1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * v4l2-dv-timings - dv-timings helper functions
4 *
5 * Copyright 2013 Cisco Systems, Inc. and/or its affiliates. All rights reserved.
6 */
7
8 #include <linux/module.h>
9 #include <linux/types.h>
10 #include <linux/kernel.h>
11 #include <linux/errno.h>
12 #include <linux/rational.h>
13 #include <linux/videodev2.h>
14 #include <linux/v4l2-dv-timings.h>
15 #include <media/v4l2-dv-timings.h>
16 #include <linux/math64.h>
17 #include <linux/hdmi.h>
18 #include <media/cec.h>
19
20 MODULE_AUTHOR("Hans Verkuil");
21 MODULE_DESCRIPTION("V4L2 DV Timings Helper Functions");
22 MODULE_LICENSE("GPL");
23
24 const struct v4l2_dv_timings v4l2_dv_timings_presets[] = {
25 V4L2_DV_BT_CEA_640X480P59_94,
26 V4L2_DV_BT_CEA_720X480I59_94,
27 V4L2_DV_BT_CEA_720X480P59_94,
28 V4L2_DV_BT_CEA_720X576I50,
29 V4L2_DV_BT_CEA_720X576P50,
30 V4L2_DV_BT_CEA_1280X720P24,
31 V4L2_DV_BT_CEA_1280X720P25,
32 V4L2_DV_BT_CEA_1280X720P30,
33 V4L2_DV_BT_CEA_1280X720P50,
34 V4L2_DV_BT_CEA_1280X720P60,
35 V4L2_DV_BT_CEA_1920X1080P24,
36 V4L2_DV_BT_CEA_1920X1080P25,
37 V4L2_DV_BT_CEA_1920X1080P30,
38 V4L2_DV_BT_CEA_1920X1080I50,
39 V4L2_DV_BT_CEA_1920X1080P50,
40 V4L2_DV_BT_CEA_1920X1080I60,
41 V4L2_DV_BT_CEA_1920X1080P60,
42 V4L2_DV_BT_DMT_640X350P85,
43 V4L2_DV_BT_DMT_640X400P85,
44 V4L2_DV_BT_DMT_720X400P85,
45 V4L2_DV_BT_DMT_640X480P72,
46 V4L2_DV_BT_DMT_640X480P75,
47 V4L2_DV_BT_DMT_640X480P85,
48 V4L2_DV_BT_DMT_800X600P56,
49 V4L2_DV_BT_DMT_800X600P60,
50 V4L2_DV_BT_DMT_800X600P72,
51 V4L2_DV_BT_DMT_800X600P75,
52 V4L2_DV_BT_DMT_800X600P85,
53 V4L2_DV_BT_DMT_800X600P120_RB,
54 V4L2_DV_BT_DMT_848X480P60,
55 V4L2_DV_BT_DMT_1024X768I43,
56 V4L2_DV_BT_DMT_1024X768P60,
57 V4L2_DV_BT_DMT_1024X768P70,
58 V4L2_DV_BT_DMT_1024X768P75,
59 V4L2_DV_BT_DMT_1024X768P85,
60 V4L2_DV_BT_DMT_1024X768P120_RB,
61 V4L2_DV_BT_DMT_1152X864P75,
62 V4L2_DV_BT_DMT_1280X768P60_RB,
63 V4L2_DV_BT_DMT_1280X768P60,
64 V4L2_DV_BT_DMT_1280X768P75,
65 V4L2_DV_BT_DMT_1280X768P85,
66 V4L2_DV_BT_DMT_1280X768P120_RB,
67 V4L2_DV_BT_DMT_1280X800P60_RB,
68 V4L2_DV_BT_DMT_1280X800P60,
69 V4L2_DV_BT_DMT_1280X800P75,
70 V4L2_DV_BT_DMT_1280X800P85,
71 V4L2_DV_BT_DMT_1280X800P120_RB,
72 V4L2_DV_BT_DMT_1280X960P60,
73 V4L2_DV_BT_DMT_1280X960P85,
74 V4L2_DV_BT_DMT_1280X960P120_RB,
75 V4L2_DV_BT_DMT_1280X1024P60,
76 V4L2_DV_BT_DMT_1280X1024P75,
77 V4L2_DV_BT_DMT_1280X1024P85,
78 V4L2_DV_BT_DMT_1280X1024P120_RB,
79 V4L2_DV_BT_DMT_1360X768P60,
80 V4L2_DV_BT_DMT_1360X768P120_RB,
81 V4L2_DV_BT_DMT_1366X768P60,
82 V4L2_DV_BT_DMT_1366X768P60_RB,
83 V4L2_DV_BT_DMT_1400X1050P60_RB,
84 V4L2_DV_BT_DMT_1400X1050P60,
85 V4L2_DV_BT_DMT_1400X1050P75,
86 V4L2_DV_BT_DMT_1400X1050P85,
87 V4L2_DV_BT_DMT_1400X1050P120_RB,
88 V4L2_DV_BT_DMT_1440X900P60_RB,
89 V4L2_DV_BT_DMT_1440X900P60,
90 V4L2_DV_BT_DMT_1440X900P75,
91 V4L2_DV_BT_DMT_1440X900P85,
92 V4L2_DV_BT_DMT_1440X900P120_RB,
93 V4L2_DV_BT_DMT_1600X900P60_RB,
94 V4L2_DV_BT_DMT_1600X1200P60,
95 V4L2_DV_BT_DMT_1600X1200P65,
96 V4L2_DV_BT_DMT_1600X1200P70,
97 V4L2_DV_BT_DMT_1600X1200P75,
98 V4L2_DV_BT_DMT_1600X1200P85,
99 V4L2_DV_BT_DMT_1600X1200P120_RB,
100 V4L2_DV_BT_DMT_1680X1050P60_RB,
101 V4L2_DV_BT_DMT_1680X1050P60,
102 V4L2_DV_BT_DMT_1680X1050P75,
103 V4L2_DV_BT_DMT_1680X1050P85,
104 V4L2_DV_BT_DMT_1680X1050P120_RB,
105 V4L2_DV_BT_DMT_1792X1344P60,
106 V4L2_DV_BT_DMT_1792X1344P75,
107 V4L2_DV_BT_DMT_1792X1344P120_RB,
108 V4L2_DV_BT_DMT_1856X1392P60,
109 V4L2_DV_BT_DMT_1856X1392P75,
110 V4L2_DV_BT_DMT_1856X1392P120_RB,
111 V4L2_DV_BT_DMT_1920X1200P60_RB,
112 V4L2_DV_BT_DMT_1920X1200P60,
113 V4L2_DV_BT_DMT_1920X1200P75,
114 V4L2_DV_BT_DMT_1920X1200P85,
115 V4L2_DV_BT_DMT_1920X1200P120_RB,
116 V4L2_DV_BT_DMT_1920X1440P60,
117 V4L2_DV_BT_DMT_1920X1440P75,
118 V4L2_DV_BT_DMT_1920X1440P120_RB,
119 V4L2_DV_BT_DMT_2048X1152P60_RB,
120 V4L2_DV_BT_DMT_2560X1600P60_RB,
121 V4L2_DV_BT_DMT_2560X1600P60,
122 V4L2_DV_BT_DMT_2560X1600P75,
123 V4L2_DV_BT_DMT_2560X1600P85,
124 V4L2_DV_BT_DMT_2560X1600P120_RB,
125 V4L2_DV_BT_CEA_3840X2160P24,
126 V4L2_DV_BT_CEA_3840X2160P25,
127 V4L2_DV_BT_CEA_3840X2160P30,
128 V4L2_DV_BT_CEA_3840X2160P50,
129 V4L2_DV_BT_CEA_3840X2160P60,
130 V4L2_DV_BT_CEA_4096X2160P24,
131 V4L2_DV_BT_CEA_4096X2160P25,
132 V4L2_DV_BT_CEA_4096X2160P30,
133 V4L2_DV_BT_CEA_4096X2160P50,
134 V4L2_DV_BT_DMT_4096X2160P59_94_RB,
135 V4L2_DV_BT_CEA_4096X2160P60,
136 { }
137 };
138 EXPORT_SYMBOL_GPL(v4l2_dv_timings_presets);
