1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2018 Red Hat. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include <linux/device-mapper.h>
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/vmalloc.h>
12 #include <linux/kthread.h>
13 #include <linux/dm-io.h>
14 #include <linux/dm-kcopyd.h>
15 #include <linux/dax.h>
16 #include <linux/pfn_t.h>
17 #include <linux/libnvdimm.h>
18 #include <linux/delay.h>
19 #include "dm-io-tracker.h"
20
21 #define DM_MSG_PREFIX "writecache"
22
23 #define HIGH_WATERMARK 50
24 #define LOW_WATERMARK 45
25 #define MAX_WRITEBACK_JOBS min(0x10000000 / PAGE_SIZE, totalram_pages() / 16)
26 #define ENDIO_LATENCY 16
27 #define WRITEBACK_LATENCY 64
28 #define AUTOCOMMIT_BLOCKS_SSD 65536
29 #define AUTOCOMMIT_BLOCKS_PMEM 64
30 #define AUTOCOMMIT_MSEC 1000
31 #define MAX_AGE_DIV 16
32 #define MAX_AGE_UNSPECIFIED -1UL
33 #define PAUSE_WRITEBACK (HZ * 3)
34
35 #define BITMAP_GRANULARITY 65536
36 #if BITMAP_GRANULARITY < PAGE_SIZE
37 #undef BITMAP_GRANULARITY
38 #define BITMAP_GRANULARITY PAGE_SIZE
39 #endif
40
41 #if IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API) && IS_ENABLED(CONFIG_FS_DAX)
42 #define DM_WRITECACHE_HAS_PMEM
43 #endif
44
45 #ifdef DM_WRITECACHE_HAS_PMEM
46 #define pmem_assign(dest, src) \
47 do { \
48 typeof(dest) uniq = (src); \
49 memcpy_flushcache(&(dest), &uniq, sizeof(dest)); \
50 } while (0)
51 #else
52 #define pmem_assign(dest, src) ((dest) = (src))
53 #endif
54
55 #if IS_ENABLED(CONFIG_ARCH_HAS_COPY_MC) && defined(DM_WRITECACHE_HAS_PMEM)
56 #define DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
57 #endif
58
59 #define MEMORY_SUPERBLOCK_MAGIC 0x23489321
60 #define MEMORY_SUPERBLOCK_VERSION 1
61
62 struct wc_memory_entry {
63 __le64 original_sector;
64 __le64 seq_count;
65 };
66
67 struct wc_memory_superblock {
68 union {
69 struct {
70 __le32 magic;
71 __le32 version;
72 __le32 block_size;
73 __le32 pad;
74 __le64 n_blocks;
75 __le64 seq_count;
76 };
77 __le64 padding[8];
78 };
79 struct wc_memory_entry entries[];
80 };
81
82 struct wc_entry {
83 struct rb_node rb_node;
84 struct list_head lru;
85 unsigned short wc_list_contiguous;
86 #if BITS_PER_LONG == 64
87 bool write_in_progress : 1;
88 unsigned long index : 47;
89 #else
90 bool write_in_progress;
91 unsigned long index;
92 #endif
93 unsigned long age;
94 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
95 uint64_t original_sector;
96 uint64_t seq_count;
97 #endif
98 };
99
100 #ifdef DM_WRITECACHE_HAS_PMEM
101 #define WC_MODE_PMEM(wc) ((wc)->pmem_mode)
102 #define WC_MODE_FUA(wc) ((wc)->writeback_fua)
103 #else
104 #define WC_MODE_PMEM(wc) false
105 #define WC_MODE_FUA(wc) false
106 #endif
107 #define WC_MODE_SORT_FREELIST(wc) (!WC_MODE_PMEM(wc))
108
109 struct dm_writecache {
110 struct mutex lock;
111 struct list_head lru;
112 union {
113 struct list_head freelist;
114 struct {
115 struct rb_root freetree;
116 struct wc_entry *current_free;
117 };
118 };
119 struct rb_root tree;
120
121 size_t freelist_size;
122 size_t writeback_size;
123 size_t freelist_high_watermark;
124 size_t freelist_low_watermark;
125 unsigned long max_age;
126 unsigned long pause;
127
128 unsigned int uncommitted_blocks;
129 unsigned int autocommit_blocks;
130 unsigned int max_writeback_jobs;
131
132 int error;
133
134 unsigned long autocommit_jiffies;
135 struct timer_list autocommit_timer;
136 struct wait_queue_head freelist_wait;
137
138 struct timer_list max_age_timer;
139
140 atomic_t bio_in_progress[2];
141 struct wait_queue_head bio_in_progress_wait[2];
142
143 struct dm_target *ti;
144 struct dm_dev *dev;
145 struct dm_dev *ssd_dev;
146 sector_t start_sector;
147 void *memory_map;
148 uint64_t memory_map_size;
149 size_t metadata_sectors;
150 size_t n_blocks;
151 uint64_t seq_count;
152 sector_t data_device_sectors;
153 void *block_start;
154 struct wc_entry *entries;
155 unsigned int block_size;
156 unsigned char block_size_bits;
157
158 bool pmem_mode:1;
159 bool writeback_fua:1;
160
161 bool overwrote_committed:1;
162 bool memory_vmapped:1;
163
164 bool start_sector_set:1;
165 bool high_wm_percent_set:1;
166 bool low_wm_percent_set:1;
167 bool max_writeback_jobs_set:1;
168 bool autocommit_blocks_set:1;
169 bool autocommit_time_set:1;
170 bool max_age_set:1;
171 bool writeback_fua_set:1;
172 bool flush_on_suspend:1;
173 bool cleaner:1;
174 bool cleaner_set:1;
175 bool metadata_only:1;
176 bool pause_set:1;
177
178 unsigned int high_wm_percent_value;
179 unsigned int low_wm_percent_value;
180 unsigned int autocommit_time_value;
181 unsigned int max_age_value;
182 unsigned int pause_value;
183
184 unsigned int writeback_all;
185 struct workqueue_struct *writeback_wq;
186 struct work_struct writeback_work;
187 struct work_struct flush_work;
188
189 struct dm_io_tracker iot;
190
191 struct dm_io_client *dm_io;
192
193 raw_spinlock_t endio_list_lock;
194 struct list_head endio_list;
195 struct task_struct *endio_thread;
196
197 struct task_struct *flush_thread;
198 struct bio_list flush_list;
199
200 struct dm_kcopyd_client *dm_kcopyd;
201 unsigned long *dirty_bitmap;
202 unsigned int dirty_bitmap_size;
203
204 struct bio_set bio_set;
205 mempool_t copy_pool;
206
207 struct {
208 unsigned long long reads;
209 unsigned long long read_hits;
210 unsigned long long writes;
211 unsigned long long write_hits_uncommitted;
212 unsigned long long write_hits_committed;
213 unsigned long long writes_around;
214 unsigned long long writes_allocate;
215 unsigned long long writes_blocked_on_freelist;
216 unsigned long long flushes;
217 unsigned long long discards;
218 } stats;
219 };
220
221 #define WB_LIST_INLINE 16
222
223 struct writeback_struct {
224 struct list_head endio_entry;
225 struct dm_writecache *wc;
226 struct wc_entry **wc_list;
227 unsigned int wc_list_n;
228 struct wc_entry *wc_list_inline[WB_LIST_INLINE];
229 struct bio bio;
230 };
231
232 struct copy_struct {
233 struct list_head endio_entry;
234 struct dm_writecache *wc;
235 struct wc_entry *e;
236 unsigned int n_entries;
237 int error;
238 };
239
240 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(dm_writecache_throttle,
241 "A percentage of time allocated for data copying");
242
wc_lock(struct dm_writecache * wc)243 static void wc_lock(struct dm_writecache *wc)
244 {
245 mutex_lock(&wc->lock);
246 }
247
wc_unlock(struct dm_writecache * wc)248 static void wc_unlock(struct dm_writecache *wc)
249 {
250 mutex_unlock(&wc->lock);
251 }
252
253 #ifdef DM_WRITECACHE_HAS_PMEM
persistent_memory_claim(struct dm_writecache * wc)254 static int persistent_memory_claim(struct dm_writecache *wc)
255 {
256 int r;
257 loff_t s;
258 long p, da;
259 pfn_t pfn;
260 int id;
261 struct page **pages;
262 sector_t offset;
263
264 wc->memory_vmapped = false;
265
266 s = wc->memory_map_size;
267 p = s >> PAGE_SHIFT;
268 if (!p) {
269 r = -EINVAL;
270 goto err1;
271 }
272 if (p != s >> PAGE_SHIFT) {
273 r = -EOVERFLOW;
274 goto err1;
275 }
276
277 offset = get_start_sect(wc->ssd_dev->bdev);
278 if (offset & (PAGE_SIZE / 512 - 1)) {
279 r = -EINVAL;
280 goto err1;
281 }
282 offset >>= PAGE_SHIFT - 9;
283
284 id = dax_read_lock();
285
286 da = dax_direct_access(wc->ssd_dev->dax_dev, offset, p, DAX_ACCESS,
287 &wc->memory_map, &pfn);
288 if (da < 0) {
289 wc->memory_map = NULL;
290 r = da;
291 goto err2;
292 }
293 if (!pfn_t_has_page(pfn)) {
294 wc->memory_map = NULL;
295 r = -EOPNOTSUPP;
296 goto err2;
297 }
298 if (da != p) {
299 long i;
300
301 wc->memory_map = NULL;
302 pages = vmalloc_array(p, sizeof(struct page *));
303 if (!pages) {
304 r = -ENOMEM;
305 goto err2;
306 }
307 i = 0;
308 do {
309 long daa;
310
311 daa = dax_direct_access(wc->ssd_dev->dax_dev, offset + i,
312 p - i, DAX_ACCESS, NULL, &pfn);
313 if (daa <= 0) {
314 r = daa ? daa : -EINVAL;
315 goto err3;
316 }
317 if (!pfn_t_has_page(pfn)) {
318 r = -EOPNOTSUPP;
319 goto err3;
320 }
321 while (daa-- && i < p) {
322 pages[i++] = pfn_t_to_page(pfn);
323 pfn.val++;
324 if (!(i & 15))
325 cond_resched();
326 }
327 } while (i < p);
328 wc->memory_map = vmap(pages, p, VM_MAP, PAGE_KERNEL);
329 if (!wc->memory_map) {
330 r = -ENOMEM;
331 goto err3;
332 }
333 vfree(pages);
334 wc->memory_vmapped = true;
335 }
336
337 dax_read_unlock(id);
338
339 wc->memory_map += (size_t)wc->start_sector << SECTOR_SHIFT;
340 wc->memory_map_size -= (size_t)wc->start_sector << SECTOR_SHIFT;
341
342 return 0;
343 err3:
344 vfree(pages);
345 err2:
346 dax_read_unlock(id);
347 err1:
348 return r;
349 }
350 #else
persistent_memory_claim(struct dm_writecache * wc)351 static int persistent_memory_claim(struct dm_writecache *wc)
352 {
353 return -EOPNOTSUPP;
354 }
355 #endif
356
persistent_memory_release(struct dm_writecache * wc)357 static void persistent_memory_release(struct dm_writecache *wc)
358 {
359 if (wc->memory_vmapped)
360 vunmap(wc->memory_map - ((size_t)wc->start_sector << SECTOR_SHIFT));
361 }
362
persistent_memory_page(void * addr)363 static struct page *persistent_memory_page(void *addr)
364 {
365 if (is_vmalloc_addr(addr))
366 return vmalloc_to_page(addr);
367 else
368 return virt_to_page(addr);
369 }
370
persistent_memory_page_offset(void * addr)371 static unsigned int persistent_memory_page_offset(void *addr)
372 {
373 return (unsigned long)addr & (PAGE_SIZE - 1);
374 }
375
persistent_memory_flush_cache(void * ptr,size_t size)376 static void persistent_memory_flush_cache(void *ptr, size_t size)
377 {
378 if (is_vmalloc_addr(ptr))
379 flush_kernel_vmap_range(ptr, size);
380 }
381
persistent_memory_invalidate_cache(void * ptr,size_t size)382 static void persistent_memory_invalidate_cache(void *ptr, size_t size)
383 {
384 if (is_vmalloc_addr(ptr))
385 invalidate_kernel_vmap_range(ptr, size);
386 }
387
sb(struct dm_writecache * wc)388 static struct wc_memory_superblock *sb(struct dm_writecache *wc)
389 {
390 return wc->memory_map;
391 }
392
memory_entry(struct dm_writecache * wc,struct wc_entry * e)393 static struct wc_memory_entry *memory_entry(struct dm_writecache *wc, struct wc_entry *e)
394 {
395 return &sb(wc)->entries[e->index];
396 }
397
memory_data(struct dm_writecache * wc,struct wc_entry * e)398 static void *memory_data(struct dm_writecache *wc, struct wc_entry *e)
399 {
400 return (char *)wc->block_start + (e->index << wc->block_size_bits);
401 }
402
cache_sector(struct dm_writecache * wc,struct wc_entry * e)403 static sector_t cache_sector(struct dm_writecache *wc, struct wc_entry *e)
404 {
405 return wc->start_sector + wc->metadata_sectors +
406 ((sector_t)e->index << (wc->block_size_bits - SECTOR_SHIFT));
407 }
408
read_original_sector(struct dm_writecache * wc,struct wc_entry * e)409 static uint64_t read_original_sector(struct dm_writecache *wc, struct wc_entry *e)
410 {
411 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
412 return e->original_sector;
413 #else
414 return le64_to_cpu(memory_entry(wc, e)->original_sector);
415 #endif
416 }
417
read_seq_count(struct dm_writecache * wc,struct wc_entry * e)418 static uint64_t read_seq_count(struct dm_writecache *wc, struct wc_entry *e)
419 {
420 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
421 return e->seq_count;
422 #else
423 return le64_to_cpu(memory_entry(wc, e)->seq_count);
424 #endif
425 }
426
clear_seq_count(struct dm_writecache * wc,struct wc_entry * e)427 static void clear_seq_count(struct dm_writecache *wc, struct wc_entry *e)
428 {
