xref: /linux/drivers/memory/fsl_ifc.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright 2011 Freescale Semiconductor, Inc
4  *
5  * Freescale Integrated Flash Controller
6  *
7  * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8  */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24 
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27 
28 /*
29  * convert_ifc_address - convert the base address
30  * @addr_base:	base address of the memory bank
31  */
32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34 	return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37 
38 /*
39  * fsl_ifc_find - find IFC bank
40  * @addr_base:	base address of the memory bank
41  *
42  * This function walks IFC banks comparing "Base address" field of the CSPR
43  * registers with the supplied addr_base argument. When bases match this
44  * function returns bank number (starting with 0), otherwise it returns
45  * appropriate errno value.
46  */
47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49 	int i = 0;
50 
51 	if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52 		return -ENODEV;
53 
54 	for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55 		u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56 
57 		if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58 				convert_ifc_address(addr_base))
59 			return i;
60 	}
61 
62 	return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65 
66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68 	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69 
70 	/*
71 	 * Clear all the common status and event registers
72 	 */
73 	if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74 		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75 
76 	/* enable all error and events */
77 	ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78 
79 	/* enable all error and event interrupts */
80 	ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81 	ifc_out32(0x0, &ifc->cm_erattr0);
82 	ifc_out32(0x0, &ifc->cm_erattr1);
83 
84 	return 0;
85 }
86 
87 static void fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89 	struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90 
91 	of_platform_depopulate(&dev->dev);
92 	free_irq(ctrl->nand_irq, ctrl);
93 	free_irq(ctrl->irq, ctrl);
94 
95 	irq_dispose_mapping(ctrl->nand_irq);
96 	irq_dispose_mapping(ctrl->irq);
97 
98 	iounmap(ctrl->gregs);
99 
100 	dev_set_drvdata(&dev->dev, NULL);
101 }
102 
103 /*
104  * NAND events are split between an operational interrupt which only
105  * receives OPC, and an error interrupt that receives everything else,
106  * including non-NAND errors.  Whichever interrupt gets to it first
107  * records the status and wakes the wait queue.
108  */
109 static DEFINE_SPINLOCK(nand_irq_lock);
110 
111 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
112 {
113 	struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
114 	unsigned long flags;
115 	u32 stat;
116 
117 	spin_lock_irqsave(&nand_irq_lock, flags);
118 
119 	stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
120 	if (stat) {
121 		ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
122 		ctrl->nand_stat = stat;
123 		wake_up(&ctrl->nand_wait);
124 	}
125 
126 	spin_unlock_irqrestore(&nand_irq_lock, flags);
127 
128 	return stat;
129 }
130 
131 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
132 {
133 	struct fsl_ifc_ctrl *ctrl = data;
134 
135 	if (check_nand_stat(ctrl))
136 		return IRQ_HANDLED;
137 
138 	return IRQ_NONE;
139 }
140 
141 /*
142  * NOTE: This interrupt is used to report ifc events of various kinds,
143  * such as transaction errors on the chipselects.
144  */
145 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
146 {
147 	struct fsl_ifc_ctrl *ctrl = data;
148 	struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
149 	u32 err_axiid, err_srcid, status, cs_err, err_addr;
150 	irqreturn_t ret = IRQ_NONE;
151 
152 	/* read for chip select error */
153 	cs_err = ifc_in32(&ifc->cm_evter_stat);
154 	if (cs_err) {
155 		dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
156 			cs_err);
157 		/* clear the chip select error */
158 		ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
159 
160 		/* read error attribute registers print the error information */
161 		status = ifc_in32(&ifc->cm_erattr0);
162 		err_addr = ifc_in32(&ifc->cm_erattr1);
163 
164 		if (status & IFC_CM_ERATTR0_ERTYP_READ)
165 			dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
166 				status);
167 		else
168 			dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
169 				status);
170 
171 		err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
172 					IFC_CM_ERATTR0_ERAID_SHIFT;
173 		dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
174 			err_axiid);
175 
176 		err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
177 					IFC_CM_ERATTR0_ESRCID_SHIFT;
178 		dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
179 			err_srcid);
180 
181 		dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
182 			err_addr);
183 
184 		ret = IRQ_HANDLED;
185 	}
186 
187 	if (check_nand_stat(ctrl))
188 		ret = IRQ_HANDLED;
189 
190 	return ret;
191 }
192 
193 /*
194  * fsl_ifc_ctrl_probe
195  *
196  * called by device layer when it finds a device matching
197  * one our driver can handled. This code allocates all of
198  * the resources needed for the controller only.  The
199  * resources for the NAND banks themselves are allocated
200  * in the chip probe function.
