1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright © 2018 Intel Corporation.
4 *
5 * Authors: Gayatri Kammela <gayatri.kammela@intel.com>
6 * Sohil Mehta <sohil.mehta@intel.com>
7 * Jacob Pan <jacob.jun.pan@linux.intel.com>
8 * Lu Baolu <baolu.lu@linux.intel.com>
9 */
10
11 #include <linux/debugfs.h>
12 #include <linux/dmar.h>
13 #include <linux/pci.h>
14
15 #include <asm/irq_remapping.h>
16
17 #include "iommu.h"
18 #include "pasid.h"
19 #include "perf.h"
20
21 struct tbl_walk {
22 u16 bus;
23 u16 devfn;
24 u32 pasid;
25 struct root_entry *rt_entry;
26 struct context_entry *ctx_entry;
27 struct pasid_entry *pasid_tbl_entry;
28 };
29
30 struct iommu_regset {
31 int offset;
32 const char *regs;
33 };
34
35 #define DEBUG_BUFFER_SIZE 1024
36 static char debug_buf[DEBUG_BUFFER_SIZE];
37
38 #define IOMMU_REGSET_ENTRY(_reg_) \
39 { DMAR_##_reg_##_REG, __stringify(_reg_) }
40
41 static const struct iommu_regset iommu_regs_32[] = {
42 IOMMU_REGSET_ENTRY(VER),
43 IOMMU_REGSET_ENTRY(GCMD),
44 IOMMU_REGSET_ENTRY(GSTS),
45 IOMMU_REGSET_ENTRY(FSTS),
46 IOMMU_REGSET_ENTRY(FECTL),
47 IOMMU_REGSET_ENTRY(FEDATA),
48 IOMMU_REGSET_ENTRY(FEADDR),
49 IOMMU_REGSET_ENTRY(FEUADDR),
50 IOMMU_REGSET_ENTRY(PMEN),
51 IOMMU_REGSET_ENTRY(PLMBASE),
52 IOMMU_REGSET_ENTRY(PLMLIMIT),
53 IOMMU_REGSET_ENTRY(ICS),
54 IOMMU_REGSET_ENTRY(PRS),
55 IOMMU_REGSET_ENTRY(PECTL),
56 IOMMU_REGSET_ENTRY(PEDATA),
57 IOMMU_REGSET_ENTRY(PEADDR),
58 IOMMU_REGSET_ENTRY(PEUADDR),
59 };
60
61 static const struct iommu_regset iommu_regs_64[] = {
62 IOMMU_REGSET_ENTRY(CAP),
63 IOMMU_REGSET_ENTRY(ECAP),
64 IOMMU_REGSET_ENTRY(RTADDR),
65 IOMMU_REGSET_ENTRY(CCMD),
66 IOMMU_REGSET_ENTRY(AFLOG),
67 IOMMU_REGSET_ENTRY(PHMBASE),
68 IOMMU_REGSET_ENTRY(PHMLIMIT),
69 IOMMU_REGSET_ENTRY(IQH),
70 IOMMU_REGSET_ENTRY(IQT),
71 IOMMU_REGSET_ENTRY(IQA),
72 IOMMU_REGSET_ENTRY(IRTA),
73 IOMMU_REGSET_ENTRY(PQH),
74 IOMMU_REGSET_ENTRY(PQT),
75 IOMMU_REGSET_ENTRY(PQA),
76 IOMMU_REGSET_ENTRY(MTRRCAP),
77 IOMMU_REGSET_ENTRY(MTRRDEF),
78 IOMMU_REGSET_ENTRY(MTRR_FIX64K_00000),
79 IOMMU_REGSET_ENTRY(MTRR_FIX16K_80000),
80 IOMMU_REGSET_ENTRY(MTRR_FIX16K_A0000),
81 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C0000),
82 IOMMU_REGSET_ENTRY(MTRR_FIX4K_C8000),
83 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D0000),
84 IOMMU_REGSET_ENTRY(MTRR_FIX4K_D8000),
85 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E0000),
86 IOMMU_REGSET_ENTRY(MTRR_FIX4K_E8000),
87 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F0000),
88 IOMMU_REGSET_ENTRY(MTRR_FIX4K_F8000),
89 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE0),
90 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK0),
91 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE1),
92 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK1),
93 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE2),
94 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK2),