139
v4l2_valid_dv_timings(const struct v4l2_dv_timings * t,const struct v4l2_dv_timings_cap * dvcap,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)140 bool v4l2_valid_dv_timings(const struct v4l2_dv_timings *t,
141 const struct v4l2_dv_timings_cap *dvcap,
142 v4l2_check_dv_timings_fnc fnc,
143 void *fnc_handle)
144 {
145 const struct v4l2_bt_timings *bt = &t->bt;
146 const struct v4l2_bt_timings_cap *cap = &dvcap->bt;
147 u32 caps = cap->capabilities;
148 const u32 max_vert = 10240;
149 u32 max_hor = 3 * bt->width;
150
151 if (t->type != V4L2_DV_BT_656_1120)
152 return false;
153 if (t->type != dvcap->type ||
154 bt->height < cap->min_height ||
155 bt->height > cap->max_height ||
156 bt->width < cap->min_width ||
157 bt->width > cap->max_width ||
158 bt->pixelclock < cap->min_pixelclock ||
159 bt->pixelclock > cap->max_pixelclock ||
160 (!(caps & V4L2_DV_BT_CAP_CUSTOM) &&
161 cap->standards && bt->standards &&
162 !(bt->standards & cap->standards)) ||
163 (bt->interlaced && !(caps & V4L2_DV_BT_CAP_INTERLACED)) ||
164 (!bt->interlaced && !(caps & V4L2_DV_BT_CAP_PROGRESSIVE)))
165 return false;
166
167 /* sanity checks for the blanking timings */
168 if (!bt->interlaced &&
169 (bt->il_vbackporch || bt->il_vsync || bt->il_vfrontporch))
170 return false;
171 /*
172 * Some video receivers cannot properly separate the frontporch,
173 * backporch and sync values, and instead they only have the total
174 * blanking. That can be assigned to any of these three fields.
175 * So just check that none of these are way out of range.
176 */
177 if (bt->hfrontporch > max_hor ||
178 bt->hsync > max_hor || bt->hbackporch > max_hor)
179 return false;
180 if (bt->vfrontporch > max_vert ||
181 bt->vsync > max_vert || bt->vbackporch > max_vert)
182 return false;
183 if (bt->interlaced && (bt->il_vfrontporch > max_vert ||
184 bt->il_vsync > max_vert || bt->il_vbackporch > max_vert))
185 return false;
186 return fnc == NULL || fnc(t, fnc_handle);
187 }
188 EXPORT_SYMBOL_GPL(v4l2_valid_dv_timings);
189
v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings * t,const struct v4l2_dv_timings_cap * cap,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)190 int v4l2_enum_dv_timings_cap(struct v4l2_enum_dv_timings *t,
191 const struct v4l2_dv_timings_cap *cap,
192 v4l2_check_dv_timings_fnc fnc,
193 void *fnc_handle)
194 {
195 u32 i, idx;
196
197 memset(t->reserved, 0, sizeof(t->reserved));
198 for (i = idx = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
199 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
200 fnc, fnc_handle) &&
201 idx++ == t->index) {
202 t->timings = v4l2_dv_timings_presets[i];
203 return 0;
204 }
205 }
206 return -EINVAL;
207 }
208 EXPORT_SYMBOL_GPL(v4l2_enum_dv_timings_cap);
209
v4l2_find_dv_timings_cap(struct v4l2_dv_timings * t,const struct v4l2_dv_timings_cap * cap,unsigned pclock_delta,v4l2_check_dv_timings_fnc fnc,void * fnc_handle)210 bool v4l2_find_dv_timings_cap(struct v4l2_dv_timings *t,
211 const struct v4l2_dv_timings_cap *cap,
212 unsigned pclock_delta,
213 v4l2_check_dv_timings_fnc fnc,
214 void *fnc_handle)
215 {
216 int i;
217
218 if (!v4l2_valid_dv_timings(t, cap, fnc, fnc_handle))
219 return false;
220
221 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
222 if (v4l2_valid_dv_timings(v4l2_dv_timings_presets + i, cap,
223 fnc, fnc_handle) &&
224 v4l2_match_dv_timings(t, v4l2_dv_timings_presets + i,
225 pclock_delta, false)) {
226 u32 flags = t->bt.flags & V4L2_DV_FL_REDUCED_FPS;
227
228 *t = v4l2_dv_timings_presets[i];
229 if (can_reduce_fps(&t->bt))
230 t->bt.flags |= flags;
231
232 return true;
233 }
234 }
235 return false;
236 }
237 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cap);
238
v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings * t,u8 vic)239 bool v4l2_find_dv_timings_cea861_vic(struct v4l2_dv_timings *t, u8 vic)
240 {
241 unsigned int i;
242
243 for (i = 0; v4l2_dv_timings_presets[i].bt.width; i++) {
244 const struct v4l2_bt_timings *bt =
245 &v4l2_dv_timings_presets[i].bt;
246
247 if ((bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) &&
248 bt->cea861_vic == vic) {
249 *t = v4l2_dv_timings_presets[i];
250 return true;
251 }
252 }
253 return false;
254 }
255 EXPORT_SYMBOL_GPL(v4l2_find_dv_timings_cea861_vic);
256
257 /**
258 * v4l2_match_dv_timings - check if two timings match
259 * @t1: compare this v4l2_dv_timings struct...