429 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
430 e->seq_count = -1;
431 #endif
432 pmem_assign(memory_entry(wc, e)->seq_count, cpu_to_le64(-1));
433 }
434
write_original_sector_seq_count(struct dm_writecache * wc,struct wc_entry * e,uint64_t original_sector,uint64_t seq_count)435 static void write_original_sector_seq_count(struct dm_writecache *wc, struct wc_entry *e,
436 uint64_t original_sector, uint64_t seq_count)
437 {
438 struct wc_memory_entry me;
439 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
440 e->original_sector = original_sector;
441 e->seq_count = seq_count;
442 #endif
443 me.original_sector = cpu_to_le64(original_sector);
444 me.seq_count = cpu_to_le64(seq_count);
445 pmem_assign(*memory_entry(wc, e), me);
446 }
447
448 #define writecache_error(wc, err, msg, arg...) \
449 do { \
450 if (!cmpxchg(&(wc)->error, 0, err)) \
451 DMERR(msg, ##arg); \
452 wake_up(&(wc)->freelist_wait); \
453 } while (0)
454
455 #define writecache_has_error(wc) (unlikely(READ_ONCE((wc)->error)))
456
writecache_flush_all_metadata(struct dm_writecache * wc)457 static void writecache_flush_all_metadata(struct dm_writecache *wc)
458 {
459 if (!WC_MODE_PMEM(wc))
460 memset(wc->dirty_bitmap, -1, wc->dirty_bitmap_size);
461 }
462
writecache_flush_region(struct dm_writecache * wc,void * ptr,size_t size)463 static void writecache_flush_region(struct dm_writecache *wc, void *ptr, size_t size)
464 {
465 if (!WC_MODE_PMEM(wc))
466 __set_bit(((char *)ptr - (char *)wc->memory_map) / BITMAP_GRANULARITY,
467 wc->dirty_bitmap);
468 }
469
470 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev);
471
472 struct io_notify {
473 struct dm_writecache *wc;
474 struct completion c;
475 atomic_t count;
476 };
477
writecache_notify_io(unsigned long error,void * context)478 static void writecache_notify_io(unsigned long error, void *context)
479 {
480 struct io_notify *endio = context;
481
482 if (unlikely(error != 0))
483 writecache_error(endio->wc, -EIO, "error writing metadata");
484 BUG_ON(atomic_read(&endio->count) <= 0);
485 if (atomic_dec_and_test(&endio->count))
486 complete(&endio->c);
487 }
488
writecache_wait_for_ios(struct dm_writecache * wc,int direction)489 static void writecache_wait_for_ios(struct dm_writecache *wc, int direction)
490 {
491 wait_event(wc->bio_in_progress_wait[direction],
492 !atomic_read(&wc->bio_in_progress[direction]));
493 }
494
ssd_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)495 static void ssd_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
496 {
497 struct dm_io_region region;
498 struct dm_io_request req;
499 struct io_notify endio = {
500 wc,
501 COMPLETION_INITIALIZER_ONSTACK(endio.c),
502 ATOMIC_INIT(1),
503 };
504 unsigned int bitmap_bits = wc->dirty_bitmap_size * 8;
505 unsigned int i = 0;
506
507 while (1) {
508 unsigned int j;
509
510 i = find_next_bit(wc->dirty_bitmap, bitmap_bits, i);
511 if (unlikely(i == bitmap_bits))
512 break;
513 j = find_next_zero_bit(wc->dirty_bitmap, bitmap_bits, i);
514
515 region.bdev = wc->ssd_dev->bdev;
516 region.sector = (sector_t)i * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
517 region.count = (sector_t)(j - i) * (BITMAP_GRANULARITY >> SECTOR_SHIFT);
518
519 if (unlikely(region.sector >= wc->metadata_sectors))
520 break;
521 if (unlikely(region.sector + region.count > wc->metadata_sectors))
522 region.count = wc->metadata_sectors - region.sector;
523
524 region.sector += wc->start_sector;
525 atomic_inc(&endio.count);
526 req.bi_opf = REQ_OP_WRITE | REQ_SYNC;
527 req.mem.type = DM_IO_VMA;
528 req.mem.ptr.vma = (char *)wc->memory_map + (size_t)i * BITMAP_GRANULARITY;
529 req.client = wc->dm_io;
530 req.notify.fn = writecache_notify_io;
531 req.notify.context = &endio;
532
533 /* writing via async dm-io (implied by notify.fn above) won't return an error */
534 (void) dm_io(&req, 1, ®ion, NULL, IOPRIO_DEFAULT);
535 i = j;
536 }
537
538 writecache_notify_io(0, &endio);
539 wait_for_completion_io(&endio.c);
540
541 if (wait_for_ios)
542 writecache_wait_for_ios(wc, WRITE);
543
544 writecache_disk_flush(wc, wc->ssd_dev);
545
546 memset(wc->dirty_bitmap, 0, wc->dirty_bitmap_size);
547 }
548
ssd_commit_superblock(struct dm_writecache * wc)549 static void ssd_commit_superblock(struct dm_writecache *wc)
550 {
551 int r;
552 struct dm_io_region region;
553 struct dm_io_request req;
554
555 region.bdev = wc->ssd_dev->bdev;
556 region.sector = 0;
557 region.count = max(4096U, wc->block_size) >> SECTOR_SHIFT;
558
559 if (unlikely(region.sector + region.count > wc->metadata_sectors))
560 region.count = wc->metadata_sectors - region.sector;
561
562 region.sector += wc->start_sector;
563
564 req.bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_FUA;
565 req.mem.type = DM_IO_VMA;
566 req.mem.ptr.vma = (char *)wc->memory_map;
567 req.client = wc->dm_io;
568 req.notify.fn = NULL;
569 req.notify.context = NULL;
570
571 r = dm_io(&req, 1, ®ion, NULL, IOPRIO_DEFAULT);
572 if (unlikely(r))
573 writecache_error(wc, r, "error writing superblock");
574 }
575
writecache_commit_flushed(struct dm_writecache * wc,bool wait_for_ios)576 static void writecache_commit_flushed(struct dm_writecache *wc, bool wait_for_ios)
577 {
578 if (WC_MODE_PMEM(wc))
579 pmem_wmb();
580 else
581 ssd_commit_flushed(wc, wait_for_ios);
582 }
583
writecache_disk_flush(struct dm_writecache * wc,struct dm_dev * dev)584 static void writecache_disk_flush(struct dm_writecache *wc, struct dm_dev *dev)
585 {
586 int r;
587 struct dm_io_region region;
588 struct dm_io_request req;
589
590 region.bdev = dev->bdev;
591 region.sector = 0;
592 region.count = 0;
593 req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
594 req.mem.type = DM_IO_KMEM;
595 req.mem.ptr.addr = NULL;
596 req.client = wc->dm_io;
597 req.notify.fn = NULL;
598
599 r = dm_io(&req, 1, ®ion, NULL, IOPRIO_DEFAULT);
600 if (unlikely(r))
601 writecache_error(wc, r, "error flushing metadata: %d", r);
602 }
603
604 #define WFE_RETURN_FOLLOWING 1
605 #define WFE_LOWEST_SEQ 2
606
writecache_find_entry(struct dm_writecache * wc,uint64_t block,int flags)607 static struct wc_entry *writecache_find_entry(struct dm_writecache *wc,
608 uint64_t block, int flags)
609 {
610 struct wc_entry *e;
611 struct rb_node *node = wc->tree.rb_node;
612
613 if (unlikely(!node))
614 return NULL;
615
616 while (1) {
617 e = container_of(node, struct wc_entry, rb_node);
618 if (read_original_sector(wc, e) == block)
619 break;
620
621 node = (read_original_sector(wc, e) >= block ?
622 e->rb_node.rb_left : e->rb_node.rb_right);
623 if (unlikely(!node)) {
624 if (!(flags & WFE_RETURN_FOLLOWING))
625 return NULL;
626 if (read_original_sector(wc, e) >= block)
627 return e;
628
629 node = rb_next(&e->rb_node);
630 if (unlikely(!node))
631 return NULL;
632
633 e = container_of(node, struct wc_entry, rb_node);
634 return e;
635 }
636 }
637
638 while (1) {
639 struct wc_entry *e2;
640
641 if (flags & WFE_LOWEST_SEQ)
642 node = rb_prev(&e->rb_node);
643 else
644 node = rb_next(&e->rb_node);
645 if (unlikely(!node))
646 return e;
647 e2 = container_of(node, struct wc_entry, rb_node);
648 if (read_original_sector(wc, e2) != block)
649 return e;
650 e = e2;
651 }
652 }
653
writecache_insert_entry(struct dm_writecache * wc,struct wc_entry * ins)654 static void writecache_insert_entry(struct dm_writecache *wc, struct wc_entry *ins)
655 {
656 struct wc_entry *e;
657 struct rb_node **node = &wc->tree.rb_node, *parent = NULL;
658
659 while (*node) {
660 e = container_of(*node, struct wc_entry, rb_node);
661 parent = &e->rb_node;
662 if (read_original_sector(wc, e) > read_original_sector(wc, ins))
663 node = &parent->rb_left;
664 else
665 node = &parent->rb_right;
666 }
667 rb_link_node(&ins->rb_node, parent, node);
668 rb_insert_color(&ins->rb_node, &wc->tree);
669 list_add(&ins->lru, &wc->lru);
670 ins->age = jiffies;
671 }
672
writecache_unlink(struct dm_writecache * wc,struct wc_entry * e)673 static void writecache_unlink(struct dm_writecache *wc, struct wc_entry *e)
674 {
675 list_del(&e->lru);
676 rb_erase(&e->rb_node, &wc->tree);
677 }
678
writecache_add_to_freelist(struct dm_writecache * wc,struct wc_entry * e)679 static void writecache_add_to_freelist(struct dm_writecache *wc, struct wc_entry *e)
680 {
681 if (WC_MODE_SORT_FREELIST(wc)) {
682 struct rb_node **node = &wc->freetree.rb_node, *parent = NULL;
683
684 if (unlikely(!*node))
685 wc->current_free = e;
686 while (*node) {
687 parent = *node;
688 if (&e->rb_node < *node)
689 node = &parent->rb_left;
690 else
691 node = &parent->rb_right;
692 }
693 rb_link_node(&e->rb_node, parent, node);
694 rb_insert_color(&e->rb_node, &wc->freetree);
695 } else {
696 list_add_tail(&e->lru, &wc->freelist);
697 }
698 wc->freelist_size++;
699 }
700
writecache_verify_watermark(struct dm_writecache * wc)701 static inline void writecache_verify_watermark(struct dm_writecache *wc)
702 {
703 if (unlikely(wc->freelist_size + wc->writeback_size <= wc->freelist_high_watermark))
704 queue_work(wc->writeback_wq, &wc->writeback_work);
705 }
706
writecache_max_age_timer(struct timer_list * t)707 static void writecache_max_age_timer(struct timer_list *t)
708 {
709 struct dm_writecache *wc = from_timer(wc, t, max_age_timer);
710
711 if (!dm_suspended(wc->ti) && !writecache_has_error(wc)) {
712 queue_work(wc->writeback_wq, &wc->writeback_work);
713 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
714 }
715 }
716
writecache_pop_from_freelist(struct dm_writecache * wc,sector_t expected_sector)717 static struct wc_entry *writecache_pop_from_freelist(struct dm_writecache *wc, sector_t expected_sector)
718 {
719 struct wc_entry *e;
720
721 if (WC_MODE_SORT_FREELIST(wc)) {
722 struct rb_node *next;
723
724 if (unlikely(!wc->current_free))
725 return NULL;
726 e = wc->current_free;
727 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
728 return NULL;
729 next = rb_next(&e->rb_node);
730 rb_erase(&e->rb_node, &wc->freetree);
731 if (unlikely(!next))
732 next = rb_first(&wc->freetree);
733 wc->current_free = next ? container_of(next, struct wc_entry, rb_node) : NULL;
734 } else {
735 if (unlikely(list_empty(&wc->freelist)))
736 return NULL;
737 e = container_of(wc->freelist.next, struct wc_entry, lru);
738 if (expected_sector != (sector_t)-1 && unlikely(cache_sector(wc, e) != expected_sector))
739 return NULL;
740 list_del(&e->lru);
741 }
742 wc->freelist_size--;
743
744 writecache_verify_watermark(wc);
745
746 return e;
747 }
748
writecache_free_entry(struct dm_writecache * wc,struct wc_entry * e)749 static void writecache_free_entry(struct dm_writecache *wc, struct wc_entry *e)
750 {
751 writecache_unlink(wc, e);
752 writecache_add_to_freelist(wc, e);
753 clear_seq_count(wc, e);
754 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
755 if (unlikely(waitqueue_active(&wc->freelist_wait)))
756 wake_up(&wc->freelist_wait);
757 }
758
writecache_wait_on_freelist(struct dm_writecache * wc)759 static void writecache_wait_on_freelist(struct dm_writecache *wc)
760 {
761 DEFINE_WAIT(wait);
762
763 prepare_to_wait(&wc->freelist_wait, &wait, TASK_UNINTERRUPTIBLE);
764 wc_unlock(wc);
765 io_schedule();
766 finish_wait(&wc->freelist_wait, &wait);
767 wc_lock(wc);
768 }
769
writecache_poison_lists(struct dm_writecache * wc)770 static void writecache_poison_lists(struct dm_writecache *wc)
771 {
772 /*
773 * Catch incorrect access to these values while the device is suspended.