95 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE3),
96 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK3),
97 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE4),
98 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK4),
99 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE5),
100 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK5),
101 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE6),
102 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK6),
103 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE7),
104 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK7),
105 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE8),
106 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK8),
107 IOMMU_REGSET_ENTRY(MTRR_PHYSBASE9),
108 IOMMU_REGSET_ENTRY(MTRR_PHYSMASK9),
109 };
110
111 static struct dentry *intel_iommu_debug;
112
iommu_regset_show(struct seq_file * m,void * unused)113 static int iommu_regset_show(struct seq_file *m, void *unused)
114 {
115 struct dmar_drhd_unit *drhd;
116 struct intel_iommu *iommu;
117 unsigned long flag;
118 int i, ret = 0;
119 u64 value;
120
121 rcu_read_lock();
122 for_each_active_iommu(iommu, drhd) {
123 if (!drhd->reg_base_addr) {
124 seq_puts(m, "IOMMU: Invalid base address\n");
125 ret = -EINVAL;
126 goto out;
127 }
128
129 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n",
130 iommu->name, drhd->reg_base_addr);
131 seq_puts(m, "Name\t\t\tOffset\t\tContents\n");
132 /*
133 * Publish the contents of the 64-bit hardware registers
134 * by adding the offset to the pointer (virtual address).
135 */
136 raw_spin_lock_irqsave(&iommu->register_lock, flag);
137 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_32); i++) {
138 value = dmar_readl(iommu->reg + iommu_regs_32[i].offset);
139 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n",
140 iommu_regs_32[i].regs, iommu_regs_32[i].offset,
141 value);
142 }
143 for (i = 0 ; i < ARRAY_SIZE(iommu_regs_64); i++) {
144 value = dmar_readq(iommu->reg + iommu_regs_64[i].offset);
145 seq_printf(m, "%-16s\t0x%02x\t\t0x%016llx\n",
146 iommu_regs_64[i].regs, iommu_regs_64[i].offset,
147 value);
148 }
149 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
150 seq_putc(m, '\n');
151 }
152 out:
153 rcu_read_unlock();
154
155 return ret;
156 }
157 DEFINE_SHOW_ATTRIBUTE(iommu_regset);
158
print_tbl_walk(struct seq_file * m)159 static inline void print_tbl_walk(struct seq_file *m)
160 {
161 struct tbl_walk *tbl_wlk = m->private;
162
163 seq_printf(m, "%02x:%02x.%x\t0x%016llx:0x%016llx\t0x%016llx:0x%016llx\t",
164 tbl_wlk->bus, PCI_SLOT(tbl_wlk->devfn),
165 PCI_FUNC(tbl_wlk->devfn), tbl_wlk->rt_entry->hi,
166 tbl_wlk->rt_entry->lo, tbl_wlk->ctx_entry->hi,
167 tbl_wlk->ctx_entry->lo);
168
169 /*
170 * A legacy mode DMAR doesn't support PASID, hence default it to -1
171 * indicating that it's invalid. Also, default all PASID related fields
172 * to 0.