260 * @t2: with this struct.
261 * @pclock_delta: the allowed pixelclock deviation.
262 * @match_reduced_fps: if true, then fail if V4L2_DV_FL_REDUCED_FPS does not
263 * match.
264 *
265 * Compare t1 with t2 with a given margin of error for the pixelclock.
266 */
v4l2_match_dv_timings(const struct v4l2_dv_timings * t1,const struct v4l2_dv_timings * t2,unsigned pclock_delta,bool match_reduced_fps)267 bool v4l2_match_dv_timings(const struct v4l2_dv_timings *t1,
268 const struct v4l2_dv_timings *t2,
269 unsigned pclock_delta, bool match_reduced_fps)
270 {
271 if (t1->type != t2->type || t1->type != V4L2_DV_BT_656_1120)
272 return false;
273 if (t1->bt.width == t2->bt.width &&
274 t1->bt.height == t2->bt.height &&
275 t1->bt.interlaced == t2->bt.interlaced &&
276 t1->bt.polarities == t2->bt.polarities &&
277 t1->bt.pixelclock >= t2->bt.pixelclock - pclock_delta &&
278 t1->bt.pixelclock <= t2->bt.pixelclock + pclock_delta &&
279 t1->bt.hfrontporch == t2->bt.hfrontporch &&
280 t1->bt.hsync == t2->bt.hsync &&
281 t1->bt.hbackporch == t2->bt.hbackporch &&
282 t1->bt.vfrontporch == t2->bt.vfrontporch &&
283 t1->bt.vsync == t2->bt.vsync &&
284 t1->bt.vbackporch == t2->bt.vbackporch &&
285 (!match_reduced_fps ||
286 (t1->bt.flags & V4L2_DV_FL_REDUCED_FPS) ==
287 (t2->bt.flags & V4L2_DV_FL_REDUCED_FPS)) &&
288 (!t1->bt.interlaced ||
289 (t1->bt.il_vfrontporch == t2->bt.il_vfrontporch &&
290 t1->bt.il_vsync == t2->bt.il_vsync &&
291 t1->bt.il_vbackporch == t2->bt.il_vbackporch)))
292 return true;
293 return false;
294 }
295 EXPORT_SYMBOL_GPL(v4l2_match_dv_timings);
296
v4l2_print_dv_timings(const char * dev_prefix,const char * prefix,const struct v4l2_dv_timings * t,bool detailed)297 void v4l2_print_dv_timings(const char *dev_prefix, const char *prefix,
298 const struct v4l2_dv_timings *t, bool detailed)
299 {
300 const struct v4l2_bt_timings *bt = &t->bt;
301 u32 htot, vtot;
302 u32 fps;
303
304 if (t->type != V4L2_DV_BT_656_1120)
305 return;
306
307 htot = V4L2_DV_BT_FRAME_WIDTH(bt);
308 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
309 if (bt->interlaced)
310 vtot /= 2;
311
312 fps = (htot * vtot) > 0 ? div_u64((100 * (u64)bt->pixelclock),
313 (htot * vtot)) : 0;
314
315 if (prefix == NULL)
316 prefix = "";
317
318 pr_info("%s: %s%ux%u%s%u.%02u (%ux%u)\n", dev_prefix, prefix,
319 bt->width, bt->height, bt->interlaced ? "i" : "p",
320 fps / 100, fps % 100, htot, vtot);
321
322 if (!detailed)
323 return;
324
325 pr_info("%s: horizontal: fp = %u, %ssync = %u, bp = %u\n",
326 dev_prefix, bt->hfrontporch,
327 (bt->polarities & V4L2_DV_HSYNC_POS_POL) ? "+" : "-",
328 bt->hsync, bt->hbackporch);
329 pr_info("%s: vertical: fp = %u, %ssync = %u, bp = %u\n",
330 dev_prefix, bt->vfrontporch,
331 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
332 bt->vsync, bt->vbackporch);
333 if (bt->interlaced)
334 pr_info("%s: vertical bottom field: fp = %u, %ssync = %u, bp = %u\n",
335 dev_prefix, bt->il_vfrontporch,
336 (bt->polarities & V4L2_DV_VSYNC_POS_POL) ? "+" : "-",
337 bt->il_vsync, bt->il_vbackporch);
338 pr_info("%s: pixelclock: %llu\n", dev_prefix, bt->pixelclock);
339 pr_info("%s: flags (0x%x):%s%s%s%s%s%s%s%s%s%s\n",
340 dev_prefix, bt->flags,
341 (bt->flags & V4L2_DV_FL_REDUCED_BLANKING) ?
342 " REDUCED_BLANKING" : "",
343 ((bt->flags & V4L2_DV_FL_REDUCED_BLANKING) &&
344 bt->vsync == 8) ? " (V2)" : "",
345 (bt->flags & V4L2_DV_FL_CAN_REDUCE_FPS) ?
346 " CAN_REDUCE_FPS" : "",
347 (bt->flags & V4L2_DV_FL_REDUCED_FPS) ?
348 " REDUCED_FPS" : "",
349 (bt->flags & V4L2_DV_FL_HALF_LINE) ?
350 " HALF_LINE" : "",
351 (bt->flags & V4L2_DV_FL_IS_CE_VIDEO) ?
352 " CE_VIDEO" : "",
353 (bt->flags & V4L2_DV_FL_FIRST_FIELD_EXTRA_LINE) ?
354 " FIRST_FIELD_EXTRA_LINE" : "",
355 (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT) ?
356 " HAS_PICTURE_ASPECT" : "",
357 (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC) ?
358 " HAS_CEA861_VIC" : "",
359 (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC) ?
