xref: /linux/drivers/media/v4l2-core/v4l2-dv-timings.c (revision c8bfe3fad4f86a029da7157bae9699c816f0c309)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * v4l2-dv-timings - dv-timings helper functions
4  *
5  * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6  */
7 
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19 
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23 
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25 	V4L2_DV_BT_CEA_640X480P59_94,
26 	V4L2_DV_BT_CEA_720X480I59_94,
27 	V4L2_DV_BT_CEA_720X480P59_94,
28 	V4L2_DV_BT_CEA_720X576I50,
29 	V4L2_DV_BT_CEA_720X576P50,
30 	V4L2_DV_BT_CEA_1280X720P24,
31 	V4L2_DV_BT_CEA_1280X720P25,
32 	V4L2_DV_BT_CEA_1280X720P30,
33 	V4L2_DV_BT_CEA_1280X720P50,
34 	V4L2_DV_BT_CEA_1280X720P60,
35 	V4L2_DV_BT_CEA_1920X1080P24,
36 	V4L2_DV_BT_CEA_1920X1080P25,
37 	V4L2_DV_BT_CEA_1920X1080P30,
38 	V4L2_DV_BT_CEA_1920X1080I50,
39 	V4L2_DV_BT_CEA_1920X1080P50,
40 	V4L2_DV_BT_CEA_1920X1080I60,
41 	V4L2_DV_BT_CEA_1920X1080P60,
42 	V4L2_DV_BT_DMT_640X350P85,
43 	V4L2_DV_BT_DMT_640X400P85,
44 	V4L2_DV_BT_DMT_720X400P85,
45 	V4L2_DV_BT_DMT_640X480P72,
46 	V4L2_DV_BT_DMT_640X480P75,
47 	V4L2_DV_BT_DMT_640X480P85,
48 	V4L2_DV_BT_DMT_800X600P56,
49 	V4L2_DV_BT_DMT_800X600P60,
50 	V4L2_DV_BT_DMT_800X600P72,
51 	V4L2_DV_BT_DMT_800X600P75,
52 	V4L2_DV_BT_DMT_800X600P85,
53 	V4L2_DV_BT_DMT_800X600P120_RB,
54 	V4L2_DV_BT_DMT_848X480P60,
55 	V4L2_DV_BT_DMT_1024X768I43,
56 	V4L2_DV_BT_DMT_1024X768P60,
57 	V4L2_DV_BT_DMT_1024X768P70,
58 	V4L2_DV_BT_DMT_1024X768P75,
59 	V4L2_DV_BT_DMT_1024X768P85,
60 	V4L2_DV_BT_DMT_1024X768P120_RB,
61 	V4L2_DV_BT_DMT_1152X864P75,
62 	V4L2_DV_BT_DMT_1280X768P60_RB,
63 	V4L2_DV_BT_DMT_1280X768P60,
64 	V4L2_DV_BT_DMT_1280X768P75,
65 	V4L2_DV_BT_DMT_1280X768P85,
66 	V4L2_DV_BT_DMT_1280X768P120_RB,
67 	V4L2_DV_BT_DMT_1280X800P60_RB,
68 	V4L2_DV_BT_DMT_1280X800P60,
69 	V4L2_DV_BT_DMT_1280X800P75,
70 	V4L2_DV_BT_DMT_1280X800P85,
71 	V4L2_DV_BT_DMT_1280X800P120_RB,
72 	V4L2_DV_BT_DMT_1280X960P60,
73 	V4L2_DV_BT_DMT_1280X960P85,
74 	V4L2_DV_BT_DMT_1280X960P120_RB,
75 	V4L2_DV_BT_DMT_1280X1024P60,
76 	V4L2_DV_BT_DMT_1280X1024P75,
77 	V4L2_DV_BT_DMT_1280X1024P85,
78 	V4L2_DV_BT_DMT_1280X1024P120_RB,
79 	V4L2_DV_BT_DMT_1360X768P60,
80 	V4L2_DV_BT_DMT_1360X768P120_RB,
81 	V4L2_DV_BT_DMT_1366X768P60,
82 	V4L2_DV_BT_DMT_1366X768P60_RB,
83 	V4L2_DV_BT_DMT_1400X1050P60_RB,
84 	V4L2_DV_BT_DMT_1400X1050P60,
85 	V4L2_DV_BT_DMT_1400X1050P75,
86 	V4L2_DV_BT_DMT_1400X1050P85,
87 	V4L2_DV_BT_DMT_1400X1050P120_RB,
88 	V4L2_DV_BT_DMT_1440X900P60_RB,
89 	V4L2_DV_BT_DMT_1440X900P60,
90 	V4L2_DV_BT_DMT_1440X900P75,
91 	V4L2_DV_BT_DMT_1440X900P85,
92 	V4L2_DV_BT_DMT_1440X900P120_RB,
93 	V4L2_DV_BT_DMT_1600X900P60_RB,
94 	V4L2_DV_BT_DMT_1600X1200P60,
95 	V4L2_DV_BT_DMT_1600X1200P65,
96 	V4L2_DV_BT_DMT_1600X1200P70,
97 	V4L2_DV_BT_DMT_1600X1200P75,
98 	V4L2_DV_BT_DMT_1600X1200P85,
99 	V4L2_DV_BT_DMT_1600X1200P120_RB,
100 	V4L2_DV_BT_DMT_1680X1050P60_RB,
101 	V4L2_DV_BT_DMT_1680X1050P60,
102 	V4L2_DV_BT_DMT_1680X1050P75,
103 	V4L2_DV_BT_DMT_1680X1050P85,
104 	V4L2_DV_BT_DMT_1680X1050P120_RB,
105 	V4L2_DV_BT_DMT_1792X1344P60,
106 	V4L2_DV_BT_DMT_1792X1344P75,
107 	V4L2_DV_BT_DMT_1792X1344P120_RB,
108 	V4L2_DV_BT_DMT_1856X1392P60,
109 	V4L2_DV_BT_DMT_1856X1392P75,
110 	V4L2_DV_BT_DMT_1856X1392P120_RB,
111 	V4L2_DV_BT_DMT_1920X1200P60_RB,
112 	V4L2_DV_BT_DMT_1920X1200P60,
113 	V4L2_DV_BT_DMT_1920X1200P75,
114 	V4L2_DV_BT_DMT_1920X1200P85,
115 	V4L2_DV_BT_DMT_1920X1200P120_RB,
116 	V4L2_DV_BT_DMT_1920X1440P60,
117 	V4L2_DV_BT_DMT_1920X1440P75,
118 	V4L2_DV_BT_DMT_1920X1440P120_RB,
119 	V4L2_DV_BT_DMT_2048X1152P60_RB,
120 	V4L2_DV_BT_DMT_2560X1600P60_RB,
121 	V4L2_DV_BT_DMT_2560X1600P60,
122 	V4L2_DV_BT_DMT_2560X1600P75,
123 	V4L2_DV_BT_DMT_2560X1600P85,
124 	V4L2_DV_BT_DMT_2560X1600P120_RB,
125 	V4L2_DV_BT_CEA_3840X2160P24,
126 	V4L2_DV_BT_CEA_3840X2160P25,
127 	V4L2_DV_BT_CEA_3840X2160P30,
128 	V4L2_DV_BT_CEA_3840X2160P50,
129 	V4L2_DV_BT_CEA_3840X2160P60,
130 	V4L2_DV_BT_CEA_4096X2160P24,
131 	V4L2_DV_BT_CEA_4096X2160P25,
132 	V4L2_DV_BT_CEA_4096X2160P30,
133 	V4L2_DV_BT_CEA_4096X2160P50,