173 */
174 if (!tbl_wlk->pasid_tbl_entry)
175 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n", -1,
176 (u64)0, (u64)0, (u64)0);
177 else
178 seq_printf(m, "%-6d\t0x%016llx:0x%016llx:0x%016llx\n",
179 tbl_wlk->pasid, tbl_wlk->pasid_tbl_entry->val[2],
180 tbl_wlk->pasid_tbl_entry->val[1],
181 tbl_wlk->pasid_tbl_entry->val[0]);
182 }
183
pasid_tbl_walk(struct seq_file * m,struct pasid_entry * tbl_entry,u16 dir_idx)184 static void pasid_tbl_walk(struct seq_file *m, struct pasid_entry *tbl_entry,
185 u16 dir_idx)
186 {
187 struct tbl_walk *tbl_wlk = m->private;
188 u8 tbl_idx;
189
190 for (tbl_idx = 0; tbl_idx < PASID_TBL_ENTRIES; tbl_idx++) {
191 if (pasid_pte_is_present(tbl_entry)) {
192 tbl_wlk->pasid_tbl_entry = tbl_entry;
193 tbl_wlk->pasid = (dir_idx << PASID_PDE_SHIFT) + tbl_idx;
194 print_tbl_walk(m);
195 }
196
197 tbl_entry++;
198 }
199 }
200
pasid_dir_walk(struct seq_file * m,u64 pasid_dir_ptr,u16 pasid_dir_size)201 static void pasid_dir_walk(struct seq_file *m, u64 pasid_dir_ptr,
202 u16 pasid_dir_size)
203 {
204 struct pasid_dir_entry *dir_entry = phys_to_virt(pasid_dir_ptr);
205 struct pasid_entry *pasid_tbl;
206 u16 dir_idx;
207
208 for (dir_idx = 0; dir_idx < pasid_dir_size; dir_idx++) {
209 pasid_tbl = get_pasid_table_from_pde(dir_entry);
210 if (pasid_tbl)
211 pasid_tbl_walk(m, pasid_tbl, dir_idx);
212
213 dir_entry++;
214 }
215 }
216
ctx_tbl_walk(struct seq_file * m,struct intel_iommu * iommu,u16 bus)217 static void ctx_tbl_walk(struct seq_file *m, struct intel_iommu *iommu, u16 bus)
218 {
219 struct context_entry *context;
220 u16 devfn, pasid_dir_size;
221 u64 pasid_dir_ptr;
222
223 for (devfn = 0; devfn < 256; devfn++) {
224 struct tbl_walk tbl_wlk = {0};
225
226 /*
227 * Scalable mode root entry points to upper scalable mode
228 * context table and lower scalable mode context table. Each
229 * scalable mode context table has 128 context entries where as
230 * legacy mode context table has 256 context entries. So in
231 * scalable mode, the context entries for former 128 devices are
232 * in the lower scalable mode context table, while the latter
233 * 128 devices are in the upper scalable mode context table.
234 * In scalable mode, when devfn > 127, iommu_context_addr()
235 * automatically refers to upper scalable mode context table and
236 * hence the caller doesn't have to worry about differences
237 * between scalable mode and non scalable mode.
238 */
239 context = iommu_context_addr(iommu, bus, devfn, 0);
240 if (!context)
241 return;
242
243 if (!context_present(context))
244 continue;
245
246 tbl_wlk.bus = bus;
247 tbl_wlk.devfn = devfn;
248 tbl_wlk.rt_entry = &iommu->root_entry[bus];
249 tbl_wlk.ctx_entry = context;
250 m->private = &tbl_wlk;
251
252 if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT) {
253 pasid_dir_ptr = context->lo & VTD_PAGE_MASK;
254 pasid_dir_size = get_pasid_dir_size(context);
255 pasid_dir_walk(m, pasid_dir_ptr, pasid_dir_size);
256 continue;
257 }
258
259 print_tbl_walk(m);
260 }
261 }
262
root_tbl_walk(struct seq_file * m,struct intel_iommu * iommu)263 static void root_tbl_walk(struct seq_file *m, struct intel_iommu *iommu)
264 {
265 u16 bus;
266
267 spin_lock(&iommu->lock);
268 seq_printf(m, "IOMMU %s: Root Table Address: 0x%llx\n", iommu->name,
269 (u64)virt_to_phys(iommu->root_entry));
270 seq_puts(m, "B.D.F\tRoot_entry\t\t\t\tContext_entry\t\t\t\tPASID\tPASID_table_entry\n");
271
272 /*
273 * No need to check if the root entry is present or not because
274 * iommu_context_addr() performs the same check before returning
275 * context entry.