774 */
775 memset(&wc->tree, -1, sizeof(wc->tree));
776 wc->lru.next = LIST_POISON1;
777 wc->lru.prev = LIST_POISON2;
778 wc->freelist.next = LIST_POISON1;
779 wc->freelist.prev = LIST_POISON2;
780 }
781
writecache_flush_entry(struct dm_writecache * wc,struct wc_entry * e)782 static void writecache_flush_entry(struct dm_writecache *wc, struct wc_entry *e)
783 {
784 writecache_flush_region(wc, memory_entry(wc, e), sizeof(struct wc_memory_entry));
785 if (WC_MODE_PMEM(wc))
786 writecache_flush_region(wc, memory_data(wc, e), wc->block_size);
787 }
788
writecache_entry_is_committed(struct dm_writecache * wc,struct wc_entry * e)789 static bool writecache_entry_is_committed(struct dm_writecache *wc, struct wc_entry *e)
790 {
791 return read_seq_count(wc, e) < wc->seq_count;
792 }
793
writecache_flush(struct dm_writecache * wc)794 static void writecache_flush(struct dm_writecache *wc)
795 {
796 struct wc_entry *e, *e2;
797 bool need_flush_after_free;
798
799 wc->uncommitted_blocks = 0;
800 del_timer(&wc->autocommit_timer);
801
802 if (list_empty(&wc->lru))
803 return;
804
805 e = container_of(wc->lru.next, struct wc_entry, lru);
806 if (writecache_entry_is_committed(wc, e)) {
807 if (wc->overwrote_committed) {
808 writecache_wait_for_ios(wc, WRITE);
809 writecache_disk_flush(wc, wc->ssd_dev);
810 wc->overwrote_committed = false;
811 }
812 return;
813 }
814 while (1) {
815 writecache_flush_entry(wc, e);
816 if (unlikely(e->lru.next == &wc->lru))
817 break;
818 e2 = container_of(e->lru.next, struct wc_entry, lru);
819 if (writecache_entry_is_committed(wc, e2))
820 break;
821 e = e2;
822 cond_resched();
823 }
824 writecache_commit_flushed(wc, true);
825
826 wc->seq_count++;
827 pmem_assign(sb(wc)->seq_count, cpu_to_le64(wc->seq_count));
828 if (WC_MODE_PMEM(wc))
829 writecache_commit_flushed(wc, false);
830 else
831 ssd_commit_superblock(wc);
832
833 wc->overwrote_committed = false;
834
835 need_flush_after_free = false;
836 while (1) {
837 /* Free another committed entry with lower seq-count */
838 struct rb_node *rb_node = rb_prev(&e->rb_node);
839
840 if (rb_node) {
841 e2 = container_of(rb_node, struct wc_entry, rb_node);
842 if (read_original_sector(wc, e2) == read_original_sector(wc, e) &&
843 likely(!e2->write_in_progress)) {
844 writecache_free_entry(wc, e2);
845 need_flush_after_free = true;
846 }
847 }
848 if (unlikely(e->lru.prev == &wc->lru))
849 break;
850 e = container_of(e->lru.prev, struct wc_entry, lru);
851 cond_resched();
852 }
853
854 if (need_flush_after_free)
855 writecache_commit_flushed(wc, false);
856 }
857
writecache_flush_work(struct work_struct * work)858 static void writecache_flush_work(struct work_struct *work)
859 {
860 struct dm_writecache *wc = container_of(work, struct dm_writecache, flush_work);
861
862 wc_lock(wc);
863 writecache_flush(wc);
864 wc_unlock(wc);
865 }
866
writecache_autocommit_timer(struct timer_list * t)867 static void writecache_autocommit_timer(struct timer_list *t)
868 {
869 struct dm_writecache *wc = from_timer(wc, t, autocommit_timer);
870
871 if (!writecache_has_error(wc))
872 queue_work(wc->writeback_wq, &wc->flush_work);
873 }
874
writecache_schedule_autocommit(struct dm_writecache * wc)875 static void writecache_schedule_autocommit(struct dm_writecache *wc)
876 {
877 if (!timer_pending(&wc->autocommit_timer))
878 mod_timer(&wc->autocommit_timer, jiffies + wc->autocommit_jiffies);
879 }
880
writecache_discard(struct dm_writecache * wc,sector_t start,sector_t end)881 static void writecache_discard(struct dm_writecache *wc, sector_t start, sector_t end)
882 {
883 struct wc_entry *e;
884 bool discarded_something = false;
885
886 e = writecache_find_entry(wc, start, WFE_RETURN_FOLLOWING | WFE_LOWEST_SEQ);
887 if (unlikely(!e))
888 return;
889
890 while (read_original_sector(wc, e) < end) {
891 struct rb_node *node = rb_next(&e->rb_node);
892
893 if (likely(!e->write_in_progress)) {
894 if (!discarded_something) {
895 if (!WC_MODE_PMEM(wc)) {
896 writecache_wait_for_ios(wc, READ);
897 writecache_wait_for_ios(wc, WRITE);
898 }
899 discarded_something = true;
900 }
901 if (!writecache_entry_is_committed(wc, e))
902 wc->uncommitted_blocks--;
903 writecache_free_entry(wc, e);
904 }
905
906 if (unlikely(!node))
907 break;
908
909 e = container_of(node, struct wc_entry, rb_node);
910 }
911
912 if (discarded_something)
913 writecache_commit_flushed(wc, false);
914 }
915
writecache_wait_for_writeback(struct dm_writecache * wc)916 static bool writecache_wait_for_writeback(struct dm_writecache *wc)
917 {
918 if (wc->writeback_size) {
919 writecache_wait_on_freelist(wc);
920 return true;
921 }
922 return false;
923 }
924
writecache_suspend(struct dm_target * ti)925 static void writecache_suspend(struct dm_target *ti)
926 {
927 struct dm_writecache *wc = ti->private;
928 bool flush_on_suspend;
929
930 del_timer_sync(&wc->autocommit_timer);
931 del_timer_sync(&wc->max_age_timer);
932
933 wc_lock(wc);
934 writecache_flush(wc);
935 flush_on_suspend = wc->flush_on_suspend;
936 if (flush_on_suspend) {
937 wc->flush_on_suspend = false;
938 wc->writeback_all++;
939 queue_work(wc->writeback_wq, &wc->writeback_work);
940 }
941 wc_unlock(wc);
942
943 drain_workqueue(wc->writeback_wq);
944
945 wc_lock(wc);
946 if (flush_on_suspend)
947 wc->writeback_all--;
948 while (writecache_wait_for_writeback(wc))
949 ;
950
951 if (WC_MODE_PMEM(wc))
952 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
953
954 writecache_poison_lists(wc);
955
956 wc_unlock(wc);
957 }
958
writecache_alloc_entries(struct dm_writecache * wc)959 static int writecache_alloc_entries(struct dm_writecache *wc)
960 {
961 size_t b;
962
963 if (wc->entries)
964 return 0;
965 wc->entries = vmalloc_array(wc->n_blocks, sizeof(struct wc_entry));
966 if (!wc->entries)
967 return -ENOMEM;
968 for (b = 0; b < wc->n_blocks; b++) {
969 struct wc_entry *e = &wc->entries[b];
970
971 e->index = b;
972 e->write_in_progress = false;
973 cond_resched();
974 }
975
976 return 0;
977 }
978
writecache_read_metadata(struct dm_writecache * wc,sector_t n_sectors)979 static int writecache_read_metadata(struct dm_writecache *wc, sector_t n_sectors)
980 {
981 struct dm_io_region region;
982 struct dm_io_request req;
983
984 region.bdev = wc->ssd_dev->bdev;
985 region.sector = wc->start_sector;
986 region.count = n_sectors;
987 req.bi_opf = REQ_OP_READ | REQ_SYNC;
988 req.mem.type = DM_IO_VMA;
989 req.mem.ptr.vma = (char *)wc->memory_map;
990 req.client = wc->dm_io;
991 req.notify.fn = NULL;
992
993 return dm_io(&req, 1, ®ion, NULL, IOPRIO_DEFAULT);
994 }
995
writecache_resume(struct dm_target * ti)996 static void writecache_resume(struct dm_target *ti)
997 {
998 struct dm_writecache *wc = ti->private;
999 size_t b;
1000 bool need_flush = false;
1001 __le64 sb_seq_count;
1002 int r;
1003
1004 wc_lock(wc);
1005
1006 wc->data_device_sectors = bdev_nr_sectors(wc->dev->bdev);
1007
1008 if (WC_MODE_PMEM(wc)) {
1009 persistent_memory_invalidate_cache(wc->memory_map, wc->memory_map_size);
1010 } else {
1011 r = writecache_read_metadata(wc, wc->metadata_sectors);
1012 if (r) {
1013 size_t sb_entries_offset;
1014
1015 writecache_error(wc, r, "unable to read metadata: %d", r);
1016 sb_entries_offset = offsetof(struct wc_memory_superblock, entries);
1017 memset((char *)wc->memory_map + sb_entries_offset, -1,
1018 (wc->metadata_sectors << SECTOR_SHIFT) - sb_entries_offset);
1019 }
1020 }
1021
1022 wc->tree = RB_ROOT;
1023 INIT_LIST_HEAD(&wc->lru);
1024 if (WC_MODE_SORT_FREELIST(wc)) {
1025 wc->freetree = RB_ROOT;
1026 wc->current_free = NULL;
1027 } else {
1028 INIT_LIST_HEAD(&wc->freelist);
1029 }
1030 wc->freelist_size = 0;
1031
1032 r = copy_mc_to_kernel(&sb_seq_count, &sb(wc)->seq_count,
1033 sizeof(uint64_t));
1034 if (r) {
1035 writecache_error(wc, r, "hardware memory error when reading superblock: %d", r);
1036 sb_seq_count = cpu_to_le64(0);
1037 }
1038 wc->seq_count = le64_to_cpu(sb_seq_count);
1039
1040 #ifdef DM_WRITECACHE_HANDLE_HARDWARE_ERRORS
1041 for (b = 0; b < wc->n_blocks; b++) {
1042 struct wc_entry *e = &wc->entries[b];
1043 struct wc_memory_entry wme;
1044
1045 if (writecache_has_error(wc)) {
1046 e->original_sector = -1;
1047 e->seq_count = -1;
1048 continue;
1049 }
1050 r = copy_mc_to_kernel(&wme, memory_entry(wc, e),
1051 sizeof(struct wc_memory_entry));
1052 if (r) {
1053 writecache_error(wc, r, "hardware memory error when reading metadata entry %lu: %d",
1054 (unsigned long)b, r);
1055 e->original_sector = -1;
1056 e->seq_count = -1;
1057 } else {
1058 e->original_sector = le64_to_cpu(wme.original_sector);
1059 e->seq_count = le64_to_cpu(wme.seq_count);
1060 }
1061 cond_resched();
1062 }
1063 #endif
1064 for (b = 0; b < wc->n_blocks; b++) {
1065 struct wc_entry *e = &wc->entries[b];
1066
1067 if (!writecache_entry_is_committed(wc, e)) {
1068 if (read_seq_count(wc, e) != -1) {
1069 erase_this:
1070 clear_seq_count(wc, e);
1071 need_flush = true;
1072 }
1073 writecache_add_to_freelist(wc, e);
1074 } else {
1075 struct wc_entry *old;
1076
1077 old = writecache_find_entry(wc, read_original_sector(wc, e), 0);
1078 if (!old) {
1079 writecache_insert_entry(wc, e);
1080 } else {
1081 if (read_seq_count(wc, old) == read_seq_count(wc, e)) {
1082 writecache_error(wc, -EINVAL,
1083 "two identical entries, position %llu, sector %llu, sequence %llu",
1084 (unsigned long long)b, (unsigned long long)read_original_sector(wc, e),
1085 (unsigned long long)read_seq_count(wc, e));
1086 }
1087 if (read_seq_count(wc, old) > read_seq_count(wc, e)) {
1088 goto erase_this;
1089 } else {
1090 writecache_free_entry(wc, old);
1091 writecache_insert_entry(wc, e);
1092 need_flush = true;
1093 }
1094 }
1095 }
1096 cond_resched();
1097 }
1098
1099 if (need_flush) {
1100 writecache_flush_all_metadata(wc);
1101 writecache_commit_flushed(wc, false);
1102 }
1103
1104 writecache_verify_watermark(wc);
1105
1106 if (wc->max_age != MAX_AGE_UNSPECIFIED)
1107 mod_timer(&wc->max_age_timer, jiffies + wc->max_age / MAX_AGE_DIV);
1108
1109 wc_unlock(wc);
1110 }
1111
process_flush_mesg(unsigned int argc,char ** argv,struct dm_writecache * wc)1112 static int process_flush_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1113 {
1114 if (argc != 1)
1115 return -EINVAL;
1116
1117 wc_lock(wc);