134 	V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135 	V4L2_DV_BT_CEA_4096X2160P60,
136 	{ }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139 
140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141 			   const struct v4l2_dv_timings_cap *dvcap,
142 			   v4l2_check_dv_timings_fnc fnc,
143 			   void *fnc_handle)
144 {
145 	const struct v4l2_bt_timings *bt = &t->bt;
146 	const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147 	u32 caps = cap->capabilities;
148 	const u32 max_vert = 10240;
149 	u32 max_hor = 3 * bt->width;
150 
151 	if (t->type != V4L2_DV_BT_656_1120)
152 		return false;
153 	if (t->type != dvcap->type ||
154 	    bt->height < cap->min_height ||
155 	    bt->height > cap->max_height ||
156 	    bt->width < cap->min_width ||
157 	    bt->width > cap->max_width ||
158 	    bt->pixelclock < cap->min_pixelclock ||
159 	    bt->pixelclock > cap->max_pixelclock ||
160 	    (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161 	     cap->standards && bt->standards &&
162 	     !(bt->standards & cap->standards)) ||
163 	    (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164 	    (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165 		return false;
166 
167 	/* sanity checks for the blanking timings */
168 	if (!bt->interlaced &&
169 	    (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170 		return false;
171 	/*
172 	 * Some video receivers cannot properly separate the frontporch,
173 	 * backporch and sync values, and instead they only have the total
174 	 * blanking. That can be assigned to any of these three fields.
175 	 * So just check that none of these are way out of range.
176 	 */
177 	if (bt->hfrontporch > max_hor ||
178 	    bt->hsync > max_hor || bt->hbackporch > max_hor)
179 		return false;
180 	if (bt->vfrontporch > max_vert ||
181 	    bt->vsync > max_vert || bt->vbackporch > max_vert)
182 		return false;
183 	if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184 	    bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185 		return false;
186 	return fnc == NULL || fnc(t, fnc_handle);
187 }
188 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189 
190 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191 			     const struct v4l2_dv_timings_cap *cap,
192 			     v4l2_check_dv_timings_fnc fnc,
193 			     void *fnc_handle)
194 {
195 	u32 i, idx;
196 
197 	memset(t->reserved, 0, sizeof(t->reserved));
198 	for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200 					  fnc, fnc_handle) &&
201 		    idx++ == t->index) {
202 			t->timings = v4l2_dv_timings_presets[i];
203 			return 0;
204 		}
205 	}
206 	return -EINVAL;
207 }
208 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209 
210 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211 			      const struct v4l2_dv_timings_cap *cap,
212 			      unsigned pclock_delta,
213 			      v4l2_check_dv_timings_fnc fnc,
214 			      void *fnc_handle)
215 {
216 	int i;
217 
218 	if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219 		return false;
220 
221 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222 		if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223 					  fnc, fnc_handle) &&
224 		    v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225 					  pclock_delta, false)) {
226 			u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227 
228 			*t = v4l2_dv_timings_presets[i];
229 			if (can_reduce_fps(&t->bt))
230 				t->bt.flags |= flags;
231 
232 			return true;
233 		}
234 	}
235 	return false;
236 }
237 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238 
239 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240 {
241 	unsigned int i;
242 
243 	for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244 		const struct v4l2_bt_timings *bt =
245 			&v4l2_dv_timings_presets[i].bt;
246 
247 		if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248 		    bt->cea861_vic == vic) {
249 			*t = v4l2_dv_timings_presets[i];
250 			return true;
251 		}
252 	}
253 	return false;
254 }
255 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256 
257 /**
258  * v4l2_match_dv_timings - check if two timings match
259  * @t1: compare this v4l2_dv_timings struct...