276 */
277 for (bus = 0; bus < 256; bus++)
278 ctx_tbl_walk(m, iommu, bus);
279 spin_unlock(&iommu->lock);
280 }
281
dmar_translation_struct_show(struct seq_file * m,void * unused)282 static int dmar_translation_struct_show(struct seq_file *m, void *unused)
283 {
284 struct dmar_drhd_unit *drhd;
285 struct intel_iommu *iommu;
286 u32 sts;
287
288 rcu_read_lock();
289 for_each_active_iommu(iommu, drhd) {
290 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
291 if (!(sts & DMA_GSTS_TES)) {
292 seq_printf(m, "DMA Remapping is not enabled on %s\n",
293 iommu->name);
294 continue;
295 }
296 root_tbl_walk(m, iommu);
297 seq_putc(m, '\n');
298 }
299 rcu_read_unlock();
300
301 return 0;
302 }
303 DEFINE_SHOW_ATTRIBUTE(dmar_translation_struct);
304
level_to_directory_size(int level)305 static inline unsigned long level_to_directory_size(int level)
306 {
307 return BIT_ULL(VTD_PAGE_SHIFT + VTD_STRIDE_SHIFT * (level - 1));
308 }
309
310 static inline void
dump_page_info(struct seq_file * m,unsigned long iova,u64 * path)311 dump_page_info(struct seq_file *m, unsigned long iova, u64 *path)
312 {
313 seq_printf(m, "0x%013lx |\t0x%016llx\t0x%016llx\t0x%016llx",
314 iova >> VTD_PAGE_SHIFT, path[5], path[4], path[3]);
315 if (path[2]) {
316 seq_printf(m, "\t0x%016llx", path[2]);
317 if (path[1])
318 seq_printf(m, "\t0x%016llx", path[1]);
319 }
320 seq_putc(m, '\n');
321 }
322
pgtable_walk_level(struct seq_file * m,struct dma_pte * pde,int level,unsigned long start,u64 * path)323 static void pgtable_walk_level(struct seq_file *m, struct dma_pte *pde,
324 int level, unsigned long start,
325 u64 *path)
326 {
327 int i;
328
329 if (level > 5 || level < 1)
330 return;
331
332 for (i = 0; i < BIT_ULL(VTD_STRIDE_SHIFT);
333 i++, pde++, start += level_to_directory_size(level)) {
334 if (!dma_pte_present(pde))
335 continue;
336
337 path[level] = pde->val;
338 if (dma_pte_superpage(pde) || level == 1)
339 dump_page_info(m, start, path);
340 else
341 pgtable_walk_level(m, phys_to_virt(dma_pte_addr(pde)),
342 level - 1, start, path);
343 path[level] = 0;
344 }
345 }
346
domain_translation_struct_show(struct seq_file * m,struct device_domain_info * info,ioasid_t pasid)347 static int domain_translation_struct_show(struct seq_file *m,
348 struct device_domain_info *info,
349 ioasid_t pasid)
350 {
351 bool scalable, found = false;
352 struct dmar_drhd_unit *drhd;
353 struct intel_iommu *iommu;
354 u16 devfn, bus, seg;
355
356 bus = info->bus;
357 devfn = info->devfn;
358 seg = info->segment;
359
360 rcu_read_lock();
361 for_each_active_iommu(iommu, drhd) {
362 struct context_entry *context;
363 u64 pgd, path[6] = { 0 };
364 u32 sts, agaw;
365
366 if (seg != iommu->segment)
367 continue;
368
369 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
370 if (!(sts & DMA_GSTS_TES)) {
371 seq_printf(m, "DMA Remapping is not enabled on %s\n",
372 iommu->name);
373 continue;
374 }
375 if (dmar_readq(iommu->reg + DMAR_RTADDR_REG) & DMA_RTADDR_SMT)
376 scalable = true;
377 else
378 scalable = false;
379
380 /*
381 * The iommu->lock is held across the callback, which will
382 * block calls to domain_attach/domain_detach. Hence,
383 * the domain of the device will not change during traversal.
384 *
385 * Traversing page table possibly races with the iommu_unmap()
386 * interface. This could be solved by RCU-freeing the page
387 * table pages in the iommu_unmap() path.