360 " HAS_HDMI_VIC" : "");
361 pr_info("%s: standards (0x%x):%s%s%s%s%s\n", dev_prefix, bt->standards,
362 (bt->standards & V4L2_DV_BT_STD_CEA861) ? " CEA" : "",
363 (bt->standards & V4L2_DV_BT_STD_DMT) ? " DMT" : "",
364 (bt->standards & V4L2_DV_BT_STD_CVT) ? " CVT" : "",
365 (bt->standards & V4L2_DV_BT_STD_GTF) ? " GTF" : "",
366 (bt->standards & V4L2_DV_BT_STD_SDI) ? " SDI" : "");
367 if (bt->flags & V4L2_DV_FL_HAS_PICTURE_ASPECT)
368 pr_info("%s: picture aspect (hor:vert): %u:%u\n", dev_prefix,
369 bt->picture_aspect.numerator,
370 bt->picture_aspect.denominator);
371 if (bt->flags & V4L2_DV_FL_HAS_CEA861_VIC)
372 pr_info("%s: CEA-861 VIC: %u\n", dev_prefix, bt->cea861_vic);
373 if (bt->flags & V4L2_DV_FL_HAS_HDMI_VIC)
374 pr_info("%s: HDMI VIC: %u\n", dev_prefix, bt->hdmi_vic);
375 }
376 EXPORT_SYMBOL_GPL(v4l2_print_dv_timings);
377
v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings * t)378 struct v4l2_fract v4l2_dv_timings_aspect_ratio(const struct v4l2_dv_timings *t)
379 {
380 struct v4l2_fract ratio = { 1, 1 };
381 unsigned long n, d;
382
383 if (t->type != V4L2_DV_BT_656_1120)
384 return ratio;
385 if (!(t->bt.flags & V4L2_DV_FL_HAS_PICTURE_ASPECT))
386 return ratio;
387
388 ratio.numerator = t->bt.width * t->bt.picture_aspect.denominator;
389 ratio.denominator = t->bt.height * t->bt.picture_aspect.numerator;
390
391 rational_best_approximation(ratio.numerator, ratio.denominator,
392 ratio.numerator, ratio.denominator, &n, &d);
393 ratio.numerator = n;
394 ratio.denominator = d;
395 return ratio;
396 }
397 EXPORT_SYMBOL_GPL(v4l2_dv_timings_aspect_ratio);
398
399 /** v4l2_calc_timeperframe - helper function to calculate timeperframe based
400 * v4l2_dv_timings fields.
401 * @t - Timings for the video mode.
402 *
403 * Calculates the expected timeperframe using the pixel clock value and
404 * horizontal/vertical measures. This means that v4l2_dv_timings structure
405 * must be correctly and fully filled.
406 */
v4l2_calc_timeperframe(const struct v4l2_dv_timings * t)407 struct v4l2_fract v4l2_calc_timeperframe(const struct v4l2_dv_timings *t)
408 {
409 const struct v4l2_bt_timings *bt = &t->bt;
410 struct v4l2_fract fps_fract = { 1, 1 };
411 unsigned long n, d;
412 u32 htot, vtot, fps;
413 u64 pclk;
414
415 if (t->type != V4L2_DV_BT_656_1120)
416 return fps_fract;
417
418 htot = V4L2_DV_BT_FRAME_WIDTH(bt);
419 vtot = V4L2_DV_BT_FRAME_HEIGHT(bt);
420 pclk = bt->pixelclock;
421
422 if ((bt->flags & V4L2_DV_FL_CAN_DETECT_REDUCED_FPS) &&
423 (bt->flags & V4L2_DV_FL_REDUCED_FPS))
424 pclk = div_u64(pclk * 1000ULL, 1001);
425
426 fps = (htot * vtot) > 0 ? div_u64((100 * pclk), (htot * vtot)) : 0;
427 if (!fps)
428 return fps_fract;
429
430 rational_best_approximation(fps, 100, fps, 100, &n, &d);
431
432 fps_fract.numerator = d;
433 fps_fract.denominator = n;
434 return fps_fract;
435 }
436 EXPORT_SYMBOL_GPL(v4l2_calc_timeperframe);
437
438 /*
439 * CVT defines
440 * Based on Coordinated Video Timings Standard
441 * version 1.1 September 10, 2003
442 */
443
444 #define CVT_PXL_CLK_GRAN 250000 /* pixel clock granularity */
445 #define CVT_PXL_CLK_GRAN_RB_V2 1000 /* granularity for reduced blanking v2*/
446
447 /* Normal blanking */
448 #define CVT_MIN_V_BPORCH 7 /* lines */
449 #define CVT_MIN_V_PORCH_RND 3 /* lines */
450 #define CVT_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
451 #define CVT_HSYNC_PERCENT 8 /* nominal hsync as percentage of line */
452
453 /* Normal blanking for CVT uses GTF to calculate horizontal blanking */
454 #define CVT_CELL_GRAN 8 /* character cell granularity */
455 #define CVT_M 600 /* blanking formula gradient */
456 #define CVT_C 40 /* blanking formula offset */
457 #define CVT_K 128 /* blanking formula scaling factor */
458 #define CVT_J 20 /* blanking formula scaling factor */
459 #define CVT_C_PRIME (((CVT_C - CVT_J) * CVT_K / 256) + CVT_J)
460 #define CVT_M_PRIME (CVT_K * CVT_M / 256)
461
462 /* Reduced Blanking */
463 #define CVT_RB_MIN_V_BPORCH 7 /* lines */
464 #define CVT_RB_V_FPORCH 3 /* lines */
465 #define CVT_RB_MIN_V_BLANK 460 /* us */
466 #define CVT_RB_H_SYNC 32 /* pixels */
467 #define CVT_RB_H_BLANK 160 /* pixels */
468 /* Reduce blanking Version 2 */
469 #define CVT_RB_V2_H_BLANK 80 /* pixels */
470 #define CVT_RB_MIN_V_FPORCH 3 /* lines */
471 #define CVT_RB_V2_MIN_V_FPORCH 1 /* lines */
472 #define CVT_RB_V_BPORCH 6 /* lines */
473
474 /** v4l2_detect_cvt - detect if the given timings follow the CVT standard
475 * @frame_height - the total height of the frame (including blanking) in lines.
476 * @hfreq - the horizontal frequency in Hz.
477 * @vsync - the height of the vertical sync in lines.
478 * @active_width - active width of image (does not include blanking). This
479 * information is needed only in case of version 2 of reduced blanking.
480 * In other cases, this parameter does not have any effect on timings.
481 * @polarities - the horizontal and vertical polarities (same as struct
482 * v4l2_bt_timings polarities).
483 * @interlaced - if this flag is true, it indicates interlaced format
484 * @fmt - the resulting timings.
485 *
486 * This function will attempt to detect if the given values correspond to a
487 * valid CVT format. If so, then it will return true, and fmt will be filled
488 * in with the found CVT timings.
