1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * TI VPE mem2mem driver, based on the virtual v4l2-mem2mem example driver
4 *
5 * Copyright (c) 2013 Texas Instruments Inc.
6 * David Griego, <dagriego@biglakesoftware.com>
7 * Dale Farnsworth, <dale@farnsworth.org>
8 * Archit Taneja, <archit@ti.com>
9 *
10 * Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
11 * Pawel Osciak, <pawel@osciak.com>
12 * Marek Szyprowski, <m.szyprowski@samsung.com>
13 *
14 * Based on the virtual v4l2-mem2mem example device
15 */
16
17 #include <linux/delay.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/fs.h>
21 #include <linux/interrupt.h>
22 #include <linux/io.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/of.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/sched.h>
29 #include <linux/slab.h>
30 #include <linux/videodev2.h>
31 #include <linux/log2.h>
32 #include <linux/sizes.h>
33
34 #include <media/v4l2-common.h>
35 #include <media/v4l2-ctrls.h>
36 #include <media/v4l2-device.h>
37 #include <media/v4l2-event.h>
38 #include <media/v4l2-ioctl.h>
39 #include <media/v4l2-mem2mem.h>
40 #include <media/videobuf2-v4l2.h>
41 #include <media/videobuf2-dma-contig.h>
42
43 #include "vpdma.h"
44 #include "vpdma_priv.h"
45 #include "vpe_regs.h"
46 #include "sc.h"
47 #include "csc.h"
48
49 #define VPE_MODULE_NAME "vpe"
50
51 /* minimum and maximum frame sizes */
52 #define MIN_W 32
53 #define MIN_H 32
54 #define MAX_W 2048
55 #define MAX_H 2048
56
57 /* required alignments */
58 #define S_ALIGN 0 /* multiple of 1 */
59 #define H_ALIGN 1 /* multiple of 2 */
60
61 /* flags that indicate a format can be used for capture/output */
62 #define VPE_FMT_TYPE_CAPTURE (1 << 0)
63 #define VPE_FMT_TYPE_OUTPUT (1 << 1)
64
65 /* used as plane indices */
66 #define VPE_MAX_PLANES 2
67 #define VPE_LUMA 0
68 #define VPE_CHROMA 1
69
70 /* per m2m context info */
71 #define VPE_MAX_SRC_BUFS 3 /* need 3 src fields to de-interlace */
72
73 #define VPE_DEF_BUFS_PER_JOB 1 /* default one buffer per batch job */
74
75 /*
76 * each VPE context can need up to 3 config descriptors, 7 input descriptors,
77 * 3 output descriptors, and 10 control descriptors
78 */
79 #define VPE_DESC_LIST_SIZE (10 * VPDMA_DTD_DESC_SIZE + \
80 13 * VPDMA_CFD_CTD_DESC_SIZE)
81
82 #define vpe_dbg(vpedev, fmt, arg...) \
83 dev_dbg((vpedev)->v4l2_dev.dev, fmt, ##arg)
84 #define vpe_err(vpedev, fmt, arg...) \
85 dev_err((vpedev)->v4l2_dev.dev, fmt, ##arg)
86
87 struct vpe_us_coeffs {
88 unsigned short anchor_fid0_c0;
89 unsigned short anchor_fid0_c1;
90 unsigned short anchor_fid0_c2;
91 unsigned short anchor_fid0_c3;
92 unsigned short interp_fid0_c0;
93 unsigned short interp_fid0_c1;
94 unsigned short interp_fid0_c2;
95 unsigned short interp_fid0_c3;
96 unsigned short anchor_fid1_c0;
97 unsigned short anchor_fid1_c1;
98 unsigned short anchor_fid1_c2;
99 unsigned short anchor_fid1_c3;
100 unsigned short interp_fid1_c0;
101 unsigned short interp_fid1_c1;
102 unsigned short interp_fid1_c2;
103 unsigned short interp_fid1_c3;
104 };
105
106 /*
107 * Default upsampler coefficients
108 */
109 static const struct vpe_us_coeffs us_coeffs[] = {
110 {
111 /* Coefficients for progressive input */
112 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
113 0x00C8, 0x0348, 0x0018, 0x3FD8, 0x3FB8, 0x0378, 0x00E8, 0x3FE8,
114 },
115 {
116 /* Coefficients for Top Field Interlaced input */
117 0x0051, 0x03D5, 0x3FE3, 0x3FF7, 0x3FB5, 0x02E9, 0x018F, 0x3FD3,
118 /* Coefficients for Bottom Field Interlaced input */
119 0x016B, 0x0247, 0x00B1, 0x3F9D, 0x3FCF, 0x03DB, 0x005D, 0x3FF9,
120 },
121 };
122
123 /*
124 * the following registers are for configuring some of the parameters of the
125 * motion and edge detection blocks inside DEI, these generally remain the same,
126 * these could be passed later via userspace if some one needs to tweak these.
127 */
128 struct vpe_dei_regs {
129 unsigned long mdt_spacial_freq_thr_reg; /* VPE_DEI_REG2 */
130 unsigned long edi_config_reg; /* VPE_DEI_REG3 */
131 unsigned long edi_lut_reg0; /* VPE_DEI_REG4 */
132 unsigned long edi_lut_reg1; /* VPE_DEI_REG5 */
133 unsigned long edi_lut_reg2; /* VPE_DEI_REG6 */
134 unsigned long edi_lut_reg3; /* VPE_DEI_REG7 */
135 };
136
137 /*
138 * default expert DEI register values, unlikely to be modified.
139 */
140 static const struct vpe_dei_regs dei_regs = {
141 .mdt_spacial_freq_thr_reg = 0x020C0804u,
142 .edi_config_reg = 0x0118100Cu,
143 .edi_lut_reg0 = 0x08040200u,
144 .edi_lut_reg1 = 0x1010100Cu,
145 .edi_lut_reg2 = 0x10101010u,
146 .edi_lut_reg3 = 0x10101010u,
147 };
148
149 /*
150 * The port_data structure contains per-port data.
151 */
152 struct vpe_port_data {
153 enum vpdma_channel channel; /* VPDMA channel */
154 u8 vb_index; /* input frame f, f-1, f-2 index */
155 u8 vb_part; /* plane index for co-panar formats */
156 };
157
158 /*
159 * Define indices into the port_data tables
160 */
161 #define VPE_PORT_LUMA1_IN 0
162 #define VPE_PORT_CHROMA1_IN 1
163 #define VPE_PORT_LUMA2_IN 2
164 #define VPE_PORT_CHROMA2_IN 3
165 #define VPE_PORT_LUMA3_IN 4
166 #define VPE_PORT_CHROMA3_IN 5
167 #define VPE_PORT_MV_IN 6
168 #define VPE_PORT_MV_OUT 7
169 #define VPE_PORT_LUMA_OUT 8
170 #define VPE_PORT_CHROMA_OUT 9
171 #define VPE_PORT_RGB_OUT 10
172
173 static const struct vpe_port_data port_data[11] = {
174 [VPE_PORT_LUMA1_IN] = {
175 .channel = VPE_CHAN_LUMA1_IN,
176 .vb_index = 0,
177 .vb_part = VPE_LUMA,
178 },
179 [VPE_PORT_CHROMA1_IN] = {
180 .channel = VPE_CHAN_CHROMA1_IN,
181 .vb_index = 0,
182 .vb_part = VPE_CHROMA,
183 },
184 [VPE_PORT_LUMA2_IN] = {
185 .channel = VPE_CHAN_LUMA2_IN,
186 .vb_index = 1,
187 .vb_part = VPE_LUMA,
188 },
189 [VPE_PORT_CHROMA2_IN] = {
190 .channel = VPE_CHAN_CHROMA2_IN,
191 .vb_index = 1,
192 .vb_part = VPE_CHROMA,
193 },
194 [VPE_PORT_LUMA3_IN] = {
195 .channel = VPE_CHAN_LUMA3_IN,
196 .vb_index = 2,
197 .vb_part = VPE_LUMA,
198 },
199 [VPE_PORT_CHROMA3_IN] = {
200 .channel = VPE_CHAN_CHROMA3_IN,
201 .vb_index = 2,
202 .vb_part = VPE_CHROMA,
203 },
204 [VPE_PORT_MV_IN] = {
205 .channel = VPE_CHAN_MV_IN,
206 },
207 [VPE_PORT_MV_OUT] = {
208 .channel = VPE_CHAN_MV_OUT,
209 },
210 [VPE_PORT_LUMA_OUT] = {
211 .channel = VPE_CHAN_LUMA_OUT,
212 .vb_part = VPE_LUMA,
213 },
214 [VPE_PORT_CHROMA_OUT] = {
215 .channel = VPE_CHAN_CHROMA_OUT,
216 .vb_part = VPE_CHROMA,
217 },
218 [VPE_PORT_RGB_OUT] = {
219 .channel = VPE_CHAN_RGB_OUT,
220 .vb_part = VPE_LUMA,
221 },
222 };
223
224
225 /* driver info for each of the supported video formats */
226 struct vpe_fmt {
227 u32 fourcc; /* standard format identifier */
228 u8 types; /* CAPTURE and/or OUTPUT */
229 u8 coplanar; /* set for unpacked Luma and Chroma */
230 /* vpdma format info for each plane */
231 struct vpdma_data_format const *vpdma_fmt[VPE_MAX_PLANES];
232 };
233
234 static struct vpe_fmt vpe_formats[] = {
235 {
236 .fourcc = V4L2_PIX_FMT_NV16,
237 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
238 .coplanar = 1,
239 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y444],
240 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C444],
241 },
242 },
243 {
244 .fourcc = V4L2_PIX_FMT_NV12,
245 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
246 .coplanar = 1,
247 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
248 &vpdma_yuv_fmts[VPDMA_DATA_FMT_C420],
249 },
250 },
251 {
252 .fourcc = V4L2_PIX_FMT_NV21,
253 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
254 .coplanar = 1,
255 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_Y420],
256 &vpdma_yuv_fmts[VPDMA_DATA_FMT_CB420],
257 },
258 },
259 {
260 .fourcc = V4L2_PIX_FMT_YUYV,
261 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
262 .coplanar = 0,
263 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_YCB422],
264 },
265 },
266 {
267 .fourcc = V4L2_PIX_FMT_UYVY,
268 .types = VPE_FMT_TYPE_CAPTURE | VPE_FMT_TYPE_OUTPUT,
269 .coplanar = 0,
270 .vpdma_fmt = { &vpdma_yuv_fmts[VPDMA_DATA_FMT_CBY422],
271 },
272 },
273 {
274 .fourcc = V4L2_PIX_FMT_RGB24,
275 .types = VPE_FMT_TYPE_CAPTURE,
276 .coplanar = 0,
277 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB24],
278 },
279 },
280 {
281 .fourcc = V4L2_PIX_FMT_RGB32,
282 .types = VPE_FMT_TYPE_CAPTURE,
283 .coplanar = 0,
284 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ARGB32],
285 },
286 },
287 {
288 .fourcc = V4L2_PIX_FMT_BGR24,
289 .types = VPE_FMT_TYPE_CAPTURE,
290 .coplanar = 0,
291 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_BGR24],
292 },
293 },
294 {
295 .fourcc = V4L2_PIX_FMT_BGR32,
296 .types = VPE_FMT_TYPE_CAPTURE,
297 .coplanar = 0,
298 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_ABGR32],
299 },
300 },
301 {
302 .fourcc = V4L2_PIX_FMT_RGB565,
303 .types = VPE_FMT_TYPE_CAPTURE,
304 .coplanar = 0,
305 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGB565],
306 },
307 },
308 {
309 .fourcc = V4L2_PIX_FMT_RGB555,
310 .types = VPE_FMT_TYPE_CAPTURE,
311 .coplanar = 0,
312 .vpdma_fmt = { &vpdma_rgb_fmts[VPDMA_DATA_FMT_RGBA16_5551],
313 },
314 },
315 };
316
317 /*
318 * per-queue, driver-specific private data.
319 * there is one source queue and one destination queue for each m2m context.
320 */
321 struct vpe_q_data {
322 /* current v4l2 format info */
323 struct v4l2_format format;
324 unsigned int flags;
325 struct v4l2_rect c_rect; /* crop/compose rectangle */
326 struct vpe_fmt *fmt; /* format info */
327 };
328
329 /* vpe_q_data flag bits */
330 #define Q_DATA_FRAME_1D BIT(0)
331 #define Q_DATA_MODE_TILED BIT(1)
332 #define Q_DATA_INTERLACED_ALTERNATE BIT(2)
333 #define Q_DATA_INTERLACED_SEQ_TB BIT(3)
334 #define Q_DATA_INTERLACED_SEQ_BT BIT(4)
335
336 #define Q_IS_SEQ_XX (Q_DATA_INTERLACED_SEQ_TB | \
337 Q_DATA_INTERLACED_SEQ_BT)
338
339 #define Q_IS_INTERLACED (Q_DATA_INTERLACED_ALTERNATE | \
340 Q_DATA_INTERLACED_SEQ_TB | \
341 Q_DATA_INTERLACED_SEQ_BT)
342
343 enum {
344 Q_DATA_SRC = 0,
345 Q_DATA_DST = 1,
346 };
347
348 /* find our format description corresponding to the passed v4l2_format */
__find_format(u32 fourcc)349 static struct vpe_fmt *__find_format(u32 fourcc)
350 {
351 struct vpe_fmt *fmt;
352 unsigned int k;
353
354 for (k = 0; k < ARRAY_SIZE(vpe_formats); k++) {
355 fmt = &vpe_formats[k];
356 if (fmt->fourcc == fourcc)
357 return fmt;
358 }
359
360 return NULL;
361 }
362
find_format(struct v4l2_format * f)363 static struct vpe_fmt *find_format(struct v4l2_format *f)
364 {
365 return __find_format(f->fmt.pix.pixelformat);
366 }
367
368 /*
369 * there is one vpe_dev structure in the driver, it is shared by
370 * all instances.