388 */
389 spin_lock(&iommu->lock);
390
391 context = iommu_context_addr(iommu, bus, devfn, 0);
392 if (!context || !context_present(context))
393 goto iommu_unlock;
394
395 if (scalable) { /* scalable mode */
396 struct pasid_entry *pasid_tbl, *pasid_tbl_entry;
397 struct pasid_dir_entry *dir_tbl, *dir_entry;
398 u16 dir_idx, tbl_idx, pgtt;
399 u64 pasid_dir_ptr;
400
401 pasid_dir_ptr = context->lo & VTD_PAGE_MASK;
402
403 /* Dump specified device domain mappings with PASID. */
404 dir_idx = pasid >> PASID_PDE_SHIFT;
405 tbl_idx = pasid & PASID_PTE_MASK;
406
407 dir_tbl = phys_to_virt(pasid_dir_ptr);
408 dir_entry = &dir_tbl[dir_idx];
409
410 pasid_tbl = get_pasid_table_from_pde(dir_entry);
411 if (!pasid_tbl)
412 goto iommu_unlock;
413
414 pasid_tbl_entry = &pasid_tbl[tbl_idx];
415 if (!pasid_pte_is_present(pasid_tbl_entry))
416 goto iommu_unlock;
417
418 /*
419 * According to PASID Granular Translation Type(PGTT),
420 * get the page table pointer.
421 */
422 pgtt = (u16)(pasid_tbl_entry->val[0] & GENMASK_ULL(8, 6)) >> 6;
423 agaw = (u8)(pasid_tbl_entry->val[0] & GENMASK_ULL(4, 2)) >> 2;
424
425 switch (pgtt) {
426 case PASID_ENTRY_PGTT_FL_ONLY:
427 pgd = pasid_tbl_entry->val[2];
428 break;
429 case PASID_ENTRY_PGTT_SL_ONLY:
430 case PASID_ENTRY_PGTT_NESTED:
431 pgd = pasid_tbl_entry->val[0];
432 break;
433 default:
434 goto iommu_unlock;
435 }
436 pgd &= VTD_PAGE_MASK;
437 } else { /* legacy mode */
438 pgd = context->lo & VTD_PAGE_MASK;
439 agaw = context->hi & 7;
440 }
441
442 seq_printf(m, "Device %04x:%02x:%02x.%x ",
443 iommu->segment, bus, PCI_SLOT(devfn), PCI_FUNC(devfn));
444
445 if (scalable)
446 seq_printf(m, "with pasid %x @0x%llx\n", pasid, pgd);
447 else
448 seq_printf(m, "@0x%llx\n", pgd);
449
450 seq_printf(m, "%-17s\t%-18s\t%-18s\t%-18s\t%-18s\t%-s\n",
451 "IOVA_PFN", "PML5E", "PML4E", "PDPE", "PDE", "PTE");
452 pgtable_walk_level(m, phys_to_virt(pgd), agaw + 2, 0, path);
453
454 found = true;
455 iommu_unlock:
456 spin_unlock(&iommu->lock);
457 if (found)
458 break;
459 }
460 rcu_read_unlock();
461
462 return 0;
463 }
464
dev_domain_translation_struct_show(struct seq_file * m,void * unused)465 static int dev_domain_translation_struct_show(struct seq_file *m, void *unused)
466 {
467 struct device_domain_info *info = (struct device_domain_info *)m->private;
468
469 return domain_translation_struct_show(m, info, IOMMU_NO_PASID);
470 }
471 DEFINE_SHOW_ATTRIBUTE(dev_domain_translation_struct);
472
pasid_domain_translation_struct_show(struct seq_file * m,void * unused)473 static int pasid_domain_translation_struct_show(struct seq_file *m, void *unused)
474 {
475 struct dev_pasid_info *dev_pasid = (struct dev_pasid_info *)m->private;
476 struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev);
477
478 return domain_translation_struct_show(m, info, dev_pasid->pasid);
479 }
480 DEFINE_SHOW_ATTRIBUTE(pasid_domain_translation_struct);
481
invalidation_queue_entry_show(struct seq_file * m,struct intel_iommu * iommu)482 static void invalidation_queue_entry_show(struct seq_file *m,
483 struct intel_iommu *iommu)
484 {
485 int index, shift = qi_shift(iommu);
486 struct qi_desc *desc;
487 int offset;
488
489 if (ecap_smts(iommu->ecap))
490 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tqw2\t\t\tqw3\t\t\tstatus\n");
491 else
492 seq_puts(m, "Index\t\tqw0\t\t\tqw1\t\t\tstatus\n");
493