489 */
v4l2_detect_cvt(unsigned frame_height,unsigned hfreq,unsigned vsync,unsigned active_width,u32 polarities,bool interlaced,struct v4l2_dv_timings * fmt)490 bool v4l2_detect_cvt(unsigned frame_height,
491 unsigned hfreq,
492 unsigned vsync,
493 unsigned active_width,
494 u32 polarities,
495 bool interlaced,
496 struct v4l2_dv_timings *fmt)
497 {
498 int v_fp, v_bp, h_fp, h_bp, hsync;
499 int frame_width, image_height, image_width;
500 bool reduced_blanking;
501 bool rb_v2 = false;
502 unsigned pix_clk;
503
504 if (vsync < 4 || vsync > 8)
505 return false;
506
507 if (polarities == V4L2_DV_VSYNC_POS_POL)
508 reduced_blanking = false;
509 else if (polarities == V4L2_DV_HSYNC_POS_POL)
510 reduced_blanking = true;
511 else
512 return false;
513
514 if (reduced_blanking && vsync == 8)
515 rb_v2 = true;
516
517 if (rb_v2 && active_width == 0)
518 return false;
519
520 if (!rb_v2 && vsync > 7)
521 return false;
522
523 if (hfreq == 0)
524 return false;
525
526 /* Vertical */
527 if (reduced_blanking) {
528 if (rb_v2) {
529 v_bp = CVT_RB_V_BPORCH;
530 v_fp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
531 v_fp -= vsync + v_bp;
532
533 if (v_fp < CVT_RB_V2_MIN_V_FPORCH)
534 v_fp = CVT_RB_V2_MIN_V_FPORCH;
535 } else {
536 v_fp = CVT_RB_V_FPORCH;
537 v_bp = (CVT_RB_MIN_V_BLANK * hfreq) / 1000000 + 1;
538 v_bp -= vsync + v_fp;
539
540 if (v_bp < CVT_RB_MIN_V_BPORCH)
541 v_bp = CVT_RB_MIN_V_BPORCH;
542 }
543 } else {
544 v_fp = CVT_MIN_V_PORCH_RND;
545 v_bp = (CVT_MIN_VSYNC_BP * hfreq) / 1000000 + 1 - vsync;
546
547 if (v_bp < CVT_MIN_V_BPORCH)
548 v_bp = CVT_MIN_V_BPORCH;
549 }
550
551 if (interlaced)
552 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
553 else
554 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
555
556 if (image_height < 0)
557 return false;
558
559 /* Aspect ratio based on vsync */
560 switch (vsync) {
561 case 4:
562 image_width = (image_height * 4) / 3;
563 break;
564 case 5:
565 image_width = (image_height * 16) / 9;
566 break;
567 case 6:
568 image_width = (image_height * 16) / 10;
569 break;
570 case 7:
571 /* special case */
572 if (image_height == 1024)
573 image_width = (image_height * 5) / 4;
574 else if (image_height == 768)
575 image_width = (image_height * 15) / 9;
576 else
577 return false;
578 break;
579 case 8:
580 image_width = active_width;
581 break;
582 default:
583 return false;
584 }
585
586 if (!rb_v2)
587 image_width = image_width & ~7;
588
589 /* Horizontal */
590 if (reduced_blanking) {
591 int h_blank;
592 int clk_gran;
593
594 h_blank = rb_v2 ? CVT_RB_V2_H_BLANK : CVT_RB_H_BLANK;
595 clk_gran = rb_v2 ? CVT_PXL_CLK_GRAN_RB_V2 : CVT_PXL_CLK_GRAN;
596
597 pix_clk = (image_width + h_blank) * hfreq;
598 pix_clk = (pix_clk / clk_gran) * clk_gran;
599
600 h_bp = h_blank / 2;
601 hsync = CVT_RB_H_SYNC;
602 h_fp = h_blank - h_bp - hsync;
603
604 frame_width = image_width + h_blank;
605 } else {
606 unsigned ideal_duty_cycle_per_myriad =
607 100 * CVT_C_PRIME - (CVT_M_PRIME * 100000) / hfreq;
608 int h_blank;
609
610 if (ideal_duty_cycle_per_myriad < 2000)
611 ideal_duty_cycle_per_myriad = 2000;
612
613 h_blank = image_width * ideal_duty_cycle_per_myriad /
614 (10000 - ideal_duty_cycle_per_myriad);
615 h_blank = (h_blank / (2 * CVT_CELL_GRAN)) * 2 * CVT_CELL_GRAN;
616
617 pix_clk = (image_width + h_blank) * hfreq;
618 pix_clk = (pix_clk / CVT_PXL_CLK_GRAN) * CVT_PXL_CLK_GRAN;
619
620 h_bp = h_blank / 2;
621 frame_width = image_width + h_blank;
622
623 hsync = frame_width * CVT_HSYNC_PERCENT / 100;
624 hsync = (hsync / CVT_CELL_GRAN) * CVT_CELL_GRAN;
625 h_fp = h_blank - hsync - h_bp;
626 }
627
628 fmt->type = V4L2_DV_BT_656_1120;
629 fmt->bt.polarities = polarities;
630 fmt->bt.width = image_width;
631 fmt->bt.height = image_height;
632 fmt->bt.hfrontporch = h_fp;
633 fmt->bt.vfrontporch = v_fp;
634 fmt->bt.hsync = hsync;
635 fmt->bt.vsync = vsync;
636 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
637
638 if (!interlaced) {
639 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
640 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
641 } else {
642 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
643 2 * vsync) / 2;
644 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
645 2 * vsync - fmt->bt.vbackporch;
646 fmt->bt.il_vfrontporch = v_fp;
647 fmt->bt.il_vsync = vsync;
648 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
649 fmt->bt.interlaced = V4L2_DV_INTERLACED;
650 }
651
652 fmt->bt.pixelclock = pix_clk;
653 fmt->bt.standards = V4L2_DV_BT_STD_CVT;
654
655 if (reduced_blanking)
656 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
657
658 return true;
659 }
660 EXPORT_SYMBOL_GPL(v4l2_detect_cvt);
661
662 /*
663 * GTF defines
664 * Based on Generalized Timing Formula Standard
665 * Version 1.1 September 2, 1999
666 */
667
668 #define GTF_PXL_CLK_GRAN 250000 /* pixel clock granularity */
669
670 #define GTF_MIN_VSYNC_BP 550 /* min time of vsync + back porch (us) */
671 #define GTF_V_FP 1 /* vertical front porch (lines) */
672 #define GTF_CELL_GRAN 8 /* character cell granularity */
673
674 /* Default */
675 #define GTF_D_M 600 /* blanking formula gradient */
676 #define GTF_D_C 40 /* blanking formula offset */
677 #define GTF_D_K 128 /* blanking formula scaling factor */
678 #define GTF_D_J 20 /* blanking formula scaling factor */
679 #define GTF_D_C_PRIME ((((GTF_D_C - GTF_D_J) * GTF_D_K) / 256) + GTF_D_J)
680 #define GTF_D_M_PRIME ((GTF_D_K * GTF_D_M) / 256)
681
682 /* Secondary */
683 #define GTF_S_M 3600 /* blanking formula gradient */
684 #define GTF_S_C 40 /* blanking formula offset */
685 #define GTF_S_K 128 /* blanking formula scaling factor */
686 #define GTF_S_J 35 /* blanking formula scaling factor */
687 #define GTF_S_C_PRIME ((((GTF_S_C - GTF_S_J) * GTF_S_K) / 256) + GTF_S_J)
688 #define GTF_S_M_PRIME ((GTF_S_K * GTF_S_M) / 256)
689
690 /** v4l2_detect_gtf - detect if the given timings follow the GTF standard
691 * @frame_height - the total height of the frame (including blanking) in lines.