371 */
372 struct vpe_dev {
373 struct v4l2_device v4l2_dev;
374 struct video_device vfd;
375 struct v4l2_m2m_dev *m2m_dev;
376
377 atomic_t num_instances; /* count of driver instances */
378 dma_addr_t loaded_mmrs; /* shadow mmrs in device */
379 struct mutex dev_mutex;
380 spinlock_t lock;
381
382 int irq;
383 void __iomem *base;
384 struct resource *res;
385
386 struct vpdma_data vpdma_data;
387 struct vpdma_data *vpdma; /* vpdma data handle */
388 struct sc_data *sc; /* scaler data handle */
389 struct csc_data *csc; /* csc data handle */
390 };
391
392 /*
393 * There is one vpe_ctx structure for each m2m context.
394 */
395 struct vpe_ctx {
396 struct v4l2_fh fh;
397 struct vpe_dev *dev;
398 struct v4l2_ctrl_handler hdl;
399
400 unsigned int field; /* current field */
401 unsigned int sequence; /* current frame/field seq */
402 unsigned int aborting; /* abort after next irq */
403
404 unsigned int bufs_per_job; /* input buffers per batch */
405 unsigned int bufs_completed; /* bufs done in this batch */
406
407 struct vpe_q_data q_data[2]; /* src & dst queue data */
408 struct vb2_v4l2_buffer *src_vbs[VPE_MAX_SRC_BUFS];
409 struct vb2_v4l2_buffer *dst_vb;
410
411 dma_addr_t mv_buf_dma[2]; /* dma addrs of motion vector in/out bufs */
412 void *mv_buf[2]; /* virtual addrs of motion vector bufs */
413 size_t mv_buf_size; /* current motion vector buffer size */
414 struct vpdma_buf mmr_adb; /* shadow reg addr/data block */
415 struct vpdma_buf sc_coeff_h; /* h coeff buffer */
416 struct vpdma_buf sc_coeff_v; /* v coeff buffer */
417 struct vpdma_desc_list desc_list; /* DMA descriptor list */
418
419 bool deinterlacing; /* using de-interlacer */
420 bool load_mmrs; /* have new shadow reg values */
421
422 unsigned int src_mv_buf_selector;
423 };
424
425
426 /*
427 * M2M devices get 2 queues.
428 * Return the queue given the type.
429 */
get_q_data(struct vpe_ctx * ctx,enum v4l2_buf_type type)430 static struct vpe_q_data *get_q_data(struct vpe_ctx *ctx,
431 enum v4l2_buf_type type)
432 {
433 switch (type) {
434 case V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE:
435 case V4L2_BUF_TYPE_VIDEO_OUTPUT:
436 return &ctx->q_data[Q_DATA_SRC];
437 case V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE:
438 case V4L2_BUF_TYPE_VIDEO_CAPTURE:
439 return &ctx->q_data[Q_DATA_DST];
440 default:
441 return NULL;
442 }
443 return NULL;
444 }
445
read_reg(struct vpe_dev * dev,int offset)446 static u32 read_reg(struct vpe_dev *dev, int offset)
447 {
448 return ioread32(dev->base + offset);
449 }
450
write_reg(struct vpe_dev * dev,int offset,u32 value)451 static void write_reg(struct vpe_dev *dev, int offset, u32 value)
452 {
453 iowrite32(value, dev->base + offset);
454 }
455
456 /* register field read/write helpers */
get_field(u32 value,u32 mask,int shift)457 static int get_field(u32 value, u32 mask, int shift)
458 {
459 return (value & (mask << shift)) >> shift;
460 }
461
read_field_reg(struct vpe_dev * dev,int offset,u32 mask,int shift)462 static int read_field_reg(struct vpe_dev *dev, int offset, u32 mask, int shift)
463 {
464 return get_field(read_reg(dev, offset), mask, shift);
465 }
466
write_field(u32 * valp,u32 field,u32 mask,int shift)467 static void write_field(u32 *valp, u32 field, u32 mask, int shift)
468 {
469 u32 val = *valp;
470
471 val &= ~(mask << shift);
472 val |= (field & mask) << shift;
473 *valp = val;
474 }
475
write_field_reg(struct vpe_dev * dev,int offset,u32 field,u32 mask,int shift)476 static void write_field_reg(struct vpe_dev *dev, int offset, u32 field,
477 u32 mask, int shift)
478 {
479 u32 val = read_reg(dev, offset);
480
481 write_field(&val, field, mask, shift);
482
483 write_reg(dev, offset, val);
484 }
485
486 /*
487 * DMA address/data block for the shadow registers
488 */
489 struct vpe_mmr_adb {
490 struct vpdma_adb_hdr out_fmt_hdr;
491 u32 out_fmt_reg[1];
492 u32 out_fmt_pad[3];
493 struct vpdma_adb_hdr us1_hdr;
494 u32 us1_regs[8];
495 struct vpdma_adb_hdr us2_hdr;
496 u32 us2_regs[8];
497 struct vpdma_adb_hdr us3_hdr;
498 u32 us3_regs[8];
499 struct vpdma_adb_hdr dei_hdr;
500 u32 dei_regs[8];
501 struct vpdma_adb_hdr sc_hdr0;
502 u32 sc_regs0[7];
503 u32 sc_pad0[1];
504 struct vpdma_adb_hdr sc_hdr8;
505 u32 sc_regs8[6];
506 u32 sc_pad8[2];
507 struct vpdma_adb_hdr sc_hdr17;
508 u32 sc_regs17[9];
509 u32 sc_pad17[3];
510 struct vpdma_adb_hdr csc_hdr;
511 u32 csc_regs[6];
512 u32 csc_pad[2];
513 };
514
515 #define GET_OFFSET_TOP(ctx, obj, reg) \
516 ((obj)->res->start - ctx->dev->res->start + reg)
517
518 #define VPE_SET_MMR_ADB_HDR(ctx, hdr, regs, offset_a) \
519 VPDMA_SET_MMR_ADB_HDR(ctx->mmr_adb, vpe_mmr_adb, hdr, regs, offset_a)
520 /*
521 * Set the headers for all of the address/data block structures.
522 */
init_adb_hdrs(struct vpe_ctx * ctx)523 static void init_adb_hdrs(struct vpe_ctx *ctx)
524 {
525 VPE_SET_MMR_ADB_HDR(ctx, out_fmt_hdr, out_fmt_reg, VPE_CLK_FORMAT_SELECT);
526 VPE_SET_MMR_ADB_HDR(ctx, us1_hdr, us1_regs, VPE_US1_R0);
527 VPE_SET_MMR_ADB_HDR(ctx, us2_hdr, us2_regs, VPE_US2_R0);
528 VPE_SET_MMR_ADB_HDR(ctx, us3_hdr, us3_regs, VPE_US3_R0);
529 VPE_SET_MMR_ADB_HDR(ctx, dei_hdr, dei_regs, VPE_DEI_FRAME_SIZE);
530 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr0, sc_regs0,
531 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC0));
532 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr8, sc_regs8,
533 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC8));
534 VPE_SET_MMR_ADB_HDR(ctx, sc_hdr17, sc_regs17,
535 GET_OFFSET_TOP(ctx, ctx->dev->sc, CFG_SC17));
536 VPE_SET_MMR_ADB_HDR(ctx, csc_hdr, csc_regs,
537 GET_OFFSET_TOP(ctx, ctx->dev->csc, CSC_CSC00));
538 };
539
540 /*
541 * Allocate or re-allocate the motion vector DMA buffers
542 * There are two buffers, one for input and one for output.
543 * However, the roles are reversed after each field is processed.
544 * In other words, after each field is processed, the previous
545 * output (dst) MV buffer becomes the new input (src) MV buffer.
546 */
realloc_mv_buffers(struct vpe_ctx * ctx,size_t size)547 static int realloc_mv_buffers(struct vpe_ctx *ctx, size_t size)
548 {
549 struct device *dev = ctx->dev->v4l2_dev.dev;
550
551 if (ctx->mv_buf_size == size)
552 return 0;
553
554 if (ctx->mv_buf[0])
555 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[0],
556 ctx->mv_buf_dma[0]);
557
558 if (ctx->mv_buf[1])
559 dma_free_coherent(dev, ctx->mv_buf_size, ctx->mv_buf[1],
560 ctx->mv_buf_dma[1]);
561
562 if (size == 0)
563 return 0;
564
565 ctx->mv_buf[0] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[0],
566 GFP_KERNEL);
567 if (!ctx->mv_buf[0]) {
568 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
569 return -ENOMEM;
570 }
571
572 ctx->mv_buf[1] = dma_alloc_coherent(dev, size, &ctx->mv_buf_dma[1],
573 GFP_KERNEL);
574 if (!ctx->mv_buf[1]) {
575 vpe_err(ctx->dev, "failed to allocate motion vector buffer\n");
576 dma_free_coherent(dev, size, ctx->mv_buf[0],
577 ctx->mv_buf_dma[0]);
578
579 return -ENOMEM;
580 }
581
582 ctx->mv_buf_size = size;
583 ctx->src_mv_buf_selector = 0;
584
585 return 0;
586 }
587
free_mv_buffers(struct vpe_ctx * ctx)588 static void free_mv_buffers(struct vpe_ctx *ctx)
589 {
590 realloc_mv_buffers(ctx, 0);
591 }
592
593 /*
594 * While de-interlacing, we keep the two most recent input buffers
595 * around. This function frees those two buffers when we have
596 * finished processing the current stream.
597 */
free_vbs(struct vpe_ctx * ctx)598 static void free_vbs(struct vpe_ctx *ctx)
599 {
600 struct vpe_dev *dev = ctx->dev;
601 unsigned long flags;
602
603 if (ctx->src_vbs[2] == NULL)
604 return;
605
606 spin_lock_irqsave(&dev->lock, flags);
607 if (ctx->src_vbs[2]) {
608 v4l2_m2m_buf_done(ctx->src_vbs[2], VB2_BUF_STATE_DONE);
609 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
610 v4l2_m2m_buf_done(ctx->src_vbs[1], VB2_BUF_STATE_DONE);
611 ctx->src_vbs[2] = NULL;
612 ctx->src_vbs[1] = NULL;
613 }
614 spin_unlock_irqrestore(&dev->lock, flags);
615 }
616
617 /*
618 * Enable or disable the VPE clocks
619 */
vpe_set_clock_enable(struct vpe_dev * dev,bool on)620 static void vpe_set_clock_enable(struct vpe_dev *dev, bool on)
621 {
622 u32 val = 0;
623
624 if (on)
625 val = VPE_DATA_PATH_CLK_ENABLE | VPE_VPEDMA_CLK_ENABLE;
626 write_reg(dev, VPE_CLK_ENABLE, val);
627 }
628
vpe_top_reset(struct vpe_dev * dev)629 static void vpe_top_reset(struct vpe_dev *dev)
630 {
631
632 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_DATA_PATH_CLK_RESET_MASK,
633 VPE_DATA_PATH_CLK_RESET_SHIFT);
634
635 usleep_range(100, 150);
636
637 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_DATA_PATH_CLK_RESET_MASK,
638 VPE_DATA_PATH_CLK_RESET_SHIFT);
639 }
640
vpe_top_vpdma_reset(struct vpe_dev * dev)641 static void vpe_top_vpdma_reset(struct vpe_dev *dev)
642 {
643 write_field_reg(dev, VPE_CLK_RESET, 1, VPE_VPDMA_CLK_RESET_MASK,
644 VPE_VPDMA_CLK_RESET_SHIFT);
645
646 usleep_range(100, 150);
647
648 write_field_reg(dev, VPE_CLK_RESET, 0, VPE_VPDMA_CLK_RESET_MASK,
649 VPE_VPDMA_CLK_RESET_SHIFT);
650 }
651
652 /*
653 * Load the correct of upsampler coefficients into the shadow MMRs
654 */
set_us_coefficients(struct vpe_ctx * ctx)655 static void set_us_coefficients(struct vpe_ctx *ctx)
656 {
657 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
658 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
659 u32 *us1_reg = &mmr_adb->us1_regs[0];
660 u32 *us2_reg = &mmr_adb->us2_regs[0];
661 u32 *us3_reg = &mmr_adb->us3_regs[0];
662 const unsigned short *cp, *end_cp;
663
664 cp = &us_coeffs[0].anchor_fid0_c0;
665
666 if (s_q_data->flags & Q_IS_INTERLACED) /* interlaced */
667 cp += sizeof(us_coeffs[0]) / sizeof(*cp);
668
669 end_cp = cp + sizeof(us_coeffs[0]) / sizeof(*cp);
670
671 while (cp < end_cp) {
672 write_field(us1_reg, *cp++, VPE_US_C0_MASK, VPE_US_C0_SHIFT);
673 write_field(us1_reg, *cp++, VPE_US_C1_MASK, VPE_US_C1_SHIFT);
674 *us2_reg++ = *us1_reg;
675 *us3_reg++ = *us1_reg++;
676 }
677 ctx->load_mmrs = true;
678 }
679
680 /*
681 * Set the upsampler config mode and the VPDMA line mode in the shadow MMRs.
