1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright 2011 Freescale Semiconductor, Inc 4 * 5 * Freescale Integrated Flash Controller 6 * 7 * Author: Dipen Dudhat <Dipen.Dudhat@freescale.com> 8 */ 9 #include <linux/module.h> 10 #include <linux/kernel.h> 11 #include <linux/compiler.h> 12 #include <linux/sched.h> 13 #include <linux/spinlock.h> 14 #include <linux/types.h> 15 #include <linux/slab.h> 16 #include <linux/io.h> 17 #include <linux/of.h> 18 #include <linux/of_platform.h> 19 #include <linux/platform_device.h> 20 #include <linux/fsl_ifc.h> 21 #include <linux/irqdomain.h> 22 #include <linux/of_address.h> 23 #include <linux/of_irq.h> 24 25 struct fsl_ifc_ctrl *fsl_ifc_ctrl_dev; 26 EXPORT_SYMBOL(fsl_ifc_ctrl_dev); 27 28 /* 29 * convert_ifc_address - convert the base address 30 * @addr_base: base address of the memory bank 31 */ 32 unsigned int convert_ifc_address(phys_addr_t addr_base) 33 { 34 return addr_base & CSPR_BA; 35 } 36 EXPORT_SYMBOL(convert_ifc_address); 37 38 /* 39 * fsl_ifc_find - find IFC bank 40 * @addr_base: base address of the memory bank 41 * 42 * This function walks IFC banks comparing "Base address" field of the CSPR 43 * registers with the supplied addr_base argument. When bases match this 44 * function returns bank number (starting with 0), otherwise it returns 45 * appropriate errno value. 46 */ 47 int fsl_ifc_find(phys_addr_t addr_base) 48 { 49 int i = 0; 50 51 if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->gregs) 52 return -ENODEV; 53 54 for (i = 0; i < fsl_ifc_ctrl_dev->banks; i++) { 55 u32 cspr = ifc_in32(&fsl_ifc_ctrl_dev->gregs->cspr_cs[i].cspr); 56 57 if (cspr & CSPR_V && (cspr & CSPR_BA) == 58 convert_ifc_address(addr_base)) 59 return i; 60 } 61 62 return -ENOENT; 63 } 64 EXPORT_SYMBOL(fsl_ifc_find); 65 66 static int fsl_ifc_ctrl_init(struct fsl_ifc_ctrl *ctrl) 67 { 68 struct fsl_ifc_global __iomem *ifc = ctrl->gregs; 69 70 /* 71 * Clear all the common status and event registers 72 */ 73 if (ifc_in32(&ifc->cm_evter_stat) & IFC_CM_EVTER_STAT_CSER) 74 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat); 75 76 /* enable all error and events */ 77 ifc_out32(IFC_CM_EVTER_EN_CSEREN, &ifc->cm_evter_en); 78 79 /* enable all error and event interrupts */ 80 ifc_out32(IFC_CM_EVTER_INTR_EN_CSERIREN, &ifc->cm_evter_intr_en); 81 ifc_out32(0x0, &ifc->cm_erattr0); 82 ifc_out32(0x0, &ifc->cm_erattr1); 83 84 return 0; 85 } 86 87 static void fsl_ifc_ctrl_remove(struct platform_device *dev) 88 { 89 struct fsl_ifc_ctrl *ctrl = dev_get_drvdata(&dev->dev); 90 91 of_platform_depopulate(&dev->dev); 92 free_irq(ctrl->nand_irq, ctrl); 93 free_irq(ctrl->irq, ctrl); 94 95 irq_dispose_mapping(ctrl->nand_irq); 96 irq_dispose_mapping(ctrl->irq); 97 98 iounmap(ctrl->gregs); 99 100 dev_set_drvdata(&dev->dev, NULL); 101 } 102 103 /* 104 * NAND events are split between an operational interrupt which only 105 * receives OPC, and an error interrupt that receives everything else, 106 * including non-NAND errors. Whichever interrupt gets to it first 107 * records the status and wakes the wait queue. 