set_rate(dmc->fout_bpll, target_rate);
588 
589 	ret = exynos5_switch_timing_regs(dmc, USE_BPLL_TIMINGS);
590 	if (ret)
591 		goto disable_clocks;
592 
593 	ret = clk_set_parent(dmc->mout_mclk_cdrex, dmc->mout_bpll);
594 	if (ret)
595 		goto disable_clocks;
596 
597 	/*
598 	 * Make sure if the voltage is not from 'bypass' settings and align to
599 	 * the right level for power efficiency.
600 	 */
601 	ret = exynos5_dmc_align_target_voltage(dmc, target_volt);
602 
603 disable_clocks:
604 	clk_disable_unprepare(dmc->mout_mx_mspll_ccore);
605 	clk_disable_unprepare(dmc->mout_spll);
606 	clk_disable_unprepare(dmc->fout_spll);
607 
608 	return ret;
609 }
610 
611 /**
612  * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
613  * table.
614  * @dmc:	device for which the frequency is going to be changed
615  * @freq:       requested frequency in KHz
616  * @target_rate:	returned frequency which is the same or lower than
617  *			requested
618  * @target_volt:	returned voltage which corresponds to the returned
619  *			frequency
620  *
621  * Function gets requested frequency and checks OPP framework for needed
622  * frequency and voltage. It populates the values 'target_rate' and
623  * 'target_volt' or returns error value when OPP framework fails.
624  */
625 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc *dmc,
626 				     unsigned long *freq,
627 				     unsigned long *target_rate,
628 				     unsigned long *target_volt, u32 flags)
629 {
630 	struct dev_pm_opp *opp;
631 
632 	opp = devfreq_recommended_opp(dmc->dev, freq, flags);
633 	if (IS_ERR(opp))
634 		return PTR_ERR(opp);
635 
636 	*target_rate = dev_pm_opp_get_freq(opp);
637 	*target_volt = dev_pm_opp_get_voltage(opp);
638 	dev_pm_opp_put(opp);
639 
640 	return 0;
641 }
642 
643 /**
644  * exynos5_dmc_target() - Function responsible for changing frequency of DMC
645  * @dev:	device for which the frequency is going to be changed
646  * @freq:	requested frequency in KHz
647  * @flags:	flags provided for this frequency change request
648  *
649  * An entry function provided to the devfreq framework which provides frequency
650  * change of the DMC. The function gets the possible rate from OPP table based
651  * on requested frequency. It calls the next function responsible for the
652  * frequency and voltage change. In case of failure, does not set 'curr_rate'
653  * and returns error value to the framework.
654  */
655 static int exynos5_dmc_target(struct device *dev, unsigned long *freq,
656 			      u32 flags)
657 {
658 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
659 	unsigned long target_rate = 0;
660 	unsigned long target_volt = 0;
661 	int ret;
662 
663 	ret = exynos5_dmc_get_volt_freq(dmc, freq, &target_rate, &target_volt,
664 					flags);
665 
666 	if (ret)
667 		return ret;
668 
669 	if (target_rate == dmc->curr_rate)
670 		return 0;
671 
672 	mutex_lock(&dmc->lock);
673 
674 	ret = exynos5_dmc_change_freq_and_volt(dmc, target_rate, target_volt);
675 
676 	if (ret) {
677 		mutex_unlock(&dmc->lock);
678 		return ret;
679 	}
680 
681 	dmc->curr_rate = target_rate;
682 
683 	mutex_unlock(&dmc->lock);
684 	return 0;
685 }
686 
687 /**
688  * exynos5_counters_get() - Gets the performance counters values.
689  * @dmc:	device for which the counters are going to be checked
690  * @load_count:	variable which is populated with counter value
691  * @total_count:	variable which is used as 'wall clock' reference
692  *
693  * Function which provides performance counters values. It sums up counters for
694  * two DMC channels. The 'total_count' is used as a reference and max value.
695  * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
696  */
697 static int exynos5_counters_get(struct exynos5_dmc *dmc,
698 				unsigned long *load_count,
699 				unsigned long *total_count)
700 {
701 	unsigned long total = 0;
702 	struct devfreq_event_data event;
703 	int ret, i;
704 
705 	*load_count = 0;
706 
707 	/* Take into account only read+write counters, but stop all */
708 	for (i = 0; i < dmc->num_counters; i++) {
709 		if (!dmc->counter[i])
710 			continue;
711 
712 		ret = devfreq_event_get_event(dmc->counter[i], &event);
713 		if (ret < 0)
714 			return ret;
715 
716 		*load_count += event.load_count;
717 
718 		if (total < event.total_count)
719 			total = event.total_count;
720 	}
721 
722 	*total_count = total;
723 
724 	return 0;
725 }
726 
727 /**
728  * exynos5_dmc_start_perf_events() - Setup and start performance event counters
729  * @dmc:	device for which the counters are going to be checked
730  * @beg_value:	initial value for the counter
731  *
732  * Function which enables needed counters, interrupts and sets initial values
733  * then starts the counters.