1118 if (dm_suspended(wc->ti)) {
1119 wc_unlock(wc);
1120 return -EBUSY;
1121 }
1122 if (writecache_has_error(wc)) {
1123 wc_unlock(wc);
1124 return -EIO;
1125 }
1126
1127 writecache_flush(wc);
1128 wc->writeback_all++;
1129 queue_work(wc->writeback_wq, &wc->writeback_work);
1130 wc_unlock(wc);
1131
1132 flush_workqueue(wc->writeback_wq);
1133
1134 wc_lock(wc);
1135 wc->writeback_all--;
1136 if (writecache_has_error(wc)) {
1137 wc_unlock(wc);
1138 return -EIO;
1139 }
1140 wc_unlock(wc);
1141
1142 return 0;
1143 }
1144
process_flush_on_suspend_mesg(unsigned int argc,char ** argv,struct dm_writecache * wc)1145 static int process_flush_on_suspend_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1146 {
1147 if (argc != 1)
1148 return -EINVAL;
1149
1150 wc_lock(wc);
1151 wc->flush_on_suspend = true;
1152 wc_unlock(wc);
1153
1154 return 0;
1155 }
1156
activate_cleaner(struct dm_writecache * wc)1157 static void activate_cleaner(struct dm_writecache *wc)
1158 {
1159 wc->flush_on_suspend = true;
1160 wc->cleaner = true;
1161 wc->freelist_high_watermark = wc->n_blocks;
1162 wc->freelist_low_watermark = wc->n_blocks;
1163 }
1164
process_cleaner_mesg(unsigned int argc,char ** argv,struct dm_writecache * wc)1165 static int process_cleaner_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1166 {
1167 if (argc != 1)
1168 return -EINVAL;
1169
1170 wc_lock(wc);
1171 activate_cleaner(wc);
1172 if (!dm_suspended(wc->ti))
1173 writecache_verify_watermark(wc);
1174 wc_unlock(wc);
1175
1176 return 0;
1177 }
1178
process_clear_stats_mesg(unsigned int argc,char ** argv,struct dm_writecache * wc)1179 static int process_clear_stats_mesg(unsigned int argc, char **argv, struct dm_writecache *wc)
1180 {
1181 if (argc != 1)
1182 return -EINVAL;
1183
1184 wc_lock(wc);
1185 memset(&wc->stats, 0, sizeof(wc->stats));
1186 wc_unlock(wc);
1187
1188 return 0;
1189 }
1190
writecache_message(struct dm_target * ti,unsigned int argc,char ** argv,char * result,unsigned int maxlen)1191 static int writecache_message(struct dm_target *ti, unsigned int argc, char **argv,
1192 char *result, unsigned int maxlen)
1193 {
1194 int r = -EINVAL;
1195 struct dm_writecache *wc = ti->private;
1196
1197 if (!strcasecmp(argv[0], "flush"))
1198 r = process_flush_mesg(argc, argv, wc);
1199 else if (!strcasecmp(argv[0], "flush_on_suspend"))
1200 r = process_flush_on_suspend_mesg(argc, argv, wc);
1201 else if (!strcasecmp(argv[0], "cleaner"))
1202 r = process_cleaner_mesg(argc, argv, wc);
1203 else if (!strcasecmp(argv[0], "clear_stats"))
1204 r = process_clear_stats_mesg(argc, argv, wc);
1205 else
1206 DMERR("unrecognised message received: %s", argv[0]);
1207
1208 return r;
1209 }
1210
memcpy_flushcache_optimized(void * dest,void * source,size_t size)1211 static void memcpy_flushcache_optimized(void *dest, void *source, size_t size)
1212 {
1213 /*
1214 * clflushopt performs better with block size 1024, 2048, 4096
1215 * non-temporal stores perform better with block size 512
1216 *
1217 * block size 512 1024 2048 4096
1218 * movnti 496 MB/s 642 MB/s 725 MB/s 744 MB/s
1219 * clflushopt 373 MB/s 688 MB/s 1.1 GB/s 1.2 GB/s
1220 *
1221 * We see that movnti performs better for 512-byte blocks, and
1222 * clflushopt performs better for 1024-byte and larger blocks. So, we
1223 * prefer clflushopt for sizes >= 768.
1224 *
1225 * NOTE: this happens to be the case now (with dm-writecache's single
1226 * threaded model) but re-evaluate this once memcpy_flushcache() is
1227 * enabled to use movdir64b which might invalidate this performance
1228 * advantage seen with cache-allocating-writes plus flushing.
1229 */
1230 #ifdef CONFIG_X86
1231 if (static_cpu_has(X86_FEATURE_CLFLUSHOPT) &&
1232 likely(boot_cpu_data.x86_clflush_size == 64) &&
1233 likely(size >= 768)) {
1234 do {
1235 memcpy((void *)dest, (void *)source, 64);
1236 clflushopt((void *)dest);
1237 dest += 64;
1238 source += 64;
1239 size -= 64;
1240 } while (size >= 64);
1241 return;
1242 }
1243 #endif
1244 memcpy_flushcache(dest, source, size);
1245 }
1246
bio_copy_block(struct dm_writecache * wc,struct bio * bio,void * data)1247 static void bio_copy_block(struct dm_writecache *wc, struct bio *bio, void *data)
1248 {
1249 void *buf;
1250 unsigned int size;
1251 int rw = bio_data_dir(bio);
1252 unsigned int remaining_size = wc->block_size;
1253
1254 do {
1255 struct bio_vec bv = bio_iter_iovec(bio, bio->bi_iter);
1256
1257 buf = bvec_kmap_local(&bv);
1258 size = bv.bv_len;
1259 if (unlikely(size > remaining_size))
1260 size = remaining_size;
1261
1262 if (rw == READ) {
1263 int r;
1264
1265 r = copy_mc_to_kernel(buf, data, size);
1266 flush_dcache_page(bio_page(bio));
1267 if (unlikely(r)) {
1268 writecache_error(wc, r, "hardware memory error when reading data: %d", r);
1269 bio->bi_status = BLK_STS_IOERR;
1270 }
1271 } else {
1272 flush_dcache_page(bio_page(bio));
1273 memcpy_flushcache_optimized(data, buf, size);
1274 }
1275
1276 kunmap_local(buf);
1277
1278 data = (char *)data + size;
1279 remaining_size -= size;
1280 bio_advance(bio, size);
1281 } while (unlikely(remaining_size));
1282 }
1283
writecache_flush_thread(void * data)1284 static int writecache_flush_thread(void *data)
1285 {
1286 struct dm_writecache *wc = data;
1287
1288 while (1) {
1289 struct bio *bio;
1290
1291 wc_lock(wc);
1292 bio = bio_list_pop(&wc->flush_list);
1293 if (!bio) {
1294 set_current_state(TASK_INTERRUPTIBLE);
1295 wc_unlock(wc);
1296
1297 if (unlikely(kthread_should_stop())) {
1298 set_current_state(TASK_RUNNING);
1299 break;
1300 }
1301
1302 schedule();
1303 continue;
1304 }
1305
1306 if (bio_op(bio) == REQ_OP_DISCARD) {
1307 writecache_discard(wc, bio->bi_iter.bi_sector,
1308 bio_end_sector(bio));
1309 wc_unlock(wc);
1310 bio_set_dev(bio, wc->dev->bdev);
1311 submit_bio_noacct(bio);
1312 } else {
1313 writecache_flush(wc);
1314 wc_unlock(wc);
1315 if (writecache_has_error(wc))
1316 bio->bi_status = BLK_STS_IOERR;
1317 bio_endio(bio);
1318 }
1319 }
1320
1321 return 0;
1322 }
1323
writecache_offload_bio(struct dm_writecache * wc,struct bio * bio)1324 static void writecache_offload_bio(struct dm_writecache *wc, struct bio *bio)
1325 {
1326 if (bio_list_empty(&wc->flush_list))
1327 wake_up_process(wc->flush_thread);
1328 bio_list_add(&wc->flush_list, bio);
1329 }
1330
1331 enum wc_map_op {
1332 WC_MAP_SUBMIT,
1333 WC_MAP_REMAP,
1334 WC_MAP_REMAP_ORIGIN,
1335 WC_MAP_RETURN,
1336 WC_MAP_ERROR,
1337 };
1338
writecache_map_remap_origin(struct dm_writecache * wc,struct bio * bio,struct wc_entry * e)1339 static void writecache_map_remap_origin(struct dm_writecache *wc, struct bio *bio,
1340 struct wc_entry *e)
1341 {
1342 if (e) {
1343 sector_t next_boundary =
1344 read_original_sector(wc, e) - bio->bi_iter.bi_sector;
1345 if (next_boundary < bio->bi_iter.bi_size >> SECTOR_SHIFT)
1346 dm_accept_partial_bio(bio, next_boundary);
1347 }
1348 }
1349
writecache_map_read(struct dm_writecache * wc,struct bio * bio)1350 static enum wc_map_op writecache_map_read(struct dm_writecache *wc, struct bio *bio)
1351 {
1352 enum wc_map_op map_op;
1353 struct wc_entry *e;
1354
1355 read_next_block:
1356 wc->stats.reads++;
1357 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1358 if (e && read_original_sector(wc, e) == bio->bi_iter.bi_sector) {
1359 wc->stats.read_hits++;
1360 if (WC_MODE_PMEM(wc)) {
1361 bio_copy_block(wc, bio, memory_data(wc, e));
1362 if (bio->bi_iter.bi_size)
1363 goto read_next_block;
1364 map_op = WC_MAP_SUBMIT;
1365 } else {
1366 dm_accept_partial_bio(bio, wc->block_size >> SECTOR_SHIFT);
1367 bio_set_dev(bio, wc->ssd_dev->bdev);
1368 bio->bi_iter.bi_sector = cache_sector(wc, e);
1369 if (!writecache_entry_is_committed(wc, e))
1370 writecache_wait_for_ios(wc, WRITE);
1371 map_op = WC_MAP_REMAP;
1372 }
1373 } else {
1374 writecache_map_remap_origin(wc, bio, e);
1375 wc->stats.reads += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1376 map_op = WC_MAP_REMAP_ORIGIN;
1377 }
1378
1379 return map_op;
1380 }
1381
writecache_bio_copy_ssd(struct dm_writecache * wc,struct bio * bio,struct wc_entry * e,bool search_used)1382 static void writecache_bio_copy_ssd(struct dm_writecache *wc, struct bio *bio,
1383 struct wc_entry *e, bool search_used)
1384 {
1385 unsigned int bio_size = wc->block_size;
1386 sector_t start_cache_sec = cache_sector(wc, e);
1387 sector_t current_cache_sec = start_cache_sec + (bio_size >> SECTOR_SHIFT);
1388
1389 while (bio_size < bio->bi_iter.bi_size) {
1390 if (!search_used) {
1391 struct wc_entry *f = writecache_pop_from_freelist(wc, current_cache_sec);
1392
1393 if (!f)
1394 break;
1395 write_original_sector_seq_count(wc, f, bio->bi_iter.bi_sector +
1396 (bio_size >> SECTOR_SHIFT), wc->seq_count);
1397 writecache_insert_entry(wc, f);
1398 wc->uncommitted_blocks++;
1399 } else {
1400 struct wc_entry *f;
1401 struct rb_node *next = rb_next(&e->rb_node);
1402
1403 if (!next)
1404 break;
1405 f = container_of(next, struct wc_entry, rb_node);
1406 if (f != e + 1)
1407 break;
1408 if (read_original_sector(wc, f) !=
1409 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1410 break;
1411 if (unlikely(f->write_in_progress))
1412 break;
1413 if (writecache_entry_is_committed(wc, f))
1414 wc->overwrote_committed = true;
1415 e = f;
1416 }
1417 bio_size += wc->block_size;
1418 current_cache_sec += wc->block_size >> SECTOR_SHIFT;
1419 }
1420
1421 bio_set_dev(bio, wc->ssd_dev->bdev);
1422 bio->bi_iter.bi_sector = start_cache_sec;
1423 dm_accept_partial_bio(bio, bio_size >> SECTOR_SHIFT);
1424
1425 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1426 wc->stats.writes_allocate += (bio->bi_iter.bi_size - wc->block_size) >> wc->block_size_bits;
1427
1428 if (unlikely(wc->uncommitted_blocks >= wc->autocommit_blocks)) {
1429 wc->uncommitted_blocks = 0;
1430 queue_work(wc->writeback_wq, &wc->flush_work);
1431 } else {
1432 writecache_schedule_autocommit(wc);
1433 }
1434 }
1435
writecache_map_write(struct dm_writecache * wc,struct bio * bio)1436 static enum wc_map_op writecache_map_write(struct dm_writecache *wc, struct bio *bio)
1437 {
1438 struct wc_entry *e;
1439
1440 do {
1441 bool found_entry = false;
1442 bool search_used = false;
1443
1444 if (writecache_has_error(wc)) {
1445 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1446 return WC_MAP_ERROR;