108 */ 109 static DEFINE_SPINLOCK(nand_irq_lock); 110 111 static u32 check_nand_stat(struct fsl_ifc_ctrl *ctrl) 112 { 113 struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs; 114 unsigned long flags; 115 u32 stat; 116 117 spin_lock_irqsave(&nand_irq_lock, flags); 118 119 stat = ifc_in32(&ifc->ifc_nand.nand_evter_stat); 120 if (stat) { 121 ifc_out32(stat, &ifc->ifc_nand.nand_evter_stat); 122 ctrl->nand_stat = stat; 123 wake_up(&ctrl->nand_wait); 124 } 125 126 spin_unlock_irqrestore(&nand_irq_lock, flags); 127 128 return stat; 129 } 130 131 static irqreturn_t fsl_ifc_nand_irq(int irqno, void *data) 132 { 133 struct fsl_ifc_ctrl *ctrl = data; 134 135 if (check_nand_stat(ctrl)) 136 return IRQ_HANDLED; 137 138 return IRQ_NONE; 139 } 140 141 /* 142 * NOTE: This interrupt is used to report ifc events of various kinds, 143 * such as transaction errors on the chipselects. 144 */ 145 static irqreturn_t fsl_ifc_ctrl_irq(int irqno, void *data) 146 { 147 struct fsl_ifc_ctrl *ctrl = data; 148 struct fsl_ifc_global __iomem *ifc = ctrl->gregs; 149 u32 err_axiid, err_srcid, status, cs_err, err_addr; 150 irqreturn_t ret = IRQ_NONE; 151 152 /* read for chip select error */ 153 cs_err = ifc_in32(&ifc->cm_evter_stat); 154 if (cs_err) { 155 dev_err(ctrl->dev, "transaction sent to IFC is not mapped to any memory bank 0x%08X\n", 156 cs_err); 157 /* clear the chip select error */ 158 ifc_out32(IFC_CM_EVTER_STAT_CSER, &ifc->cm_evter_stat); 159 160 /* read error attribute registers print the error information */ 161 status = ifc_in32(&ifc->cm_erattr0); 162 err_addr = ifc_in32(&ifc->cm_erattr1); 163 164 if (status & IFC_CM_ERATTR0_ERTYP_READ) 165 dev_err(ctrl->dev, "Read transaction error CM_ERATTR0 0x%08X\n", 166 status); 167 else 168 dev_err(ctrl->dev, "Write transaction error CM_ERATTR0 0x%08X\n", 169 status); 170 171 err_axiid = (status & IFC_CM_ERATTR0_ERAID) >> 172 IFC_CM_ERATTR0_ERAID_SHIFT; 173 dev_err(ctrl->dev, "AXI ID of the error transaction 0x%08X\n", 174 err_axiid); 175 176 err_srcid = (status & IFC_CM_ERATTR0_ESRCID) >> 177 IFC_CM_ERATTR0_ESRCID_SHIFT; 178 dev_err(ctrl->dev, "SRC ID of the error transaction 0x%08X\n", 179 err_srcid); 180 181 dev_err(ctrl->dev, "Transaction Address corresponding to error ERADDR 0x%08X\n", 182 err_addr); 183 184 ret = IRQ_HANDLED; 185 } 186 187 if (check_nand_stat(ctrl)) 188 ret = IRQ_HANDLED; 189 190 return ret; 191 } 192 193 /* 194 * fsl_ifc_ctrl_probe 195 * 196 * called by device layer when it finds a device matching 197 * one our driver can handled. This code allocates all of 198 * the resources needed for the controller only. The 199 * resources for the NAND banks themselves are allocated 200 * in the chip probe function. 201 */ 202 static int fsl_ifc_ctrl_probe(struct platform_device *dev) 203 { 204 int ret = 0; 205 int version, banks; 206 void __iomem *addr; 207 208 dev_info(&dev->dev, "Freescale Integrated Flash Controller\n"); 209 210 fsl_ifc_ctrl_dev = devm_kzalloc(&dev->dev, sizeof(*fsl_ifc_ctrl_dev), 211 GFP_KERNEL); 212 if (!fsl_ifc_ctrl_dev) 213 return -ENOMEM; 214 215 dev_set_drvdata(&dev->dev, fsl_ifc_ctrl_dev); 216 217 /* IOMAP the entire IFC region */ 218 fsl_ifc_ctrl_dev->gregs = of_iomap(dev->dev.of_node, 0); 219 if (!fsl_ifc_ctrl_dev->gregs) { 220 dev_err(&dev->dev, "failed