1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2011 Freescale Semiconductor, Inc
4 *
5 * Freescale Integrated Flash Controller
6 *
7 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
8 */
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/compiler.h>
12 #include <linux/sched.h>
13 #include <linux/spinlock.h>
14 #include <linux/types.h>
15 #include <linux/slab.h>
16 #include <linux/io.h>
17 #include <linux/of.h>
18 #include <linux/of_platform.h>
19 #include <linux/platform_device.h>
20 #include <linux/fsl_ifc.h>
21 #include <linux/irqdomain.h>
22 #include <linux/of_address.h>
23 #include <linux/of_irq.h>
24
25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev;
26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev);
27
28 /*
29 * convert_ifc_address - convert the base address
30 * @addr_base: base address of the memory bank
31 */
convert_ifc_address(phys_addr_t addr_base)32 unsigned int convert_ifc_address(phys_addr_t addr_base)
33 {
34 return addr_base & CSPR_BA;
35 }
36 EXPORT_SYMBOL(convert_ifc_address);
37
38 /*
39 * fsl_ifc_find - find IFC bank
40 * @addr_base: base address of the memory bank
41 *
42 * This function walks IFC banks comparing "Base address" field of the CSPR
43 * registers with the supplied addr_base argument. When bases match this
44 * function returns bank number (starting with 0), otherwise it returns
45 * appropriate errno value.
46 */
fsl_ifc_find(phys_addr_t addr_base)47 int fsl_ifc_find(phys_addr_t addr_base)
48 {
49 int i = 0;
50
51 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs)
52 return -ENODEV;
53
54 for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) {
55 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr);
56
57 if (cspr & CSPR_V && (cspr & CSPR_BA) ==
58 convert_ifc_address(addr_base))
59 return i;
60 }
61
62 return -ENOENT;
63 }
64 EXPORT_SYMBOL(fsl_ifc_find);
65
fsl_ifc_ctrl_init(struct fsl_ifc_ctrl * ctrl)66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl)
67 {
68 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
69
70 /*
71 * Clear all the common status and event registers
72 */
73 if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER)
74 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
75
76 /* enable all error and events */
77 ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en);
78
79 /* enable all error and event interrupts */
80 ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en);
81 ifc_out32(0x0, &ifc->cm_erattr0);
82 ifc_out32(0x0, &ifc->cm_erattr1);
83
84 return 0;
85 }
86
fsl_ifc_ctrl_remove(struct platform_device * dev)87 static void fsl_ifc_ctrl_remove(struct platform_device *dev)
88 {
89 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev);
90
91 of_platform_depopulate(&dev->dev);
92 free_irq(ctrl->nand_irq, ctrl);
93 free_irq(ctrl->irq, ctrl);
94
95 irq_dispose_mapping(ctrl->nand_irq);
96 irq_dispose_mapping(ctrl->irq);
97
98 iounmap(ctrl->gregs);
99
100 dev_set_drvdata(&dev->dev, NULL);
101 }
102
103 /*
104 * NAND events are split between an operational interrupt which only
105 * receives OPC, and an error interrupt that receives everything else,
106 * including non-NAND errors. Whichever interrupt gets to it first
107 * records the status and wakes the wait queue.
108 */
109 static DEFINE_SPINLOCK(nand_irq_lock);
110
check_nand_stat(struct fsl_ifc_ctrl * ctrl)111 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl)
112 {
113 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
114 unsigned long flags;
115 u32 stat;
116
117 spin_lock_irqsave(&nand_irq_lock, flags);
118
119 stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat);
120 if (stat) {
121 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat);
122 ctrl->nand_stat = stat;
123 wake_up(&ctrl->nand_wait);
124 }
125
126 spin_unlock_irqrestore(&nand_irq_lock, flags);
127
128 return stat;
129 }
130
fsl_ifc_nand_irq(int irqno,void * data)131 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data)
132 {
133 struct fsl_ifc_ctrl *ctrl = data;
134
135 if (check_nand_stat(ctrl))
136 return IRQ_HANDLED;
137
138 return IRQ_NONE;
139 }
140
141 /*
142 * NOTE: This interrupt is used to report ifc events of various kinds,
143 * such as transaction errors on the chipselects.
