1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2018 Intel Corporation. 4 * 5 * Authors: Gayatri Kammela <gayatri.kammela@intel.com> 6 * Sohil Mehta <sohil.mehta@intel.com> 7 * Jacob Pan <jacob.jun.pan@linux.intel.com> 8 * Lu Baolu <baolu.lu@linux.intel.com> 9 */ 10 11 #include <linux/debugfs.h> 12 #include <linux/dmar.h> 13 #include <linux/pci.h> 14 15 #include <asm/irq_remapping.h> 16 17 #include "iommu.h" 18 #include "pasid.h" 19 #include "perf.h" 20 21 struct tbl_walk { 22 u16 bus; 23 u16 devfn; 24 u32 pasid; 25 struct root_entry *rt_entry; 26 struct context_entry *ctx_entry; 27 struct pasid_entry *pasid_tbl_entry; 28 }; 29 30 struct iommu_regset { 31 int offset; 32 const char *regs; 33 }; 34 35 #define DEBUG_BUFFER_SIZE 1024 36 static char debug_buf[DEBUG_BUFFER_SIZE]; 37 38 #define IOMMU_REGSET_ENTRY(_reg_) \ 39 { DMAR_##_reg_##_REG, __stringify(_reg_) } 40 41 static const struct iommu_regset iommu_regs_32[] = { 42 IOMMU_REGSET_ENTRY(VER), 43 IOMMU_REGSET_ENTRY(GCMD), 44 IOMMU_REGSET_ENTRY(GSTS), 45 IOMMU_REGSET_ENTRY(FSTS), 46 IOMMU_REGSET_ENTRY(FECTL), 47 IOMMU_REGSET_ENTRY(FEDATA), 48 IOMMU_REGSET_ENTRY(FEADDR), 49 IOMMU_REGSET_ENTRY(FEUADDR), 50 IOMMU_REGSET_ENTRY(PMEN), 51 IOMMU_REGSET_ENTRY(PLMBASE), 52 IOMMU_REGSET_ENTRY(PLMLIMIT), 53 IOMMU_REGSET_ENTRY(ICS), 54 IOMMU_REGSET_ENTRY(PRS), 55 IOMMU_REGSET_ENTRY(PECTL), 56 IOMMU_REGSET_ENTRY(PEDATA), 57 IOMMU_REGSET_ENTRY(PEADDR), 58 IOMMU_REGSET_ENTRY(PEUADDR), 59 }; 60 61 static const struct iommu_regset iommu_regs_64[] = { 62 IOMMU_REGSET_ENTRY(CAP), 63 IOMMU_REGSET_ENTRY(ECAP), 64 IOMMU_REGSET_ENTRY(RTADDR), 65 IOMMU_REGSET_ENTRY(CCMD), 66 IOMMU_REGSET_ENTRY(AFLOG), 67 IOMMU_REGSET_ENTRY(PHMBASE), 68 IOMMU_REGSET_ENTRY(PHMLIMIT), 69 IOMMU_REGSET_ENTRY(IQH), 70 IOMMU_REGSET_ENTRY(IQT), 71 IOMMU_REGSET_ENTRY(IQA), 72 IOMMU_REGSET_ENTRY(IRTA), 73 IOMMU_REGSET_ENTRY(PQH), 74 IOMMU_REGSET_ENTRY(PQT), 75 IOMMU_REGSET_ENTRY(PQA), 76 IOMMU_REGSET_ENTRY(MTRRCAP), 77 IOMMU_REGSET_ENTRY(MTRRDEF), 78 IOMMU_REGSET_ENTRY(MTRR_FIX64K_00000), 79 IOMMU_REGSET_ENTRY(MTRR_FIX16K_80000), 80 IOMMU_REGSET_ENTRY(MTRR_FIX16K_A0000), 81 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C0000), 82 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C8000), 83 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D0000), 84 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D8000), 85 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E0000), 86 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E8000), 87 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F0000), 88 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F8000), 89 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE0), 90 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK0), 91 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE1), 92 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK1), 93 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE2), 94 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK2), 95 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE3), 96 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK3), 97 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE4), 98 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK4), 99 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE5), 100 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK5), 101 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE6), 102 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK6), 103 