692 * @hfreq - the horizontal frequency in Hz.
693 * @vsync - the height of the vertical sync in lines.
694 * @polarities - the horizontal and vertical polarities (same as struct
695 * v4l2_bt_timings polarities).
696 * @interlaced - if this flag is true, it indicates interlaced format
697 * @aspect - preferred aspect ratio. GTF has no method of determining the
698 * aspect ratio in order to derive the image width from the
699 * image height, so it has to be passed explicitly. Usually
700 * the native screen aspect ratio is used for this. If it
701 * is not filled in correctly, then 16:9 will be assumed.
702 * @fmt - the resulting timings.
703 *
704 * This function will attempt to detect if the given values correspond to a
705 * valid GTF format. If so, then it will return true, and fmt will be filled
706 * in with the found GTF timings.
707 */
v4l2_detect_gtf(unsigned frame_height,unsigned hfreq,unsigned vsync,u32 polarities,bool interlaced,struct v4l2_fract aspect,struct v4l2_dv_timings * fmt)708 bool v4l2_detect_gtf(unsigned frame_height,
709 unsigned hfreq,
710 unsigned vsync,
711 u32 polarities,
712 bool interlaced,
713 struct v4l2_fract aspect,
714 struct v4l2_dv_timings *fmt)
715 {
716 int pix_clk;
717 int v_fp, v_bp, h_fp, hsync;
718 int frame_width, image_height, image_width;
719 bool default_gtf;
720 int h_blank;
721
722 if (vsync != 3)
723 return false;
724
725 if (polarities == V4L2_DV_VSYNC_POS_POL)
726 default_gtf = true;
727 else if (polarities == V4L2_DV_HSYNC_POS_POL)
728 default_gtf = false;
729 else
730 return false;
731
732 if (hfreq == 0)
733 return false;
734
735 /* Vertical */
736 v_fp = GTF_V_FP;
737 v_bp = (GTF_MIN_VSYNC_BP * hfreq + 500000) / 1000000 - vsync;
738 if (interlaced)
739 image_height = (frame_height - 2 * v_fp - 2 * vsync - 2 * v_bp) & ~0x1;
740 else
741 image_height = (frame_height - v_fp - vsync - v_bp + 1) & ~0x1;
742
743 if (image_height < 0)
744 return false;
745
746 if (aspect.numerator == 0 || aspect.denominator == 0) {
747 aspect.numerator = 16;
748 aspect.denominator = 9;
749 }
750 image_width = ((image_height * aspect.numerator) / aspect.denominator);
751 image_width = (image_width + GTF_CELL_GRAN/2) & ~(GTF_CELL_GRAN - 1);
752
753 /* Horizontal */
754 if (default_gtf) {
755 u64 num;
756 u32 den;
757
758 num = ((image_width * GTF_D_C_PRIME * (u64)hfreq) -
759 ((u64)image_width * GTF_D_M_PRIME * 1000));
760 den = (hfreq * (100 - GTF_D_C_PRIME) + GTF_D_M_PRIME * 1000) *
761 (2 * GTF_CELL_GRAN);
762 h_blank = div_u64((num + (den >> 1)), den);
763 h_blank *= (2 * GTF_CELL_GRAN);
764 } else {
765 u64 num;
766 u32 den;
767
768 num = ((image_width * GTF_S_C_PRIME * (u64)hfreq) -
769 ((u64)image_width * GTF_S_M_PRIME * 1000));
770 den = (hfreq * (100 - GTF_S_C_PRIME) + GTF_S_M_PRIME * 1000) *
771 (2 * GTF_CELL_GRAN);
772 h_blank = div_u64((num + (den >> 1)), den);
773 h_blank *= (2 * GTF_CELL_GRAN);
774 }
775
776 frame_width = image_width + h_blank;
777
778 pix_clk = (image_width + h_blank) * hfreq;
779 pix_clk = pix_clk / GTF_PXL_CLK_GRAN * GTF_PXL_CLK_GRAN;
780
781 hsync = (frame_width * 8 + 50) / 100;
782 hsync = DIV_ROUND_CLOSEST(hsync, GTF_CELL_GRAN) * GTF_CELL_GRAN;
783
784 h_fp = h_blank / 2 - hsync;
785
786 fmt->type = V4L2_DV_BT_656_1120;
787 fmt->bt.polarities = polarities;
788 fmt->bt.width = image_width;
789 fmt->bt.height = image_height;
790 fmt->bt.hfrontporch = h_fp;
791 fmt->bt.vfrontporch = v_fp;
792 fmt->bt.hsync = hsync;
793 fmt->bt.vsync = vsync;
794 fmt->bt.hbackporch = frame_width - image_width - h_fp - hsync;
795
796 if (!interlaced) {
797 fmt->bt.vbackporch = frame_height - image_height - v_fp - vsync;
798 fmt->bt.interlaced = V4L2_DV_PROGRESSIVE;
799 } else {
800 fmt->bt.vbackporch = (frame_height - image_height - 2 * v_fp -
801 2 * vsync) / 2;
802 fmt->bt.il_vbackporch = frame_height - image_height - 2 * v_fp -
803 2 * vsync - fmt->bt.vbackporch;
804 fmt->bt.il_vfrontporch = v_fp;
805 fmt->bt.il_vsync = vsync;
806 fmt->bt.flags |= V4L2_DV_FL_HALF_LINE;
807 fmt->bt.interlaced = V4L2_DV_INTERLACED;
808 }
809
810 fmt->bt.pixelclock = pix_clk;
811 fmt->bt.standards = V4L2_DV_BT_STD_GTF;
812
813 if (!default_gtf)
814 fmt->bt.flags |= V4L2_DV_FL_REDUCED_BLANKING;
815
816 return true;
817 }
818 EXPORT_SYMBOL_GPL(v4l2_detect_gtf);
819
820 /** v4l2_calc_aspect_ratio - calculate the aspect ratio based on bytes
821 * 0x15 and 0x16 from the EDID.
822 * @hor_landscape - byte 0x15 from the EDID.
823 * @vert_portrait - byte 0x16 from the EDID.
824 *
825 * Determines the aspect ratio from the EDID.