494 for (index = 0; index < QI_LENGTH; index++) {
495 offset = index << shift;
496 desc = iommu->qi->desc + offset;
497 if (ecap_smts(iommu->ecap))
498 seq_printf(m, "%5d\t%016llx\t%016llx\t%016llx\t%016llx\t%016x\n",
499 index, desc->qw0, desc->qw1,
500 desc->qw2, desc->qw3,
501 iommu->qi->desc_status[index]);
502 else
503 seq_printf(m, "%5d\t%016llx\t%016llx\t%016x\n",
504 index, desc->qw0, desc->qw1,
505 iommu->qi->desc_status[index]);
506 }
507 }
508
invalidation_queue_show(struct seq_file * m,void * unused)509 static int invalidation_queue_show(struct seq_file *m, void *unused)
510 {
511 struct dmar_drhd_unit *drhd;
512 struct intel_iommu *iommu;
513 unsigned long flags;
514 struct q_inval *qi;
515 int shift;
516
517 rcu_read_lock();
518 for_each_active_iommu(iommu, drhd) {
519 qi = iommu->qi;
520 shift = qi_shift(iommu);
521
522 if (!qi || !ecap_qis(iommu->ecap))
523 continue;
524
525 seq_printf(m, "Invalidation queue on IOMMU: %s\n", iommu->name);
526
527 raw_spin_lock_irqsave(&qi->q_lock, flags);
528 seq_printf(m, " Base: 0x%llx\tHead: %lld\tTail: %lld\n",
529 (u64)virt_to_phys(qi->desc),
530 dmar_readq(iommu->reg + DMAR_IQH_REG) >> shift,
531 dmar_readq(iommu->reg + DMAR_IQT_REG) >> shift);
532 invalidation_queue_entry_show(m, iommu);
533 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
534 seq_putc(m, '\n');
535 }
536 rcu_read_unlock();
537
538 return 0;
539 }
540 DEFINE_SHOW_ATTRIBUTE(invalidation_queue);
541
542 #ifdef CONFIG_IRQ_REMAP
ir_tbl_remap_entry_show(struct seq_file * m,struct intel_iommu * iommu)543 static void ir_tbl_remap_entry_show(struct seq_file *m,
544 struct intel_iommu *iommu)
545 {
546 struct irte *ri_entry;
547 unsigned long flags;
548 int idx;
549
550 seq_puts(m, " Entry SrcID DstID Vct IRTE_high\t\tIRTE_low\n");
551
552 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
553 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) {
554 ri_entry = &iommu->ir_table->base[idx];
555 if (!ri_entry->present || ri_entry->p_pst)
556 continue;
557
558 seq_printf(m, " %-5d %02x:%02x.%01x %08x %02x %016llx\t%016llx\n",
559 idx, PCI_BUS_NUM(ri_entry->sid),
560 PCI_SLOT(ri_entry->sid), PCI_FUNC(ri_entry->sid),
561 ri_entry->dest_id, ri_entry->vector,
562 ri_entry->high, ri_entry->low);
563 }
564 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
565 }
566
ir_tbl_posted_entry_show(struct seq_file * m,struct intel_iommu * iommu)567 static void ir_tbl_posted_entry_show(struct seq_file *m,
568 struct intel_iommu *iommu)
569 {
570 struct irte *pi_entry;
571 unsigned long flags;
572 int idx;
573
574 seq_puts(m, " Entry SrcID PDA_high PDA_low Vct IRTE_high\t\tIRTE_low\n");
575
576 raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
577 for (idx = 0; idx < INTR_REMAP_TABLE_ENTRIES; idx++) {
578 pi_entry = &iommu->ir_table->base[idx];
579 if (!pi_entry->present || !pi_entry->p_pst)
580 continue;
581
582 seq_printf(m, " %-5d %02x:%02x.%01x %08x %08x %02x %016llx\t%016llx\n",
583 idx, PCI_BUS_NUM(pi_entry->sid),
584 PCI_SLOT(pi_entry->sid), PCI_FUNC(pi_entry->sid),
585 pi_entry->pda_h, pi_entry->pda_l << 6,
586 pi_entry->vector, pi_entry->high,
587 pi_entry->low);
588 }
589 raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
590 }
591
592 /*
593 * For active IOMMUs go through the Interrupt remapping
594 * table and print valid entries in a table format for
595 * Remapped and Posted Interrupts.