734  */
735 static void exynos5_dmc_start_perf_events(struct exynos5_dmc *dmc,
736 					  u32 beg_value)
737 {
738 	/* Enable interrupts for counter 2 */
739 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENS_PPC);
740 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENS_PPC);
741 
742 	/* Enable counter 2 and CCNT  */
743 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENS_PPC);
744 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENS_PPC);
745 
746 	/* Clear overflow flag for all counters */
747 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
748 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
749 
750 	/* Reset all counters */
751 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi0 + DREX_PMNC_PPC);
752 	writel(CC_RESET | PPC_COUNTER_RESET, dmc->base_drexi1 + DREX_PMNC_PPC);
753 
754 	/*
755 	 * Set start value for the counters, the number of samples that
756 	 * will be gathered is calculated as: 0xffffffff - beg_value
757 	 */
758 	writel(beg_value, dmc->base_drexi0 + DREX_PMCNT2_PPC);
759 	writel(beg_value, dmc->base_drexi1 + DREX_PMCNT2_PPC);
760 
761 	/* Start all counters */
762 	writel(PPC_ENABLE, dmc->base_drexi0 + DREX_PMNC_PPC);
763 	writel(PPC_ENABLE, dmc->base_drexi1 + DREX_PMNC_PPC);
764 }
765 
766 /**
767  * exynos5_dmc_perf_events_calc() - Calculate utilization
768  * @dmc:	device for which the counters are going to be checked
769  * @diff_ts:	time between last interrupt and current one
770  *
771  * Function which calculates needed utilization for the devfreq governor.
772  * It prepares values for 'busy_time' and 'total_time' based on elapsed time
773  * between interrupts, which approximates utilization.
774  */
775 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc *dmc, u64 diff_ts)
776 {
777 	/*
778 	 * This is a simple algorithm for managing traffic on DMC.
779 	 * When there is almost no load the counters overflow every 4s,
780 	 * no mater the DMC frequency.
781 	 * The high load might be approximated using linear function.
782 	 * Knowing that, simple calculation can provide 'busy_time' and
783 	 * 'total_time' to the devfreq governor which picks up target
784 	 * frequency.
785 	 * We want a fast ramp up and slow decay in frequency change function.
786 	 */
787 	if (diff_ts < PERF_EVENT_UP_DOWN_THRESHOLD) {
788 		/*
789 		 * Set higher utilization for the simple_ondemand governor.
790 		 * The governor should increase the frequency of the DMC.
791 		 */
792 		dmc->load = 70;
793 		dmc->total = 100;
794 	} else {
795 		/*
796 		 * Set low utilization for the simple_ondemand governor.
797 		 * The governor should decrease the frequency of the DMC.
798 		 */
799 		dmc->load = 35;
800 		dmc->total = 100;
801 	}
802 
803 	dev_dbg(dmc->dev, "diff_ts=%llu\n", diff_ts);
804 }
805 
806 /**
807  * exynos5_dmc_perf_events_check() - Checks the status of the counters
808  * @dmc:	device for which the counters are going to be checked
809  *
810  * Function which is called from threaded IRQ to check the counters state
811  * and to call approximation for the needed utilization.
812  */
813 static void exynos5_dmc_perf_events_check(struct exynos5_dmc *dmc)
814 {
815 	u32 val;
816 	u64 diff_ts, ts;
817 
818 	ts = ktime_get_ns();
819 
820 	/* Stop all counters */
821 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
822 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
823 
824 	/* Check the source in interrupt flag registers (which channel) */
825 	val = readl(dmc->base_drexi0 + DREX_FLAG_PPC);
826 	if (val) {
827 		diff_ts = ts - dmc->last_overflow_ts[0];
828 		dmc->last_overflow_ts[0] = ts;
829 		dev_dbg(dmc->dev, "drex0 0xE050 val= 0x%08x\n",  val);
830 	} else {
831 		val = readl(dmc->base_drexi1 + DREX_FLAG_PPC);
832 		diff_ts = ts - dmc->last_overflow_ts[1];
833 		dmc->last_overflow_ts[1] = ts;
834 		dev_dbg(dmc->dev, "drex1 0xE050 val= 0x%08x\n",  val);
835 	}
836 
837 	exynos5_dmc_perf_events_calc(dmc, diff_ts);
838 
839 	exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
840 }
841 
842 /**
843  * exynos5_dmc_enable_perf_events() - Enable performance events
844  * @dmc:	device for which the counters are going to be checked
845  *
846  * Function which is setup needed environment and enables counters.