144 */
fsl_ifc_ctrl_irq(int irqno,void * data)145 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data)
146 {
147 struct fsl_ifc_ctrl *ctrl = data;
148 struct fsl_ifc_global __iomem *ifc = ctrl->gregs;
149 u32 err_axiid, err_srcid, status, cs_err, err_addr;
150 irqreturn_t ret = IRQ_NONE;
151
152 /* read for chip select error */
153 cs_err = ifc_in32(&ifc->cm_evter_stat);
154 if (cs_err) {
155 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n",
156 cs_err);
157 /* clear the chip select error */
158 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat);
159
160 /* read error attribute registers print the error information */
161 status = ifc_in32(&ifc->cm_erattr0);
162 err_addr = ifc_in32(&ifc->cm_erattr1);
163
164 if (status & IFC_CM_ERATTR0_ERTYP_READ)
165 dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n",
166 status);
167 else
168 dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n",
169 status);
170
171 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >>
172 IFC_CM_ERATTR0_ERAID_SHIFT;
173 dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n",
174 err_axiid);
175
176 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >>
177 IFC_CM_ERATTR0_ESRCID_SHIFT;
178 dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n",
179 err_srcid);
180
181 dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n",
182 err_addr);
183
184 ret = IRQ_HANDLED;
185 }
186
187 if (check_nand_stat(ctrl))
188 ret = IRQ_HANDLED;
189
190 return ret;
191 }
192
193 /*
194 * fsl_ifc_ctrl_probe
195 *
196 * called by device layer when it finds a device matching
197 * one our driver can handled. This code allocates all of
198 * the resources needed for the controller only. The
199 * resources for the NAND banks themselves are allocated
200 * in the chip probe function.
201 */
fsl_ifc_ctrl_probe(struct platform_device * dev)202 static int fsl_ifc_ctrl_probe(struct platform_device *dev)
203 {
204 int ret = 0;
205 int version, banks;
206 void __iomem *addr;
207
208 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n");
209
210 fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev),
211 GFP_KERNEL);
212 if (!fsl_ifc_ctrl_dev)
213 return -ENOMEM;
214
215 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev);
216
217 /* IOMAP the entire IFC region */
218 fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0);
219 if (!fsl_ifc_ctrl_dev->gregs) {
220 dev_err(&dev->dev, "failed to get memory region\n");
221 return -ENODEV;
222 }
223
224 if (of_property_read_bool(dev->dev.of_node, "little-endian")) {
225 fsl_ifc_ctrl_dev->little_endian = true;
226 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n");
227 } else {
228 fsl_ifc_ctrl_dev->little_endian = false;
229 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n");
230 }
231
232 version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) &
233 FSL_IFC_VERSION_MASK;
234
235 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8;
236 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n",
237 version >> 24, (version >> 16) & 0xf, banks);
238
239 fsl_ifc_ctrl_dev->version = version;
240 fsl_ifc_ctrl_dev->banks = banks;
241
242 addr = fsl_ifc_ctrl_dev->gregs;
243 if (version >= FSL_IFC_VERSION_2_0_0)
244 addr += PGOFFSET_64K;
245 else
246 addr += PGOFFSET_4K;
247 fsl_ifc_ctrl_dev->rregs = addr;
248
249 /* get the Controller level irq */
250 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
251 if (fsl_ifc_ctrl_dev->irq == 0) {
252 dev_err(&dev->dev, "failed to get irq resource for IFC\n");
253 ret = -ENODEV;
254 goto err;
255 }
256
257 /* get the nand machine irq */
258 fsl_ifc_ctrl_dev->nand_irq =
259 irq_of_parse_and_map(dev->dev.of_node, 1);
260
261 fsl_ifc_ctrl_dev->dev = &dev->dev;
262
263 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev);
264 if (ret < 0)
265 goto err_unmap_nandirq;
266
267 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait);
268
269 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED,
270 "fsl-ifc", fsl_ifc_ctrl_dev);
271 if (ret != 0) {
272 dev_err(&dev->dev, "failed to install irq (%d)\n",
273 fsl_ifc_ctrl_dev->irq);
274 goto err_unmap_nandirq;
275 }
276
277 if (fsl_ifc_ctrl_dev->nand_irq) {
278 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq,
279 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev);
280 if (ret != 0) {
281 dev_err(&dev->dev, "failed to install irq (%d)\n",
282 fsl_ifc_ctrl_dev->nand_irq);
283 goto err_free_irq;
284 }
285 }
286
287 /* legacy dts may still use "simple-bus" compatible */
288 ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev);
289 if (ret)
290 goto err_free_nandirq;
291
292 return 0;
293
294 err_free_nandirq:
295 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev);
296 err_free_irq:
297 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev);
298 err_unmap_nandirq:
299 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq);
300 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq);
301 err:
302 iounmap(fsl_ifc_ctrl_dev->gregs);
303 return ret;
304 }
305
306 static const struct of_device_id fsl_ifc_match[] = {
307 {
308 .compatible = "fsl,ifc",
309 },
310 {},
311 };
312
313 static struct platform_driver fsl_ifc_ctrl_driver = {
314 .driver = {
315 .name = "fsl-ifc",
316 .of_match_table = fsl_ifc_match,
317 },
318 .probe = fsl_ifc_ctrl_probe,
319 .remove_new = fsl_ifc_ctrl_remove,
320 };
321
fsl_ifc_init(void)322 static int __init fsl_ifc_init(void)
323 {
324 return platform_driver_register(&fsl_ifc_ctrl_driver);
325 }
326 subsys_initcall(fsl_ifc_init);
327
328 MODULE_AUTHOR("Freescale Semiconductor");
329 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver");
330