596 */
ir_translation_struct_show(struct seq_file * m,void * unused)597 static int ir_translation_struct_show(struct seq_file *m, void *unused)
598 {
599 struct dmar_drhd_unit *drhd;
600 struct intel_iommu *iommu;
601 u64 irta;
602 u32 sts;
603
604 rcu_read_lock();
605 for_each_active_iommu(iommu, drhd) {
606 if (!ecap_ir_support(iommu->ecap))
607 continue;
608
609 seq_printf(m, "Remapped Interrupt supported on IOMMU: %s\n",
610 iommu->name);
611
612 sts = dmar_readl(iommu->reg + DMAR_GSTS_REG);
613 if (iommu->ir_table && (sts & DMA_GSTS_IRES)) {
614 irta = virt_to_phys(iommu->ir_table->base);
615 seq_printf(m, " IR table address:%llx\n", irta);
616 ir_tbl_remap_entry_show(m, iommu);
617 } else {
618 seq_puts(m, "Interrupt Remapping is not enabled\n");
619 }
620 seq_putc(m, '\n');
621 }
622
623 seq_puts(m, "****\n\n");
624
625 for_each_active_iommu(iommu, drhd) {
626 if (!cap_pi_support(iommu->cap))
627 continue;
628
629 seq_printf(m, "Posted Interrupt supported on IOMMU: %s\n",
630 iommu->name);
631
632 if (iommu->ir_table) {
633 irta = virt_to_phys(iommu->ir_table->base);
634 seq_printf(m, " IR table address:%llx\n", irta);
635 ir_tbl_posted_entry_show(m, iommu);
636 } else {
637 seq_puts(m, "Interrupt Remapping is not enabled\n");
638 }
639 seq_putc(m, '\n');
640 }
641 rcu_read_unlock();
642
643 return 0;
644 }
645 DEFINE_SHOW_ATTRIBUTE(ir_translation_struct);
646 #endif
647
latency_show_one(struct seq_file * m,struct intel_iommu * iommu,struct dmar_drhd_unit * drhd)648 static void latency_show_one(struct seq_file *m, struct intel_iommu *iommu,
649 struct dmar_drhd_unit *drhd)
650 {
651 int ret;
652
653 seq_printf(m, "IOMMU: %s Register Base Address: %llx\n",
654 iommu->name, drhd->reg_base_addr);
655
656 ret = dmar_latency_snapshot(iommu, debug_buf, DEBUG_BUFFER_SIZE);
657 if (ret < 0)
658 seq_puts(m, "Failed to get latency snapshot");
659 else
660 seq_puts(m, debug_buf);
661 seq_puts(m, "\n");
662 }
663
latency_show(struct seq_file * m,void * v)664 static int latency_show(struct seq_file *m, void *v)
665 {
666 struct dmar_drhd_unit *drhd;
667 struct intel_iommu *iommu;
668
669 rcu_read_lock();
670 for_each_active_iommu(iommu, drhd)
671 latency_show_one(m, iommu, drhd);
672 rcu_read_unlock();
673
674 return 0;
675 }
676
dmar_perf_latency_open(struct inode * inode,struct file * filp)677 static int dmar_perf_latency_open(struct inode *inode, struct file *filp)
678 {
679 return single_open(filp, latency_show, NULL);
680 }
681
dmar_perf_latency_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)682 static ssize_t dmar_perf_latency_write(struct file *filp,
683 const char __user *ubuf,
684 size_t cnt, loff_t *ppos)
685 {
686 struct dmar_drhd_unit *drhd;
687 struct intel_iommu *iommu;
688 int counting;
689 char buf[64];
690
691 if (cnt > 63)
692 cnt = 63;
693
694 if (copy_from_user(&buf, ubuf, cnt))
695 return -EFAULT;
696
697 buf[cnt] = 0;
698
699 if (kstrtoint(buf, 0, &counting))
700 return -EINVAL;
701
702 switch (counting) {
703 case 0:
704 rcu_read_lock();
705 for_each_active_iommu(iommu, drhd) {
706 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IOTLB);
707 dmar_latency_disable(iommu, DMAR_LATENCY_INV_DEVTLB);
708 dmar_latency_disable(iommu, DMAR_LATENCY_INV_IEC);
709 }
710 rcu_read_unlock();
711 break;
712 case 1:
713 rcu_read_lock();
714 for_each_active_iommu(iommu, drhd)
715 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IOTLB);
716 rcu_read_unlock();
717 break;
718 case 2:
719 rcu_read_lock();