1447 }
1448 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, 0);
1449 if (e) {
1450 if (!writecache_entry_is_committed(wc, e)) {
1451 wc->stats.write_hits_uncommitted++;
1452 search_used = true;
1453 goto bio_copy;
1454 }
1455 wc->stats.write_hits_committed++;
1456 if (!WC_MODE_PMEM(wc) && !e->write_in_progress) {
1457 wc->overwrote_committed = true;
1458 search_used = true;
1459 goto bio_copy;
1460 }
1461 found_entry = true;
1462 } else {
1463 if (unlikely(wc->cleaner) ||
1464 (wc->metadata_only && !(bio->bi_opf & REQ_META)))
1465 goto direct_write;
1466 }
1467 e = writecache_pop_from_freelist(wc, (sector_t)-1);
1468 if (unlikely(!e)) {
1469 if (!WC_MODE_PMEM(wc) && !found_entry) {
1470 direct_write:
1471 e = writecache_find_entry(wc, bio->bi_iter.bi_sector, WFE_RETURN_FOLLOWING);
1472 writecache_map_remap_origin(wc, bio, e);
1473 wc->stats.writes_around += bio->bi_iter.bi_size >> wc->block_size_bits;
1474 wc->stats.writes += bio->bi_iter.bi_size >> wc->block_size_bits;
1475 return WC_MAP_REMAP_ORIGIN;
1476 }
1477 wc->stats.writes_blocked_on_freelist++;
1478 writecache_wait_on_freelist(wc);
1479 continue;
1480 }
1481 write_original_sector_seq_count(wc, e, bio->bi_iter.bi_sector, wc->seq_count);
1482 writecache_insert_entry(wc, e);
1483 wc->uncommitted_blocks++;
1484 wc->stats.writes_allocate++;
1485 bio_copy:
1486 if (WC_MODE_PMEM(wc)) {
1487 bio_copy_block(wc, bio, memory_data(wc, e));
1488 wc->stats.writes++;
1489 } else {
1490 writecache_bio_copy_ssd(wc, bio, e, search_used);
1491 return WC_MAP_REMAP;
1492 }
1493 } while (bio->bi_iter.bi_size);
1494
1495 if (unlikely(bio->bi_opf & REQ_FUA || wc->uncommitted_blocks >= wc->autocommit_blocks))
1496 writecache_flush(wc);
1497 else
1498 writecache_schedule_autocommit(wc);
1499
1500 return WC_MAP_SUBMIT;
1501 }
1502
writecache_map_flush(struct dm_writecache * wc,struct bio * bio)1503 static enum wc_map_op writecache_map_flush(struct dm_writecache *wc, struct bio *bio)
1504 {
1505 if (writecache_has_error(wc))
1506 return WC_MAP_ERROR;
1507
1508 if (WC_MODE_PMEM(wc)) {
1509 wc->stats.flushes++;
1510 writecache_flush(wc);
1511 if (writecache_has_error(wc))
1512 return WC_MAP_ERROR;
1513 else if (unlikely(wc->cleaner) || unlikely(wc->metadata_only))
1514 return WC_MAP_REMAP_ORIGIN;
1515 return WC_MAP_SUBMIT;
1516 }
1517 /* SSD: */
1518 if (dm_bio_get_target_bio_nr(bio))
1519 return WC_MAP_REMAP_ORIGIN;
1520 wc->stats.flushes++;
1521 writecache_offload_bio(wc, bio);
1522 return WC_MAP_RETURN;
1523 }
1524
writecache_map_discard(struct dm_writecache * wc,struct bio * bio)1525 static enum wc_map_op writecache_map_discard(struct dm_writecache *wc, struct bio *bio)
1526 {
1527 wc->stats.discards += bio->bi_iter.bi_size >> wc->block_size_bits;
1528
1529 if (writecache_has_error(wc))
1530 return WC_MAP_ERROR;
1531
1532 if (WC_MODE_PMEM(wc)) {
1533 writecache_discard(wc, bio->bi_iter.bi_sector, bio_end_sector(bio));
1534 return WC_MAP_REMAP_ORIGIN;
1535 }
1536 /* SSD: */
1537 writecache_offload_bio(wc, bio);
1538 return WC_MAP_RETURN;
1539 }
1540
writecache_map(struct dm_target * ti,struct bio * bio)1541 static int writecache_map(struct dm_target *ti, struct bio *bio)
1542 {
1543 struct dm_writecache *wc = ti->private;
1544 enum wc_map_op map_op;
1545
1546 bio->bi_private = NULL;
1547
1548 wc_lock(wc);
1549
1550 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1551 map_op = writecache_map_flush(wc, bio);
1552 goto done;
1553 }
1554
1555 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1556
1557 if (unlikely((((unsigned int)bio->bi_iter.bi_sector | bio_sectors(bio)) &
1558 (wc->block_size / 512 - 1)) != 0)) {
1559 DMERR("I/O is not aligned, sector %llu, size %u, block size %u",
1560 (unsigned long long)bio->bi_iter.bi_sector,
1561 bio->bi_iter.bi_size, wc->block_size);
1562 map_op = WC_MAP_ERROR;
1563 goto done;
1564 }
1565
1566 if (unlikely(bio_op(bio) == REQ_OP_DISCARD)) {
1567 map_op = writecache_map_discard(wc, bio);
1568 goto done;
1569 }
1570
1571 if (bio_data_dir(bio) == READ)
1572 map_op = writecache_map_read(wc, bio);
1573 else
1574 map_op = writecache_map_write(wc, bio);
1575 done:
1576 switch (map_op) {
1577 case WC_MAP_REMAP_ORIGIN:
1578 if (likely(wc->pause != 0)) {
1579 if (bio_op(bio) == REQ_OP_WRITE) {
1580 dm_iot_io_begin(&wc->iot, 1);
1581 bio->bi_private = (void *)2;
1582 }
1583 }
1584 bio_set_dev(bio, wc->dev->bdev);
1585 wc_unlock(wc);
1586 return DM_MAPIO_REMAPPED;
1587
1588 case WC_MAP_REMAP:
1589 /* make sure that writecache_end_io decrements bio_in_progress: */
1590 bio->bi_private = (void *)1;
1591 atomic_inc(&wc->bio_in_progress[bio_data_dir(bio)]);
1592 wc_unlock(wc);
1593 return DM_MAPIO_REMAPPED;
1594
1595 case WC_MAP_SUBMIT:
1596 wc_unlock(wc);
1597 bio_endio(bio);
1598 return DM_MAPIO_SUBMITTED;
1599
1600 case WC_MAP_RETURN:
1601 wc_unlock(wc);
1602 return DM_MAPIO_SUBMITTED;
1603
1604 case WC_MAP_ERROR:
1605 wc_unlock(wc);
1606 bio_io_error(bio);
1607 return DM_MAPIO_SUBMITTED;
1608
1609 default:
1610 BUG();
1611 wc_unlock(wc);
1612 return DM_MAPIO_KILL;
1613 }
1614 }
1615
writecache_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)1616 static int writecache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
1617 {
1618 struct dm_writecache *wc = ti->private;
1619
1620 if (bio->bi_private == (void *)1) {
1621 int dir = bio_data_dir(bio);
1622
1623 if (atomic_dec_and_test(&wc->bio_in_progress[dir]))
1624 if (unlikely(waitqueue_active(&wc->bio_in_progress_wait[dir])))
1625 wake_up(&wc->bio_in_progress_wait[dir]);
1626 } else if (bio->bi_private == (void *)2) {
1627 dm_iot_io_end(&wc->iot, 1);
1628 }
1629 return 0;
1630 }
1631
writecache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1632 static int writecache_iterate_devices(struct dm_target *ti,
1633 iterate_devices_callout_fn fn, void *data)
1634 {
1635 struct dm_writecache *wc = ti->private;
1636
1637 return fn(ti, wc->dev, 0, ti->len, data);
1638 }
1639
writecache_io_hints(struct dm_target * ti,struct queue_limits * limits)1640 static void writecache_io_hints(struct dm_target *ti, struct queue_limits *limits)
1641 {
1642 struct dm_writecache *wc = ti->private;
1643
1644 if (limits->logical_block_size < wc->block_size)
1645 limits->logical_block_size = wc->block_size;
1646
1647 if (limits->physical_block_size < wc->block_size)
1648 limits->physical_block_size = wc->block_size;
1649
1650 if (limits->io_min < wc->block_size)
1651 limits->io_min = wc->block_size;
1652 }
1653
1654
writecache_writeback_endio(struct bio * bio)1655 static void writecache_writeback_endio(struct bio *bio)
1656 {
1657 struct writeback_struct *wb = container_of(bio, struct writeback_struct, bio);
1658 struct dm_writecache *wc = wb->wc;
1659 unsigned long flags;
1660
1661 raw_spin_lock_irqsave(&wc->endio_list_lock, flags);
1662 if (unlikely(list_empty(&wc->endio_list)))
1663 wake_up_process(wc->endio_thread);
1664 list_add_tail(&wb->endio_entry, &wc->endio_list);
1665 raw_spin_unlock_irqrestore(&wc->endio_list_lock, flags);
1666 }
1667
writecache_copy_endio(int read_err,unsigned long write_err,void * ptr)1668 static void writecache_copy_endio(int read_err, unsigned long write_err, void *ptr)
1669 {
1670 struct copy_struct *c = ptr;
1671 struct dm_writecache *wc = c->wc;
1672
1673 c->error = likely(!(read_err | write_err)) ? 0 : -EIO;
1674
1675 raw_spin_lock_irq(&wc->endio_list_lock);
1676 if (unlikely(list_empty(&wc->endio_list)))
1677 wake_up_process(wc->endio_thread);
1678 list_add_tail(&c->endio_entry, &wc->endio_list);
1679 raw_spin_unlock_irq(&wc->endio_list_lock);
1680 }
1681
__writecache_endio_pmem(struct dm_writecache * wc,struct list_head * list)1682 static void __writecache_endio_pmem(struct dm_writecache *wc, struct list_head *list)
1683 {
1684 unsigned int i;
1685 struct writeback_struct *wb;
1686 struct wc_entry *e;
1687 unsigned long n_walked = 0;
1688
1689 do {
1690 wb = list_entry(list->next, struct writeback_struct, endio_entry);
1691 list_del(&wb->endio_entry);
1692
1693 if (unlikely(wb->bio.bi_status != BLK_STS_OK))
1694 writecache_error(wc, blk_status_to_errno(wb->bio.bi_status),
1695 "write error %d", wb->bio.bi_status);
1696 i = 0;
1697 do {
1698 e = wb->wc_list[i];
1699 BUG_ON(!e->write_in_progress);
1700 e->write_in_progress = false;
1701 INIT_LIST_HEAD(&e->lru);
1702 if (!writecache_has_error(wc))
1703 writecache_free_entry(wc, e);
1704 BUG_ON(!wc->writeback_size);
1705 wc->writeback_size--;
1706 n_walked++;
1707 if (unlikely(n_walked >= ENDIO_LATENCY)) {
1708 writecache_commit_flushed(wc, false);
1709 wc_unlock(wc);
1710 wc_lock(wc);
1711 n_walked = 0;
1712 }
1713 } while (++i < wb->wc_list_n);
1714
1715 if (wb->wc_list != wb->wc_list_inline)
1716 kfree(wb->wc_list);
1717 bio_put(&wb->bio);
1718 } while (!list_empty(list));
1719 }
1720
__writecache_endio_ssd(struct dm_writecache * wc,struct list_head * list)1721 static void __writecache_endio_ssd(struct dm_writecache *wc, struct list_head *list)
1722 {
1723 struct copy_struct *c;
1724 struct wc_entry *e;
1725
1726 do {
1727 c = list_entry(list->next, struct copy_struct, endio_entry);
1728 list_del(&c->endio_entry);
1729
1730 if (unlikely(c->error))
1731 writecache_error(wc, c->error, "copy error");
1732
1733 e = c->e;
1734 do {
1735 BUG_ON(!e->write_in_progress);
1736 e->write_in_progress = false;
1737 INIT_LIST_HEAD(&e->lru);
1738 if (!writecache_has_error(wc))
1739 writecache_free_entry(wc, e);
1740
1741 BUG_ON(!wc->writeback_size);
1742 wc->writeback_size--;
1743 e++;
1744 } while (--c->n_entries);
1745 mempool_free(c, &wc->copy_pool);
1746 } while (!list_empty(list));
1747 }
1748
writecache_endio_thread(void * data)1749 static int writecache_endio_thread(void *data)
1750 {
1751 struct dm_writecache *wc = data;
1752
1753 while (1) {
1754 struct list_head list;
1755
1756 raw_spin_lock_irq(&wc->endio_list_lock);
1757 if (!list_empty(&wc->endio_list))
1758 goto pop_from_list;
1759 set_current_state(TASK_INTERRUPTIBLE);
1760 raw_spin_unlock_irq(&wc->endio_list_lock);
1761
1762 if (unlikely(kthread_should_stop())) {
1763 set_current_state(TASK_RUNNING);
1764 break;
1765 }
1766
1767 schedule();
1768
1769 continue;
1770
1771 pop_from_list:
1772 list = wc->endio_list;