201  */
202 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
203 {
204 	int ret = 0;
205 	int version, banks;
206 	void __iomem *addr;
207 
208 	dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
209 
210 	fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
211 					GFP_KERNEL);
212 	if (!fsl_ifc_ctrl_dev)
213 		return -ENOMEM;
214 
215 	dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
216 
217 	/* IOMAP the entire IFC region */
218 	fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
219 	if (!fsl_ifc_ctrl_dev->gregs) {
220 		dev_err(&dev->dev, "failed to get memory region\n");
221 		return -ENODEV;
222 	}
223 
224 	if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
225 		fsl_ifc_ctrl_dev->little_endian = true;
226 		dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
227 	} else {
228 		fsl_ifc_ctrl_dev->little_endian = false;
229 		dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
230 	}
231 
232 	version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
233 			FSL_IFC_VERSION_MASK;
234 
235 	banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
236 	dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
237 		version >> 24, (version >> 16) & 0xf, banks);
238 
239 	fsl_ifc_ctrl_dev->version = version;
240 	fsl_ifc_ctrl_dev->banks = banks;
241 
242 	addr = fsl_ifc_ctrl_dev->gregs;
243 	if (version >= FSL_IFC_VERSION_2_0_0)
244 		addr += PGOFFSET_64K;
245 	else
246 		addr += PGOFFSET_4K;
247 	fsl_ifc_ctrl_dev->rregs = addr;
248 
249 	/* get the Controller level irq */
250 	fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
251 	if (fsl_ifc_ctrl_dev->irq == 0) {
252 		dev_err(&dev->dev, "failed to get irq resource for IFC\n");
253 		ret = -ENODEV;
254 		goto err;
255 	}
256 
257 	/* get the nand machine irq */
258 	fsl_ifc_ctrl_dev->nand_irq =
259 			irq_of_parse_and_map(dev->dev.of_node, 1);
260 
261 	fsl_ifc_ctrl_dev->dev = &dev->dev;
262 
263 	ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
264 	if (ret < 0)
265 		goto err_unmap_nandirq;
266 
267 	init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
268 
269 	ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
270 			  "fsl-ifc", fsl_ifc_ctrl_dev);
271 	if (ret != 0) {
272 		dev_err(&dev->dev, "failed to install irq (%d)\n",
273 			fsl_ifc_ctrl_dev->irq);
274 		goto err_unmap_nandirq;
275 	}
276 
277 	if (fsl_ifc_ctrl_dev->nand_irq) {
278 		ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
279 				0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
280 		if (ret != 0) {
281 			dev_err(&dev->dev, "failed to install irq (%d)\n",
282 				fsl_ifc_ctrl_dev->nand_irq);
283 			goto err_free_irq;
284 		}
285 	}
286 
287 	/* legacy dts may still use "simple-bus" compatible */
288 	ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
289 	if (ret)
290 		goto err_free_nandirq;
291 
292 	return 0;
293 
294 err_free_nandirq:
295 	free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
296 err_free_irq:
297 	free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
298 err_unmap_nandirq:
299 	irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
300 	irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
301 err:
302 	iounmap(fsl_ifc_ctrl_dev->gregs);
303 	return ret;
304 }
305 
306 static const struct of_device_id fsl_ifc_match[] = {
307 	{
308 		.compatible = "fsl,ifc",
309 	},
310 	{},
311 };
312 
313 static struct platform_driver fsl_ifc_ctrl_driver = {
314 	.driver = {
315 		.name	= "fsl-ifc",
316 		.of_match_table = fsl_ifc_match,
317 	},
318 	.probe       = fsl_ifc_ctrl_probe,
319 	.remove_new  = fsl_ifc_ctrl_remove,
320 };
321 
322 static int __init fsl_ifc_init(void)
323 {
324 	return platform_driver_register(&fsl_ifc_ctrl_driver);
325 }
326 subsys_initcall(fsl_ifc_init);
327 
328 MODULE_AUTHOR("Freescale Semiconductor");
329 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
330