720 for_each_active_iommu(iommu, drhd)
721 dmar_latency_enable(iommu, DMAR_LATENCY_INV_DEVTLB);
722 rcu_read_unlock();
723 break;
724 case 3:
725 rcu_read_lock();
726 for_each_active_iommu(iommu, drhd)
727 dmar_latency_enable(iommu, DMAR_LATENCY_INV_IEC);
728 rcu_read_unlock();
729 break;
730 default:
731 return -EINVAL;
732 }
733
734 *ppos += cnt;
735 return cnt;
736 }
737
738 static const struct file_operations dmar_perf_latency_fops = {
739 .open = dmar_perf_latency_open,
740 .write = dmar_perf_latency_write,
741 .read = seq_read,
742 .llseek = seq_lseek,
743 .release = single_release,
744 };
745
intel_iommu_debugfs_init(void)746 void __init intel_iommu_debugfs_init(void)
747 {
748 intel_iommu_debug = debugfs_create_dir("intel", iommu_debugfs_dir);
749
750 debugfs_create_file("iommu_regset", 0444, intel_iommu_debug, NULL,
751 &iommu_regset_fops);
752 debugfs_create_file("dmar_translation_struct", 0444, intel_iommu_debug,
753 NULL, &dmar_translation_struct_fops);
754 debugfs_create_file("invalidation_queue", 0444, intel_iommu_debug,
755 NULL, &invalidation_queue_fops);
756 #ifdef CONFIG_IRQ_REMAP
757 debugfs_create_file("ir_translation_struct", 0444, intel_iommu_debug,
758 NULL, &ir_translation_struct_fops);
759 #endif
760 debugfs_create_file("dmar_perf_latency", 0644, intel_iommu_debug,
761 NULL, &dmar_perf_latency_fops);
762 }
763
764 /*
765 * Create a debugfs directory for each device, and then create a
766 * debugfs file in this directory for users to dump the page table
767 * of the default domain. e.g.
768 * /sys/kernel/debug/iommu/intel/0000:00:01.0/domain_translation_struct
769 */
intel_iommu_debugfs_create_dev(struct device_domain_info * info)770 void intel_iommu_debugfs_create_dev(struct device_domain_info *info)
771 {
772 info->debugfs_dentry = debugfs_create_dir(dev_name(info->dev), intel_iommu_debug);
773
774 debugfs_create_file("domain_translation_struct", 0444, info->debugfs_dentry,
775 info, &dev_domain_translation_struct_fops);
776 }
777
778 /* Remove the device debugfs directory. */
intel_iommu_debugfs_remove_dev(struct device_domain_info * info)779 void intel_iommu_debugfs_remove_dev(struct device_domain_info *info)
780 {
781 debugfs_remove_recursive(info->debugfs_dentry);
782 }
783
784 /*
785 * Create a debugfs directory per pair of {device, pasid}, then create the
786 * corresponding debugfs file in this directory for users to dump its page
787 * table. e.g.
788 * /sys/kernel/debug/iommu/intel/0000:00:01.0/1/domain_translation_struct
789 *
790 * The debugfs only dumps the page tables whose mappings are created and
791 * destroyed by the iommu_map/unmap() interfaces. Check the mapping type
792 * of the domain before creating debugfs directory.
793 */
intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info * dev_pasid)794 void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid)
795 {
796 struct device_domain_info *info = dev_iommu_priv_get(dev_pasid->dev);
797 char dir_name[10];
798
799 sprintf(dir_name, "%x", dev_pasid->pasid);
800 dev_pasid->debugfs_dentry = debugfs_create_dir(dir_name, info->debugfs_dentry);
801
802 debugfs_create_file("domain_translation_struct", 0444, dev_pasid->debugfs_dentry,
803 dev_pasid, &pasid_domain_translation_struct_fops);
804 }
805
806 /* Remove the device pasid debugfs directory. */
intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info * dev_pasid)807 void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid)
808 {
809 debugfs_remove_recursive(dev_pasid->debugfs_dentry);
810 }
811