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE7), 104 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK7), 105 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE8), 106 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK8), 107 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE9), 108 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK9), 109 IOMMU_REGSET_ENTRY(VCCAP), 110 IOMMU_REGSET_ENTRY(VCMD), 111 IOMMU_REGSET_ENTRY(VCRSP), 112 }; 113 114 static int iommu_regset_show(struct seq_file *m, void *unused) 115 { 116 struct dmar_drhd_unit *drhd; 117 struct intel_iommu *iommu; 118 unsigned long flag; 119 int i, ret = 0; 120 u64 value; 121 122 rcu_read_lock(); 123 for_each_active_iommu(iommu, drhd) { 124 if (!drhd->reg_base_addr) { 125 seq_puts(m, "IOMMU: Invalid base address\n"); 126 ret = -EINVAL; 127 goto out; 128 } 129 130 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n", 131 iommu->name, drhd->reg_base_addr); 132 seq_puts(m, "Name\t\t\tOffset\t\tContents\n"); 133 /* 134 * Publish the contents of the 64-bit hardware registers 135 * by adding the offset to the pointer (virtual address). 136 */ 137 raw_spin_lock_irqsave(&iommu->register_lock, flag); 138 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_32); i++) { 139 value = dmar_readl(iommu->reg + iommu_regs_32[i].offset); 140 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n", 141 iommu_regs_32[i].regs, iommu_regs_32[i].offset, 142 value); 143 } 144 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_64); i++) { 145 value = dmar_readq(iommu->reg + iommu_regs_64[i].offset); 146 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n", 147 iommu_regs_64[i].regs, iommu_regs_64[i].offset, 148 value); 149 } 150 raw_spin_unlock_irqrestore(&iommu->register_lock, flag); 151 seq_putc(m, '\n'); 152 } 153 out: 154 rcu_read_unlock(); 155 156 return ret; 157 } 158 DEFINE_SHOW_ATTRIBUTE(iommu_regset); 159 160 static inline void print_tbl_walk(struct seq_file *m) 161 { 162 struct tbl_walk *tbl_wlk = m->private; 163 164 seq_printf(m, "%02x:%02x.%x\t0x%016llx:0x%016llx\t0x%016llx:0x%016llx\t", 165 tbl_wlk->bus, PCI_SLOT(tbl_wlk->devfn), 166 PCI_FUNC(tbl_wlk->devfn), tbl_wlk->rt_entry->hi, 167 tbl_wlk->rt_entry->lo, tbl_wlk->ctx_entry->hi, 168 tbl_wlk->ctx_entry->lo); 169 170 /* 171 * A legacy mode DMAR doesn't support PASID, hence default it to -1 172 * indicating that it's invalid. Also, default all PASID related fields 173 * to 0. 174 */ 175 if (!tbl_wlk->pasid_tbl_entry) 176 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", -1, 177 (u64)0, (u64)0, (u64)0); 178 else 179 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", 180 tbl_wlk->pasid, tbl_wlk->pasid_tbl_entry->val[2], 181 tbl_wlk->pasid_tbl_entry->val[1], 182 tbl_wlk->pasid_tbl_entry->val[0]); 183 } 184 185 static void pasid_tbl_walk(struct seq_file *m, struct pasid_entry *tbl_entry, 186 u16 dir_idx) 187 { 188 struct tbl_walk *tbl_wlk = m->private; 189 u8 tbl_idx; 190 191 for (tbl_idx = 0; tbl_idx < PASID_TBL_ENTRIES; tbl_idx++) { 192 if (pasid_pte_is_present(tbl_entry)) { 193 tbl_wlk->pasid_tbl_entry = tbl_entry; 194 tbl_wlk->pasid = (dir_idx << PASID_PDE_SHIFT) + tbl_idx; 195 print_tbl_walk(m); 196 } 197 198 tbl_entry++; 199 } 200 } 201 202 static void pasid_dir_walk(struct seq_file *m, u64 pasid_dir_ptr, 203 u16 pasid_dir_size) 204 { 205 struct pasid_dir_entry *dir_entry = phys_to_virt(pasid_dir_ptr); 206 struct pasid_entry *pasid_tbl; 207 u16 dir_idx; 208 209 for (dir_idx = 0; dir_idx < pasid_dir_size; dir_idx++) { 