847  */
848 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc *dmc)
849 {
850 	u64 ts;
851 
852 	/* Enable Performance Event Clock */
853 	writel(PEREV_CLK_EN, dmc->base_drexi0 + DREX_PPCCLKCON);
854 	writel(PEREV_CLK_EN, dmc->base_drexi1 + DREX_PPCCLKCON);
855 
856 	/* Select read transfers as performance event2 */
857 	writel(READ_TRANSFER_CH0, dmc->base_drexi0 + DREX_PEREV2CONFIG);
858 	writel(READ_TRANSFER_CH1, dmc->base_drexi1 + DREX_PEREV2CONFIG);
859 
860 	ts = ktime_get_ns();
861 	dmc->last_overflow_ts[0] = ts;
862 	dmc->last_overflow_ts[1] = ts;
863 
864 	/* Devfreq shouldn't be faster than initialization, play safe though. */
865 	dmc->load = 99;
866 	dmc->total = 100;
867 }
868 
869 /**
870  * exynos5_dmc_disable_perf_events() - Disable performance events
871  * @dmc:	device for which the counters are going to be checked
872  *
873  * Function which stops, disables performance event counters and interrupts.
874  */
875 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc *dmc)
876 {
877 	/* Stop all counters */
878 	writel(0, dmc->base_drexi0 + DREX_PMNC_PPC);
879 	writel(0, dmc->base_drexi1 + DREX_PMNC_PPC);
880 
881 	/* Disable interrupts for counter 2 */
882 	writel(PERF_CNT2, dmc->base_drexi0 + DREX_INTENC_PPC);
883 	writel(PERF_CNT2, dmc->base_drexi1 + DREX_INTENC_PPC);
884 
885 	/* Disable counter 2 and CCNT  */
886 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_CNTENC_PPC);
887 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_CNTENC_PPC);
888 
889 	/* Clear overflow flag for all counters */
890 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi0 + DREX_FLAG_PPC);
891 	writel(PERF_CNT2 | PERF_CCNT, dmc->base_drexi1 + DREX_FLAG_PPC);
892 }
893 
894 /**
895  * exynos5_dmc_get_status() - Read current DMC performance statistics.
896  * @dev:	device for which the statistics are requested
897  * @stat:	structure which has statistic fields
898  *
899  * Function reads the DMC performance counters and calculates 'busy_time'
900  * and 'total_time'. To protect from overflow, the values are shifted right
901  * by 10. After read out the counters are setup to count again.
902  */
903 static int exynos5_dmc_get_status(struct device *dev,
904 				  struct devfreq_dev_status *stat)
905 {
906 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
907 	unsigned long load, total;
908 	int ret;
909 
910 	if (dmc->in_irq_mode) {
911 		stat->current_frequency = dmc->curr_rate;
912 		stat->busy_time = dmc->load;
913 		stat->total_time = dmc->total;
914 	} else {
915 		ret = exynos5_counters_get(dmc, &load, &total);
916 		if (ret < 0)
917 			return -EINVAL;
918 
919 		/* To protect from overflow, divide by 1024 */
920 		stat->busy_time = load >> 10;
921 		stat->total_time = total >> 10;
922 
923 		ret = exynos5_counters_set_event(dmc);
924 		if (ret < 0) {
925 			dev_err(dev, "could not set event counter\n");
926 			return ret;
927 		}
928 	}
929 
930 	return 0;
931 }
932 
933 /**
934  * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
935  * @dev:	device for which the framework checks operating frequency
936  * @freq:	returned frequency value
937  *
938  * It returns the currently used frequency of the DMC. The real operating
939  * frequency might be lower when the clock source value could not be divided
940  * to the requested value.
941  */
942 static int exynos5_dmc_get_cur_freq(struct device *dev, unsigned long *freq)
943 {
944 	struct exynos5_dmc *dmc = dev_get_drvdata(dev);
945 
946 	mutex_lock(&dmc->lock);
947 	*freq = dmc->curr_rate;
948 	mutex_unlock(&dmc->lock);
949 
950 	return 0;
951 }
952 
953 /**
954  * exynos5_dmc_df_profile - Devfreq governor's profile structure
955  *
956  * It provides to the devfreq framework needed functions and polling period.
957  */
958 static struct devfreq_dev_profile exynos5_dmc_df_profile = {
959 	.timer = DEVFREQ_TIMER_DELAYED,
960 	.target = exynos5_dmc_target,
961 	.get_dev_status = exynos5_dmc_get_status,
962 	.get_cur_freq = exynos5_dmc_get_cur_freq,
963 };
964 
965 /**
966  * exynos5_dmc_align_initial_frequency() - Align initial frequency value
967  * @dmc:	device for which the frequency is going to be set
968  * @bootloader_init_freq:	initial frequency set by the bootloader in KHz
969  *
970  * The initial bootloader frequency, which is present during boot, might be
971  * different that supported frequency values in the driver. It is possible
972  * due to different PLL settings or used PLL as a source.
973  * This function provides the 'initial_freq' for the devfreq framework
974  * statistics engine which supports only registered values. Thus, some alignment
975  * must be made.