682 */
set_cfg_modes(struct vpe_ctx * ctx)683 static void set_cfg_modes(struct vpe_ctx *ctx)
684 {
685 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
686 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
687 u32 *us1_reg0 = &mmr_adb->us1_regs[0];
688 u32 *us2_reg0 = &mmr_adb->us2_regs[0];
689 u32 *us3_reg0 = &mmr_adb->us3_regs[0];
690 int cfg_mode = 1;
691
692 /*
693 * Cfg Mode 0: YUV420 source, enable upsampler, DEI is de-interlacing.
694 * Cfg Mode 1: YUV422 source, disable upsampler, DEI is de-interlacing.
695 */
696
697 if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
698 fmt->fourcc == V4L2_PIX_FMT_NV21)
699 cfg_mode = 0;
700
701 write_field(us1_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
702 write_field(us2_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
703 write_field(us3_reg0, cfg_mode, VPE_US_MODE_MASK, VPE_US_MODE_SHIFT);
704
705 ctx->load_mmrs = true;
706 }
707
set_line_modes(struct vpe_ctx * ctx)708 static void set_line_modes(struct vpe_ctx *ctx)
709 {
710 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_SRC].fmt;
711 int line_mode = 1;
712
713 if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
714 fmt->fourcc == V4L2_PIX_FMT_NV21)
715 line_mode = 0; /* double lines to line buffer */
716
717 /* regs for now */
718 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA1_IN);
719 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA2_IN);
720 vpdma_set_line_mode(ctx->dev->vpdma, line_mode, VPE_CHAN_CHROMA3_IN);
721
722 /* frame start for input luma */
723 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
724 VPE_CHAN_LUMA1_IN);
725 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
726 VPE_CHAN_LUMA2_IN);
727 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
728 VPE_CHAN_LUMA3_IN);
729
730 /* frame start for input chroma */
731 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
732 VPE_CHAN_CHROMA1_IN);
733 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
734 VPE_CHAN_CHROMA2_IN);
735 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
736 VPE_CHAN_CHROMA3_IN);
737
738 /* frame start for MV in client */
739 vpdma_set_frame_start_event(ctx->dev->vpdma, VPDMA_FSEVENT_CHANNEL_ACTIVE,
740 VPE_CHAN_MV_IN);
741 }
742
743 /*
744 * Set the shadow registers that are modified when the source
745 * format changes.
746 */
set_src_registers(struct vpe_ctx * ctx)747 static void set_src_registers(struct vpe_ctx *ctx)
748 {
749 set_us_coefficients(ctx);
750 }
751
752 /*
753 * Set the shadow registers that are modified when the destination
754 * format changes.
755 */
set_dst_registers(struct vpe_ctx * ctx)756 static void set_dst_registers(struct vpe_ctx *ctx)
757 {
758 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
759 struct vpe_fmt *fmt = ctx->q_data[Q_DATA_DST].fmt;
760 const struct v4l2_format_info *finfo;
761 u32 val = 0;
762
763 finfo = v4l2_format_info(fmt->fourcc);
764 if (v4l2_is_format_rgb(finfo)) {
765 val |= VPE_RGB_OUT_SELECT;
766 vpdma_set_bg_color(ctx->dev->vpdma,
767 (struct vpdma_data_format *)fmt->vpdma_fmt[0], 0xff);
768 } else if (fmt->fourcc == V4L2_PIX_FMT_NV16)
769 val |= VPE_COLOR_SEPARATE_422;
770
771 /*
772 * the source of CHR_DS and CSC is always the scaler, irrespective of
773 * whether it's used or not
774 */
775 val |= VPE_DS_SRC_DEI_SCALER | VPE_CSC_SRC_DEI_SCALER;
776
777 if (fmt->fourcc != V4L2_PIX_FMT_NV12 &&
778 fmt->fourcc != V4L2_PIX_FMT_NV21)
779 val |= VPE_DS_BYPASS;
780
781 mmr_adb->out_fmt_reg[0] = val;
782
783 ctx->load_mmrs = true;
784 }
785
786 /*
787 * Set the de-interlacer shadow register values
788 */
set_dei_regs(struct vpe_ctx * ctx)789 static void set_dei_regs(struct vpe_ctx *ctx)
790 {
791 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
792 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
793 unsigned int src_h = s_q_data->c_rect.height;
794 unsigned int src_w = s_q_data->c_rect.width;
795 u32 *dei_mmr0 = &mmr_adb->dei_regs[0];
796 bool deinterlace = true;
797 u32 val = 0;
798
799 /*
800 * according to TRM, we should set DEI in progressive bypass mode when
801 * the input content is progressive, however, DEI is bypassed correctly
802 * for both progressive and interlace content in interlace bypass mode.
803 * It has been recommended not to use progressive bypass mode.
804 */
805 if (!(s_q_data->flags & Q_IS_INTERLACED) || !ctx->deinterlacing) {
806 deinterlace = false;
807 val = VPE_DEI_INTERLACE_BYPASS;
808 }
809
810 src_h = deinterlace ? src_h * 2 : src_h;
811
812 val |= (src_h << VPE_DEI_HEIGHT_SHIFT) |
813 (src_w << VPE_DEI_WIDTH_SHIFT) |
814 VPE_DEI_FIELD_FLUSH;
815
816 *dei_mmr0 = val;
817
818 ctx->load_mmrs = true;
819 }
820
set_dei_shadow_registers(struct vpe_ctx * ctx)821 static void set_dei_shadow_registers(struct vpe_ctx *ctx)
822 {
823 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
824 u32 *dei_mmr = &mmr_adb->dei_regs[0];
825 const struct vpe_dei_regs *cur = &dei_regs;
826
827 dei_mmr[2] = cur->mdt_spacial_freq_thr_reg;
828 dei_mmr[3] = cur->edi_config_reg;
829 dei_mmr[4] = cur->edi_lut_reg0;
830 dei_mmr[5] = cur->edi_lut_reg1;
831 dei_mmr[6] = cur->edi_lut_reg2;
832 dei_mmr[7] = cur->edi_lut_reg3;
833
834 ctx->load_mmrs = true;
835 }
836
config_edi_input_mode(struct vpe_ctx * ctx,int mode)837 static void config_edi_input_mode(struct vpe_ctx *ctx, int mode)
838 {
839 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
840 u32 *edi_config_reg = &mmr_adb->dei_regs[3];
841
842 if (mode & 0x2)
843 write_field(edi_config_reg, 1, 1, 2); /* EDI_ENABLE_3D */
844
845 if (mode & 0x3)
846 write_field(edi_config_reg, 1, 1, 3); /* EDI_CHROMA_3D */
847
848 write_field(edi_config_reg, mode, VPE_EDI_INP_MODE_MASK,
849 VPE_EDI_INP_MODE_SHIFT);
850
851 ctx->load_mmrs = true;
852 }
853
854 /*
855 * Set the shadow registers whose values are modified when either the
856 * source or destination format is changed.
857 */
set_srcdst_params(struct vpe_ctx * ctx)858 static int set_srcdst_params(struct vpe_ctx *ctx)
859 {
860 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
861 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
862 struct vpe_mmr_adb *mmr_adb = ctx->mmr_adb.addr;
863 unsigned int src_w = s_q_data->c_rect.width;
864 unsigned int src_h = s_q_data->c_rect.height;
865 unsigned int dst_w = d_q_data->c_rect.width;
866 unsigned int dst_h = d_q_data->c_rect.height;
867 struct v4l2_pix_format_mplane *spix;
868 size_t mv_buf_size;
869 int ret;
870
871 ctx->sequence = 0;
872 ctx->field = V4L2_FIELD_TOP;
873 spix = &s_q_data->format.fmt.pix_mp;
874
875 if ((s_q_data->flags & Q_IS_INTERLACED) &&
876 !(d_q_data->flags & Q_IS_INTERLACED)) {
877 int bytes_per_line;
878 const struct vpdma_data_format *mv =
879 &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
880
881 /*
882 * we make sure that the source image has a 16 byte aligned
883 * stride, we need to do the same for the motion vector buffer
884 * by aligning it's stride to the next 16 byte boundary. this
885 * extra space will not be used by the de-interlacer, but will
886 * ensure that vpdma operates correctly
887 */
888 bytes_per_line = ALIGN((spix->width * mv->depth) >> 3,
889 VPDMA_STRIDE_ALIGN);
890 mv_buf_size = bytes_per_line * spix->height;
891
892 ctx->deinterlacing = true;
893 src_h <<= 1;
894 } else {
895 ctx->deinterlacing = false;
896 mv_buf_size = 0;
897 }
898
899 free_vbs(ctx);
900 ctx->src_vbs[2] = ctx->src_vbs[1] = ctx->src_vbs[0] = NULL;
901
902 ret = realloc_mv_buffers(ctx, mv_buf_size);
903 if (ret)
904 return ret;
905
906 set_cfg_modes(ctx);
907 set_dei_regs(ctx);
908
909 csc_set_coeff(ctx->dev->csc, &mmr_adb->csc_regs[0],
910 &s_q_data->format, &d_q_data->format);
911
912 sc_set_hs_coeffs(ctx->dev->sc, ctx->sc_coeff_h.addr, src_w, dst_w);
913 sc_set_vs_coeffs(ctx->dev->sc, ctx->sc_coeff_v.addr, src_h, dst_h);
914
915 sc_config_scaler(ctx->dev->sc, &mmr_adb->sc_regs0[0],
916 &mmr_adb->sc_regs8[0], &mmr_adb->sc_regs17[0],
917 src_w, src_h, dst_w, dst_h);
918
919 return 0;
920 }
921
922 /*
923 * mem2mem callbacks
924 */
925
926 /*
927 * job_ready() - check whether an instance is ready to be scheduled to run
928 */
job_ready(void * priv)929 static int job_ready(void *priv)
930 {
931 struct vpe_ctx *ctx = priv;
932
933 /*
934 * This check is needed as this might be called directly from driver
935 * When called by m2m framework, this will always satisfy, but when
936 * called from vpe_irq, this might fail. (src stream with zero buffers)
937 */
938 if (v4l2_m2m_num_src_bufs_ready(ctx->fh.m2m_ctx) <= 0 ||
939 v4l2_m2m_num_dst_bufs_ready(ctx->fh.m2m_ctx) <= 0)
940 return 0;
941
942 return 1;
943 }
944
job_abort(void * priv)945 static void job_abort(void *priv)
946 {
947 struct vpe_ctx *ctx = priv;
948
949 /* Will cancel the transaction in the next interrupt handler */
950 ctx->aborting = 1;
951 }
952
vpe_dump_regs(struct vpe_dev * dev)953 static void vpe_dump_regs(struct vpe_dev *dev)
954 {
955 #define DUMPREG(r) vpe_dbg(dev, "%-35s %08x\n", #r, read_reg(dev, VPE_##r))
956
957 vpe_dbg(dev, "VPE Registers:\n");
958
959 DUMPREG(PID);
960 DUMPREG(SYSCONFIG);
961 DUMPREG(INT0_STATUS0_RAW);
962 DUMPREG(INT0_STATUS0);
963 DUMPREG(INT0_ENABLE0);
964 DUMPREG(INT0_STATUS1_RAW);
965 DUMPREG(INT0_STATUS1);
966 DUMPREG(INT0_ENABLE1);
967 DUMPREG(CLK_ENABLE);
968 DUMPREG(CLK_RESET);
969 DUMPREG(CLK_FORMAT_SELECT);
970 DUMPREG(CLK_RANGE_MAP);
971 DUMPREG(US1_R0);
972 DUMPREG(US1_R1);
973 DUMPREG(US1_R2);
974 DUMPREG(US1_R3);
975 DUMPREG(US1_R4);
976 DUMPREG(US1_R5);
977 DUMPREG(US1_R6);
978 DUMPREG(US1_R7);
979 DUMPREG(US2_R0);
980 DUMPREG(US2_R1);
981 DUMPREG(US2_R2);
982 DUMPREG(US2_R3);
983 DUMPREG(US2_R4);
984 DUMPREG(US2_R5);
985 DUMPREG(US2_R6);
986 DUMPREG(US2_R7);
987 DUMPREG(US3_R0);
988 DUMPREG(US3_R1);
989 DUMPREG(US3_R2);
990 DUMPREG(US3_R3);
991 DUMPREG(US3_R4);
992 DUMPREG(US3_R5);
993 DUMPREG(US3_R6);
994 DUMPREG(US3_R7);
995 DUMPREG(DEI_FRAME_SIZE);
996 DUMPREG(MDT_BYPASS);
997 DUMPREG(MDT_SF_THRESHOLD);
998 DUMPREG(EDI_CONFIG);
999 DUMPREG(DEI_EDI_LUT_R0);
1000 DUMPREG(DEI_EDI_LUT_R1);
1001 DUMPREG(DEI_EDI_LUT_R2);
1002 DUMPREG(DEI_EDI_LUT_R3);
1003 DUMPREG(DEI_FMD_WINDOW_R0);
1004 DUMPREG(DEI_FMD_WINDOW_R1);
1005 DUMPREG(DEI_FMD_CONTROL_R0);
1006 DUMPREG(DEI_FMD_CONTROL_R1);
1007 DUMPREG(DEI_FMD_STATUS_R0);
1008 DUMPREG(DEI_FMD_STATUS_R1);
1009 DUMPREG(DEI_FMD_STATUS_R2);
1010 #undef DUMPREG
1011
1012 sc_dump_regs(dev->sc);
1013 csc_dump_regs(dev->csc);
1014 }
1015
add_out_dtd(struct vpe_ctx * ctx,int port)1016 static void add_out_dtd(struct vpe_ctx *ctx, int port)
1017 {
1018 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_DST];
1019 const struct vpe_port_data *p_data = &port_data[port];
1020 struct vb2_buffer *vb = &ctx->dst_vb->vb2_buf;
1021 struct vpe_fmt *fmt = q_data->fmt;
1022 const struct vpdma_data_format *vpdma_fmt;
1023 int mv_buf_selector = !ctx->src_mv_buf_selector;
1024 struct v4l2_pix_format_mplane *pix;
1025 dma_addr_t dma_addr;
1026 u32 flags = 0;
1027 u32 offset = 0;
1028 u32 stride;
1029
1030 if (port == VPE_PORT_MV_OUT) {
1031 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1032 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1033 q_data = &ctx->q_data[Q_DATA_SRC];
1034 pix = &q_data->format.fmt.pix_mp;
1035 stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
1036 VPDMA_STRIDE_ALIGN);
1037 } else {
1038 /* to incorporate interleaved formats */
1039 int plane = fmt->coplanar ? p_data->vb_part : 0;
1040
1041 pix = &q_data->format.fmt.pix_mp;
1042 vpdma_fmt = fmt->vpdma_fmt[plane];
1043 /*
1044 * If we are using a single plane buffer and
1045 * we need to set a separate vpdma chroma channel.