210 pasid_tbl = get_pasid_table_from_pde(dir_entry); 211 if (pasid_tbl) 212 pasid_tbl_walk(m, pasid_tbl, dir_idx); 213 214 dir_entry++; 215 } 216 } 217 218 static void ctx_tbl_walk(struct seq_file *m, struct intel_iommu *iommu, u16 bus) 219 { 220 struct context_entry *context; 221 u16 devfn, pasid_dir_size; 222 u64 pasid_dir_ptr; 223 224 for (devfn = 0; devfn < 256; devfn++) { 225 struct tbl_walk tbl_wlk = {0}; 226 227 /* 228 * Scalable mode root entry points to upper scalable mode 229 * context table and lower scalable mode context table. Each 230 * scalable mode context table has 128 context entries where as 231 * legacy mode context table has 256 context entries. So in 232 * scalable mode, the context entries for former 128 devices are 233 * in the lower scalable mode context table, while the latter 234 * 128 devices are in the upper scalable mode context table. 235 * In scalable mode, when devfn > 127, iommu_context_addr() 236 * automatically refers to upper scalable mode context table and 237 * hence the caller doesn't have to worry about differences 238 * between scalable mode and non scalable mode. 239 */ 240 context = iommu_context_addr(iommu, bus, devfn, 0); 241 if (!context) 242 return; 243 244 if (!context_present(context)) 245 continue; 246 247 tbl_wlk.bus = bus; 248 tbl_wlk.devfn = devfn; 249 tbl_wlk.rt_entry = &iommu->root_entry[bus]; 250 tbl_wlk.ctx_entry = context; 251 m->private = &tbl_wlk; 252 253 if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT) { 254 pasid_dir_ptr = context->lo & VTD_PAGE_MASK; 255 pasid_dir_size = get_pasid_dir_size(context); 256 pasid_dir_walk(m, pasid_dir_ptr, pasid_dir_size); 257 continue; 258 } 259 260 print_tbl_walk(m); 261 } 262 } 263 264 static void root_tbl_walk(struct seq_file *m, struct intel_iommu *iommu) 265 { 266 u16 bus; 267 268 spin_lock(&iommu->lock); 269 seq_printf(m, "IOMMU %s: Root Table Address: 0x%llx\n", iommu->name, 270 (u64)virt_to_phys(iommu->root_entry)); 271 seq_puts(m, "B.D.F\tRoot_entry\t\t\t\tContext_entry\t\t\t\tPASID\tPASID_table_entry\n"); 272 273 /* 274 * No need to check if the root entry is present or not because 275 * iommu_context_addr() performs the same check before returning 276 * context entry. 277 */ 278 for (bus = 0; bus < 256; bus++) 279 ctx_tbl_walk(m, iommu, bus); 280 spin_unlock(&iommu->lock); 281 } 282 283 static int dmar_translation_struct_show(struct seq_file *m, void *unused) 284 { 285 struct dmar_drhd_unit *drhd; 286 struct intel_iommu *iommu; 287 u32 sts; 288 289 rcu_read_lock(); 290 for_each_active_iommu(iommu, drhd) { 291 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG); 292 if (!(sts & DMA_GSTS_TES)) { 293 seq_printf(m, "DMA Remapping is not enabled on %s\n", 294 iommu->name); 295 continue; 296 } 297 root_tbl_walk(m, iommu); 298 seq_putc(m, '\n'); 299 } 300 rcu_read_unlock(); 301 302 return 0; 303 } 304 DEFINE_SHOW_ATTRIBUTE(dmar_translation_struct); 305 306 static inline unsigned long level_to_directory_size(int level) 307 { 308 return BIT_ULL(VTD_PAGE_SHIFT + VTD_STRIDE_SHIFT * (level - 1)); 309 } 310 311 static inline void 312 dump_page_info(struct seq_file *m, unsigned long iova, u64 *path) 313 { 314 seq_printf(m, "0x%013lx |\t0x%016llx\t0x%016llx\t0x%016llx\t0x%016llx\t0x%016llx\n", 315 iova >> VTD_PAGE_SHIFT, path[5], path[4], 316 path[3], path[2], path[1]); 317 } 318 319 static void pgtable_walk_level(struct seq_file *m, struct dma_pte *pde, 320 int level, unsigned long start, 321 u64 *path) 322 { 323 int i; 324 