1773 list.next->prev = list.prev->next = &list;
1774 INIT_LIST_HEAD(&wc->endio_list);
1775 raw_spin_unlock_irq(&wc->endio_list_lock);
1776
1777 if (!WC_MODE_FUA(wc))
1778 writecache_disk_flush(wc, wc->dev);
1779
1780 wc_lock(wc);
1781
1782 if (WC_MODE_PMEM(wc)) {
1783 __writecache_endio_pmem(wc, &list);
1784 } else {
1785 __writecache_endio_ssd(wc, &list);
1786 writecache_wait_for_ios(wc, READ);
1787 }
1788
1789 writecache_commit_flushed(wc, false);
1790
1791 wc_unlock(wc);
1792 }
1793
1794 return 0;
1795 }
1796
wc_add_block(struct writeback_struct * wb,struct wc_entry * e)1797 static bool wc_add_block(struct writeback_struct *wb, struct wc_entry *e)
1798 {
1799 struct dm_writecache *wc = wb->wc;
1800 unsigned int block_size = wc->block_size;
1801 void *address = memory_data(wc, e);
1802
1803 persistent_memory_flush_cache(address, block_size);
1804
1805 if (unlikely(bio_end_sector(&wb->bio) >= wc->data_device_sectors))
1806 return true;
1807
1808 return bio_add_page(&wb->bio, persistent_memory_page(address),
1809 block_size, persistent_memory_page_offset(address)) != 0;
1810 }
1811
1812 struct writeback_list {
1813 struct list_head list;
1814 size_t size;
1815 };
1816
__writeback_throttle(struct dm_writecache * wc,struct writeback_list * wbl)1817 static void __writeback_throttle(struct dm_writecache *wc, struct writeback_list *wbl)
1818 {
1819 if (unlikely(wc->max_writeback_jobs)) {
1820 if (READ_ONCE(wc->writeback_size) - wbl->size >= wc->max_writeback_jobs) {
1821 wc_lock(wc);
1822 while (wc->writeback_size - wbl->size >= wc->max_writeback_jobs)
1823 writecache_wait_on_freelist(wc);
1824 wc_unlock(wc);
1825 }
1826 }
1827 cond_resched();
1828 }
1829
__writecache_writeback_pmem(struct dm_writecache * wc,struct writeback_list * wbl)1830 static void __writecache_writeback_pmem(struct dm_writecache *wc, struct writeback_list *wbl)
1831 {
1832 struct wc_entry *e, *f;
1833 struct bio *bio;
1834 struct writeback_struct *wb;
1835 unsigned int max_pages;
1836
1837 while (wbl->size) {
1838 wbl->size--;
1839 e = container_of(wbl->list.prev, struct wc_entry, lru);
1840 list_del(&e->lru);
1841
1842 max_pages = e->wc_list_contiguous;
1843
1844 bio = bio_alloc_bioset(wc->dev->bdev, max_pages, REQ_OP_WRITE,
1845 GFP_NOIO, &wc->bio_set);
1846 wb = container_of(bio, struct writeback_struct, bio);
1847 wb->wc = wc;
1848 bio->bi_end_io = writecache_writeback_endio;
1849 bio->bi_iter.bi_sector = read_original_sector(wc, e);
1850
1851 if (unlikely(max_pages > WB_LIST_INLINE))
1852 wb->wc_list = kmalloc_array(max_pages, sizeof(struct wc_entry *),
1853 GFP_NOIO | __GFP_NORETRY |
1854 __GFP_NOMEMALLOC | __GFP_NOWARN);
1855
1856 if (likely(max_pages <= WB_LIST_INLINE) || unlikely(!wb->wc_list)) {
1857 wb->wc_list = wb->wc_list_inline;
1858 max_pages = WB_LIST_INLINE;
1859 }
1860
1861 BUG_ON(!wc_add_block(wb, e));
1862
1863 wb->wc_list[0] = e;
1864 wb->wc_list_n = 1;
1865
1866 while (wbl->size && wb->wc_list_n < max_pages) {
1867 f = container_of(wbl->list.prev, struct wc_entry, lru);
1868 if (read_original_sector(wc, f) !=
1869 read_original_sector(wc, e) + (wc->block_size >> SECTOR_SHIFT))
1870 break;
1871 if (!wc_add_block(wb, f))
1872 break;
1873 wbl->size--;
1874 list_del(&f->lru);
1875 wb->wc_list[wb->wc_list_n++] = f;
1876 e = f;
1877 }
1878 if (WC_MODE_FUA(wc))
1879 bio->bi_opf |= REQ_FUA;
1880 if (writecache_has_error(wc)) {
1881 bio->bi_status = BLK_STS_IOERR;
1882 bio_endio(bio);
1883 } else if (unlikely(!bio_sectors(bio))) {
1884 bio->bi_status = BLK_STS_OK;
1885 bio_endio(bio);
1886 } else {
1887 submit_bio(bio);
1888 }
1889
1890 __writeback_throttle(wc, wbl);
1891 }
1892 }
1893
__writecache_writeback_ssd(struct dm_writecache * wc,struct writeback_list * wbl)1894 static void __writecache_writeback_ssd(struct dm_writecache *wc, struct writeback_list *wbl)
1895 {
1896 struct wc_entry *e, *f;
1897 struct dm_io_region from, to;
1898 struct copy_struct *c;
1899
1900 while (wbl->size) {
1901 unsigned int n_sectors;
1902
1903 wbl->size--;
1904 e = container_of(wbl->list.prev, struct wc_entry, lru);
1905 list_del(&e->lru);
1906
1907 n_sectors = e->wc_list_contiguous << (wc->block_size_bits - SECTOR_SHIFT);
1908
1909 from.bdev = wc->ssd_dev->bdev;
1910 from.sector = cache_sector(wc, e);
1911 from.count = n_sectors;
1912 to.bdev = wc->dev->bdev;
1913 to.sector = read_original_sector(wc, e);
1914 to.count = n_sectors;
1915
1916 c = mempool_alloc(&wc->copy_pool, GFP_NOIO);
1917 c->wc = wc;
1918 c->e = e;
1919 c->n_entries = e->wc_list_contiguous;
1920
1921 while ((n_sectors -= wc->block_size >> SECTOR_SHIFT)) {
1922 wbl->size--;
1923 f = container_of(wbl->list.prev, struct wc_entry, lru);
1924 BUG_ON(f != e + 1);
1925 list_del(&f->lru);
1926 e = f;
1927 }
1928
1929 if (unlikely(to.sector + to.count > wc->data_device_sectors)) {
1930 if (to.sector >= wc->data_device_sectors) {
1931 writecache_copy_endio(0, 0, c);
1932 continue;
1933 }
1934 from.count = to.count = wc->data_device_sectors - to.sector;
1935 }
1936
1937 dm_kcopyd_copy(wc->dm_kcopyd, &from, 1, &to, 0, writecache_copy_endio, c);
1938
1939 __writeback_throttle(wc, wbl);
1940 }
1941 }
1942
writecache_writeback(struct work_struct * work)1943 static void writecache_writeback(struct work_struct *work)
1944 {
1945 struct dm_writecache *wc = container_of(work, struct dm_writecache, writeback_work);
1946 struct blk_plug plug;
1947 struct wc_entry *f, *g, *e = NULL;
1948 struct rb_node *node, *next_node;
1949 struct list_head skipped;
1950 struct writeback_list wbl;
1951 unsigned long n_walked;
1952
1953 if (!WC_MODE_PMEM(wc)) {
1954 /* Wait for any active kcopyd work on behalf of ssd writeback */
1955 dm_kcopyd_client_flush(wc->dm_kcopyd);
1956 }
1957
1958 if (likely(wc->pause != 0)) {
1959 while (1) {
1960 unsigned long idle;
1961
1962 if (unlikely(wc->cleaner) || unlikely(wc->writeback_all) ||
1963 unlikely(dm_suspended(wc->ti)))
1964 break;
1965 idle = dm_iot_idle_time(&wc->iot);
1966 if (idle >= wc->pause)
1967 break;
1968 idle = wc->pause - idle;
1969 if (idle > HZ)
1970 idle = HZ;
1971 schedule_timeout_idle(idle);
1972 }
1973 }
1974
1975 wc_lock(wc);
1976 restart:
1977 if (writecache_has_error(wc)) {
1978 wc_unlock(wc);
1979 return;
1980 }
1981
1982 if (unlikely(wc->writeback_all)) {
1983 if (writecache_wait_for_writeback(wc))
1984 goto restart;
1985 }
1986
1987 if (wc->overwrote_committed)
1988 writecache_wait_for_ios(wc, WRITE);
1989
1990 n_walked = 0;
1991 INIT_LIST_HEAD(&skipped);
1992 INIT_LIST_HEAD(&wbl.list);
1993 wbl.size = 0;
1994 while (!list_empty(&wc->lru) &&
1995 (wc->writeback_all ||
1996 wc->freelist_size + wc->writeback_size <= wc->freelist_low_watermark ||
1997 (jiffies - container_of(wc->lru.prev, struct wc_entry, lru)->age >=
1998 wc->max_age - wc->max_age / MAX_AGE_DIV))) {
1999
2000 n_walked++;
2001 if (unlikely(n_walked > WRITEBACK_LATENCY) &&
2002 likely(!wc->writeback_all)) {
2003 if (likely(!dm_suspended(wc->ti)))
2004 queue_work(wc->writeback_wq, &wc->writeback_work);
2005 break;
2006 }
2007
2008 if (unlikely(wc->writeback_all)) {
2009 if (unlikely(!e)) {
2010 writecache_flush(wc);
2011 e = container_of(rb_first(&wc->tree), struct wc_entry, rb_node);
2012 } else
2013 e = g;
2014 } else
2015 e = container_of(wc->lru.prev, struct wc_entry, lru);
2016 BUG_ON(e->write_in_progress);
2017 if (unlikely(!writecache_entry_is_committed(wc, e)))
2018 writecache_flush(wc);
2019
2020 node = rb_prev(&e->rb_node);
2021 if (node) {
2022 f = container_of(node, struct wc_entry, rb_node);
2023 if (unlikely(read_original_sector(wc, f) ==
2024 read_original_sector(wc, e))) {
2025 BUG_ON(!f->write_in_progress);
2026 list_move(&e->lru, &skipped);
2027 cond_resched();
2028 continue;
2029 }
2030 }
2031 wc->writeback_size++;
2032 list_move(&e->lru, &wbl.list);
2033 wbl.size++;
2034 e->write_in_progress = true;
2035 e->wc_list_contiguous = 1;
2036
2037 f = e;
2038
2039 while (1) {
2040 next_node = rb_next(&f->rb_node);
2041 if (unlikely(!next_node))
2042 break;
2043 g = container_of(next_node, struct wc_entry, rb_node);
2044 if (unlikely(read_original_sector(wc, g) ==
2045 read_original_sector(wc, f))) {
2046 f = g;
2047 continue;
2048 }
2049 if (read_original_sector(wc, g) !=
2050 read_original_sector(wc, f) + (wc->block_size >> SECTOR_SHIFT))
2051 break;
2052 if (unlikely(g->write_in_progress))
2053 break;
2054 if (unlikely(!writecache_entry_is_committed(wc, g)))
2055 break;
2056
2057 if (!WC_MODE_PMEM(wc)) {
2058 if (g != f + 1)
2059 break;
2060 }
2061
2062 n_walked++;
2063 //if (unlikely(n_walked > WRITEBACK_LATENCY) && likely(!wc->writeback_all))
2064 // break;
2065
2066 wc->writeback_size++;
2067 list_move(&g->lru, &wbl.list);
2068 wbl.size++;
2069 g->write_in_progress = true;
2070 g->wc_list_contiguous = BIO_MAX_VECS;
2071 f = g;
2072 e->wc_list_contiguous++;
2073 if (unlikely(e->wc_list_contiguous == BIO_MAX_VECS)) {
2074 if (unlikely(wc->writeback_all)) {
2075 next_node = rb_next(&f->rb_node);
2076 if (likely(next_node))
2077 g = container_of(next_node, struct wc_entry, rb_node);
2078 }
2079 break;
2080 }
2081 }
2082 cond_resched();
2083 }
2084
2085 if (!list_empty(&skipped)) {
2086 list_splice_tail(&skipped, &wc->lru);
2087 /*
2088 * If we didn't do any progress, we must wait until some
2089 * writeback finishes to avoid burning CPU in a loop
2090 */
2091 if (unlikely(!wbl.size))
2092 writecache_wait_for_writeback(wc);
2093 }
2094
2095 wc_unlock(wc);
2096
2097 blk_start_plug(&plug);
2098
2099 if (WC_MODE_PMEM(wc))
2100 __writecache_writeback_pmem(wc, &wbl);
2101 else
2102 __writecache_writeback_ssd(wc, &wbl);
2103
2104 blk_finish_plug(&plug);
2105
2106 if (unlikely(wc->writeback_all)) {
2107 wc_lock(wc);
2108 while (writecache_wait_for_writeback(wc))
2109 ;
2110 wc_unlock(wc);
2111 }
2112 }
2113
calculate_memory_size(uint64_t device_size,unsigned int block_size,size_t * n_blocks_p,size_t * n_metadata_blocks_p)2114 static int calculate_memory_size(uint64_t device_size, unsigned int block_size,
2115 size_t *n_blocks_p, size_t *n_metadata_blocks_p)
2116 {
2117 uint64_t n_blocks, offset;
2118 struct wc_entry e;
2119
2120 n_blocks = device_size;
2121 do_div(n_blocks, block_size + sizeof(struct wc_memory_entry));
2122
2123 while (1) {
2124 if (!n_blocks)
2125 return -ENOSPC;