1046 */
1047 if (pix->num_planes == 1 && plane) {
1048 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1049 /* Compute required offset */
1050 offset = pix->plane_fmt[0].bytesperline * pix->height;
1051 } else {
1052 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1053 /* Use address as is, no offset */
1054 offset = 0;
1055 }
1056 if (!dma_addr) {
1057 vpe_err(ctx->dev,
1058 "acquiring output buffer(%d) dma_addr failed\n",
1059 port);
1060 return;
1061 }
1062 /* Apply the offset */
1063 dma_addr += offset;
1064 stride = pix->plane_fmt[VPE_LUMA].bytesperline;
1065 }
1066
1067 if (q_data->flags & Q_DATA_FRAME_1D)
1068 flags |= VPDMA_DATA_FRAME_1D;
1069 if (q_data->flags & Q_DATA_MODE_TILED)
1070 flags |= VPDMA_DATA_MODE_TILED;
1071
1072 vpdma_set_max_size(ctx->dev->vpdma, VPDMA_MAX_SIZE1,
1073 MAX_W, MAX_H);
1074
1075 vpdma_add_out_dtd(&ctx->desc_list, pix->width,
1076 stride, &q_data->c_rect,
1077 vpdma_fmt, dma_addr, MAX_OUT_WIDTH_REG1,
1078 MAX_OUT_HEIGHT_REG1, p_data->channel, flags);
1079 }
1080
add_in_dtd(struct vpe_ctx * ctx,int port)1081 static void add_in_dtd(struct vpe_ctx *ctx, int port)
1082 {
1083 struct vpe_q_data *q_data = &ctx->q_data[Q_DATA_SRC];
1084 const struct vpe_port_data *p_data = &port_data[port];
1085 struct vb2_buffer *vb = &ctx->src_vbs[p_data->vb_index]->vb2_buf;
1086 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
1087 struct vpe_fmt *fmt = q_data->fmt;
1088 struct v4l2_pix_format_mplane *pix;
1089 const struct vpdma_data_format *vpdma_fmt;
1090 int mv_buf_selector = ctx->src_mv_buf_selector;
1091 int field = vbuf->field == V4L2_FIELD_BOTTOM;
1092 int frame_width, frame_height;
1093 dma_addr_t dma_addr;
1094 u32 flags = 0;
1095 u32 offset = 0;
1096 u32 stride;
1097
1098 pix = &q_data->format.fmt.pix_mp;
1099 if (port == VPE_PORT_MV_IN) {
1100 vpdma_fmt = &vpdma_misc_fmts[VPDMA_DATA_FMT_MV];
1101 dma_addr = ctx->mv_buf_dma[mv_buf_selector];
1102 stride = ALIGN((pix->width * vpdma_fmt->depth) >> 3,
1103 VPDMA_STRIDE_ALIGN);
1104 } else {
1105 /* to incorporate interleaved formats */
1106 int plane = fmt->coplanar ? p_data->vb_part : 0;
1107
1108 vpdma_fmt = fmt->vpdma_fmt[plane];
1109 /*
1110 * If we are using a single plane buffer and
1111 * we need to set a separate vpdma chroma channel.
1112 */
1113 if (pix->num_planes == 1 && plane) {
1114 dma_addr = vb2_dma_contig_plane_dma_addr(vb, 0);
1115 /* Compute required offset */
1116 offset = pix->plane_fmt[0].bytesperline * pix->height;
1117 } else {
1118 dma_addr = vb2_dma_contig_plane_dma_addr(vb, plane);
1119 /* Use address as is, no offset */
1120 offset = 0;
1121 }
1122 if (!dma_addr) {
1123 vpe_err(ctx->dev,
1124 "acquiring output buffer(%d) dma_addr failed\n",
1125 port);
1126 return;
1127 }
1128 /* Apply the offset */
1129 dma_addr += offset;
1130 stride = pix->plane_fmt[VPE_LUMA].bytesperline;
1131
1132 /*
1133 * field used in VPDMA desc = 0 (top) / 1 (bottom)
1134 * Use top or bottom field from same vb alternately
1135 * For each de-interlacing operation, f,f-1,f-2 should be one
1136 * of TBT or BTB
1137 */
1138 if (q_data->flags & Q_DATA_INTERLACED_SEQ_TB ||
1139 q_data->flags & Q_DATA_INTERLACED_SEQ_BT) {
1140 /* Select initial value based on format */
1141 if (q_data->flags & Q_DATA_INTERLACED_SEQ_BT)
1142 field = 1;
1143 else
1144 field = 0;
1145
1146 /* Toggle for each vb_index and each operation */
1147 field = (field + p_data->vb_index + ctx->sequence) % 2;
1148
1149 if (field) {
1150 int height = pix->height / 2;
1151 int bpp;
1152
1153 if (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
1154 fmt->fourcc == V4L2_PIX_FMT_NV21)
1155 bpp = 1;
1156 else
1157 bpp = vpdma_fmt->depth >> 3;
1158
1159 if (plane)
1160 height /= 2;
1161
1162 dma_addr += pix->width * height * bpp;
1163 }
1164 }
1165 }
1166
1167 if (q_data->flags & Q_DATA_FRAME_1D)
1168 flags |= VPDMA_DATA_FRAME_1D;
1169 if (q_data->flags & Q_DATA_MODE_TILED)
1170 flags |= VPDMA_DATA_MODE_TILED;
1171
1172 frame_width = q_data->c_rect.width;
1173 frame_height = q_data->c_rect.height;
1174
1175 if (p_data->vb_part && (fmt->fourcc == V4L2_PIX_FMT_NV12 ||
1176 fmt->fourcc == V4L2_PIX_FMT_NV21))
1177 frame_height /= 2;
1178
1179 vpdma_add_in_dtd(&ctx->desc_list, pix->width, stride,
1180 &q_data->c_rect, vpdma_fmt, dma_addr,
1181 p_data->channel, field, flags, frame_width,
1182 frame_height, 0, 0);
1183 }
1184
1185 /*
1186 * Enable the expected IRQ sources
1187 */
enable_irqs(struct vpe_ctx * ctx)1188 static void enable_irqs(struct vpe_ctx *ctx)
1189 {
1190 write_reg(ctx->dev, VPE_INT0_ENABLE0_SET, VPE_INT0_LIST0_COMPLETE);
1191 write_reg(ctx->dev, VPE_INT0_ENABLE1_SET, VPE_DEI_ERROR_INT |
1192 VPE_DS1_UV_ERROR_INT);
1193
1194 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, true);
1195 }
1196
disable_irqs(struct vpe_ctx * ctx)1197 static void disable_irqs(struct vpe_ctx *ctx)
1198 {
1199 write_reg(ctx->dev, VPE_INT0_ENABLE0_CLR, 0xffffffff);
1200 write_reg(ctx->dev, VPE_INT0_ENABLE1_CLR, 0xffffffff);
1201
1202 vpdma_enable_list_complete_irq(ctx->dev->vpdma, 0, 0, false);
1203 }
1204
1205 /* device_run() - prepares and starts the device
1206 *
1207 * This function is only called when both the source and destination
1208 * buffers are in place.
1209 */
device_run(void * priv)1210 static void device_run(void *priv)
1211 {
1212 struct vpe_ctx *ctx = priv;
1213 struct sc_data *sc = ctx->dev->sc;
1214 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
1215 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
1216 const struct v4l2_format_info *d_finfo;
1217
1218 d_finfo = v4l2_format_info(d_q_data->fmt->fourcc);
1219
1220 if (ctx->deinterlacing && s_q_data->flags & Q_IS_SEQ_XX &&
1221 ctx->sequence % 2 == 0) {
1222 /* When using SEQ_XX type buffers, each buffer has two fields
1223 * each buffer has two fields (top & bottom)
1224 * Removing one buffer is actually getting two fields
1225 * Alternate between two operations:-
1226 * Even : consume one field but DO NOT REMOVE from queue
1227 * Odd : consume other field and REMOVE from queue
1228 */
1229 ctx->src_vbs[0] = v4l2_m2m_next_src_buf(ctx->fh.m2m_ctx);
1230 WARN_ON(ctx->src_vbs[0] == NULL);
1231 } else {
1232 ctx->src_vbs[0] = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
1233 WARN_ON(ctx->src_vbs[0] == NULL);
1234 }
1235
1236 ctx->dst_vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
1237 WARN_ON(ctx->dst_vb == NULL);
1238
1239 if (ctx->deinterlacing) {
1240
1241 if (ctx->src_vbs[2] == NULL) {
1242 ctx->src_vbs[2] = ctx->src_vbs[0];
1243 WARN_ON(ctx->src_vbs[2] == NULL);
1244 ctx->src_vbs[1] = ctx->src_vbs[0];
1245 WARN_ON(ctx->src_vbs[1] == NULL);
1246 }
1247
1248 /*
1249 * we have output the first 2 frames through line average, we
1250 * now switch to EDI de-interlacer
1251 */
1252 if (ctx->sequence == 2)
1253 config_edi_input_mode(ctx, 0x3); /* EDI (Y + UV) */
1254 }
1255
1256 /* config descriptors */
1257 if (ctx->dev->loaded_mmrs != ctx->mmr_adb.dma_addr || ctx->load_mmrs) {
1258 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->mmr_adb);
1259 vpdma_add_cfd_adb(&ctx->desc_list, CFD_MMR_CLIENT, &ctx->mmr_adb);
1260
1261 set_line_modes(ctx);
1262
1263 ctx->dev->loaded_mmrs = ctx->mmr_adb.dma_addr;
1264 ctx->load_mmrs = false;
1265 }
1266
1267 if (sc->loaded_coeff_h != ctx->sc_coeff_h.dma_addr ||
1268 sc->load_coeff_h) {
1269 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_h);
1270 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1271 &ctx->sc_coeff_h, 0);
1272
1273 sc->loaded_coeff_h = ctx->sc_coeff_h.dma_addr;
1274 sc->load_coeff_h = false;
1275 }
1276
1277 if (sc->loaded_coeff_v != ctx->sc_coeff_v.dma_addr ||
1278 sc->load_coeff_v) {
1279 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->sc_coeff_v);
1280 vpdma_add_cfd_block(&ctx->desc_list, CFD_SC_CLIENT,
1281 &ctx->sc_coeff_v, SC_COEF_SRAM_SIZE >> 4);
1282
1283 sc->loaded_coeff_v = ctx->sc_coeff_v.dma_addr;
1284 sc->load_coeff_v = false;
1285 }
1286
1287 /* output data descriptors */
1288 if (ctx->deinterlacing)
1289 add_out_dtd(ctx, VPE_PORT_MV_OUT);
1290
1291 if (v4l2_is_format_rgb(d_finfo)) {
1292 add_out_dtd(ctx, VPE_PORT_RGB_OUT);
1293 } else {
1294 add_out_dtd(ctx, VPE_PORT_LUMA_OUT);
1295 if (d_q_data->fmt->coplanar)
1296 add_out_dtd(ctx, VPE_PORT_CHROMA_OUT);
1297 }
1298
1299 /* input data descriptors */
1300 if (ctx->deinterlacing) {
1301 add_in_dtd(ctx, VPE_PORT_LUMA3_IN);
1302 add_in_dtd(ctx, VPE_PORT_CHROMA3_IN);
1303
1304 add_in_dtd(ctx, VPE_PORT_LUMA2_IN);
1305 add_in_dtd(ctx, VPE_PORT_CHROMA2_IN);
1306 }
1307
1308 add_in_dtd(ctx, VPE_PORT_LUMA1_IN);
1309 add_in_dtd(ctx, VPE_PORT_CHROMA1_IN);
1310
1311 if (ctx->deinterlacing)
1312 add_in_dtd(ctx, VPE_PORT_MV_IN);
1313
1314 /* sync on channel control descriptors for input ports */
1315 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_LUMA1_IN);
1316 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_CHROMA1_IN);
1317
1318 if (ctx->deinterlacing) {
1319 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1320 VPE_CHAN_LUMA2_IN);
1321 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1322 VPE_CHAN_CHROMA2_IN);
1323
1324 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1325 VPE_CHAN_LUMA3_IN);
1326 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1327 VPE_CHAN_CHROMA3_IN);
1328
1329 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_IN);
1330 }
1331
1332 /* sync on channel control descriptors for output ports */
1333 if (v4l2_is_format_rgb(d_finfo)) {
1334 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1335 VPE_CHAN_RGB_OUT);
1336 } else {
1337 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1338 VPE_CHAN_LUMA_OUT);
1339 if (d_q_data->fmt->coplanar)
1340 vpdma_add_sync_on_channel_ctd(&ctx->desc_list,
1341 VPE_CHAN_CHROMA_OUT);
1342 }
1343
1344 if (ctx->deinterlacing)
1345 vpdma_add_sync_on_channel_ctd(&ctx->desc_list, VPE_CHAN_MV_OUT);