976  */
977 static unsigned long
978 exynos5_dmc_align_init_freq(struct exynos5_dmc *dmc,
979 			    unsigned long bootloader_init_freq)
980 {
981 	unsigned long aligned_freq;
982 	int idx;
983 
984 	idx = find_target_freq_idx(dmc, bootloader_init_freq);
985 	if (idx >= 0)
986 		aligned_freq = dmc->opp[idx].freq_hz;
987 	else
988 		aligned_freq = dmc->opp[dmc->opp_count - 1].freq_hz;
989 
990 	return aligned_freq;
991 }
992 
993 /**
994  * create_timings_aligned() - Create register values and align with standard
995  * @dmc:	device for which the frequency is going to be set
996  * @idx:	speed bin in the OPP table
997  * @clk_period_ps:	the period of the clock, known as tCK
998  *
999  * The function calculates timings and creates a register value ready for
1000  * a frequency transition. The register contains a few timings. They are
1001  * shifted by a known offset. The timing value is calculated based on memory
1002  * specyfication: minimal time required and minimal cycles required.
1003  */
1004 static int create_timings_aligned(struct exynos5_dmc *dmc, u32 *reg_timing_row,
1005 				  u32 *reg_timing_data, u32 *reg_timing_power,
1006 				  u32 clk_period_ps)
1007 {
1008 	u32 val;
1009 	const struct timing_reg *reg;
1010 
1011 	if (clk_period_ps == 0)
1012 		return -EINVAL;
1013 
1014 	*reg_timing_row = 0;
1015 	*reg_timing_data = 0;
1016 	*reg_timing_power = 0;
1017 
1018 	val = dmc->timings->tRFC / clk_period_ps;
1019 	val += dmc->timings->tRFC % clk_period_ps ? 1 : 0;
1020 	val = max(val, dmc->min_tck->tRFC);
1021 	reg = &timing_row[0];
1022 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1023 
1024 	val = dmc->timings->tRRD / clk_period_ps;
1025 	val += dmc->timings->tRRD % clk_period_ps ? 1 : 0;
1026 	val = max(val, dmc->min_tck->tRRD);
1027 	reg = &timing_row[1];
1028 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1029 
1030 	val = dmc->timings->tRPab / clk_period_ps;
1031 	val += dmc->timings->tRPab % clk_period_ps ? 1 : 0;
1032 	val = max(val, dmc->min_tck->tRPab);
1033 	reg = &timing_row[2];
1034 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1035 
1036 	val = dmc->timings->tRCD / clk_period_ps;
1037 	val += dmc->timings->tRCD % clk_period_ps ? 1 : 0;
1038 	val = max(val, dmc->min_tck->tRCD);
1039 	reg = &timing_row[3];
1040 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1041 
1042 	val = dmc->timings->tRC / clk_period_ps;
1043 	val += dmc->timings->tRC % clk_period_ps ? 1 : 0;
1044 	val = max(val, dmc->min_tck->tRC);
1045 	reg = &timing_row[4];
1046 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1047 
1048 	val = dmc->timings->tRAS / clk_period_ps;
1049 	val += dmc->timings->tRAS % clk_period_ps ? 1 : 0;
1050 	val = max(val, dmc->min_tck->tRAS);
1051 	reg = &timing_row[5];
1052 	*reg_timing_row |= TIMING_VAL2REG(reg, val);
1053 
1054 	/* data related timings */
1055 	val = dmc->timings->tWTR / clk_period_ps;
1056 	val += dmc->timings->tWTR % clk_period_ps ? 1 : 0;
1057 	val = max(val, dmc->min_tck->tWTR);
1058 	reg = &timing_data[0];
1059 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1060 
1061 	val = dmc->timings->tWR / clk_period_ps;
1062 	val += dmc->timings->tWR % clk_period_ps ? 1 : 0;
1063 	val = max(val, dmc->min_tck->tWR);
1064 	reg = &timing_data[1];
1065 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1066 
1067 	val = dmc->timings->tRTP / clk_period_ps;
1068 	val += dmc->timings->tRTP % clk_period_ps ? 1 : 0;
1069 	val = max(val, dmc->min_tck->tRTP);
1070 	reg = &timing_data[2];
1071 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1072 
1073 	val = dmc->timings->tW2W_C2C / clk_period_ps;
1074 	val += dmc->timings->tW2W_C2C % clk_period_ps ? 1 : 0;
1075 	val = max(val, dmc->min_tck->tW2W_C2C);
1076 	reg = &timing_data[3];
1077 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1078 
1079 	val = dmc->timings->tR2R_C2C / clk_period_ps;
1080 	val += dmc->timings->tR2R_C2C % clk_period_ps ? 1 : 0;
1081 	val = max(val, dmc->min_tck->tR2R_C2C);
1082 	reg = &timing_data[4];
1083 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1084 
1085 	val = dmc->timings->tWL / clk_period_ps;
1086 	val += dmc->timings->tWL % clk_period_ps ? 1 : 0;
1087 	val = max(val, dmc->min_tck->tWL);
1088 	reg = &timing_data[5];
1089 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1090 