325 if (level > 5 || level < 1) 326 return; 327 328 for (i = 0; i < BIT_ULL(VTD_STRIDE_SHIFT); 329 i++, pde++, start += level_to_directory_size(level)) { 330 if (!dma_pte_present(pde)) 331 continue; 332 333 path[level] = pde->val; 334 if (dma_pte_superpage(pde) || level == 1) 335 dump_page_info(m, start, path); 336 else 337 pgtable_walk_level(m, phys_to_virt(dma_pte_addr(pde)), 338 level - 1, start, path); 339 path[level] = 0; 340 } 341 } 342 343 static int __show_device_domain_translation(struct device *dev, void *data) 344 { 345 struct dmar_domain *domain; 346 struct seq_file *m = data; 347 u64 path[6] = { 0 }; 348 349 domain = to_dmar_domain(iommu_get_domain_for_dev(dev)); 350 if (!domain) 351 return 0; 352 353 seq_printf(m, "Device %s @0x%llx\n", dev_name(dev), 354 (u64)virt_to_phys(domain->pgd)); 355 seq_puts(m, "IOVA_PFN\t\tPML5E\t\t\tPML4E\t\t\tPDPE\t\t\tPDE\t\t\tPTE\n"); 356 357 pgtable_walk_level(m, domain->pgd, domain->agaw + 2, 0, path); 358 seq_putc(m, '\n'); 359 360 /* Don't iterate */ 361 return 1; 362 } 363 364 static int show_device_domain_translation(struct device *dev, void *data) 365 { 366 struct iommu_group *group; 367 368 group = iommu_group_get(dev); 369 if (group) { 370 /* 371 * The group->mutex is held across the callback, which will 372 * block calls to iommu_attach/detach_group/device. Hence, 373 * the domain of the device will not change during traversal. 374 * 375 * All devices in an iommu group share a single domain, hence 376 * we only dump the domain of the first device. Even though, 377 * this code still possibly races with the iommu_unmap() 378 * interface. This could be solved by RCU-freeing the page 379 * table pages in the iommu_unmap() path. 380 */ 381 iommu_group_for_each_dev(group, data, 382 __show_device_domain_translation); 383 iommu_group_put(group); 384 } 385 386 return 0; 387 } 388 389 static int domain_translation_struct_show(struct seq_file *m, void *unused) 390 { 391 return bus_for_each_dev(&pci_bus_type, NULL, m, 392 show_device_domain_translation); 393 } 394 DEFINE_SHOW_ATTRIBUTE(domain_translation_struct); 395 396 static void invalidation_queue_entry_show(struct seq_file *m, 397 struct intel_iommu *iommu) 398 { 399 int index, shift = qi_shift(iommu); 400 struct qi_desc *desc; 401 int offset; 402 403 if (ecap_smts(iommu->ecap)) 404 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tqw2\t\t\tqw3\t\t\tstatus\n"); 405 else 406 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tstatus\n"); 407 408 for (index = 0; index < QI_LENGTH; index++) { 409 offset = index << shift; 410 desc = iommu->qi->desc + offset; 411 if (ecap_smts(iommu->ecap)) 412 seq_printf(m, "%5d\t%016llx\t%016llx\t%016llx\t%016llx\t%016x\n", 413 index, desc->qw0, desc->qw1, 414 desc->qw2, desc->qw3, 415 iommu->qi->desc_status[index]); 416 else 417 seq_printf(m, "%5d\t%016llx\t%016llx\t%016x\n", 418 index, desc->qw0, desc->qw1, 419 iommu->qi->desc_status[index]); 420 } 421 } 422 423 static int invalidation_queue_show(struct seq_file *m, void *unused) 424 { 425 struct dmar_drhd_unit *drhd; 426 struct intel_iommu *iommu; 427 unsigned long flags; 428 struct q_inval *qi; 429 int shift; 430 431 rcu_read_lock(); 432 for_each_active_iommu(iommu, drhd) { 433 qi = iommu->qi; 434 shift = qi_shift(iommu); 435 436 if (!qi || !ecap_qis(iommu->ecap)) 437 continue; 438 439 seq_printf(m, "Invalidation queue on IOMMU: %s\n", iommu->name); 440 441 raw_spin_lock_irqsave(&qi->q_lock, flags); 442 seq_printf(m, " Base: 0x%llx\tHead: %lld\tTail: %lld\n", 443 (u64)virt_to_phys(qi->desc), 444 dmar_readq(iommu->reg + DMAR_IQH_REG) >> shift, 445 dmar_readq(iommu->reg + DMAR_IQT_REG) >> shift); 446 invalidation_queue_entry_show(m, iommu); 447 raw_spin_unlock_irqrestore(&qi->q_lock, flags); 448 seq_putc(m, '\n'); 449 } 450 rcu_read_unlock(); 451 452 return 0; 453 } 454 DEFINE_SHOW_ATTRIBUTE(invalidation_queue); 455 456 #ifdef CONFIG_IRQ_REMAP 457 static void ir_tbl_remap_entry_show(struct seq_file *m, 458 struct intel_iommu *iommu) 459 { 460 struct irte *ri_entry; 461 unsigned long flags; 462 int idx; 463 464 seq_puts(m, " Entry SrcID DstID Vct IRTE_high\t\tIRTE_low\n"); 465 466 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 467 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) { 468 ri_entry = &iommu->ir_table->base[idx]; 469 if (!ri_entry->present || ri_entry->p_pst) 470 continue; 471 472 seq_printf(m, " %-5d %02x:%02x.%01x %08x %02x %016llx\t%016llx\n", 473 idx, PCI_BUS_NUM(ri_entry->sid), 474 PCI_SLOT(ri_entry->sid), PCI_FUNC(ri_entry->sid), 475 ri_entry->dest_id, ri_entry->vector, 476 ri_entry->high, ri_entry->low); 477 } 478 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 479 } 480 481 static void ir_tbl_posted_entry_show(struct seq_file *m, 482 struct intel_iommu *iommu) 483 { 484 struct irte *pi_entry; 485 unsigned long flags; 486 int idx; 487 488 seq_puts(m, " Entry SrcID PDA_high PDA_low Vct IRTE_high\t\tIRTE_low\n"); 489 490 raw_spin_lock_irqsave(&irq_2_ir_lock, flags); 491 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) { 492 pi_entry = &iommu->ir_table->base[idx]; 493 if (!pi_entry->present || !pi_entry->p_pst) 494 continue; 495 496 seq_printf(m, " %-5d %02x:%02x.%01x %08x %08x %02x %016llx\t%016llx\n", 497 idx, PCI_BUS_NUM(pi_entry->sid), 498 PCI_SLOT(pi_entry->sid), PCI_FUNC(pi_entry->sid), 499 pi_entry->pda_h, pi_entry->pda_l << 6, 500 pi_entry->vector, pi_entry->high, 501 pi_entry->low); 502 } 503 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); 504 } 505 506 /* 507 * For active IOMMUs go through the Interrupt remapping 508 * table and print valid entries in a table format for 509 * Remapped and Posted Interrupts. 510 */ 511 static int ir_translation_struct_show(struct seq_file *m, void *unused) 512 { 513 struct dmar_drhd_unit *drhd; 514 struct intel_iommu *iommu; 515 u64 irta; 516 u32 sts; 517 518 rcu_read_lock(); 519 for_each_active_iommu(iommu, drhd) { 520 if (!ecap_ir_support(iommu->ecap)) 521 continue; 522 523 seq_printf(m, "Remapped Interrupt supported on IOMMU: %s\n", 524 iommu->name); 525 526 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG); 527 if (iommu->ir_table && (sts & DMA_GSTS_IRES)) { 528 irta = virt_to_phys(iommu->ir_table->base); 529 seq_printf(m, " IR table address:%llx\n", irta); 530 ir_tbl_remap_entry_show(m, iommu); 531 } else { 532 seq_puts(m, "Interrupt Remapping is not enabled\n"); 533 } 534 seq_putc(m, '\n'); 535 } 536 537 seq_puts(m, "****\n\n"); 538 539 for_each_active_iommu(iommu, drhd) { 540 if (!cap_pi_support(iommu->cap)) 541 continue; 542 543 seq_printf(m, "Posted Interrupt supported on IOMMU: %s\n", 544 iommu->name); 545 546 if (iommu->ir_table) { 547 irta = virt_to_phys(iommu->ir_table->base); 548 seq_printf(m, " IR table address:%llx\n", irta); 549 ir_tbl_posted_entry_show(m, iommu); 550 } else { 551 seq_puts(m, "Interrupt Remapping is not enabled\n"); 552 } 553 seq_putc(m, '\n'); 554 } 555 rcu_read_unlock(); 556 557 return 0; 558 } 559 DEFINE_SHOW_ATTRIBUTE(ir_translation_struct); 560 #endif 561 