1346
1347 enable_irqs(ctx);
1348
1349 vpdma_map_desc_buf(ctx->dev->vpdma, &ctx->desc_list.buf);
1350 vpdma_submit_descs(ctx->dev->vpdma, &ctx->desc_list, 0);
1351 }
1352
dei_error(struct vpe_ctx * ctx)1353 static void dei_error(struct vpe_ctx *ctx)
1354 {
1355 dev_warn(ctx->dev->v4l2_dev.dev,
1356 "received DEI error interrupt\n");
1357 }
1358
ds1_uv_error(struct vpe_ctx * ctx)1359 static void ds1_uv_error(struct vpe_ctx *ctx)
1360 {
1361 dev_warn(ctx->dev->v4l2_dev.dev,
1362 "received downsampler error interrupt\n");
1363 }
1364
vpe_irq(int irq_vpe,void * data)1365 static irqreturn_t vpe_irq(int irq_vpe, void *data)
1366 {
1367 struct vpe_dev *dev = (struct vpe_dev *)data;
1368 struct vpe_ctx *ctx;
1369 struct vpe_q_data *d_q_data;
1370 struct vb2_v4l2_buffer *s_vb, *d_vb;
1371 unsigned long flags;
1372 u32 irqst0, irqst1;
1373 bool list_complete = false;
1374
1375 irqst0 = read_reg(dev, VPE_INT0_STATUS0);
1376 if (irqst0) {
1377 write_reg(dev, VPE_INT0_STATUS0_CLR, irqst0);
1378 vpe_dbg(dev, "INT0_STATUS0 = 0x%08x\n", irqst0);
1379 }
1380
1381 irqst1 = read_reg(dev, VPE_INT0_STATUS1);
1382 if (irqst1) {
1383 write_reg(dev, VPE_INT0_STATUS1_CLR, irqst1);
1384 vpe_dbg(dev, "INT0_STATUS1 = 0x%08x\n", irqst1);
1385 }
1386
1387 ctx = v4l2_m2m_get_curr_priv(dev->m2m_dev);
1388 if (!ctx) {
1389 vpe_err(dev, "instance released before end of transaction\n");
1390 goto handled;
1391 }
1392
1393 if (irqst1) {
1394 if (irqst1 & VPE_DEI_ERROR_INT) {
1395 irqst1 &= ~VPE_DEI_ERROR_INT;
1396 dei_error(ctx);
1397 }
1398 if (irqst1 & VPE_DS1_UV_ERROR_INT) {
1399 irqst1 &= ~VPE_DS1_UV_ERROR_INT;
1400 ds1_uv_error(ctx);
1401 }
1402 }
1403
1404 if (irqst0) {
1405 if (irqst0 & VPE_INT0_LIST0_COMPLETE)
1406 vpdma_clear_list_stat(ctx->dev->vpdma, 0, 0);
1407
1408 irqst0 &= ~(VPE_INT0_LIST0_COMPLETE);
1409 list_complete = true;
1410 }
1411
1412 if (irqst0 | irqst1) {
1413 dev_warn(dev->v4l2_dev.dev, "Unexpected interrupt: INT0_STATUS0 = 0x%08x, INT0_STATUS1 = 0x%08x\n",
1414 irqst0, irqst1);
1415 }
1416
1417 /*
1418 * Setup next operation only when list complete IRQ occurs
1419 * otherwise, skip the following code
1420 */
1421 if (!list_complete)
1422 goto handled;
1423
1424 disable_irqs(ctx);
1425
1426 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
1427 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
1428 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
1429 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
1430
1431 vpdma_reset_desc_list(&ctx->desc_list);
1432
1433 /* the previous dst mv buffer becomes the next src mv buffer */
1434 ctx->src_mv_buf_selector = !ctx->src_mv_buf_selector;
1435
1436 s_vb = ctx->src_vbs[0];
1437 d_vb = ctx->dst_vb;
1438
1439 d_vb->flags = s_vb->flags;
1440 d_vb->vb2_buf.timestamp = s_vb->vb2_buf.timestamp;
1441
1442 if (s_vb->flags & V4L2_BUF_FLAG_TIMECODE)
1443 d_vb->timecode = s_vb->timecode;
1444
1445 d_vb->sequence = ctx->sequence;
1446 s_vb->sequence = ctx->sequence;
1447
1448 d_q_data = &ctx->q_data[Q_DATA_DST];
1449 if (d_q_data->flags & Q_IS_INTERLACED) {
1450 d_vb->field = ctx->field;
1451 if (ctx->field == V4L2_FIELD_BOTTOM) {
1452 ctx->sequence++;
1453 ctx->field = V4L2_FIELD_TOP;
1454 } else {
1455 WARN_ON(ctx->field != V4L2_FIELD_TOP);
1456 ctx->field = V4L2_FIELD_BOTTOM;
1457 }
1458 } else {
1459 d_vb->field = V4L2_FIELD_NONE;
1460 ctx->sequence++;
1461 }
1462
1463 if (ctx->deinterlacing) {
1464 /*
1465 * Allow source buffer to be dequeued only if it won't be used
1466 * in the next iteration. All vbs are initialized to first
1467 * buffer and we are shifting buffers every iteration, for the
1468 * first two iterations, no buffer will be dequeued.
1469 * This ensures that driver will keep (n-2)th (n-1)th and (n)th
1470 * field when deinterlacing is enabled
1471 */
1472 if (ctx->src_vbs[2] != ctx->src_vbs[1])
1473 s_vb = ctx->src_vbs[2];
1474 else
1475 s_vb = NULL;
1476 }
1477
1478 spin_lock_irqsave(&dev->lock, flags);
1479
1480 if (s_vb)
1481 v4l2_m2m_buf_done(s_vb, VB2_BUF_STATE_DONE);
1482
1483 v4l2_m2m_buf_done(d_vb, VB2_BUF_STATE_DONE);
1484
1485 spin_unlock_irqrestore(&dev->lock, flags);
1486
1487 if (ctx->deinterlacing) {
1488 ctx->src_vbs[2] = ctx->src_vbs[1];
1489 ctx->src_vbs[1] = ctx->src_vbs[0];
1490 }
1491
1492 /*
1493 * Since the vb2_buf_done has already been called fir therse
1494 * buffer we can now NULL them out so that we won't try
1495 * to clean out stray pointer later on.
1496 */
1497 ctx->src_vbs[0] = NULL;
1498 ctx->dst_vb = NULL;
1499
1500 if (ctx->aborting)
1501 goto finished;
1502
1503 ctx->bufs_completed++;
1504 if (ctx->bufs_completed < ctx->bufs_per_job && job_ready(ctx)) {
1505 device_run(ctx);
1506 goto handled;
1507 }
1508
1509 finished:
1510 vpe_dbg(ctx->dev, "finishing transaction\n");
1511 ctx->bufs_completed = 0;
1512 v4l2_m2m_job_finish(dev->m2m_dev, ctx->fh.m2m_ctx);
1513 handled:
1514 return IRQ_HANDLED;
1515 }
1516
1517 /*
1518 * video ioctls
1519 */
vpe_querycap(struct file * file,void * priv,struct v4l2_capability * cap)1520 static int vpe_querycap(struct file *file, void *priv,
1521 struct v4l2_capability *cap)
1522 {
1523 strscpy(cap->driver, VPE_MODULE_NAME, sizeof(cap->driver));
1524 strscpy(cap->card, VPE_MODULE_NAME, sizeof(cap->card));
1525 snprintf(cap->bus_info, sizeof(cap->bus_info), "platform:%s",
1526 VPE_MODULE_NAME);
1527 return 0;
1528 }
1529
__enum_fmt(struct v4l2_fmtdesc * f,u32 type)1530 static int __enum_fmt(struct v4l2_fmtdesc *f, u32 type)
1531 {
1532 int i, index;
1533 struct vpe_fmt *fmt = NULL;
1534
1535 index = 0;
1536 for (i = 0; i < ARRAY_SIZE(vpe_formats); ++i) {
1537 if (vpe_formats[i].types & type) {
1538 if (index == f->index) {
1539 fmt = &vpe_formats[i];
1540 break;
1541 }
1542 index++;
1543 }
1544 }
1545
1546 if (!fmt)
1547 return -EINVAL;
1548
1549 f->pixelformat = fmt->fourcc;
1550 return 0;
1551 }
1552
vpe_enum_fmt(struct file * file,void * priv,struct v4l2_fmtdesc * f)1553 static int vpe_enum_fmt(struct file *file, void *priv,
1554 struct v4l2_fmtdesc *f)
1555 {
1556 if (V4L2_TYPE_IS_OUTPUT(f->type))
1557 return __enum_fmt(f, VPE_FMT_TYPE_OUTPUT);
1558
1559 return __enum_fmt(f, VPE_FMT_TYPE_CAPTURE);
1560 }
1561
vpe_g_fmt(struct file * file,void * priv,struct v4l2_format * f)1562 static int vpe_g_fmt(struct file *file, void *priv, struct v4l2_format *f)
1563 {
1564 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1565 struct vpe_ctx *ctx = file->private_data;
1566 struct vb2_queue *vq;
1567 struct vpe_q_data *q_data;
1568
1569 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1570 if (!vq)
1571 return -EINVAL;
1572
1573 q_data = get_q_data(ctx, f->type);
1574 if (!q_data)
1575 return -EINVAL;
1576
1577 *f = q_data->format;
1578
1579 if (V4L2_TYPE_IS_CAPTURE(f->type)) {
1580 struct vpe_q_data *s_q_data;
1581 struct v4l2_pix_format_mplane *spix;
1582
1583 /* get colorimetry from the source queue */
1584 s_q_data = get_q_data(ctx, V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE);
1585 spix = &s_q_data->format.fmt.pix_mp;
1586
1587 pix->colorspace = spix->colorspace;
1588 pix->xfer_func = spix->xfer_func;
1589 pix->ycbcr_enc = spix->ycbcr_enc;
1590 pix->quantization = spix->quantization;
1591 }
1592
1593 return 0;
1594 }
1595
__vpe_try_fmt(struct vpe_ctx * ctx,struct v4l2_format * f,struct vpe_fmt * fmt,int type)1596 static int __vpe_try_fmt(struct vpe_ctx *ctx, struct v4l2_format *f,
1597 struct vpe_fmt *fmt, int type)
1598 {
1599 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1600 struct v4l2_plane_pix_format *plane_fmt;
1601 unsigned int w_align;
1602 int i, depth, depth_bytes, height;
1603 unsigned int stride = 0;
1604 const struct v4l2_format_info *finfo;
1605
1606 if (!fmt || !(fmt->types & type)) {
1607 vpe_dbg(ctx->dev, "Fourcc format (0x%08x) invalid.\n",
1608 pix->pixelformat);
1609 fmt = __find_format(V4L2_PIX_FMT_YUYV);
1610 }
1611
1612 if (pix->field != V4L2_FIELD_NONE &&
1613 pix->field != V4L2_FIELD_ALTERNATE &&
1614 pix->field != V4L2_FIELD_SEQ_TB &&
1615 pix->field != V4L2_FIELD_SEQ_BT)
1616 pix->field = V4L2_FIELD_NONE;
1617
1618 depth = fmt->vpdma_fmt[VPE_LUMA]->depth;
1619
1620 /*
1621 * the line stride should 16 byte aligned for VPDMA to work, based on
1622 * the bytes per pixel, figure out how much the width should be aligned
1623 * to make sure line stride is 16 byte aligned
1624 */
1625 depth_bytes = depth >> 3;
1626
1627 if (depth_bytes == 3) {
1628 /*
1629 * if bpp is 3(as in some RGB formats), the pixel width doesn't
1630 * really help in ensuring line stride is 16 byte aligned
1631 */
1632 w_align = 4;
1633 } else {
1634 /*
1635 * for the remainder bpp(4, 2 and 1), the pixel width alignment
1636 * can ensure a line stride alignment of 16 bytes. For example,
1637 * if bpp is 2, then the line stride can be 16 byte aligned if
1638 * the width is 8 byte aligned
1639 */
1640
1641 /*
1642 * HACK: using order_base_2() here causes lots of asm output
1643 * errors with smatch, on i386:
1644 * ./arch/x86/include/asm/bitops.h:457:22:
1645 * warning: asm output is not an lvalue
1646 * Perhaps some gcc optimization is doing the wrong thing
1647 * there.
1648 * Let's get rid of them by doing the calculus on two steps
1649 */
1650 w_align = roundup_pow_of_two(VPDMA_DESC_ALIGN / depth_bytes);
1651 w_align = ilog2(w_align);
1652 }
1653
1654 v4l_bound_align_image(&pix->width, MIN_W, MAX_W, w_align,
1655 &pix->height, MIN_H, MAX_H, H_ALIGN,
1656 S_ALIGN);
1657
1658 if (!pix->num_planes || pix->num_planes > 2)
1659 pix->num_planes = fmt->coplanar ? 2 : 1;
1660 else if (pix->num_planes > 1 && !fmt->coplanar)
1661 pix->num_planes = 1;
1662
1663 pix->pixelformat = fmt->fourcc;
1664 finfo = v4l2_format_info(fmt->fourcc);
1665
1666 /*
1667 * For the actual image parameters, we need to consider the field
1668 * height of the image for SEQ_XX buffers.