260  * @t2: with this struct.
261  * @pclock_delta: the allowed pixelclock deviation.
262  * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263  *	match.
264  *
265  * Compare t1 with t2 with a given margin of error for the pixelclock.
266  */
267 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268 			   const struct v4l2_dv_timings *t2,
269 			   unsigned pclock_delta, bool match_reduced_fps)
270 {
271 	if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272 		return false;
273 	if (t1->bt.width == t2->bt.width &&
274 	    t1->bt.height == t2->bt.height &&
275 	    t1->bt.interlaced == t2->bt.interlaced &&
276 	    t1->bt.polarities == t2->bt.polarities &&
277 	    t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278 	    t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279 	    t1->bt.hfrontporch == t2->bt.hfrontporch &&
280 	    t1->bt.hsync == t2->bt.hsync &&
281 	    t1->bt.hbackporch == t2->bt.hbackporch &&
282 	    t1->bt.vfrontporch == t2->bt.vfrontporch &&
283 	    t1->bt.vsync == t2->bt.vsync &&
284 	    t1->bt.vbackporch == t2->bt.vbackporch &&
285 	    (!match_reduced_fps ||
286 	     (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287 		(t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288 	    (!t1->bt.interlaced ||
289 		(t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290 		 t1->bt.il_vsync == t2->bt.il_vsync &&
291 		 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292 		return true;
293 	return false;
294 }
295 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296 
297 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298 			   const struct v4l2_dv_timings *t, bool detailed)
299 {
300 	const struct v4l2_bt_timings *bt = &t->bt;
301 	u32 htot, vtot;
302 	u32 fps;
303 
304 	if (t->type != V4L2_DV_BT_656_1120)
305 		return;
306 
307 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309 	if (bt->interlaced)
310 		vtot /= 2;
311 
312 	fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313 				  (htot * vtot)) : 0;
314 
315 	if (prefix == NULL)
316 		prefix = "";
317 
318 	pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
319 		bt->width, bt->height, bt->interlaced ? "i" : "p",
320 		fps / 100, fps % 100, htot, vtot);
321 
322 	if (!detailed)
323 		return;
324 
325 	pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326 			dev_prefix, bt->hfrontporch,
327 			(bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328 			bt->hsync, bt->hbackporch);
329 	pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330 			dev_prefix, bt->vfrontporch,
331 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332 			bt->vsync, bt->vbackporch);
333 	if (bt->interlaced)
334 		pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335 			dev_prefix, bt->il_vfrontporch,
336 			(bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337 			bt->il_vsync, bt->il_vbackporch);
338 	pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339 	pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340 			dev_prefix, bt->flags,
341 			(bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342 			" REDUCED_BLANKING" : "",
343 			((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344 			 bt->vsync == 8) ? " (V2)" : "",
345 			(bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346 			" CAN_REDUCE_FPS" : "",
347 			(bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348 			" REDUCED_FPS" : "",
349 			(bt->flags & V4L2_DV_FL_HALF_LINE) ?
350 			" HALF_LINE" : "",
351 			(bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352 			" CE_VIDEO" : "",
353 			(bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354 			" FIRST_FIELD_EXTRA_LINE" : "",
355 			(bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356 			" HAS_PICTURE_ASPECT" : "",
357 			(bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358 			" HAS_CEA861_VIC" : "",
359 			(bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360 			" HAS_HDMI_VIC" : "");
361 	pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362 			(bt->standards & V4L2_DV_BT_STD_CEA861) ?  " CEA" : "",
363 			(bt->standards & V4L2_DV_BT_STD_DMT) ?  " DMT" : "",
364 			(bt->standards & V4L2_DV_BT_STD_CVT) ?  " CVT" : "",
365 			(bt->standards & V4L2_DV_BT_STD_GTF) ?  " GTF" : "",
366 			(bt->standards & V4L2_DV_BT_STD_SDI) ?  " SDI" : "");
367 	if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368 		pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369 			bt->picture_aspect.numerator,
370 			bt->picture_aspect.denominator);
371 	if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372 		pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373 	if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374 		pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375 }
376 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377 
378 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379 {
380 	struct v4l2_fract ratio = { 1, 1 };
381 	unsigned long n, d;
382 
383 	if (t->type != V4L2_DV_BT_656_1120)
384 		return ratio;
385 	if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386 		return ratio;
387 
388 	ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389 	ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390 
391 	rational_best_approximation(ratio.numerator, ratio.denominator,
392 				    ratio.numerator, ratio.denominator, &n, &d);
393 	ratio.numerator = n;
394 	ratio.denominator = d;
395 	return ratio;
396 }
397 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398 
399 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
400  *	v4l2_dv_timings fields.