826 * See VESA Enhanced EDID standard, release A, rev 2, section 3.6.2:
827 * "Horizontal and Vertical Screen Size or Aspect Ratio"
828 */
v4l2_calc_aspect_ratio(u8 hor_landscape,u8 vert_portrait)829 struct v4l2_fract v4l2_calc_aspect_ratio(u8 hor_landscape, u8 vert_portrait)
830 {
831 struct v4l2_fract aspect = { 16, 9 };
832 u8 ratio;
833
834 /* Nothing filled in, fallback to 16:9 */
835 if (!hor_landscape && !vert_portrait)
836 return aspect;
837 /* Both filled in, so they are interpreted as the screen size in cm */
838 if (hor_landscape && vert_portrait) {
839 aspect.numerator = hor_landscape;
840 aspect.denominator = vert_portrait;
841 return aspect;
842 }
843 /* Only one is filled in, so interpret them as a ratio:
844 (val + 99) / 100 */
845 ratio = hor_landscape | vert_portrait;
846 /* Change some rounded values into the exact aspect ratio */
847 if (ratio == 79) {
848 aspect.numerator = 16;
849 aspect.denominator = 9;
850 } else if (ratio == 34) {
851 aspect.numerator = 4;
852 aspect.denominator = 3;
853 } else if (ratio == 68) {
854 aspect.numerator = 15;
855 aspect.denominator = 9;
856 } else {
857 aspect.numerator = hor_landscape + 99;
858 aspect.denominator = 100;
859 }
860 if (hor_landscape)
861 return aspect;
862 /* The aspect ratio is for portrait, so swap numerator and denominator */
863 swap(aspect.denominator, aspect.numerator);
864 return aspect;
865 }
866 EXPORT_SYMBOL_GPL(v4l2_calc_aspect_ratio);
867
868 /** v4l2_hdmi_rx_colorimetry - determine HDMI colorimetry information
869 * based on various InfoFrames.
870 * @avi: the AVI InfoFrame
871 * @hdmi: the HDMI Vendor InfoFrame, may be NULL
872 * @height: the frame height
873 *
874 * Determines the HDMI colorimetry information, i.e. how the HDMI
875 * pixel color data should be interpreted.
876 *
877 * Note that some of the newer features (DCI-P3, HDR) are not yet
878 * implemented: the hdmi.h header needs to be updated to the HDMI 2.0
879 * and CTA-861-G standards.
880 */
881 struct v4l2_hdmi_colorimetry
v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe * avi,const struct hdmi_vendor_infoframe * hdmi,unsigned int height)882 v4l2_hdmi_rx_colorimetry(const struct hdmi_avi_infoframe *avi,
883 const struct hdmi_vendor_infoframe *hdmi,
884 unsigned int height)
885 {
886 struct v4l2_hdmi_colorimetry c = {
887 V4L2_COLORSPACE_SRGB,
888 V4L2_YCBCR_ENC_DEFAULT,
889 V4L2_QUANTIZATION_FULL_RANGE,
890 V4L2_XFER_FUNC_SRGB
891 };
892 bool is_ce = avi->video_code || (hdmi && hdmi->vic);
893 bool is_sdtv = height <= 576;
894 bool default_is_lim_range_rgb = avi->video_code > 1;
895
896 switch (avi->colorspace) {
897 case HDMI_COLORSPACE_RGB:
898 /* RGB pixel encoding */
899 switch (avi->colorimetry) {
900 case HDMI_COLORIMETRY_EXTENDED:
901 switch (avi->extended_colorimetry) {
902 case HDMI_EXTENDED_COLORIMETRY_OPRGB:
903 c.colorspace = V4L2_COLORSPACE_OPRGB;
904 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
905 break;
906 case HDMI_EXTENDED_COLORIMETRY_BT2020:
907 c.colorspace = V4L2_COLORSPACE_BT2020;
908 c.xfer_func = V4L2_XFER_FUNC_709;
909 break;
910 default:
911 break;
912 }
913 break;
914 default:
915 break;
916 }
917 switch (avi->quantization_range) {
918 case HDMI_QUANTIZATION_RANGE_LIMITED:
919 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
920 break;
921 case HDMI_QUANTIZATION_RANGE_FULL:
922 break;
923 default:
924 if (default_is_lim_range_rgb)
925 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
926 break;
927 }
928 break;
929
930 default:
931 /* YCbCr pixel encoding */
932 c.quantization = V4L2_QUANTIZATION_LIM_RANGE;
933 switch (avi->colorimetry) {
934 case HDMI_COLORIMETRY_NONE:
935 if (!is_ce)
936 break;
937 if (is_sdtv) {
938 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
939 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
940 } else {
941 c.colorspace = V4L2_COLORSPACE_REC709;
942 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
943 }
944 c.xfer_func = V4L2_XFER_FUNC_709;
945 break;
946 case HDMI_COLORIMETRY_ITU_601:
947 c.colorspace = V4L2_COLORSPACE_SMPTE170M;
948 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
949 c.xfer_func = V4L2_XFER_FUNC_709;
950 break;
951 case HDMI_COLORIMETRY_ITU_709:
952 c.colorspace = V4L2_COLORSPACE_REC709;
953 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
954 c.xfer_func = V4L2_XFER_FUNC_709;
955 break;
956 case HDMI_COLORIMETRY_EXTENDED:
957 switch (avi->extended_colorimetry) {
958 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_601:
959 c.colorspace = V4L2_COLORSPACE_REC709;
960 c.ycbcr_enc = V4L2_YCBCR_ENC_XV709;
961 c.xfer_func = V4L2_XFER_FUNC_709;
962 break;
963 case HDMI_EXTENDED_COLORIMETRY_XV_YCC_709:
964 c.colorspace = V4L2_COLORSPACE_REC709;
965 c.ycbcr_enc = V4L2_YCBCR_ENC_XV601;
966 c.xfer_func = V4L2_XFER_FUNC_709;
967 break;
968 case HDMI_EXTENDED_COLORIMETRY_S_YCC_601:
969 c.colorspace = V4L2_COLORSPACE_SRGB;
970 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
971 c.xfer_func = V4L2_XFER_FUNC_SRGB;
972 break;
973 case HDMI_EXTENDED_COLORIMETRY_OPYCC_601:
974 c.colorspace = V4L2_COLORSPACE_OPRGB;
975 c.ycbcr_enc = V4L2_YCBCR_ENC_601;
976 c.xfer_func = V4L2_XFER_FUNC_OPRGB;
977 break;
978 case HDMI_EXTENDED_COLORIMETRY_BT2020:
979 c.colorspace = V4L2_COLORSPACE_BT2020;
980 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020;
981 c.xfer_func = V4L2_XFER_FUNC_709;
982 break;
983 case HDMI_EXTENDED_COLORIMETRY_BT2020_CONST_LUM:
984 c.colorspace = V4L2_COLORSPACE_BT2020;
985 c.ycbcr_enc = V4L2_YCBCR_ENC_BT2020_CONST_LUM;
986 c.xfer_func = V4L2_XFER_FUNC_709;
987 break;
988 default: /* fall back to ITU_709 */
989 c.colorspace = V4L2_COLORSPACE_REC709;
990 c.ycbcr_enc = V4L2_YCBCR_ENC_709;
991 c.xfer_func = V4L2_XFER_FUNC_709;
992 break;
993 }
994 break;
995 default:
996 break;
997 }
998 /*
999 * YCC Quantization Range signaling is more-or-less broken,
1000 * let's just ignore this.