1669 */
1670 if (pix->field == V4L2_FIELD_SEQ_TB || pix->field == V4L2_FIELD_SEQ_BT)
1671 height = pix->height / 2;
1672 else
1673 height = pix->height;
1674
1675 if (!pix->colorspace) {
1676 if (v4l2_is_format_rgb(finfo)) {
1677 pix->colorspace = V4L2_COLORSPACE_SRGB;
1678 } else {
1679 if (height > 1280) /* HD */
1680 pix->colorspace = V4L2_COLORSPACE_REC709;
1681 else /* SD */
1682 pix->colorspace = V4L2_COLORSPACE_SMPTE170M;
1683 }
1684 }
1685
1686 for (i = 0; i < pix->num_planes; i++) {
1687 plane_fmt = &pix->plane_fmt[i];
1688 depth = fmt->vpdma_fmt[i]->depth;
1689
1690 stride = (pix->width * fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
1691 if (stride > plane_fmt->bytesperline)
1692 plane_fmt->bytesperline = stride;
1693
1694 plane_fmt->bytesperline = clamp_t(u32, plane_fmt->bytesperline,
1695 stride,
1696 VPDMA_MAX_STRIDE);
1697
1698 plane_fmt->bytesperline = ALIGN(plane_fmt->bytesperline,
1699 VPDMA_STRIDE_ALIGN);
1700
1701 if (i == VPE_LUMA) {
1702 plane_fmt->sizeimage = pix->height *
1703 plane_fmt->bytesperline;
1704
1705 if (pix->num_planes == 1 && fmt->coplanar)
1706 plane_fmt->sizeimage += pix->height *
1707 plane_fmt->bytesperline *
1708 fmt->vpdma_fmt[VPE_CHROMA]->depth >> 3;
1709
1710 } else { /* i == VIP_CHROMA */
1711 plane_fmt->sizeimage = (pix->height *
1712 plane_fmt->bytesperline *
1713 depth) >> 3;
1714 }
1715 }
1716
1717 return 0;
1718 }
1719
vpe_try_fmt(struct file * file,void * priv,struct v4l2_format * f)1720 static int vpe_try_fmt(struct file *file, void *priv, struct v4l2_format *f)
1721 {
1722 struct vpe_ctx *ctx = file->private_data;
1723 struct vpe_fmt *fmt = find_format(f);
1724
1725 if (V4L2_TYPE_IS_OUTPUT(f->type))
1726 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_OUTPUT);
1727 else
1728 return __vpe_try_fmt(ctx, f, fmt, VPE_FMT_TYPE_CAPTURE);
1729 }
1730
__vpe_s_fmt(struct vpe_ctx * ctx,struct v4l2_format * f)1731 static int __vpe_s_fmt(struct vpe_ctx *ctx, struct v4l2_format *f)
1732 {
1733 struct v4l2_pix_format_mplane *pix = &f->fmt.pix_mp;
1734 struct v4l2_pix_format_mplane *qpix;
1735 struct vpe_q_data *q_data;
1736 struct vb2_queue *vq;
1737
1738 vq = v4l2_m2m_get_vq(ctx->fh.m2m_ctx, f->type);
1739 if (!vq)
1740 return -EINVAL;
1741
1742 if (vb2_is_busy(vq)) {
1743 vpe_err(ctx->dev, "queue busy\n");
1744 return -EBUSY;
1745 }
1746
1747 q_data = get_q_data(ctx, f->type);
1748 if (!q_data)
1749 return -EINVAL;
1750
1751 qpix = &q_data->format.fmt.pix_mp;
1752 q_data->fmt = find_format(f);
1753 q_data->format = *f;
1754
1755 q_data->c_rect.left = 0;
1756 q_data->c_rect.top = 0;
1757 q_data->c_rect.width = pix->width;
1758 q_data->c_rect.height = pix->height;
1759
1760 if (qpix->field == V4L2_FIELD_ALTERNATE)
1761 q_data->flags |= Q_DATA_INTERLACED_ALTERNATE;
1762 else if (qpix->field == V4L2_FIELD_SEQ_TB)
1763 q_data->flags |= Q_DATA_INTERLACED_SEQ_TB;
1764 else if (qpix->field == V4L2_FIELD_SEQ_BT)
1765 q_data->flags |= Q_DATA_INTERLACED_SEQ_BT;
1766 else
1767 q_data->flags &= ~Q_IS_INTERLACED;
1768
1769 /* the crop height is halved for the case of SEQ_XX buffers */
1770 if (q_data->flags & Q_IS_SEQ_XX)
1771 q_data->c_rect.height /= 2;
1772
1773 vpe_dbg(ctx->dev, "Setting format for type %d, wxh: %dx%d, fmt: %d bpl_y %d",
1774 f->type, pix->width, pix->height, pix->pixelformat,
1775 pix->plane_fmt[0].bytesperline);
1776 if (pix->num_planes == 2)
1777 vpe_dbg(ctx->dev, " bpl_uv %d\n",
1778 pix->plane_fmt[1].bytesperline);
1779
1780 return 0;
1781 }
1782
vpe_s_fmt(struct file * file,void * priv,struct v4l2_format * f)1783 static int vpe_s_fmt(struct file *file, void *priv, struct v4l2_format *f)
1784 {
1785 int ret;
1786 struct vpe_ctx *ctx = file->private_data;
1787
1788 ret = vpe_try_fmt(file, priv, f);
1789 if (ret)
1790 return ret;
1791
1792 ret = __vpe_s_fmt(ctx, f);
1793 if (ret)
1794 return ret;
1795
1796 if (V4L2_TYPE_IS_OUTPUT(f->type))
1797 set_src_registers(ctx);
1798 else
1799 set_dst_registers(ctx);
1800
1801 return set_srcdst_params(ctx);
1802 }
1803
__vpe_try_selection(struct vpe_ctx * ctx,struct v4l2_selection * s)1804 static int __vpe_try_selection(struct vpe_ctx *ctx, struct v4l2_selection *s)
1805 {
1806 struct vpe_q_data *q_data;
1807 struct v4l2_pix_format_mplane *pix;
1808 int height;
1809
1810 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1811 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1812 return -EINVAL;
1813
1814 q_data = get_q_data(ctx, s->type);
1815 if (!q_data)
1816 return -EINVAL;
1817
1818 pix = &q_data->format.fmt.pix_mp;
1819
1820 switch (s->target) {
1821 case V4L2_SEL_TGT_COMPOSE:
1822 /*
1823 * COMPOSE target is only valid for capture buffer type, return
1824 * error for output buffer type
1825 */
1826 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1827 return -EINVAL;
1828 break;
1829 case V4L2_SEL_TGT_CROP:
1830 /*
1831 * CROP target is only valid for output buffer type, return
1832 * error for capture buffer type
1833 */
1834 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1835 return -EINVAL;
1836 break;
1837 /*
1838 * bound and default crop/compose targets are invalid targets to
1839 * try/set
1840 */
1841 default:
1842 return -EINVAL;
1843 }
1844
1845 /*
1846 * For SEQ_XX buffers, crop height should be less than the height of
1847 * the field height, not the buffer height
1848 */
1849 if (q_data->flags & Q_IS_SEQ_XX)
1850 height = pix->height / 2;
1851 else
1852 height = pix->height;
1853
1854 if (s->r.top < 0 || s->r.left < 0) {
1855 vpe_err(ctx->dev, "negative values for top and left\n");
1856 s->r.top = s->r.left = 0;
1857 }
1858
1859 v4l_bound_align_image(&s->r.width, MIN_W, pix->width, 1,
1860 &s->r.height, MIN_H, height, H_ALIGN, S_ALIGN);
1861
1862 /* adjust left/top if cropping rectangle is out of bounds */
1863 if (s->r.left + s->r.width > pix->width)
1864 s->r.left = pix->width - s->r.width;
1865 if (s->r.top + s->r.height > pix->height)
1866 s->r.top = pix->height - s->r.height;
1867
1868 return 0;
1869 }
1870
vpe_g_selection(struct file * file,void * fh,struct v4l2_selection * s)1871 static int vpe_g_selection(struct file *file, void *fh,
1872 struct v4l2_selection *s)
1873 {
1874 struct vpe_ctx *ctx = file->private_data;
1875 struct vpe_q_data *q_data;
1876 struct v4l2_pix_format_mplane *pix;
1877 bool use_c_rect = false;
1878
1879 if ((s->type != V4L2_BUF_TYPE_VIDEO_CAPTURE) &&
1880 (s->type != V4L2_BUF_TYPE_VIDEO_OUTPUT))
1881 return -EINVAL;
1882
1883 q_data = get_q_data(ctx, s->type);
1884 if (!q_data)
1885 return -EINVAL;
1886
1887 pix = &q_data->format.fmt.pix_mp;
1888
1889 switch (s->target) {
1890 case V4L2_SEL_TGT_COMPOSE_DEFAULT:
1891 case V4L2_SEL_TGT_COMPOSE_BOUNDS:
1892 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1893 return -EINVAL;
1894 break;
1895 case V4L2_SEL_TGT_CROP_BOUNDS:
1896 case V4L2_SEL_TGT_CROP_DEFAULT:
1897 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1898 return -EINVAL;
1899 break;
1900 case V4L2_SEL_TGT_COMPOSE:
1901 if (s->type == V4L2_BUF_TYPE_VIDEO_OUTPUT)
1902 return -EINVAL;
1903 use_c_rect = true;
1904 break;
1905 case V4L2_SEL_TGT_CROP:
1906 if (s->type == V4L2_BUF_TYPE_VIDEO_CAPTURE)
1907 return -EINVAL;
1908 use_c_rect = true;
1909 break;
1910 default:
1911 return -EINVAL;
1912 }
1913
1914 if (use_c_rect) {
1915 /*
1916 * for CROP/COMPOSE target type, return c_rect params from the
1917 * respective buffer type
1918 */
1919 s->r = q_data->c_rect;
1920 } else {
1921 /*
1922 * for DEFAULT/BOUNDS target type, return width and height from
1923 * S_FMT of the respective buffer type
1924 */
1925 s->r.left = 0;
1926 s->r.top = 0;
1927 s->r.width = pix->width;
1928 s->r.height = pix->height;
1929 }
1930
1931 return 0;
1932 }
1933
1934
vpe_s_selection(struct file * file,void * fh,struct v4l2_selection * s)1935 static int vpe_s_selection(struct file *file, void *fh,
1936 struct v4l2_selection *s)
1937 {
1938 struct vpe_ctx *ctx = file->private_data;
1939 struct vpe_q_data *q_data;
1940 struct v4l2_selection sel = *s;
1941 int ret;
1942
1943 ret = __vpe_try_selection(ctx, &sel);
1944 if (ret)
1945 return ret;
1946
1947 q_data = get_q_data(ctx, sel.type);
1948 if (!q_data)
1949 return -EINVAL;
1950
1951 if ((q_data->c_rect.left == sel.r.left) &&
1952 (q_data->c_rect.top == sel.r.top) &&
1953 (q_data->c_rect.width == sel.r.width) &&
1954 (q_data->c_rect.height == sel.r.height)) {
1955 vpe_dbg(ctx->dev,
1956 "requested crop/compose values are already set\n");
1957 return 0;
1958 }
1959
1960 q_data->c_rect = sel.r;
1961
1962 return set_srcdst_params(ctx);
1963 }
1964
1965 /*
1966 * defines number of buffers/frames a context can process with VPE before
1967 * switching to a different context. default value is 1 buffer per context
1968 */
1969 #define V4L2_CID_VPE_BUFS_PER_JOB (V4L2_CID_USER_TI_VPE_BASE + 0)
1970
vpe_s_ctrl(struct v4l2_ctrl * ctrl)1971 static int vpe_s_ctrl(struct v4l2_ctrl *ctrl)
1972 {
1973 struct vpe_ctx *ctx =
1974 container_of(ctrl->handler, struct vpe_ctx, hdl);
1975
1976 switch (ctrl->id) {
1977 case V4L2_CID_VPE_BUFS_PER_JOB:
1978 ctx->bufs_per_job = ctrl->val;
1979 break;
1980
1981 default:
1982 vpe_err(ctx->dev, "Invalid control\n");
1983 return -EINVAL;
1984 }
1985
1986 return 0;
1987 }
1988
1989 static const struct v4l2_ctrl_ops vpe_ctrl_ops = {
1990 .s_ctrl = vpe_s_ctrl,
1991 };
1992
1993 static const struct v4l2_ioctl_ops vpe_ioctl_ops = {
1994 .vidioc_querycap = vpe_querycap,
1995
1996 .vidioc_enum_fmt_vid_cap = vpe_enum_fmt,
1997 .vidioc_g_fmt_vid_cap_mplane = vpe_g_fmt,
1998 .vidioc_try_fmt_vid_cap_mplane = vpe_try_fmt,
1999 .vidioc_s_fmt_vid_cap_mplane = vpe_s_fmt,
2000
2001 .vidioc_enum_fmt_vid_out = vpe_enum_fmt,
2002 .vidioc_g_fmt_vid_out_mplane = vpe_g_fmt,
2003 .vidioc_try_fmt_vid_out_mplane = vpe_try_fmt,
2004 .vidioc_s_fmt_vid_out_mplane = vpe_s_fmt,
2005
2006 .vidioc_g_selection = vpe_g_selection,