2126 /* Verify the following entries[n_blocks] won't overflow */
2127 if (n_blocks >= ((size_t)-sizeof(struct wc_memory_superblock) /
2128 sizeof(struct wc_memory_entry)))
2129 return -EFBIG;
2130 offset = offsetof(struct wc_memory_superblock, entries[n_blocks]);
2131 offset = (offset + block_size - 1) & ~(uint64_t)(block_size - 1);
2132 if (offset + n_blocks * block_size <= device_size)
2133 break;
2134 n_blocks--;
2135 }
2136
2137 /* check if the bit field overflows */
2138 e.index = n_blocks;
2139 if (e.index != n_blocks)
2140 return -EFBIG;
2141
2142 if (n_blocks_p)
2143 *n_blocks_p = n_blocks;
2144 if (n_metadata_blocks_p)
2145 *n_metadata_blocks_p = offset >> __ffs(block_size);
2146 return 0;
2147 }
2148
init_memory(struct dm_writecache * wc)2149 static int init_memory(struct dm_writecache *wc)
2150 {
2151 size_t b;
2152 int r;
2153
2154 r = calculate_memory_size(wc->memory_map_size, wc->block_size, &wc->n_blocks, NULL);
2155 if (r)
2156 return r;
2157
2158 r = writecache_alloc_entries(wc);
2159 if (r)
2160 return r;
2161
2162 for (b = 0; b < ARRAY_SIZE(sb(wc)->padding); b++)
2163 pmem_assign(sb(wc)->padding[b], cpu_to_le64(0));
2164 pmem_assign(sb(wc)->version, cpu_to_le32(MEMORY_SUPERBLOCK_VERSION));
2165 pmem_assign(sb(wc)->block_size, cpu_to_le32(wc->block_size));
2166 pmem_assign(sb(wc)->n_blocks, cpu_to_le64(wc->n_blocks));
2167 pmem_assign(sb(wc)->seq_count, cpu_to_le64(0));
2168
2169 for (b = 0; b < wc->n_blocks; b++) {
2170 write_original_sector_seq_count(wc, &wc->entries[b], -1, -1);
2171 cond_resched();
2172 }
2173
2174 writecache_flush_all_metadata(wc);
2175 writecache_commit_flushed(wc, false);
2176 pmem_assign(sb(wc)->magic, cpu_to_le32(MEMORY_SUPERBLOCK_MAGIC));
2177 writecache_flush_region(wc, &sb(wc)->magic, sizeof(sb(wc)->magic));
2178 writecache_commit_flushed(wc, false);
2179
2180 return 0;
2181 }
2182
writecache_dtr(struct dm_target * ti)2183 static void writecache_dtr(struct dm_target *ti)
2184 {
2185 struct dm_writecache *wc = ti->private;
2186
2187 if (!wc)
2188 return;
2189
2190 if (wc->endio_thread)
2191 kthread_stop(wc->endio_thread);
2192
2193 if (wc->flush_thread)
2194 kthread_stop(wc->flush_thread);
2195
2196 bioset_exit(&wc->bio_set);
2197
2198 mempool_exit(&wc->copy_pool);
2199
2200 if (wc->writeback_wq)
2201 destroy_workqueue(wc->writeback_wq);
2202
2203 if (wc->dev)
2204 dm_put_device(ti, wc->dev);
2205
2206 if (wc->ssd_dev)
2207 dm_put_device(ti, wc->ssd_dev);
2208
2209 vfree(wc->entries);
2210
2211 if (wc->memory_map) {
2212 if (WC_MODE_PMEM(wc))
2213 persistent_memory_release(wc);
2214 else
2215 vfree(wc->memory_map);
2216 }
2217
2218 if (wc->dm_kcopyd)
2219 dm_kcopyd_client_destroy(wc->dm_kcopyd);
2220
2221 if (wc->dm_io)
2222 dm_io_client_destroy(wc->dm_io);
2223
2224 vfree(wc->dirty_bitmap);
2225
2226 kfree(wc);
2227 }
2228
writecache_ctr(struct dm_target * ti,unsigned int argc,char ** argv)2229 static int writecache_ctr(struct dm_target *ti, unsigned int argc, char **argv)
2230 {
2231 struct dm_writecache *wc;
2232 struct dm_arg_set as;
2233 const char *string;
2234 unsigned int opt_params;
2235 size_t offset, data_size;
2236 int i, r;
2237 char dummy;
2238 int high_wm_percent = HIGH_WATERMARK;
2239 int low_wm_percent = LOW_WATERMARK;
2240 uint64_t x;
2241 struct wc_memory_superblock s;
2242
2243 static struct dm_arg _args[] = {
2244 {0, 18, "Invalid number of feature args"},
2245 };
2246
2247 as.argc = argc;
2248 as.argv = argv;
2249
2250 wc = kzalloc(sizeof(struct dm_writecache), GFP_KERNEL);
2251 if (!wc) {
2252 ti->error = "Cannot allocate writecache structure";
2253 r = -ENOMEM;
2254 goto bad;
2255 }
2256 ti->private = wc;
2257 wc->ti = ti;
2258
2259 mutex_init(&wc->lock);
2260 wc->max_age = MAX_AGE_UNSPECIFIED;
2261 writecache_poison_lists(wc);
2262 init_waitqueue_head(&wc->freelist_wait);
2263 timer_setup(&wc->autocommit_timer, writecache_autocommit_timer, 0);
2264 timer_setup(&wc->max_age_timer, writecache_max_age_timer, 0);
2265
2266 for (i = 0; i < 2; i++) {
2267 atomic_set(&wc->bio_in_progress[i], 0);
2268 init_waitqueue_head(&wc->bio_in_progress_wait[i]);
2269 }
2270
2271 wc->dm_io = dm_io_client_create();
2272 if (IS_ERR(wc->dm_io)) {
2273 r = PTR_ERR(wc->dm_io);
2274 ti->error = "Unable to allocate dm-io client";
2275 wc->dm_io = NULL;
2276 goto bad;
2277 }
2278
2279 wc->writeback_wq = alloc_workqueue("writecache-writeback", WQ_MEM_RECLAIM, 1);
2280 if (!wc->writeback_wq) {
2281 r = -ENOMEM;
2282 ti->error = "Could not allocate writeback workqueue";
2283 goto bad;
2284 }
2285 INIT_WORK(&wc->writeback_work, writecache_writeback);
2286 INIT_WORK(&wc->flush_work, writecache_flush_work);
2287
2288 dm_iot_init(&wc->iot);
2289
2290 raw_spin_lock_init(&wc->endio_list_lock);
2291 INIT_LIST_HEAD(&wc->endio_list);
2292 wc->endio_thread = kthread_run(writecache_endio_thread, wc, "writecache_endio");
2293 if (IS_ERR(wc->endio_thread)) {
2294 r = PTR_ERR(wc->endio_thread);
2295 wc->endio_thread = NULL;
2296 ti->error = "Couldn't spawn endio thread";
2297 goto bad;
2298 }
2299
2300 /*
2301 * Parse the mode (pmem or ssd)
2302 */
2303 string = dm_shift_arg(&as);
2304 if (!string)
2305 goto bad_arguments;
2306
2307 if (!strcasecmp(string, "s")) {
2308 wc->pmem_mode = false;
2309 } else if (!strcasecmp(string, "p")) {
2310 #ifdef DM_WRITECACHE_HAS_PMEM
2311 wc->pmem_mode = true;
2312 wc->writeback_fua = true;
2313 #else
2314 /*
2315 * If the architecture doesn't support persistent memory or
2316 * the kernel doesn't support any DAX drivers, this driver can
2317 * only be used in SSD-only mode.
2318 */
2319 r = -EOPNOTSUPP;
2320 ti->error = "Persistent memory or DAX not supported on this system";
2321 goto bad;
2322 #endif
2323 } else {
2324 goto bad_arguments;
2325 }
2326
2327 if (WC_MODE_PMEM(wc)) {
2328 r = bioset_init(&wc->bio_set, BIO_POOL_SIZE,
2329 offsetof(struct writeback_struct, bio),
2330 BIOSET_NEED_BVECS);
2331 if (r) {
2332 ti->error = "Could not allocate bio set";
2333 goto bad;
2334 }
2335 } else {
2336 wc->pause = PAUSE_WRITEBACK;
2337 r = mempool_init_kmalloc_pool(&wc->copy_pool, 1, sizeof(struct copy_struct));
2338 if (r) {
2339 ti->error = "Could not allocate mempool";
2340 goto bad;
2341 }
2342 }
2343
2344 /*
2345 * Parse the origin data device
2346 */
2347 string = dm_shift_arg(&as);
2348 if (!string)
2349 goto bad_arguments;
2350 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->dev);
2351 if (r) {
2352 ti->error = "Origin data device lookup failed";
2353 goto bad;
2354 }
2355
2356 /*
2357 * Parse cache data device (be it pmem or ssd)
2358 */
2359 string = dm_shift_arg(&as);
2360 if (!string)
2361 goto bad_arguments;
2362
2363 r = dm_get_device(ti, string, dm_table_get_mode(ti->table), &wc->ssd_dev);
2364 if (r) {
2365 ti->error = "Cache data device lookup failed";
2366 goto bad;
2367 }
2368 wc->memory_map_size = bdev_nr_bytes(wc->ssd_dev->bdev);
2369
2370 /*
2371 * Parse the cache block size
2372 */
2373 string = dm_shift_arg(&as);
2374 if (!string)
2375 goto bad_arguments;
2376 if (sscanf(string, "%u%c", &wc->block_size, &dummy) != 1 ||
2377 wc->block_size < 512 || wc->block_size > PAGE_SIZE ||
2378 (wc->block_size & (wc->block_size - 1))) {
2379 r = -EINVAL;
2380 ti->error = "Invalid block size";
2381 goto bad;
2382 }
2383 if (wc->block_size < bdev_logical_block_size(wc->dev->bdev) ||
2384 wc->block_size < bdev_logical_block_size(wc->ssd_dev->bdev)) {
2385 r = -EINVAL;
2386 ti->error = "Block size is smaller than device logical block size";
2387 goto bad;
2388 }
2389 wc->block_size_bits = __ffs(wc->block_size);
2390
2391 wc->max_writeback_jobs = MAX_WRITEBACK_JOBS;
2392 wc->autocommit_blocks = !WC_MODE_PMEM(wc) ? AUTOCOMMIT_BLOCKS_SSD : AUTOCOMMIT_BLOCKS_PMEM;
2393 wc->autocommit_jiffies = msecs_to_jiffies(AUTOCOMMIT_MSEC);
2394
2395 /*
2396 * Parse optional arguments
2397 */
2398 r = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
2399 if (r)
2400 goto bad;
2401
2402 while (opt_params) {
2403 string = dm_shift_arg(&as), opt_params--;
2404 if (!strcasecmp(string, "start_sector") && opt_params >= 1) {
2405 unsigned long long start_sector;
2406
2407 string = dm_shift_arg(&as), opt_params--;
2408 if (sscanf(string, "%llu%c", &start_sector, &dummy) != 1)
2409 goto invalid_optional;
2410 wc->start_sector = start_sector;
2411 wc->start_sector_set = true;
2412 if (wc->start_sector != start_sector ||
2413 wc->start_sector >= wc->memory_map_size >> SECTOR_SHIFT)
2414 goto invalid_optional;
2415 } else if (!strcasecmp(string, "high_watermark") && opt_params >= 1) {
2416 string = dm_shift_arg(&as), opt_params--;
2417 if (sscanf(string, "%d%c", &high_wm_percent, &dummy) != 1)
2418 goto invalid_optional;
2419 if (high_wm_percent < 0 || high_wm_percent > 100)
2420 goto invalid_optional;
2421 wc->high_wm_percent_value = high_wm_percent;
2422 wc->high_wm_percent_set = true;
2423 } else if (!strcasecmp(string, "low_watermark") && opt_params >= 1) {
2424 string = dm_shift_arg(&as), opt_params--;
2425 if (sscanf(string, "%d%c", &low_wm_percent, &dummy) != 1)
2426 goto invalid_optional;
2427 if (low_wm_percent < 0 || low_wm_percent > 100)
2428 goto invalid_optional;
2429 wc->low_wm_percent_value = low_wm_percent;
2430 wc->low_wm_percent_set = true;
2431 } else if (!strcasecmp(string, "writeback_jobs") && opt_params >= 1) {
2432 string = dm_shift_arg(&as), opt_params--;
2433 if (sscanf(string, "%u%c", &wc->max_writeback_jobs, &dummy) != 1)
2434 goto invalid_optional;
2435 wc->max_writeback_jobs_set = true;
2436 } else if (!strcasecmp(string, "autocommit_blocks") && opt_params >= 1) {
2437 string = dm_shift_arg(&as), opt_params--;
2438 if (sscanf(string, "%u%c", &wc->autocommit_blocks, &dummy) != 1)
2439 goto invalid_optional;
2440 wc->autocommit_blocks_set = true;
2441 } else if (!strcasecmp(string, "autocommit_time") && opt_params >= 1) {
2442 unsigned int autocommit_msecs;
2443
2444 string = dm_shift_arg(&as), opt_params--;
2445 if (sscanf(string, "%u%c", &autocommit_msecs, &dummy) != 1)
2446 goto invalid_optional;
2447 if (autocommit_msecs > 3600000)
2448 goto invalid_optional;
2449 wc->autocommit_jiffies = msecs_to_jiffies(autocommit_msecs);
2450 wc->autocommit_time_value = autocommit_msecs;
2451 wc->autocommit_time_set = true;
2452 } else if (!strcasecmp(string, "max_age") && opt_params >= 1) {