401  * @t - Timings for the video mode.
402  *
403  * Calculates the expected timeperframe using the pixel clock value and
404  * horizontal/vertical measures. This means that v4l2_dv_timings structure
405  * must be correctly and fully filled.
406  */
407 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
408 {
409 	const struct v4l2_bt_timings *bt = &t->bt;
410 	struct v4l2_fract fps_fract = { 1, 1 };
411 	unsigned long n, d;
412 	u32 htot, vtot, fps;
413 	u64 pclk;
414 
415 	if (t->type != V4L2_DV_BT_656_1120)
416 		return fps_fract;
417 
418 	htot = V4L2_DV_BT_FRAME_WIDTH(bt);
419 	vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
420 	pclk = bt->pixelclock;
421 
422 	if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
423 	    (bt->flags & V4L2_DV_FL_REDUCED_FPS))
424 		pclk = div_u64(pclk * 1000ULL, 1001);
425 
426 	fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
427 	if (!fps)
428 		return fps_fract;
429 
430 	rational_best_approximation(fps, 100, fps, 100, &n, &d);
431 
432 	fps_fract.numerator = d;
433 	fps_fract.denominator = n;
434 	return fps_fract;
435 }
436 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
437 
438 /*
439  * CVT defines
440  * Based on Coordinated Video Timings Standard
441  * version 1.1 September 10, 2003
442  */
443 
444 #define CVT_PXL_CLK_GRAN	250000	/* pixel clock granularity */
445 #define CVT_PXL_CLK_GRAN_RB_V2 1000	/* granularity for reduced blanking v2*/
446 
447 /* Normal blanking */
448 #define CVT_MIN_V_BPORCH	7	/* lines */
449 #define CVT_MIN_V_PORCH_RND	3	/* lines */
450 #define CVT_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
451 #define CVT_HSYNC_PERCENT       8       /* nominal hsync as percentage of line */
452 
453 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
454 #define CVT_CELL_GRAN		8	/* character cell granularity */
455 #define CVT_M			600	/* blanking formula gradient */
456 #define CVT_C			40	/* blanking formula offset */
457 #define CVT_K			128	/* blanking formula scaling factor */
458 #define CVT_J			20	/* blanking formula scaling factor */
459 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
460 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
461 
462 /* Reduced Blanking */
463 #define CVT_RB_MIN_V_BPORCH    7       /* lines  */
464 #define CVT_RB_V_FPORCH        3       /* lines  */
465 #define CVT_RB_MIN_V_BLANK   460       /* us     */
466 #define CVT_RB_H_SYNC         32       /* pixels */
467 #define CVT_RB_H_BLANK       160       /* pixels */
468 /* Reduce blanking Version 2 */
469 #define CVT_RB_V2_H_BLANK     80       /* pixels */
470 #define CVT_RB_MIN_V_FPORCH    3       /* lines  */
471 #define CVT_RB_V2_MIN_V_FPORCH 1       /* lines  */
472 #define CVT_RB_V_BPORCH        6       /* lines  */
473 
474 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
475  * @frame_height - the total height of the frame (including blanking) in lines.
476  * @hfreq - the horizontal frequency in Hz.
477  * @vsync - the height of the vertical sync in lines.
478  * @active_width - active width of image (does not include blanking). This
479  * information is needed only in case of version 2 of reduced blanking.
480  * In other cases, this parameter does not have any effect on timings.
481  * @polarities - the horizontal and vertical polarities (same as struct
482  *		v4l2_bt_timings polarities).
483  * @interlaced - if this flag is true, it indicates interlaced format
484  * @fmt - the resulting timings.
485  *
486  * This function will attempt to detect if the given values correspond to a
487  * valid CVT format. If so, then it will return true, and fmt will be filled
488  * in with the found CVT timings.