2007 .vidioc_s_selection = vpe_s_selection,
2008
2009 .vidioc_reqbufs = v4l2_m2m_ioctl_reqbufs,
2010 .vidioc_querybuf = v4l2_m2m_ioctl_querybuf,
2011 .vidioc_qbuf = v4l2_m2m_ioctl_qbuf,
2012 .vidioc_dqbuf = v4l2_m2m_ioctl_dqbuf,
2013 .vidioc_expbuf = v4l2_m2m_ioctl_expbuf,
2014 .vidioc_streamon = v4l2_m2m_ioctl_streamon,
2015 .vidioc_streamoff = v4l2_m2m_ioctl_streamoff,
2016
2017 .vidioc_subscribe_event = v4l2_ctrl_subscribe_event,
2018 .vidioc_unsubscribe_event = v4l2_event_unsubscribe,
2019 };
2020
2021 /*
2022 * Queue operations
2023 */
vpe_queue_setup(struct vb2_queue * vq,unsigned int * nbuffers,unsigned int * nplanes,unsigned int sizes[],struct device * alloc_devs[])2024 static int vpe_queue_setup(struct vb2_queue *vq,
2025 unsigned int *nbuffers, unsigned int *nplanes,
2026 unsigned int sizes[], struct device *alloc_devs[])
2027 {
2028 int i;
2029 struct vpe_ctx *ctx = vb2_get_drv_priv(vq);
2030 struct vpe_q_data *q_data;
2031 struct v4l2_pix_format_mplane *pix;
2032
2033 q_data = get_q_data(ctx, vq->type);
2034 if (!q_data)
2035 return -EINVAL;
2036
2037 pix = &q_data->format.fmt.pix_mp;
2038 *nplanes = pix->num_planes;
2039
2040 for (i = 0; i < *nplanes; i++)
2041 sizes[i] = pix->plane_fmt[i].sizeimage;
2042
2043 vpe_dbg(ctx->dev, "get %d buffer(s) of size %d", *nbuffers,
2044 sizes[VPE_LUMA]);
2045 if (*nplanes == 2)
2046 vpe_dbg(ctx->dev, " and %d\n", sizes[VPE_CHROMA]);
2047
2048 return 0;
2049 }
2050
vpe_buf_prepare(struct vb2_buffer * vb)2051 static int vpe_buf_prepare(struct vb2_buffer *vb)
2052 {
2053 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2054 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2055 struct vpe_q_data *q_data;
2056 struct v4l2_pix_format_mplane *pix;
2057 int i;
2058
2059 vpe_dbg(ctx->dev, "type: %d\n", vb->vb2_queue->type);
2060
2061 q_data = get_q_data(ctx, vb->vb2_queue->type);
2062 if (!q_data)
2063 return -EINVAL;
2064
2065 pix = &q_data->format.fmt.pix_mp;
2066
2067 if (vb->vb2_queue->type == V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE) {
2068 if (!(q_data->flags & Q_IS_INTERLACED)) {
2069 vbuf->field = V4L2_FIELD_NONE;
2070 } else {
2071 if (vbuf->field != V4L2_FIELD_TOP &&
2072 vbuf->field != V4L2_FIELD_BOTTOM &&
2073 vbuf->field != V4L2_FIELD_SEQ_TB &&
2074 vbuf->field != V4L2_FIELD_SEQ_BT)
2075 return -EINVAL;
2076 }
2077 }
2078
2079 for (i = 0; i < pix->num_planes; i++) {
2080 if (vb2_plane_size(vb, i) < pix->plane_fmt[i].sizeimage) {
2081 vpe_err(ctx->dev,
2082 "data will not fit into plane (%lu < %lu)\n",
2083 vb2_plane_size(vb, i),
2084 (long)pix->plane_fmt[i].sizeimage);
2085 return -EINVAL;
2086 }
2087 }
2088
2089 for (i = 0; i < pix->num_planes; i++)
2090 vb2_set_plane_payload(vb, i, pix->plane_fmt[i].sizeimage);
2091
2092 return 0;
2093 }
2094
vpe_buf_queue(struct vb2_buffer * vb)2095 static void vpe_buf_queue(struct vb2_buffer *vb)
2096 {
2097 struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb);
2098 struct vpe_ctx *ctx = vb2_get_drv_priv(vb->vb2_queue);
2099
2100 v4l2_m2m_buf_queue(ctx->fh.m2m_ctx, vbuf);
2101 }
2102
check_srcdst_sizes(struct vpe_ctx * ctx)2103 static int check_srcdst_sizes(struct vpe_ctx *ctx)
2104 {
2105 struct vpe_q_data *s_q_data = &ctx->q_data[Q_DATA_SRC];
2106 struct vpe_q_data *d_q_data = &ctx->q_data[Q_DATA_DST];
2107 unsigned int src_w = s_q_data->c_rect.width;
2108 unsigned int src_h = s_q_data->c_rect.height;
2109 unsigned int dst_w = d_q_data->c_rect.width;
2110 unsigned int dst_h = d_q_data->c_rect.height;
2111
2112 if (src_w == dst_w && src_h == dst_h)
2113 return 0;
2114
2115 if (src_h <= SC_MAX_PIXEL_HEIGHT &&
2116 src_w <= SC_MAX_PIXEL_WIDTH &&
2117 dst_h <= SC_MAX_PIXEL_HEIGHT &&
2118 dst_w <= SC_MAX_PIXEL_WIDTH)
2119 return 0;
2120
2121 return -1;
2122 }
2123
vpe_return_all_buffers(struct vpe_ctx * ctx,struct vb2_queue * q,enum vb2_buffer_state state)2124 static void vpe_return_all_buffers(struct vpe_ctx *ctx, struct vb2_queue *q,
2125 enum vb2_buffer_state state)
2126 {
2127 struct vb2_v4l2_buffer *vb;
2128 unsigned long flags;
2129
2130 for (;;) {
2131 if (V4L2_TYPE_IS_OUTPUT(q->type))
2132 vb = v4l2_m2m_src_buf_remove(ctx->fh.m2m_ctx);
2133 else
2134 vb = v4l2_m2m_dst_buf_remove(ctx->fh.m2m_ctx);
2135 if (!vb)
2136 break;
2137 spin_lock_irqsave(&ctx->dev->lock, flags);
2138 v4l2_m2m_buf_done(vb, state);
2139 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2140 }
2141
2142 /*
2143 * Cleanup the in-transit vb2 buffers that have been
2144 * removed from their respective queue already but for
2145 * which procecessing has not been completed yet.
2146 */
2147 if (V4L2_TYPE_IS_OUTPUT(q->type)) {
2148 spin_lock_irqsave(&ctx->dev->lock, flags);
2149
2150 if (ctx->src_vbs[2])
2151 v4l2_m2m_buf_done(ctx->src_vbs[2], state);
2152
2153 if (ctx->src_vbs[1] && (ctx->src_vbs[1] != ctx->src_vbs[2]))
2154 v4l2_m2m_buf_done(ctx->src_vbs[1], state);
2155
2156 if (ctx->src_vbs[0] &&
2157 (ctx->src_vbs[0] != ctx->src_vbs[1]) &&
2158 (ctx->src_vbs[0] != ctx->src_vbs[2]))
2159 v4l2_m2m_buf_done(ctx->src_vbs[0], state);
2160
2161 ctx->src_vbs[2] = NULL;
2162 ctx->src_vbs[1] = NULL;
2163 ctx->src_vbs[0] = NULL;
2164
2165 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2166 } else {
2167 if (ctx->dst_vb) {
2168 spin_lock_irqsave(&ctx->dev->lock, flags);
2169
2170 v4l2_m2m_buf_done(ctx->dst_vb, state);
2171 ctx->dst_vb = NULL;
2172 spin_unlock_irqrestore(&ctx->dev->lock, flags);
2173 }
2174 }
2175 }
2176
vpe_start_streaming(struct vb2_queue * q,unsigned int count)2177 static int vpe_start_streaming(struct vb2_queue *q, unsigned int count)
2178 {
2179 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2180
2181 /* Check any of the size exceed maximum scaling sizes */
2182 if (check_srcdst_sizes(ctx)) {
2183 vpe_err(ctx->dev,
2184 "Conversion setup failed, check source and destination parameters\n"
2185 );
2186 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_QUEUED);
2187 return -EINVAL;
2188 }
2189
2190 if (ctx->deinterlacing)
2191 config_edi_input_mode(ctx, 0x0);
2192
2193 if (ctx->sequence != 0)
2194 set_srcdst_params(ctx);
2195
2196 return 0;
2197 }
2198
vpe_stop_streaming(struct vb2_queue * q)2199 static void vpe_stop_streaming(struct vb2_queue *q)
2200 {
2201 struct vpe_ctx *ctx = vb2_get_drv_priv(q);
2202
2203 vpe_dump_regs(ctx->dev);
2204 vpdma_dump_regs(ctx->dev->vpdma);
2205
2206 vpe_return_all_buffers(ctx, q, VB2_BUF_STATE_ERROR);
2207 }
2208
2209 static const struct vb2_ops vpe_qops = {
2210 .queue_setup = vpe_queue_setup,
2211 .buf_prepare = vpe_buf_prepare,
2212 .buf_queue = vpe_buf_queue,
2213 .wait_prepare = vb2_ops_wait_prepare,
2214 .wait_finish = vb2_ops_wait_finish,
2215 .start_streaming = vpe_start_streaming,
2216 .stop_streaming = vpe_stop_streaming,
2217 };
2218
queue_init(void * priv,struct vb2_queue * src_vq,struct vb2_queue * dst_vq)2219 static int queue_init(void *priv, struct vb2_queue *src_vq,
2220 struct vb2_queue *dst_vq)
2221 {
2222 struct vpe_ctx *ctx = priv;
2223 struct vpe_dev *dev = ctx->dev;
2224 int ret;
2225
2226 memset(src_vq, 0, sizeof(*src_vq));
2227 src_vq->type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2228 src_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2229 src_vq->drv_priv = ctx;
2230 src_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2231 src_vq->ops = &vpe_qops;
2232 src_vq->mem_ops = &vb2_dma_contig_memops;
2233 src_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2234 src_vq->lock = &dev->dev_mutex;
2235 src_vq->dev = dev->v4l2_dev.dev;
2236
2237 ret = vb2_queue_init(src_vq);
2238 if (ret)
2239 return ret;
2240
2241 memset(dst_vq, 0, sizeof(*dst_vq));
2242 dst_vq->type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2243 dst_vq->io_modes = VB2_MMAP | VB2_DMABUF;
2244 dst_vq->drv_priv = ctx;
2245 dst_vq->buf_struct_size = sizeof(struct v4l2_m2m_buffer);
2246 dst_vq->ops = &vpe_qops;
2247 dst_vq->mem_ops = &vb2_dma_contig_memops;
2248 dst_vq->timestamp_flags = V4L2_BUF_FLAG_TIMESTAMP_COPY;
2249 dst_vq->lock = &dev->dev_mutex;
2250 dst_vq->dev = dev->v4l2_dev.dev;
2251
2252 return vb2_queue_init(dst_vq);
2253 }
2254
2255 static const struct v4l2_ctrl_config vpe_bufs_per_job = {
2256 .ops = &vpe_ctrl_ops,
2257 .id = V4L2_CID_VPE_BUFS_PER_JOB,
2258 .name = "Buffers Per Transaction",
2259 .type = V4L2_CTRL_TYPE_INTEGER,
2260 .def = VPE_DEF_BUFS_PER_JOB,
2261 .min = 1,
2262 .max = VIDEO_MAX_FRAME,
2263 .step = 1,
2264 };
2265
2266 /*
2267 * File operations
2268 */
vpe_open(struct file * file)2269 static int vpe_open(struct file *file)
2270 {
2271 struct vpe_dev *dev = video_drvdata(file);
2272 struct vpe_q_data *s_q_data;
2273 struct v4l2_ctrl_handler *hdl;
2274 struct vpe_ctx *ctx;
2275 struct v4l2_pix_format_mplane *pix;
2276 int ret;
2277
2278 vpe_dbg(dev, "vpe_open\n");
2279
2280 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2281 if (!ctx)
2282 return -ENOMEM;
2283
2284 ctx->dev = dev;
2285
2286 if (mutex_lock_interruptible(&dev->dev_mutex)) {
2287 ret = -ERESTARTSYS;
2288 goto free_ctx;
2289 }
2290
2291 ret = vpdma_create_desc_list(&ctx->desc_list, VPE_DESC_LIST_SIZE,
2292 VPDMA_LIST_TYPE_NORMAL);
2293 if (ret != 0)
2294 goto unlock;
2295
2296 ret = vpdma_alloc_desc_buf(&ctx->mmr_adb, sizeof(struct vpe_mmr_adb));
2297 if (ret != 0)
2298 goto free_desc_list;
2299
2300 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_h, SC_COEF_SRAM_SIZE);
2301 if (ret != 0)
2302 goto free_mmr_adb;
2303
2304 ret = vpdma_alloc_desc_buf(&ctx->sc_coeff_v, SC_COEF_SRAM_SIZE);
2305 if (ret != 0)
2306 goto free_sc_h;
2307
2308 init_adb_hdrs(ctx);
2309
2310 v4l2_fh_init(&ctx->fh, video_devdata(file));
2311 file->private_data = ctx;
2312
2313 hdl = &ctx->hdl;
2314 v4l2_ctrl_handler_init(hdl, 1);
2315 v4l2_ctrl_new_custom(hdl, &vpe_bufs_per_job, NULL);
2316 if (hdl->error) {
2317 ret = hdl->error;
2318 goto exit_fh;
2319 }
2320 ctx->fh.ctrl_handler = hdl;