1091 	val = dmc->timings->tDQSCK / clk_period_ps;
1092 	val += dmc->timings->tDQSCK % clk_period_ps ? 1 : 0;
1093 	val = max(val, dmc->min_tck->tDQSCK);
1094 	reg = &timing_data[6];
1095 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1096 
1097 	val = dmc->timings->tRL / clk_period_ps;
1098 	val += dmc->timings->tRL % clk_period_ps ? 1 : 0;
1099 	val = max(val, dmc->min_tck->tRL);
1100 	reg = &timing_data[7];
1101 	*reg_timing_data |= TIMING_VAL2REG(reg, val);
1102 
1103 	/* power related timings */
1104 	val = dmc->timings->tFAW / clk_period_ps;
1105 	val += dmc->timings->tFAW % clk_period_ps ? 1 : 0;
1106 	val = max(val, dmc->min_tck->tFAW);
1107 	reg = &timing_power[0];
1108 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1109 
1110 	val = dmc->timings->tXSR / clk_period_ps;
1111 	val += dmc->timings->tXSR % clk_period_ps ? 1 : 0;
1112 	val = max(val, dmc->min_tck->tXSR);
1113 	reg = &timing_power[1];
1114 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1115 
1116 	val = dmc->timings->tXP / clk_period_ps;
1117 	val += dmc->timings->tXP % clk_period_ps ? 1 : 0;
1118 	val = max(val, dmc->min_tck->tXP);
1119 	reg = &timing_power[2];
1120 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1121 
1122 	val = dmc->timings->tCKE / clk_period_ps;
1123 	val += dmc->timings->tCKE % clk_period_ps ? 1 : 0;
1124 	val = max(val, dmc->min_tck->tCKE);
1125 	reg = &timing_power[3];
1126 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1127 
1128 	val = dmc->timings->tMRD / clk_period_ps;
1129 	val += dmc->timings->tMRD % clk_period_ps ? 1 : 0;
1130 	val = max(val, dmc->min_tck->tMRD);
1131 	reg = &timing_power[4];
1132 	*reg_timing_power |= TIMING_VAL2REG(reg, val);
1133 
1134 	return 0;
1135 }
1136 
1137 /**
1138  * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1139  * @dmc:        device for which the frequency is going to be set
1140  *
1141  * The function parses DT entries with DRAM information.
1142  */
1143 static int of_get_dram_timings(struct exynos5_dmc *dmc)
1144 {
1145 	int ret = 0;
1146 	int idx;
1147 	struct device_node *np_ddr;
1148 	u32 freq_mhz, clk_period_ps;
1149 
1150 	np_ddr = of_parse_phandle(dmc->dev->of_node, "device-handle", 0);
1151 	if (!np_ddr) {
1152 		dev_warn(dmc->dev, "could not find 'device-handle' in DT\n");
1153 		return -EINVAL;
1154 	}
1155 
1156 	dmc->timing_row = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1157 					     sizeof(u32), GFP_KERNEL);
1158 	if (!dmc->timing_row)
1159 		return -ENOMEM;
1160 
1161 	dmc->timing_data = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1162 					      sizeof(u32), GFP_KERNEL);
1163 	if (!dmc->timing_data)
1164 		return -ENOMEM;
1165 
1166 	dmc->timing_power = devm_kmalloc_array(dmc->dev, TIMING_COUNT,
1167 					       sizeof(u32), GFP_KERNEL);
1168 	if (!dmc->timing_power)
1169 		return -ENOMEM;
1170 
1171 	dmc->timings = of_lpddr3_get_ddr_timings(np_ddr, dmc->dev,
1172 						 DDR_TYPE_LPDDR3,
1173 						 &dmc->timings_arr_size);
1174 	if (!dmc->timings) {
1175 		of_node_put(np_ddr);
1176 		dev_warn(dmc->dev, "could not get timings from DT\n");
1177 		return -EINVAL;
1178 	}
1179 
1180 	dmc->min_tck = of_lpddr3_get_min_tck(np_ddr, dmc->dev);
1181 	if (!dmc->min_tck) {
1182 		of_node_put(np_ddr);
1183 		dev_warn(dmc->dev, "could not get tck from DT\n");
1184 		return -EINVAL;
1185 	}
1186 
1187 	/* Sorted array of OPPs with frequency ascending */
1188 	for (idx = 0; idx < dmc->opp_count; idx++) {
1189 		freq_mhz = dmc->opp[idx].freq_hz / 1000000;
1190 		clk_period_ps = 1000000 / freq_mhz;
1191 
1192 		ret = create_timings_aligned(dmc, &dmc->timing_row[idx],
1193 					     &dmc->timing_data[idx],
1194 					     &dmc->timing_power[idx],
1195 					     clk_period_ps);
1196 	}
1197 
1198 	of_node_put(np_ddr);
1199 
1200 	/* Take the highest frequency's timings as 'bypass' */
1201 	dmc->bypass_timing_row = dmc->timing_row[idx - 1];
1202 	dmc->bypass_timing_data = dmc->timing_data[idx - 1];
1203 	dmc->bypass_timing_power = dmc->timing_power[idx - 1];
1204 
1205 	return ret;
1206 }
1207 
1208 /**
1209  * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1210  * @dmc:	DMC structure containing needed fields
1211  *
1212  * Get the needed clocks defined in DT device, enable and set the right parents.