489  */
490 bool v4l2_detect_cvt(unsigned frame_height,
491 		     unsigned hfreq,
492 		     unsigned vsync,
493 		     unsigned active_width,
494 		     u32 polarities,
495 		     bool interlaced,
496 		     struct v4l2_dv_timings *fmt)
497 {
498 	int  v_fp, v_bp, h_fp, h_bp, hsync;
499 	int  frame_width, image_height, image_width;
500 	bool reduced_blanking;
501 	bool rb_v2 = false;
502 	unsigned pix_clk;
503 
504 	if (vsync < 4 || vsync > 8)
505 		return false;
506 
507 	if (polarities == V4L2_DV_VSYNC_POS_POL)
508 		reduced_blanking = false;
509 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
510 		reduced_blanking = true;
511 	else
512 		return false;
513 
514 	if (reduced_blanking && vsync == 8)
515 		rb_v2 = true;
516 
517 	if (rb_v2 && active_width == 0)
518 		return false;
519 
520 	if (!rb_v2 && vsync > 7)
521 		return false;
522 
523 	if (hfreq == 0)
524 		return false;
525 
526 	/* Vertical */
527 	if (reduced_blanking) {
528 		if (rb_v2) {
529 			v_bp = CVT_RB_V_BPORCH;
530 			v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
531 			v_fp -= vsync + v_bp;
532 
533 			if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
534 				v_fp = CVT_RB_V2_MIN_V_FPORCH;
535 		} else {
536 			v_fp = CVT_RB_V_FPORCH;
537 			v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
538 			v_bp -= vsync + v_fp;
539 
540 			if (v_bp < CVT_RB_MIN_V_BPORCH)
541 				v_bp = CVT_RB_MIN_V_BPORCH;
542 		}
543 	} else {
544 		v_fp = CVT_MIN_V_PORCH_RND;
545 		v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
546 
547 		if (v_bp < CVT_MIN_V_BPORCH)
548 			v_bp = CVT_MIN_V_BPORCH;
549 	}
550 
551 	if (interlaced)
552 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
553 	else
554 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
555 
556 	if (image_height < 0)
557 		return false;
558 
559 	/* Aspect ratio based on vsync */
560 	switch (vsync) {
561 	case 4:
562 		image_width = (image_height * 4) / 3;
563 		break;
564 	case 5:
565 		image_width = (image_height * 16) / 9;
566 		break;
567 	case 6:
568 		image_width = (image_height * 16) / 10;
569 		break;
570 	case 7:
571 		/* special case */
572 		if (image_height == 1024)
573 			image_width = (image_height * 5) / 4;
574 		else if (image_height == 768)
575 			image_width = (image_height * 15) / 9;
576 		else
577 			return false;
578 		break;
579 	case 8:
580 		image_width = active_width;
581 		break;
582 	default:
583 		return false;
584 	}
585 
586 	if (!rb_v2)
587 		image_width = image_width & ~7;
588 
589 	/* Horizontal */
590 	if (reduced_blanking) {
591 		int h_blank;
592 		int clk_gran;
593 
594 		h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
595 		clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
596 
597 		pix_clk = (image_width + h_blank) * hfreq;
598 		pix_clk = (pix_clk / clk_gran) * clk_gran;
599 
600 		h_bp  = h_blank / 2;
601 		hsync = CVT_RB_H_SYNC;
602 		h_fp  = h_blank - h_bp - hsync;
603 
604 		frame_width = image_width + h_blank;
605 	} else {
606 		unsigned ideal_duty_cycle_per_myriad =
607 			100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
608 		int h_blank;
609 
610 		if (ideal_duty_cycle_per_myriad < 2000)
611 			ideal_duty_cycle_per_myriad = 2000;
612 
613 		h_blank = image_width * ideal_duty_cycle_per_myriad /
614 					(10000 - ideal_duty_cycle_per_myriad);
615 		h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
616 
617 		pix_clk = (image_width + h_blank) * hfreq;
618 		pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
619 
620 		h_bp = h_blank / 2;
621 		frame_width = image_width + h_blank;
622 
623 		hsync = frame_width * CVT_HSYNC_PERCENT / 100;
624 		hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
625 		h_fp = h_blank - hsync - h_bp;
626 	}
627 
628 	fmt->type = V4L2_DV_BT_656_1120;
629 	fmt->bt.polarities = polarities;
630 	fmt->bt.width = image_width;
631 	fmt->bt.height = image_height;
632 	fmt->bt.hfrontporch = h_fp;
633 	fmt->bt.vfrontporch = v_fp;
634 	fmt->bt.hsync = hsync;
635 	fmt->bt.vsync = vsync;
636 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
637 
638 	if (!interlaced) {
639 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
640 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
641 	} else {
642 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
643 				      2 * vsync) / 2;
644 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
645 					2 * vsync - fmt->bt.vbackporch;
646 		fmt->bt.il_vfrontporch = v_fp;
647 		fmt->bt.il_vsync = vsync;
648 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
649 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
650 	}
651 
652 	fmt->bt.pixelclock = pix_clk;
653 	fmt->bt.standards = V4L2_DV_BT_STD_CVT;
654 
655 	if (reduced_blanking)
656 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
657 
658 	return true;
659 }
660 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
661 
662 /*
663  * GTF defines
664  * Based on Generalized Timing Formula Standard
665  * Version 1.1 September 2, 1999
666  */
667 
668 #define GTF_PXL_CLK_GRAN	250000	/* pixel clock granularity */
669 
670 #define GTF_MIN_VSYNC_BP	550	/* min time of vsync + back porch (us) */
671 #define GTF_V_FP		1	/* vertical front porch (lines) */
672 #define GTF_CELL_GRAN		8	/* character cell granularity */
673 
674 /* Default */
675 #define GTF_D_M			600	/* blanking formula gradient */
676 #define GTF_D_C			40	/* blanking formula offset */
677 #define GTF_D_K			128	/* blanking formula scaling factor */
678 #define GTF_D_J			20	/* blanking formula scaling factor */
679 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
680 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
681 
682 /* Secondary */
683 #define GTF_S_M			3600	/* blanking formula gradient */
684 #define GTF_S_C			40	/* blanking formula offset */
685 #define GTF_S_K			128	/* blanking formula scaling factor */
686 #define GTF_S_J			35	/* blanking formula scaling factor */
687 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
688 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
689 
690 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
691  * @frame_height - the total height of the frame (including blanking) in lines.
692  * @hfreq - the horizontal frequency in Hz.
693  * @vsync - the height of the vertical sync in lines.
694  * @polarities - the horizontal and vertical polarities (same as struct
695  *		v4l2_bt_timings polarities).