2321 v4l2_ctrl_handler_setup(hdl);
2322
2323 s_q_data = &ctx->q_data[Q_DATA_SRC];
2324 pix = &s_q_data->format.fmt.pix_mp;
2325 s_q_data->fmt = __find_format(V4L2_PIX_FMT_YUYV);
2326 pix->pixelformat = s_q_data->fmt->fourcc;
2327 s_q_data->format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
2328 pix->width = 1920;
2329 pix->height = 1080;
2330 pix->num_planes = 1;
2331 pix->plane_fmt[VPE_LUMA].bytesperline = (pix->width *
2332 s_q_data->fmt->vpdma_fmt[VPE_LUMA]->depth) >> 3;
2333 pix->plane_fmt[VPE_LUMA].sizeimage =
2334 pix->plane_fmt[VPE_LUMA].bytesperline *
2335 pix->height;
2336 pix->colorspace = V4L2_COLORSPACE_REC709;
2337 pix->xfer_func = V4L2_XFER_FUNC_DEFAULT;
2338 pix->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT;
2339 pix->quantization = V4L2_QUANTIZATION_DEFAULT;
2340 pix->field = V4L2_FIELD_NONE;
2341 s_q_data->c_rect.left = 0;
2342 s_q_data->c_rect.top = 0;
2343 s_q_data->c_rect.width = pix->width;
2344 s_q_data->c_rect.height = pix->height;
2345 s_q_data->flags = 0;
2346
2347 ctx->q_data[Q_DATA_DST] = *s_q_data;
2348 ctx->q_data[Q_DATA_DST].format.type =
2349 V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
2350
2351 set_dei_shadow_registers(ctx);
2352 set_src_registers(ctx);
2353 set_dst_registers(ctx);
2354 ret = set_srcdst_params(ctx);
2355 if (ret)
2356 goto exit_fh;
2357
2358 ctx->fh.m2m_ctx = v4l2_m2m_ctx_init(dev->m2m_dev, ctx, &queue_init);
2359
2360 if (IS_ERR(ctx->fh.m2m_ctx)) {
2361 ret = PTR_ERR(ctx->fh.m2m_ctx);
2362 goto exit_fh;
2363 }
2364
2365 v4l2_fh_add(&ctx->fh);
2366
2367 /*
2368 * for now, just report the creation of the first instance, we can later
2369 * optimize the driver to enable or disable clocks when the first
2370 * instance is created or the last instance released
2371 */
2372 if (atomic_inc_return(&dev->num_instances) == 1)
2373 vpe_dbg(dev, "first instance created\n");
2374
2375 ctx->bufs_per_job = VPE_DEF_BUFS_PER_JOB;
2376
2377 ctx->load_mmrs = true;
2378
2379 vpe_dbg(dev, "created instance %p, m2m_ctx: %p\n",
2380 ctx, ctx->fh.m2m_ctx);
2381
2382 mutex_unlock(&dev->dev_mutex);
2383
2384 return 0;
2385 exit_fh:
2386 v4l2_ctrl_handler_free(hdl);
2387 v4l2_fh_exit(&ctx->fh);
2388 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2389 free_sc_h:
2390 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2391 free_mmr_adb:
2392 vpdma_free_desc_buf(&ctx->mmr_adb);
2393 free_desc_list:
2394 vpdma_free_desc_list(&ctx->desc_list);
2395 unlock:
2396 mutex_unlock(&dev->dev_mutex);
2397 free_ctx:
2398 kfree(ctx);
2399 return ret;
2400 }
2401
vpe_release(struct file * file)2402 static int vpe_release(struct file *file)
2403 {
2404 struct vpe_dev *dev = video_drvdata(file);
2405 struct vpe_ctx *ctx = file->private_data;
2406
2407 vpe_dbg(dev, "releasing instance %p\n", ctx);
2408
2409 mutex_lock(&dev->dev_mutex);
2410 free_mv_buffers(ctx);
2411
2412 vpdma_unmap_desc_buf(dev->vpdma, &ctx->desc_list.buf);
2413 vpdma_unmap_desc_buf(dev->vpdma, &ctx->mmr_adb);
2414 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_h);
2415 vpdma_unmap_desc_buf(dev->vpdma, &ctx->sc_coeff_v);
2416
2417 vpdma_free_desc_list(&ctx->desc_list);
2418 vpdma_free_desc_buf(&ctx->mmr_adb);
2419
2420 vpdma_free_desc_buf(&ctx->sc_coeff_v);
2421 vpdma_free_desc_buf(&ctx->sc_coeff_h);
2422
2423 v4l2_fh_del(&ctx->fh);
2424 v4l2_fh_exit(&ctx->fh);
2425 v4l2_ctrl_handler_free(&ctx->hdl);
2426 v4l2_m2m_ctx_release(ctx->fh.m2m_ctx);
2427
2428 kfree(ctx);
2429
2430 /*
2431 * for now, just report the release of the last instance, we can later
2432 * optimize the driver to enable or disable clocks when the first
2433 * instance is created or the last instance released
2434 */
2435 if (atomic_dec_return(&dev->num_instances) == 0)
2436 vpe_dbg(dev, "last instance released\n");
2437
2438 mutex_unlock(&dev->dev_mutex);
2439
2440 return 0;
2441 }
2442
2443 static const struct v4l2_file_operations vpe_fops = {
2444 .owner = THIS_MODULE,
2445 .open = vpe_open,
2446 .release = vpe_release,
2447 .poll = v4l2_m2m_fop_poll,
2448 .unlocked_ioctl = video_ioctl2,
2449 .mmap = v4l2_m2m_fop_mmap,
2450 };
2451
2452 static const struct video_device vpe_videodev = {
2453 .name = VPE_MODULE_NAME,
2454 .fops = &vpe_fops,
2455 .ioctl_ops = &vpe_ioctl_ops,
2456 .minor = -1,
2457 .release = video_device_release_empty,
2458 .vfl_dir = VFL_DIR_M2M,
2459 .device_caps = V4L2_CAP_VIDEO_M2M_MPLANE | V4L2_CAP_STREAMING,
2460 };
2461
2462 static const struct v4l2_m2m_ops m2m_ops = {
2463 .device_run = device_run,
2464 .job_ready = job_ready,
2465 .job_abort = job_abort,
2466 };
2467
vpe_runtime_get(struct platform_device * pdev)2468 static int vpe_runtime_get(struct platform_device *pdev)
2469 {
2470 int r;
2471
2472 dev_dbg(&pdev->dev, "vpe_runtime_get\n");
2473
2474 r = pm_runtime_resume_and_get(&pdev->dev);
2475 WARN_ON(r < 0);
2476 return r;
2477 }
2478
vpe_runtime_put(struct platform_device * pdev)2479 static void vpe_runtime_put(struct platform_device *pdev)
2480 {
2481
2482 int r;
2483
2484 dev_dbg(&pdev->dev, "vpe_runtime_put\n");
2485
2486 r = pm_runtime_put_sync(&pdev->dev);
2487 WARN_ON(r < 0 && r != -ENOSYS);
2488 }
2489
vpe_fw_cb(struct platform_device * pdev)2490 static void vpe_fw_cb(struct platform_device *pdev)
2491 {
2492 struct vpe_dev *dev = platform_get_drvdata(pdev);
2493 struct video_device *vfd;
2494 int ret;
2495
2496 vfd = &dev->vfd;
2497 *vfd = vpe_videodev;
2498 vfd->lock = &dev->dev_mutex;
2499 vfd->v4l2_dev = &dev->v4l2_dev;
2500
2501 ret = video_register_device(vfd, VFL_TYPE_VIDEO, 0);
2502 if (ret) {
2503 vpe_err(dev, "Failed to register video device\n");
2504
2505 vpe_set_clock_enable(dev, 0);
2506 vpe_runtime_put(pdev);
2507 pm_runtime_disable(&pdev->dev);
2508 v4l2_m2m_release(dev->m2m_dev);
2509 v4l2_device_unregister(&dev->v4l2_dev);
2510
2511 return;
2512 }
2513
2514 video_set_drvdata(vfd, dev);
2515 dev_info(dev->v4l2_dev.dev, "Device registered as /dev/video%d\n",
2516 vfd->num);
2517 }
2518
vpe_probe(struct platform_device * pdev)2519 static int vpe_probe(struct platform_device *pdev)
2520 {
2521 struct vpe_dev *dev;
2522 int ret, irq, func;
2523
2524 ret = dma_coerce_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2525 if (ret) {
2526 dev_err(&pdev->dev,
2527 "32-bit consistent DMA enable failed\n");
2528 return ret;
2529 }
2530
2531 dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
2532 if (!dev)
2533 return -ENOMEM;
2534
2535 spin_lock_init(&dev->lock);
2536
2537 ret = v4l2_device_register(&pdev->dev, &dev->v4l2_dev);
2538 if (ret)
2539 return ret;
2540
2541 atomic_set(&dev->num_instances, 0);
2542 mutex_init(&dev->dev_mutex);
2543
2544 dev->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2545 "vpe_top");
2546 if (!dev->res) {
2547 dev_err(&pdev->dev, "missing 'vpe_top' resources data\n");
2548 return -ENODEV;
2549 }
2550
2551 /*
2552 * HACK: we get resource info from device tree in the form of a list of
2553 * VPE sub blocks, the driver currently uses only the base of vpe_top
2554 * for register access, the driver should be changed later to access
2555 * registers based on the sub block base addresses
2556 */
2557 dev->base = devm_ioremap(&pdev->dev, dev->res->start, SZ_32K);
2558 if (!dev->base) {
2559 ret = -ENOMEM;
2560 goto v4l2_dev_unreg;
2561 }
2562
2563 irq = platform_get_irq(pdev, 0);
2564 ret = devm_request_irq(&pdev->dev, irq, vpe_irq, 0, VPE_MODULE_NAME,
2565 dev);
2566 if (ret)
2567 goto v4l2_dev_unreg;
2568
2569 platform_set_drvdata(pdev, dev);
2570
2571 dev->m2m_dev = v4l2_m2m_init(&m2m_ops);
2572 if (IS_ERR(dev->m2m_dev)) {
2573 vpe_err(dev, "Failed to init mem2mem device\n");
2574 ret = PTR_ERR(dev->m2m_dev);
2575 goto v4l2_dev_unreg;
2576 }
2577
2578 pm_runtime_enable(&pdev->dev);
2579
2580 ret = vpe_runtime_get(pdev);
2581 if (ret < 0)
2582 goto rel_m2m;
2583
2584 /* Perform clk enable followed by reset */
2585 vpe_set_clock_enable(dev, 1);
2586
2587 vpe_top_reset(dev);
2588
2589 func = read_field_reg(dev, VPE_PID, VPE_PID_FUNC_MASK,
2590 VPE_PID_FUNC_SHIFT);
2591 vpe_dbg(dev, "VPE PID function %x\n", func);
2592
2593 vpe_top_vpdma_reset(dev);
2594
2595 dev->sc = sc_create(pdev, "sc");
2596 if (IS_ERR(dev->sc)) {
2597 ret = PTR_ERR(dev->sc);
2598 goto runtime_put;
2599 }
2600
2601 dev->csc = csc_create(pdev, "csc");
2602 if (IS_ERR(dev->csc)) {
2603 ret = PTR_ERR(dev->csc);
2604 goto runtime_put;
2605 }
2606
2607 dev->vpdma = &dev->vpdma_data;
2608 ret = vpdma_create(pdev, dev->vpdma, vpe_fw_cb);
2609 if (ret)
2610 goto runtime_put;
2611
2612 return 0;
2613
2614 runtime_put:
2615 vpe_runtime_put(pdev);
2616 rel_m2m:
2617 pm_runtime_disable(&pdev->dev);
2618 v4l2_m2m_release(dev->m2m_dev);
2619 v4l2_dev_unreg:
2620 v4l2_device_unregister(&dev->v4l2_dev);
2621
2622 return ret;
2623 }
2624
vpe_remove(struct platform_device * pdev)2625 static void vpe_remove(struct platform_device *pdev)
2626 {
2627 struct vpe_dev *dev = platform_get_drvdata(pdev);
2628
2629 v4l2_info(&dev->v4l2_dev, "Removing " VPE_MODULE_NAME);
2630
2631 v4l2_m2m_release(dev->m2m_dev);
2632 video_unregister_device(&dev->vfd);
2633 v4l2_device_unregister(&dev->v4l2_dev);
2634
2635 vpe_set_clock_enable(dev, 0);
2636 vpe_runtime_put(pdev);
2637 pm_runtime_disable(&pdev->dev);
2638 }
2639
2640 #if defined(CONFIG_OF)
2641 static const struct of_device_id vpe_of_match[] = {
2642 {
2643 .compatible = "ti,dra7-vpe",
2644 },
2645 {},
2646 };
2647 MODULE_DEVICE_TABLE(of, vpe_of_match);
2648 #endif
2649
2650 static struct platform_driver vpe_pdrv = {
2651 .probe = vpe_probe,
2652 .remove_new = vpe_remove,
2653 .driver = {
2654 .name = VPE_MODULE_NAME,
2655 .of_match_table = of_match_ptr(vpe_of_match),
2656 },
2657 };
2658
2659 module_platform_driver(vpe_pdrv);
2660
2661 MODULE_DESCRIPTION("TI VPE driver");
2662 MODULE_AUTHOR("Dale Farnsworth, <dale@farnsworth.org>");
2663 MODULE_LICENSE("GPL");
2664