1213  * Read current frequency and initialize the initial rate for governor.
1214  */
1215 static int exynos5_dmc_init_clks(struct exynos5_dmc *dmc)
1216 {
1217 	int ret;
1218 	unsigned long target_volt = 0;
1219 	unsigned long target_rate = 0;
1220 	unsigned int tmp;
1221 
1222 	dmc->fout_spll = devm_clk_get(dmc->dev, "fout_spll");
1223 	if (IS_ERR(dmc->fout_spll))
1224 		return PTR_ERR(dmc->fout_spll);
1225 
1226 	dmc->fout_bpll = devm_clk_get(dmc->dev, "fout_bpll");
1227 	if (IS_ERR(dmc->fout_bpll))
1228 		return PTR_ERR(dmc->fout_bpll);
1229 
1230 	dmc->mout_mclk_cdrex = devm_clk_get(dmc->dev, "mout_mclk_cdrex");
1231 	if (IS_ERR(dmc->mout_mclk_cdrex))
1232 		return PTR_ERR(dmc->mout_mclk_cdrex);
1233 
1234 	dmc->mout_bpll = devm_clk_get(dmc->dev, "mout_bpll");
1235 	if (IS_ERR(dmc->mout_bpll))
1236 		return PTR_ERR(dmc->mout_bpll);
1237 
1238 	dmc->mout_mx_mspll_ccore = devm_clk_get(dmc->dev,
1239 						"mout_mx_mspll_ccore");
1240 	if (IS_ERR(dmc->mout_mx_mspll_ccore))
1241 		return PTR_ERR(dmc->mout_mx_mspll_ccore);
1242 
1243 	dmc->mout_spll = devm_clk_get(dmc->dev, "ff_dout_spll2");
1244 	if (IS_ERR(dmc->mout_spll)) {
1245 		dmc->mout_spll = devm_clk_get(dmc->dev, "mout_sclk_spll");
1246 		if (IS_ERR(dmc->mout_spll))
1247 			return PTR_ERR(dmc->mout_spll);
1248 	}
1249 
1250 	/*
1251 	 * Convert frequency to KHz values and set it for the governor.
1252 	 */
1253 	dmc->curr_rate = clk_get_rate(dmc->mout_mclk_cdrex);
1254 	dmc->curr_rate = exynos5_dmc_align_init_freq(dmc, dmc->curr_rate);
1255 	exynos5_dmc_df_profile.initial_freq = dmc->curr_rate;
1256 
1257 	ret = exynos5_dmc_get_volt_freq(dmc, &dmc->curr_rate, &target_rate,
1258 					&target_volt, 0);
1259 	if (ret)
1260 		return ret;
1261 
1262 	dmc->curr_volt = target_volt;
1263 
1264 	clk_set_parent(dmc->mout_mx_mspll_ccore, dmc->mout_spll);
1265 
1266 	dmc->bypass_rate = clk_get_rate(dmc->mout_mx_mspll_ccore);
1267 
1268 	clk_prepare_enable(dmc->fout_bpll);
1269 	clk_prepare_enable(dmc->mout_bpll);
1270 
1271 	/*
1272 	 * Some bootloaders do not set clock routes correctly.
1273 	 * Stop one path in clocks to PHY.
1274 	 */
1275 	regmap_read(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, &tmp);
1276 	tmp &= ~(BIT(1) | BIT(0));
1277 	regmap_write(dmc->clk_regmap, CDREX_LPDDR3PHY_CLKM_SRC, tmp);
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * exynos5_performance_counters_init() - Initializes performance DMC's counters
1284  * @dmc:	DMC for which it does the setup
1285  *
1286  * Initialization of performance counters in DMC for estimating usage.
1287  * The counter's values are used for calculation of a memory bandwidth and based
1288  * on that the governor changes the frequency.
1289  * The counters are not used when the governor is GOVERNOR_USERSPACE.