to get memory region\n"); 221 return -ENODEV; 222 } 223 224 if (of_property_read_bool(dev->dev.of_node, "little-endian")) { 225 fsl_ifc_ctrl_dev->little_endian = true; 226 dev_dbg(&dev->dev, "IFC REGISTERS are LITTLE endian\n"); 227 } else { 228 fsl_ifc_ctrl_dev->little_endian = false; 229 dev_dbg(&dev->dev, "IFC REGISTERS are BIG endian\n"); 230 } 231 232 version = ifc_in32(&fsl_ifc_ctrl_dev->gregs->ifc_rev) & 233 FSL_IFC_VERSION_MASK; 234 235 banks = (version == FSL_IFC_VERSION_1_0_0) ? 4 : 8; 236 dev_info(&dev->dev, "IFC version %d.%d, %d banks\n", 237 version >> 24, (version >> 16) & 0xf, banks); 238 239 fsl_ifc_ctrl_dev->version = version; 240 fsl_ifc_ctrl_dev->banks = banks; 241 242 addr = fsl_ifc_ctrl_dev->gregs; 243 if (version >= FSL_IFC_VERSION_2_0_0) 244 addr += PGOFFSET_64K; 245 else 246 addr += PGOFFSET_4K; 247 fsl_ifc_ctrl_dev->rregs = addr; 248 249 /* get the Controller level irq */ 250 fsl_ifc_ctrl_dev->irq = irq_of_parse_and_map(dev->dev.of_node, 0); 251 if (fsl_ifc_ctrl_dev->irq == 0) { 252 dev_err(&dev->dev, "failed to get irq resource for IFC\n"); 253 ret = -ENODEV; 254 goto err; 255 } 256 257 /* get the nand machine irq */ 258 fsl_ifc_ctrl_dev->nand_irq = 259 irq_of_parse_and_map(dev->dev.of_node, 1); 260 261 fsl_ifc_ctrl_dev->dev = &dev->dev; 262 263 ret = fsl_ifc_ctrl_init(fsl_ifc_ctrl_dev); 264 if (ret < 0) 265 goto err_unmap_nandirq; 266 267 init_waitqueue_head(&fsl_ifc_ctrl_dev->nand_wait); 268 269 ret = request_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_irq, IRQF_SHARED, 270 "fsl-ifc", fsl_ifc_ctrl_dev); 271 if (ret != 0) { 272 dev_err(&dev->dev, "failed to install irq (%d)\n", 273 fsl_ifc_ctrl_dev->irq); 274 goto err_unmap_nandirq; 275 } 276 277 if (fsl_ifc_ctrl_dev->nand_irq) { 278 ret = request_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_nand_irq, 279 0, "fsl-ifc-nand", fsl_ifc_ctrl_dev); 280 if (ret != 0) { 281 dev_err(&dev->dev, "failed to install irq (%d)\n", 282 fsl_ifc_ctrl_dev->nand_irq); 283 goto err_free_irq; 284 } 285 } 286 287 /* legacy dts may still use "simple-bus" compatible */ 288 ret = of_platform_default_populate(dev->dev.of_node, NULL, &dev->dev); 289 if (ret) 290 goto err_free_nandirq; 291 292 return 0; 293 294 err_free_nandirq: 295 free_irq(fsl_ifc_ctrl_dev->nand_irq, fsl_ifc_ctrl_dev); 296 err_free_irq: 297 free_irq(fsl_ifc_ctrl_dev->irq, fsl_ifc_ctrl_dev); 298 err_unmap_nandirq: 299 irq_dispose_mapping(fsl_ifc_ctrl_dev->nand_irq); 300 irq_dispose_mapping(fsl_ifc_ctrl_dev->irq); 301 err: 302 iounmap(fsl_ifc_ctrl_dev->gregs); 303 return ret; 304 } 305 306 static const struct of_device_id fsl_ifc_match[] = { 307 { 308 .compatible = "fsl,ifc", 309 }, 310 {}, 311 }; 312 313 static struct platform_driver fsl_ifc_ctrl_driver = { 314 .driver = { 315 .name = "fsl-ifc", 316 .of_match_table = fsl_ifc_match, 317 }, 318 .probe = fsl_ifc_ctrl_probe, 319 .remove = fsl_ifc_ctrl_remove, 320 }; 321 322 static int __init fsl_ifc_init(void) 323 { 324 return platform_driver_register(&fsl_ifc_ctrl_driver); 325 } 326 subsys_initcall(fsl_ifc_init); 327 328 MODULE_AUTHOR("Freescale Semiconductor"); 329 MODULE_DESCRIPTION("Freescale Integrated Flash Controller driver"); 330