696  * @interlaced - if this flag is true, it indicates interlaced format
697  * @aspect - preferred aspect ratio. GTF has no method of determining the
698  *		aspect ratio in order to derive the image width from the
699  *		image height, so it has to be passed explicitly. Usually
700  *		the native screen aspect ratio is used for this. If it
701  *		is not filled in correctly, then 16:9 will be assumed.
702  * @fmt - the resulting timings.
703  *
704  * This function will attempt to detect if the given values correspond to a
705  * valid GTF format. If so, then it will return true, and fmt will be filled
706  * in with the found GTF timings.
707  */
708 bool v4l2_detect_gtf(unsigned frame_height,
709 		unsigned hfreq,
710 		unsigned vsync,
711 		u32 polarities,
712 		bool interlaced,
713 		struct v4l2_fract aspect,
714 		struct v4l2_dv_timings *fmt)
715 {
716 	int pix_clk;
717 	int  v_fp, v_bp, h_fp, hsync;
718 	int frame_width, image_height, image_width;
719 	bool default_gtf;
720 	int h_blank;
721 
722 	if (vsync != 3)
723 		return false;
724 
725 	if (polarities == V4L2_DV_VSYNC_POS_POL)
726 		default_gtf = true;
727 	else if (polarities == V4L2_DV_HSYNC_POS_POL)
728 		default_gtf = false;
729 	else
730 		return false;
731 
732 	if (hfreq == 0)
733 		return false;
734 
735 	/* Vertical */
736 	v_fp = GTF_V_FP;
737 	v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
738 	if (interlaced)
739 		image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
740 	else
741 		image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
742 
743 	if (image_height < 0)
744 		return false;
745 
746 	if (aspect.numerator == 0 || aspect.denominator == 0) {
747 		aspect.numerator = 16;
748 		aspect.denominator = 9;
749 	}
750 	image_width = ((image_height * aspect.numerator) / aspect.denominator);
751 	image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
752 
753 	/* Horizontal */
754 	if (default_gtf) {
755 		u64 num;
756 		u32 den;
757 
758 		num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
759 		      ((u64)image_width * GTF_D_M_PRIME * 1000));
760 		den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
761 		      (2 * GTF_CELL_GRAN);
762 		h_blank = div_u64((num + (den >> 1)), den);
763 		h_blank *= (2 * GTF_CELL_GRAN);
764 	} else {
765 		u64 num;
766 		u32 den;
767 
768 		num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
769 		      ((u64)image_width * GTF_S_M_PRIME * 1000));
770 		den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
771 		      (2 * GTF_CELL_GRAN);
772 		h_blank = div_u64((num + (den >> 1)), den);
773 		h_blank *= (2 * GTF_CELL_GRAN);
774 	}
775 
776 	frame_width = image_width + h_blank;
777 
778 	pix_clk = (image_width + h_blank) * hfreq;
779 	pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
780 
781 	hsync = (frame_width * 8 + 50) / 100;
782 	hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
783 
784 	h_fp = h_blank / 2 - hsync;
785 
786 	fmt->type = V4L2_DV_BT_656_1120;
787 	fmt->bt.polarities = polarities;
788 	fmt->bt.width = image_width;
789 	fmt->bt.height = image_height;
790 	fmt->bt.hfrontporch = h_fp;
791 	fmt->bt.vfrontporch = v_fp;
792 	fmt->bt.hsync = hsync;
793 	fmt->bt.vsync = vsync;
794 	fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
795 
796 	if (!interlaced) {
797 		fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
798 		fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
799 	} else {
800 		fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
801 				      2 * vsync) / 2;
802 		fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
803 					2 * vsync - fmt->bt.vbackporch;
804 		fmt->bt.il_vfrontporch = v_fp;
805 		fmt->bt.il_vsync = vsync;
806 		fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
807 		fmt->bt.interlaced = V4L2_DV_INTERLACED;
808 	}
809 
810 	fmt->bt.pixelclock = pix_clk;
811 	fmt->bt.standards = V4L2_DV_BT_STD_GTF;
812 
813 	if (!default_gtf)
814 		fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
815 
816 	return true;
817 }
818 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
819 
820 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
821  *	0x15 and 0x16 from the EDID.
822  * @hor_landscape - byte 0x15 from the EDID.
823  * @vert_portrait - byte 0x16 from the EDID.
824  *
825  * Determines the aspect ratio from the EDID.
826  * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
827  * "Horizontal and Vertical Screen Size or Aspect Ratio"
828  */
829 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
830 {
831 	struct v4l2_fract aspect = { 16, 9 };
832 	u8 ratio;
833 
834 	/* Nothing filled in, fallback to 16:9 */
835 	if (!hor_landscape && !vert_portrait)
836 		return aspect;
837 	/* Both filled in, so they are interpreted as the screen size in cm */
838 	if (hor_landscape && vert_portrait) {
839 		aspect.numerator = hor_landscape;
840 		aspect.denominator = vert_portrait;
841 		return aspect;
842 	}
843 	/* Only one is filled in, so interpret them as a ratio:
844 	   (val + 99) / 100 */
845 	ratio = hor_landscape | vert_portrait;
846 	/* Change some rounded values into the exact aspect ratio */
847 	if (ratio == 79) {
848 		aspect.numerator = 16;
849 		aspect.denominator = 9;
850 	} else if (ratio == 34) {
851 		aspect.numerator = 4;
852 		aspect.denominator = 3;
853 	} else if (ratio == 68) {
854 		aspect.numerator = 15;
855 		aspect.denominator = 9;
856 	} else {
857 		aspect.numerator = hor_landscape + 99;
858 		aspect.denominator = 100;
859 	}
860 	if (hor_landscape)
861 		return aspect;
862 	/* The aspect ratio is for portrait, so swap numerator and denominator */
863 	swap(aspect.denominator, aspect.numerator);
864 	return aspect;
865 }
866 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
867 
868 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
869  *	based on various InfoFrames.