1290  */
1291 static int exynos5_performance_counters_init(struct exynos5_dmc *dmc)
1292 {
1293 	int counters_size;
1294 	int ret, i;
1295 
1296 	dmc->num_counters = devfreq_event_get_edev_count(dmc->dev);
1297 	if (dmc->num_counters < 0) {
1298 		dev_err(dmc->dev, "could not get devfreq-event counters\n");
1299 		return dmc->num_counters;
1300 	}
1301 
1302 	counters_size = sizeof(struct devfreq_event_dev) * dmc->num_counters;
1303 	dmc->counter = devm_kzalloc(dmc->dev, counters_size, GFP_KERNEL);
1304 	if (!dmc->counter)
1305 		return -ENOMEM;
1306 
1307 	for (i = 0; i < dmc->num_counters; i++) {
1308 		dmc->counter[i] =
1309 			devfreq_event_get_edev_by_phandle(dmc->dev, i);
1310 		if (IS_ERR_OR_NULL(dmc->counter[i]))
1311 			return -EPROBE_DEFER;
1312 	}
1313 
1314 	ret = exynos5_counters_enable_edev(dmc);
1315 	if (ret < 0) {
1316 		dev_err(dmc->dev, "could not enable event counter\n");
1317 		return ret;
1318 	}
1319 
1320 	ret = exynos5_counters_set_event(dmc);
1321 	if (ret < 0) {
1322 		exynos5_counters_disable_edev(dmc);
1323 		dev_err(dmc->dev, "could not set event counter\n");
1324 		return ret;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1332  * @dmc:	device which is used for changing this feature
1333  * @set:	a boolean state passing enable/disable request
1334  *
1335  * There is a need of pausing DREX DMC when divider or MUX in clock tree
1336  * changes its configuration. In such situation access to the memory is blocked
1337  * in DMC automatically. This feature is used when clock frequency change
1338  * request appears and touches clock tree.
1339  */
1340 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc *dmc)
1341 {
1342 	unsigned int val;
1343 	int ret;
1344 
1345 	ret = regmap_read(dmc->clk_regmap, CDREX_PAUSE, &val);
1346 	if (ret)
1347 		return ret;
1348 
1349 	val |= 1UL;
1350 	regmap_write(dmc->clk_regmap, CDREX_PAUSE, val);
1351 
1352 	return 0;
1353 }
1354 
1355 static irqreturn_t dmc_irq_thread(int irq, void *priv)
1356 {
1357 	int res;
1358 	struct exynos5_dmc *dmc = priv;
1359 
1360 	mutex_lock(&dmc->df->lock);
1361 	exynos5_dmc_perf_events_check(dmc);
1362 	res = update_devfreq(dmc->df);
1363 	mutex_unlock(&dmc->df->lock);
1364 
1365 	if (res)
1366 		dev_warn(dmc->dev, "devfreq failed with %d\n", res);
1367 
1368 	return IRQ_HANDLED;
1369 }
1370 
1371 /**
1372  * exynos5_dmc_probe() - Probe function for the DMC driver
1373  * @pdev:	platform device for which the driver is going to be initialized
1374  *
1375  * Initialize basic components: clocks, regulators, performance counters, etc.
1376  * Read out product version and based on the information setup
1377  * internal structures for the controller (frequency and voltage) and for DRAM
1378  * memory parameters: timings for each operating frequency.
1379  * Register new devfreq device for controlling DVFS of the DMC.
1380  */
1381 static int exynos5_dmc_probe(struct platform_device *pdev)
1382 {
1383 	int ret = 0;
1384 	struct device *dev = &pdev->dev;
1385 	struct device_node *np = dev->of_node;
1386 	struct exynos5_dmc *dmc;
1387 	int irq[2];
1388 
1389 	dmc = devm_kzalloc(dev, sizeof(*dmc), GFP_KERNEL);
1390 	if (!dmc)
1391 		return -ENOMEM;
1392 
1393 	mutex_init(&dmc->lock);
1394 
1395 	dmc->dev = dev;
1396 	platform_set_drvdata(pdev, dmc);
1397 
1398 	dmc->base_drexi0 = devm_platform_ioremap_resource(pdev, 0);
1399 	if (IS_ERR(dmc->base_drexi0))
1400 		return PTR_ERR(dmc->base_drexi0);
1401 
1402 	dmc->base_drexi1 = devm_platform_ioremap_resource(pdev, 1);
1403 	if (IS_ERR(dmc->base_drexi1))
1404 		return PTR_ERR(dmc->base_drexi1);
1405 
1406 	dmc->clk_regmap = syscon_regmap_lookup_by_phandle(np,
1407 							  "samsung,syscon-clk");
1408 	if (IS_ERR(dmc->clk_regmap))
1409 		return PTR_ERR(dmc->clk_regmap);
1410 
1411 	ret = exynos5_init_freq_table(dmc, &exynos5_dmc_df_profile);
1412 	if (ret) {
1413 		dev_warn(dev, "couldn't initialize frequency settings\n");
1414 		return ret;
1415 	}
1416 
1417 	dmc->vdd_mif = devm_regulator_get(dev, "vdd");
1418 	if (IS_ERR(dmc->vdd_mif)) {
1419 		ret = PTR_ERR(dmc->vdd_mif);
1420 		return ret;
1421 	}
1422 
1423 	ret = exynos5_dmc_init_clks(dmc);
1424 	if (ret)
1425 		return ret;
1426 
1427 	ret = of_get_dram_timings(dmc);
1428 	if (ret) {
1429 		dev_warn(dev, "couldn't initialize timings settings\n");
1430 		goto remove_clocks;
1431 	}
1432 
1433 	ret = exynos5_dmc_set_pause_on_switching(dmc);
1434 	if (ret) {
1435 		dev_warn(dev, "couldn't get access to PAUSE register\n");
1436 		goto remove_clocks;
1437 	}
1438 
1439 	/* There is two modes in which the driver works: polling or IRQ */
1440 	irq[0] = platform_get_irq_byname(pdev, "drex_0");
1441 	irq[1] = platform_get_irq_byname(pdev, "drex_1");
1442 	if (irq[0] > 0 && irq[1] > 0 && irqmode) {
1443 		ret = devm_request_threaded_irq(dev, irq[0], NULL,
1444 						dmc_irq_thread, IRQF_ONESHOT,
1445 						dev_name(dev), dmc);
1446 		if (ret) {
1447 			dev_err(dev, "couldn't grab IRQ\n");
1448 			goto remove_clocks;
1449 		}
1450 
1451 		ret = devm_request_threaded_irq(dev, irq[1], NULL,
1452 						dmc_irq_thread, IRQF_ONESHOT,
1453 						dev_name(dev), dmc);
1454 		if (ret) {
1455 			dev_err(dev, "couldn't grab IRQ\n");
1456 			goto remove_clocks;
1457 		}
1458 
1459 		/*
1460 		 * Setup default thresholds for the devfreq governor.