1001 */
1002 break;
1003 }
1004 return c;
1005 }
1006 EXPORT_SYMBOL_GPL(v4l2_hdmi_rx_colorimetry);
1007
1008 /**
1009 * v4l2_get_edid_phys_addr() - find and return the physical address
1010 *
1011 * @edid: pointer to the EDID data
1012 * @size: size in bytes of the EDID data
1013 * @offset: If not %NULL then the location of the physical address
1014 * bytes in the EDID will be returned here. This is set to 0
1015 * if there is no physical address found.
1016 *
1017 * Return: the physical address or CEC_PHYS_ADDR_INVALID if there is none.
1018 */
v4l2_get_edid_phys_addr(const u8 * edid,unsigned int size,unsigned int * offset)1019 u16 v4l2_get_edid_phys_addr(const u8 *edid, unsigned int size,
1020 unsigned int *offset)
1021 {
1022 unsigned int loc = cec_get_edid_spa_location(edid, size);
1023
1024 if (offset)
1025 *offset = loc;
1026 if (loc == 0)
1027 return CEC_PHYS_ADDR_INVALID;
1028 return (edid[loc] << 8) | edid[loc + 1];
1029 }
1030 EXPORT_SYMBOL_GPL(v4l2_get_edid_phys_addr);
1031
1032 /**
1033 * v4l2_set_edid_phys_addr() - find and set the physical address
1034 *
1035 * @edid: pointer to the EDID data
1036 * @size: size in bytes of the EDID data
1037 * @phys_addr: the new physical address
1038 *
1039 * This function finds the location of the physical address in the EDID
1040 * and fills in the given physical address and updates the checksum
1041 * at the end of the EDID block. It does nothing if the EDID doesn't
1042 * contain a physical address.
1043 */
v4l2_set_edid_phys_addr(u8 * edid,unsigned int size,u16 phys_addr)1044 void v4l2_set_edid_phys_addr(u8 *edid, unsigned int size, u16 phys_addr)
1045 {
1046 unsigned int loc = cec_get_edid_spa_location(edid, size);
1047 u8 sum = 0;
1048 unsigned int i;
1049
1050 if (loc == 0)
1051 return;
1052 edid[loc] = phys_addr >> 8;
1053 edid[loc + 1] = phys_addr & 0xff;
1054 loc &= ~0x7f;
1055
1056 /* update the checksum */
1057 for (i = loc; i < loc + 127; i++)
1058 sum += edid[i];
1059 edid[i] = 256 - sum;
1060 }
1061 EXPORT_SYMBOL_GPL(v4l2_set_edid_phys_addr);
1062
1063 /**
1064 * v4l2_phys_addr_for_input() - calculate the PA for an input
1065 *
1066 * @phys_addr: the physical address of the parent
1067 * @input: the number of the input port, must be between 1 and 15
1068 *
1069 * This function calculates a new physical address based on the input
1070 * port number. For example:
1071 *
1072 * PA = 0.0.0.0 and input = 2 becomes 2.0.0.0
1073 *
1074 * PA = 3.0.0.0 and input = 1 becomes 3.1.0.0
1075 *
1076 * PA = 3.2.1.0 and input = 5 becomes 3.2.1.5
1077 *
1078 * PA = 3.2.1.3 and input = 5 becomes f.f.f.f since it maxed out the depth.
1079 *
1080 * Return: the new physical address or CEC_PHYS_ADDR_INVALID.
1081 */
v4l2_phys_addr_for_input(u16 phys_addr,u8 input)1082 u16 v4l2_phys_addr_for_input(u16 phys_addr, u8 input)
1083 {
1084 /* Check if input is sane */
1085 if (WARN_ON(input == 0 || input > 0xf))
1086 return CEC_PHYS_ADDR_INVALID;
1087
1088 if (phys_addr == 0)
1089 return input << 12;
1090
1091 if ((phys_addr & 0x0fff) == 0)
1092 return phys_addr | (input << 8);
1093
1094 if ((phys_addr & 0x00ff) == 0)
1095 return phys_addr | (input << 4);
1096
1097 if ((phys_addr & 0x000f) == 0)
1098 return phys_addr | input;
1099
1100 /*
1101 * All nibbles are used so no valid physical addresses can be assigned
1102 * to the input.
1103 */
1104 return CEC_PHYS_ADDR_INVALID;
1105 }
1106 EXPORT_SYMBOL_GPL(v4l2_phys_addr_for_input);
1107
1108 /**
1109 * v4l2_phys_addr_validate() - validate a physical address from an EDID
1110 *
1111 * @phys_addr: the physical address to validate
1112 * @parent: if not %NULL, then this is filled with the parents PA.
1113 * @port: if not %NULL, then this is filled with the input port.
1114 *
1115 * This validates a physical address as read from an EDID. If the
1116 * PA is invalid (such as 1.0.1.0 since '0' is only allowed at the end),
1117 * then it will return -EINVAL.
1118 *
1119 * The parent PA is passed into %parent and the input port is passed into
1120 * %port. For example:
1121 *
1122 * PA = 0.0.0.0: has parent 0.0.0.0 and input port 0.
1123 *
1124 * PA = 1.0.0.0: has parent 0.0.0.0 and input port 1.
1125 *
1126 * PA = 3.2.0.0: has parent 3.0.0.0 and input port 2.
1127 *
1128 * PA = f.f.f.f: has parent f.f.f.f and input port 0.
1129 *
1130 * Return: 0 if the PA is valid, -EINVAL if not.
1131 */
v4l2_phys_addr_validate(u16 phys_addr,u16 * parent,u16 * port)1132 int v4l2_phys_addr_validate(u16 phys_addr, u16 *parent, u16 *port)
1133 {
1134 int i;
1135
1136 if (parent)
1137 *parent = phys_addr;
1138 if (port)
1139 *port = 0;
1140 if (phys_addr == CEC_PHYS_ADDR_INVALID)
1141 return 0;
1142 for (i = 0; i < 16; i += 4)
1143 if (phys_addr & (0xf << i))
1144 break;
1145 if (i == 16)
1146 return 0;
1147 if (parent)
1148 *parent = phys_addr & (0xfff0 << i);
1149 if (port)
1150 *port = (phys_addr >> i) & 0xf;
1151 for (i += 4; i < 16; i += 4)
1152 if ((phys_addr & (0xf << i)) == 0)
1153 return -EINVAL;
1154 return 0;
1155 }
1156 EXPORT_SYMBOL_GPL(v4l2_phys_addr_validate);
1157