870  * @avi: the AVI InfoFrame
871  * @hdmi: the HDMI Vendor InfoFrame, may be NULL
872  * @height: the frame height
873  *
874  * Determines the HDMI colorimetry information, i.e. how the HDMI
875  * pixel color data should be interpreted.
876  *
877  * Note that some of the newer features (DCI-P3, HDR) are not yet
878  * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
879  * and CTA-861-G standards.
880  */
881 struct v4l2_hdmi_colorimetry
882 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
883 			 const struct hdmi_vendor_infoframe *hdmi,
884 			 unsigned int height)
885 {
886 	struct v4l2_hdmi_colorimetry c = {
887 		V4L2_COLORSPACE_SRGB,
888 		V4L2_YCBCR_ENC_DEFAULT,
889 		V4L2_QUANTIZATION_FULL_RANGE,
890 		V4L2_XFER_FUNC_SRGB
891 	};
892 	bool is_ce = avi->video_code || (hdmi && hdmi->vic);
893 	bool is_sdtv = height <= 576;
894 	bool default_is_lim_range_rgb = avi->video_code > 1;
895 
896 	switch (avi->colorspace) {
897 	case HDMI_COLORSPACE_RGB:
898 		/* RGB pixel encoding */
899 		switch (avi->colorimetry) {
900 		case HDMI_COLORIMETRY_EXTENDED:
901 			switch (avi->extended_colorimetry) {
902 			case HDMI_EXTENDED_COLORIMETRY_OPRGB:
903 				c.colorspace = V4L2_COLORSPACE_OPRGB;
904 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
905 				break;
906 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
907 				c.colorspace = V4L2_COLORSPACE_BT2020;
908 				c.xfer_func = V4L2_XFER_FUNC_709;
909 				break;
910 			default:
911 				break;
912 			}
913 			break;
914 		default:
915 			break;
916 		}
917 		switch (avi->quantization_range) {
918 		case HDMI_QUANTIZATION_RANGE_LIMITED:
919 			c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
920 			break;
921 		case HDMI_QUANTIZATION_RANGE_FULL:
922 			break;
923 		default:
924 			if (default_is_lim_range_rgb)
925 				c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
926 			break;
927 		}
928 		break;
929 
930 	default:
931 		/* YCbCr pixel encoding */
932 		c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
933 		switch (avi->colorimetry) {
934 		case HDMI_COLORIMETRY_NONE:
935 			if (!is_ce)
936 				break;
937 			if (is_sdtv) {
938 				c.colorspace = V4L2_COLORSPACE_SMPTE170M;
939 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
940 			} else {
941 				c.colorspace = V4L2_COLORSPACE_REC709;
942 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
943 			}
944 			c.xfer_func = V4L2_XFER_FUNC_709;
945 			break;
946 		case HDMI_COLORIMETRY_ITU_601:
947 			c.colorspace = V4L2_COLORSPACE_SMPTE170M;
948 			c.ycbcr_enc = V4L2_YCBCR_ENC_601;
949 			c.xfer_func = V4L2_XFER_FUNC_709;
950 			break;
951 		case HDMI_COLORIMETRY_ITU_709:
952 			c.colorspace = V4L2_COLORSPACE_REC709;
953 			c.ycbcr_enc = V4L2_YCBCR_ENC_709;
954 			c.xfer_func = V4L2_XFER_FUNC_709;
955 			break;
956 		case HDMI_COLORIMETRY_EXTENDED:
957 			switch (avi->extended_colorimetry) {
958 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
959 				c.colorspace = V4L2_COLORSPACE_REC709;
960 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
961 				c.xfer_func = V4L2_XFER_FUNC_709;
962 				break;
963 			case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
964 				c.colorspace = V4L2_COLORSPACE_REC709;
965 				c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
966 				c.xfer_func = V4L2_XFER_FUNC_709;
967 				break;
968 			case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
969 				c.colorspace = V4L2_COLORSPACE_SRGB;
970 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
971 				c.xfer_func = V4L2_XFER_FUNC_SRGB;
972 				break;
973 			case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
974 				c.colorspace = V4L2_COLORSPACE_OPRGB;
975 				c.ycbcr_enc = V4L2_YCBCR_ENC_601;
976 				c.xfer_func = V4L2_XFER_FUNC_OPRGB;
977 				break;
978 			case HDMI_EXTENDED_COLORIMETRY_BT2020:
979 				c.colorspace = V4L2_COLORSPACE_BT2020;
980 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
981 				c.xfer_func = V4L2_XFER_FUNC_709;
982 				break;
983 			case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
984 				c.colorspace = V4L2_COLORSPACE_BT2020;
985 				c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
986 				c.xfer_func = V4L2_XFER_FUNC_709;
987 				break;
988 			default: /* fall back to ITU_709 */
989 				c.colorspace = V4L2_COLORSPACE_REC709;
990 				c.ycbcr_enc = V4L2_YCBCR_ENC_709;
991 				c.xfer_func = V4L2_XFER_FUNC_709;
992 				break;
993 			}
994 			break;
995 		default:
996 			break;
997 		}
998 		/*
999 		 * YCC Quantization Range signaling is more-or-less broken,
1000 		 * let's just ignore this.