1461 		 * The values are chosen based on experiments.
1462 		 */
1463 		dmc->gov_data.upthreshold = 55;
1464 		dmc->gov_data.downdifferential = 5;
1465 
1466 		exynos5_dmc_enable_perf_events(dmc);
1467 
1468 		dmc->in_irq_mode = 1;
1469 	} else {
1470 		ret = exynos5_performance_counters_init(dmc);
1471 		if (ret) {
1472 			dev_warn(dev, "couldn't probe performance counters\n");
1473 			goto remove_clocks;
1474 		}
1475 
1476 		/*
1477 		 * Setup default thresholds for the devfreq governor.
1478 		 * The values are chosen based on experiments.
1479 		 */
1480 		dmc->gov_data.upthreshold = 10;
1481 		dmc->gov_data.downdifferential = 5;
1482 
1483 		exynos5_dmc_df_profile.polling_ms = 100;
1484 	}
1485 
1486 	dmc->df = devm_devfreq_add_device(dev, &exynos5_dmc_df_profile,
1487 					  DEVFREQ_GOV_SIMPLE_ONDEMAND,
1488 					  &dmc->gov_data);
1489 
1490 	if (IS_ERR(dmc->df)) {
1491 		ret = PTR_ERR(dmc->df);
1492 		goto err_devfreq_add;
1493 	}
1494 
1495 	if (dmc->in_irq_mode)
1496 		exynos5_dmc_start_perf_events(dmc, PERF_COUNTER_START_VALUE);
1497 
1498 	dev_info(dev, "DMC initialized, in irq mode: %d\n", dmc->in_irq_mode);
1499 
1500 	return 0;
1501 
1502 err_devfreq_add:
1503 	if (dmc->in_irq_mode)
1504 		exynos5_dmc_disable_perf_events(dmc);
1505 	else
1506 		exynos5_counters_disable_edev(dmc);
1507 remove_clocks:
1508 	clk_disable_unprepare(dmc->mout_bpll);
1509 	clk_disable_unprepare(dmc->fout_bpll);
1510 
1511 	return ret;
1512 }
1513 
1514 /**
1515  * exynos5_dmc_remove() - Remove function for the platform device
1516  * @pdev:	platform device which is going to be removed
1517  *
1518  * The function relies on 'devm' framework function which automatically
1519  * clean the device's resources. It just calls explicitly disable function for
1520  * the performance counters.
1521  */
1522 static int exynos5_dmc_remove(struct platform_device *pdev)
1523 {
1524 	struct exynos5_dmc *dmc = dev_get_drvdata(&pdev->dev);
1525 
1526 	if (dmc->in_irq_mode)
1527 		exynos5_dmc_disable_perf_events(dmc);
1528 	else
1529 		exynos5_counters_disable_edev(dmc);
1530 
1531 	clk_disable_unprepare(dmc->mout_bpll);
1532 	clk_disable_unprepare(dmc->fout_bpll);
1533 
1534 	dev_pm_opp_remove_table(dmc->dev);
1535 
1536 	return 0;
1537 }
1538 
1539 static const struct of_device_id exynos5_dmc_of_match[] = {
1540 	{ .compatible = "samsung,exynos5422-dmc", },
1541 	{ },
1542 };
1543 MODULE_DEVICE_TABLE(of, exynos5_dmc_of_match);
1544 
1545 static struct platform_driver exynos5_dmc_platdrv = {
1546 	.probe	= exynos5_dmc_probe,
1547 	.remove = exynos5_dmc_remove,
1548 	.driver = {
1549 		.name	= "exynos5-dmc",
1550 		.of_match_table = exynos5_dmc_of_match,
1551 	},
1552 };
1553 module_platform_driver(exynos5_dmc_platdrv);
1554 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1555 MODULE_LICENSE("GPL v2");
1556 MODULE_AUTHOR("Lukasz Luba");
1557