562 static void latency_show_one(struct seq_file *m, struct intel_iommu *iommu, 563 struct dmar_drhd_unit *drhd) 564 { 565 int ret; 566 567 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n", 568 iommu->name, drhd->reg_base_addr); 569 570 ret = dmar_latency_snapshot(iommu, debug_buf, DEBUG_BUFFER_SIZE); 571 if (ret < 0) 572 seq_puts(m, "Failed to get latency snapshot"); 573 else 574 seq_puts(m, debug_buf); 575 seq_puts(m, "\n"); 576 } 577 578 static int latency_show(struct seq_file *m, void *v) 579 { 580 struct dmar_drhd_unit *drhd; 581 struct intel_iommu *iommu; 582 583 rcu_read_lock(); 584 for_each_active_iommu(iommu, drhd) 585 latency_show_one(m, iommu, drhd); 586 rcu_read_unlock(); 587 588 return 0; 589 } 590 591 static int dmar_perf_latency_open(struct inode *inode, struct file *filp) 592 { 593 return single_open(filp, latency_show, NULL); 594 } 595 596 static ssize_t dmar_perf_latency_write(struct file *filp, 597 const char __user *ubuf, 598 size_t cnt, loff_t *ppos) 599 { 600 struct dmar_drhd_unit *drhd; 601 struct intel_iommu *iommu; 602 int counting; 603 char buf[64]; 604 605 if (cnt > 63) 606 cnt = 63; 607 608 if (copy_from_user(&buf, ubuf, cnt)) 609 return -EFAULT; 610 611 buf[cnt] = 0; 612 613 if (kstrtoint(buf, 0, &counting)) 614 return -EINVAL; 615 616 switch (counting) { 617 case 0: 618 rcu_read_lock(); 619 for_each_active_iommu(iommu, drhd) { 620 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IOTLB); 621 dmar_latency_disable(iommu, DMAR_LATENCY_INV_DEVTLB); 622 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IEC); 623 dmar_latency_disable(iommu, DMAR_LATENCY_PRQ); 624 } 625 rcu_read_unlock(); 626 break; 627 case 1: 628 rcu_read_lock(); 629 for_each_active_iommu(iommu, drhd) 630 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IOTLB); 631 rcu_read_unlock(); 632 break; 633 case 2: 634 rcu_read_lock(); 635 for_each_active_iommu(iommu, drhd) 636 dmar_latency_enable(iommu, DMAR_LATENCY_INV_DEVTLB); 637 rcu_read_unlock(); 638 break; 639 case 3: 640 rcu_read_lock(); 641 for_each_active_iommu(iommu, drhd) 642 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IEC); 643 rcu_read_unlock(); 644 break; 645 case 4: 646 rcu_read_lock(); 647 for_each_active_iommu(iommu, drhd) 648 dmar_latency_enable(iommu, DMAR_LATENCY_PRQ); 649 rcu_read_unlock(); 650 break; 651 default: 652 return -EINVAL; 653 } 654 655 *ppos += cnt; 656 return cnt; 657 } 658 659 static const struct file_operations dmar_perf_latency_fops = { 660 .open = dmar_perf_latency_open, 661 .write = dmar_perf_latency_write, 662 .read = seq_read, 663 .llseek = seq_lseek, 664 .release = single_release, 665 }; 666 667 void __init intel_iommu_debugfs_init(void) 668 { 669 struct dentry *intel_iommu_debug = debugfs_create_dir("intel", 670 iommu_debugfs_dir); 671 672 debugfs_create_file("iommu_regset", 0444, intel_iommu_debug, NULL, 673 &iommu_regset_fops); 674 debugfs_create_file("dmar_translation_struct", 0444, intel_iommu_debug, 675 NULL, &dmar_translation_struct_fops); 676 debugfs_create_file("domain_translation_struct", 0444, 677 intel_iommu_debug, NULL, 678 &domain_translation_struct_fops); 679 debugfs_create_file("invalidation_queue", 0444, intel_iommu_debug, 680 NULL, &invalidation_queue_fops); 681 #ifdef CONFIG_IRQ_REMAP 682 debugfs_create_file("ir_translation_struct", 0444, intel_iommu_debug, 683 NULL, &ir_translation_struct_fops); 684 #endif 685 debugfs_create_file("dmar_perf_latency", 0644, intel_iommu_debug, 686 NULL, &dmar_perf_latency_fops); 687 } 688