2453 unsigned int max_age_msecs;
2454
2455 string = dm_shift_arg(&as), opt_params--;
2456 if (sscanf(string, "%u%c", &max_age_msecs, &dummy) != 1)
2457 goto invalid_optional;
2458 if (max_age_msecs > 86400000)
2459 goto invalid_optional;
2460 wc->max_age = msecs_to_jiffies(max_age_msecs);
2461 wc->max_age_set = true;
2462 wc->max_age_value = max_age_msecs;
2463 } else if (!strcasecmp(string, "cleaner")) {
2464 wc->cleaner_set = true;
2465 wc->cleaner = true;
2466 } else if (!strcasecmp(string, "fua")) {
2467 if (WC_MODE_PMEM(wc)) {
2468 wc->writeback_fua = true;
2469 wc->writeback_fua_set = true;
2470 } else
2471 goto invalid_optional;
2472 } else if (!strcasecmp(string, "nofua")) {
2473 if (WC_MODE_PMEM(wc)) {
2474 wc->writeback_fua = false;
2475 wc->writeback_fua_set = true;
2476 } else
2477 goto invalid_optional;
2478 } else if (!strcasecmp(string, "metadata_only")) {
2479 wc->metadata_only = true;
2480 } else if (!strcasecmp(string, "pause_writeback") && opt_params >= 1) {
2481 unsigned int pause_msecs;
2482
2483 if (WC_MODE_PMEM(wc))
2484 goto invalid_optional;
2485 string = dm_shift_arg(&as), opt_params--;
2486 if (sscanf(string, "%u%c", &pause_msecs, &dummy) != 1)
2487 goto invalid_optional;
2488 if (pause_msecs > 60000)
2489 goto invalid_optional;
2490 wc->pause = msecs_to_jiffies(pause_msecs);
2491 wc->pause_set = true;
2492 wc->pause_value = pause_msecs;
2493 } else {
2494 invalid_optional:
2495 r = -EINVAL;
2496 ti->error = "Invalid optional argument";
2497 goto bad;
2498 }
2499 }
2500
2501 if (high_wm_percent < low_wm_percent) {
2502 r = -EINVAL;
2503 ti->error = "High watermark must be greater than or equal to low watermark";
2504 goto bad;
2505 }
2506
2507 if (WC_MODE_PMEM(wc)) {
2508 if (!dax_synchronous(wc->ssd_dev->dax_dev)) {
2509 r = -EOPNOTSUPP;
2510 ti->error = "Asynchronous persistent memory not supported as pmem cache";
2511 goto bad;
2512 }
2513
2514 r = persistent_memory_claim(wc);
2515 if (r) {
2516 ti->error = "Unable to map persistent memory for cache";
2517 goto bad;
2518 }
2519 } else {
2520 size_t n_blocks, n_metadata_blocks;
2521 uint64_t n_bitmap_bits;
2522
2523 wc->memory_map_size -= (uint64_t)wc->start_sector << SECTOR_SHIFT;
2524
2525 bio_list_init(&wc->flush_list);
2526 wc->flush_thread = kthread_run(writecache_flush_thread, wc, "dm_writecache_flush");
2527 if (IS_ERR(wc->flush_thread)) {
2528 r = PTR_ERR(wc->flush_thread);
2529 wc->flush_thread = NULL;
2530 ti->error = "Couldn't spawn flush thread";
2531 goto bad;
2532 }
2533
2534 r = calculate_memory_size(wc->memory_map_size, wc->block_size,
2535 &n_blocks, &n_metadata_blocks);
2536 if (r) {
2537 ti->error = "Invalid device size";
2538 goto bad;
2539 }
2540
2541 n_bitmap_bits = (((uint64_t)n_metadata_blocks << wc->block_size_bits) +
2542 BITMAP_GRANULARITY - 1) / BITMAP_GRANULARITY;
2543 /* this is limitation of test_bit functions */
2544 if (n_bitmap_bits > 1U << 31) {
2545 r = -EFBIG;
2546 ti->error = "Invalid device size";
2547 goto bad;
2548 }
2549
2550 wc->memory_map = vmalloc(n_metadata_blocks << wc->block_size_bits);
2551 if (!wc->memory_map) {
2552 r = -ENOMEM;
2553 ti->error = "Unable to allocate memory for metadata";
2554 goto bad;
2555 }
2556
2557 wc->dm_kcopyd = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2558 if (IS_ERR(wc->dm_kcopyd)) {
2559 r = PTR_ERR(wc->dm_kcopyd);
2560 ti->error = "Unable to allocate dm-kcopyd client";
2561 wc->dm_kcopyd = NULL;
2562 goto bad;
2563 }
2564
2565 wc->metadata_sectors = n_metadata_blocks << (wc->block_size_bits - SECTOR_SHIFT);
2566 wc->dirty_bitmap_size = (n_bitmap_bits + BITS_PER_LONG - 1) /
2567 BITS_PER_LONG * sizeof(unsigned long);
2568 wc->dirty_bitmap = vzalloc(wc->dirty_bitmap_size);
2569 if (!wc->dirty_bitmap) {
2570 r = -ENOMEM;
2571 ti->error = "Unable to allocate dirty bitmap";
2572 goto bad;
2573 }
2574
2575 r = writecache_read_metadata(wc, wc->block_size >> SECTOR_SHIFT);
2576 if (r) {
2577 ti->error = "Unable to read first block of metadata";
2578 goto bad;
2579 }
2580 }
2581
2582 r = copy_mc_to_kernel(&s, sb(wc), sizeof(struct wc_memory_superblock));
2583 if (r) {
2584 ti->error = "Hardware memory error when reading superblock";
2585 goto bad;
2586 }
2587 if (!le32_to_cpu(s.magic) && !le32_to_cpu(s.version)) {
2588 r = init_memory(wc);
2589 if (r) {
2590 ti->error = "Unable to initialize device";
2591 goto bad;
2592 }
2593 r = copy_mc_to_kernel(&s, sb(wc),
2594 sizeof(struct wc_memory_superblock));
2595 if (r) {
2596 ti->error = "Hardware memory error when reading superblock";
2597 goto bad;
2598 }
2599 }
2600
2601 if (le32_to_cpu(s.magic) != MEMORY_SUPERBLOCK_MAGIC) {
2602 ti->error = "Invalid magic in the superblock";
2603 r = -EINVAL;
2604 goto bad;
2605 }
2606
2607 if (le32_to_cpu(s.version) != MEMORY_SUPERBLOCK_VERSION) {
2608 ti->error = "Invalid version in the superblock";
2609 r = -EINVAL;
2610 goto bad;
2611 }
2612
2613 if (le32_to_cpu(s.block_size) != wc->block_size) {
2614 ti->error = "Block size does not match superblock";
2615 r = -EINVAL;
2616 goto bad;
2617 }
2618
2619 wc->n_blocks = le64_to_cpu(s.n_blocks);
2620
2621 offset = wc->n_blocks * sizeof(struct wc_memory_entry);
2622 if (offset / sizeof(struct wc_memory_entry) != le64_to_cpu(sb(wc)->n_blocks)) {
2623 overflow:
2624 ti->error = "Overflow in size calculation";
2625 r = -EINVAL;
2626 goto bad;
2627 }
2628 offset += sizeof(struct wc_memory_superblock);
2629 if (offset < sizeof(struct wc_memory_superblock))
2630 goto overflow;
2631 offset = (offset + wc->block_size - 1) & ~(size_t)(wc->block_size - 1);
2632 data_size = wc->n_blocks * (size_t)wc->block_size;
2633 if (!offset || (data_size / wc->block_size != wc->n_blocks) ||
2634 (offset + data_size < offset))
2635 goto overflow;
2636 if (offset + data_size > wc->memory_map_size) {
2637 ti->error = "Memory area is too small";
2638 r = -EINVAL;
2639 goto bad;
2640 }
2641
2642 wc->metadata_sectors = offset >> SECTOR_SHIFT;
2643 wc->block_start = (char *)sb(wc) + offset;
2644
2645 x = (uint64_t)wc->n_blocks * (100 - high_wm_percent);
2646 x += 50;
2647 do_div(x, 100);
2648 wc->freelist_high_watermark = x;
2649 x = (uint64_t)wc->n_blocks * (100 - low_wm_percent);
2650 x += 50;
2651 do_div(x, 100);
2652 wc->freelist_low_watermark = x;
2653
2654 if (wc->cleaner)
2655 activate_cleaner(wc);
2656
2657 r = writecache_alloc_entries(wc);
2658 if (r) {
2659 ti->error = "Cannot allocate memory";
2660 goto bad;
2661 }
2662
2663 ti->num_flush_bios = WC_MODE_PMEM(wc) ? 1 : 2;
2664 ti->flush_supported = true;
2665 ti->num_discard_bios = 1;
2666
2667 if (WC_MODE_PMEM(wc))
2668 persistent_memory_flush_cache(wc->memory_map, wc->memory_map_size);
2669
2670 return 0;
2671
2672 bad_arguments:
2673 r = -EINVAL;
2674 ti->error = "Bad arguments";
2675 bad:
2676 writecache_dtr(ti);
2677 return r;
2678 }
2679
writecache_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)2680 static void writecache_status(struct dm_target *ti, status_type_t type,
2681 unsigned int status_flags, char *result, unsigned int maxlen)
2682 {
2683 struct dm_writecache *wc = ti->private;
2684 unsigned int extra_args;
2685 unsigned int sz = 0;
2686
2687 switch (type) {
2688 case STATUSTYPE_INFO:
2689 DMEMIT("%ld %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu %llu",
2690 writecache_has_error(wc),
2691 (unsigned long long)wc->n_blocks, (unsigned long long)wc->freelist_size,
2692 (unsigned long long)wc->writeback_size,
2693 wc->stats.reads,
2694 wc->stats.read_hits,
2695 wc->stats.writes,
2696 wc->stats.write_hits_uncommitted,
2697 wc->stats.write_hits_committed,
2698 wc->stats.writes_around,
2699 wc->stats.writes_allocate,
2700 wc->stats.writes_blocked_on_freelist,
2701 wc->stats.flushes,
2702 wc->stats.discards);
2703 break;
2704 case STATUSTYPE_TABLE:
2705 DMEMIT("%c %s %s %u ", WC_MODE_PMEM(wc) ? 'p' : 's',
2706 wc->dev->name, wc->ssd_dev->name, wc->block_size);
2707 extra_args = 0;
2708 if (wc->start_sector_set)
2709 extra_args += 2;
2710 if (wc->high_wm_percent_set)
2711 extra_args += 2;
2712 if (wc->low_wm_percent_set)
2713 extra_args += 2;
2714 if (wc->max_writeback_jobs_set)
2715 extra_args += 2;
2716 if (wc->autocommit_blocks_set)
2717 extra_args += 2;
2718 if (wc->autocommit_time_set)
2719 extra_args += 2;
2720 if (wc->max_age_set)
2721 extra_args += 2;
2722 if (wc->cleaner_set)
2723 extra_args++;
2724 if (wc->writeback_fua_set)
2725 extra_args++;
2726 if (wc->metadata_only)
2727 extra_args++;
2728 if (wc->pause_set)
2729 extra_args += 2;
2730
2731 DMEMIT("%u", extra_args);
2732 if (wc->start_sector_set)
2733 DMEMIT(" start_sector %llu", (unsigned long long)wc->start_sector);
2734 if (wc->high_wm_percent_set)
2735 DMEMIT(" high_watermark %u", wc->high_wm_percent_value);
2736 if (wc->low_wm_percent_set)
2737 DMEMIT(" low_watermark %u", wc->low_wm_percent_value);
2738 if (wc->max_writeback_jobs_set)
2739 DMEMIT(" writeback_jobs %u", wc->max_writeback_jobs);
2740 if (wc->autocommit_blocks_set)
2741 DMEMIT(" autocommit_blocks %u", wc->autocommit_blocks);
2742 if (wc->autocommit_time_set)
2743 DMEMIT(" autocommit_time %u", wc->autocommit_time_value);
2744 if (wc->max_age_set)
2745 DMEMIT(" max_age %u", wc->max_age_value);
2746 if (wc->cleaner_set)
2747 DMEMIT(" cleaner");
2748 if (wc->writeback_fua_set)
2749 DMEMIT(" %sfua", wc->writeback_fua ? "" : "no");
2750 if (wc->metadata_only)
2751 DMEMIT(" metadata_only");
2752 if (wc->pause_set)
2753 DMEMIT(" pause_writeback %u", wc->pause_value);
2754 break;
2755 case STATUSTYPE_IMA:
2756 *result = '\0';
2757 break;
2758 }
2759 }
2760
2761 static struct target_type writecache_target = {
2762 .name = "writecache",
2763 .version = {1, 6, 0},
2764 .module = THIS_MODULE,
2765 .ctr = writecache_ctr,
2766 .dtr = writecache_dtr,
2767 .status = writecache_status,
2768 .postsuspend = writecache_suspend,
2769 .resume = writecache_resume,
2770 .message = writecache_message,
2771 .map = writecache_map,
2772 .end_io = writecache_end_io,
2773 .iterate_devices = writecache_iterate_devices,
2774 .io_hints = writecache_io_hints,
2775 };
2776 module_dm(writecache);
2777
2778 MODULE_DESCRIPTION(DM_NAME " writecache target");
2779 MODULE_AUTHOR("Mikulas Patocka <dm-devel@lists.linux.dev>");
2780 MODULE_LICENSE("GPL");
2781