1001 		 */
1002 		break;
1003 	}
1004 	return c;
1005 }
1006 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
1007 
1008 /**
1009  * v4l2_get_edid_phys_addr() - find and return the physical address
1010  *
1011  * @edid:	pointer to the EDID data
1012  * @size:	size in bytes of the EDID data
1013  * @offset:	If not %NULL then the location of the physical address
1014  *		bytes in the EDID will be returned here. This is set to 0
1015  *		if there is no physical address found.
1016  *
1017  * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1018  */
1019 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1020 			    unsigned int *offset)
1021 {
1022 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1023 
1024 	if (offset)
1025 		*offset = loc;
1026 	if (loc == 0)
1027 		return CEC_PHYS_ADDR_INVALID;
1028 	return (edid[loc] << 8) | edid[loc + 1];
1029 }
1030 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1031 
1032 /**
1033  * v4l2_set_edid_phys_addr() - find and set the physical address
1034  *
1035  * @edid:	pointer to the EDID data
1036  * @size:	size in bytes of the EDID data
1037  * @phys_addr:	the new physical address
1038  *
1039  * This function finds the location of the physical address in the EDID
1040  * and fills in the given physical address and updates the checksum
1041  * at the end of the EDID block. It does nothing if the EDID doesn't
1042  * contain a physical address.
1043  */
1044 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1045 {
1046 	unsigned int loc = cec_get_edid_spa_location(edid, size);
1047 	u8 sum = 0;
1048 	unsigned int i;
1049 
1050 	if (loc == 0)
1051 		return;
1052 	edid[loc] = phys_addr >> 8;
1053 	edid[loc + 1] = phys_addr & 0xff;
1054 	loc &= ~0x7f;
1055 
1056 	/* update the checksum */
1057 	for (i = loc; i < loc + 127; i++)
1058 		sum += edid[i];
1059 	edid[i] = 256 - sum;
1060 }
1061 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1062 
1063 /**
1064  * v4l2_phys_addr_for_input() - calculate the PA for an input
1065  *
1066  * @phys_addr:	the physical address of the parent
1067  * @input:	the number of the input port, must be between 1 and 15
1068  *
1069  * This function calculates a new physical address based on the input
1070  * port number. For example:
1071  *
1072  * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1073  *
1074  * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1075  *
1076  * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1077  *
1078  * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1079  *
1080  * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1081  */
1082 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1083 {
1084 	/* Check if input is sane */
1085 	if (WARN_ON(input == 0 || input > 0xf))
1086 		return CEC_PHYS_ADDR_INVALID;
1087 
1088 	if (phys_addr == 0)
1089 		return input << 12;
1090 
1091 	if ((phys_addr & 0x0fff) == 0)
1092 		return phys_addr | (input << 8);
1093 
1094 	if ((phys_addr & 0x00ff) == 0)
1095 		return phys_addr | (input << 4);
1096 
1097 	if ((phys_addr & 0x000f) == 0)
1098 		return phys_addr | input;
1099 
1100 	/*
1101 	 * All nibbles are used so no valid physical addresses can be assigned
1102 	 * to the input.
1103 	 */
1104 	return CEC_PHYS_ADDR_INVALID;
1105 }
1106 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1107 
1108 /**
1109  * v4l2_phys_addr_validate() - validate a physical address from an EDID
1110  *
1111  * @phys_addr:	the physical address to validate
1112  * @parent:	if not %NULL, then this is filled with the parents PA.
1113  * @port:	if not %NULL, then this is filled with the input port.
1114  *
1115  * This validates a physical address as read from an EDID. If the
1116  * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1117  * then it will return -EINVAL.
1118  *
1119  * The parent PA is passed into %parent and the input port is passed into
1120  * %port. For example:
1121  *
1122  * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1123  *
1124  * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1125  *
1126  * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1127  *
1128  * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1129  *
1130  * Return: 0 if the PA is valid, -EINVAL if not.
1131  */
1132 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1133 {
1134 	int i;
1135 
1136 	if (parent)
1137 		*parent = phys_addr;
1138 	if (port)
1139 		*port = 0;
1140 	if (phys_addr == CEC_PHYS_ADDR_INVALID)
1141 		return 0;
1142 	for (i = 0; i < 16; i += 4)
1143 		if (phys_addr & (0xf << i))
1144 			break;
1145 	if (i == 16)
1146 		return 0;
1147 	if (parent)
1148 		*parent = phys_addr & (0xfff0 << i);
1149 	if (port)
1150 		*port = (phys_addr >> i) & 0xf;
1151 	for (i += 4; i < 16; i += 4)
1152 		if ((phys_addr & (0xf << i)) == 0)
1153 			return -EINVAL;
1154 	return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1157