xref: /linux/drivers/infiniband/hw/qib/qib_sd7220.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * Copyright (c) 2006, 2007, 2008, 2009, 2010 QLogic Corporation.
3  * All rights reserved.
4  * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 /*
35  * This file contains all of the code that is specific to the SerDes
36  * on the QLogic_IB 7220 chip.
37  */
38 
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
43 
44 #include "qib.h"
45 #include "qib_7220.h"
46 
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
49 
50 /*
51  * Same as in qib_iba7220.c, but just the registers needed here.
52  * Could move whole set to qib_7220.h, but decided better to keep
53  * local.
54  */
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69 
70 /*
71  * The IBSerDesMappTable is a memory that holds values to be stored in
72  * various SerDes registers by IBC.
73  */
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75 
76 /*
77  * Below used for sdnum parameter, selecting one of the two sections
78  * used for PCIe, or the single SerDes used for IB.
79  */
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
82 
83 /*
84  * The EPB requires addressing in a particular form. EPB_LOC() is intended
85  * to make #definitions a little more readable.
86  */
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 	(((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 	 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U <<  EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96 
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 			      u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 			     int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 			      const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 			     const struct firmware *fw);
115 
116 /*
117  * Below keeps track of whether the "once per power-on" initialization has
118  * been done, because uC code Version 1.32.17 or higher allows the uC to
119  * be reset at will, and Automatic Equalization may require it. So the
120  * state of the reset "pin", is no longer valid. Instead, we check for the
121  * actual uC code having been loaded.
122  */
123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 				 const struct firmware *fw)
125 {
126 	struct qib_devdata *dd = ppd->dd;
127 
128 	if (!dd->cspec->serdes_first_init_done &&
129 	    qib_sd7220_ib_vfy(dd, fw) > 0)
130 		dd->cspec->serdes_first_init_done = 1;
131 	return dd->cspec->serdes_first_init_done;
132 }
133 
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR      0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142 
143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144 {
145 	int ret;
146 
147 	/* clear, then re-enable parity errs */
148 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 		UC_PAR_CLR_D, UC_PAR_CLR_M);
150 	if (ret < 0) {
151 		qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 		goto bail;
153 	}
154 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 		UC_PAR_CLR_M);
156 
157 	qib_read_kreg32(dd, kr_scratch);
158 	udelay(4);
159 	qib_write_kreg(dd, kr_hwerrclear,
160 		QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 	qib_read_kreg32(dd, kr_scratch);
162 bail:
163 	return;
164 }
165 
166 /*
167  * After a reset or other unusual event, the epb interface may need
168  * to be re-synchronized, between the host and the uC.
169  * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170  */
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174 
175 static int qib_resync_ibepb(struct qib_devdata *dd)
176 {
177 	int ret, pat, tries, chn;
178 	u32 loc;
179 
180 	ret = -1;
181 	chn = 0;
182 	for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 		loc = IB_PGUDP(chn);
184 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 		if (ret < 0) {
186 			qib_dev_err(dd, "Failed read in resync\n");
187 			continue;
188 		}
189 		if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 			qib_dev_err(dd, "unexpected pattern in resync\n");
191 		pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 		if (ret < 0) {
194 			qib_dev_err(dd, "Failed write in resync\n");
195 			continue;
196 		}
197 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 		if (ret < 0) {
199 			qib_dev_err(dd, "Failed re-read in resync\n");
200 			continue;
201 		}
202 		if (ret != pat) {
203 			qib_dev_err(dd, "Failed compare1 in resync\n");
204 			continue;
205 		}
206 		loc = IB_CMUDONE(chn);
207 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 		if (ret < 0) {
209 			qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 			continue;
211 		}
212 		if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 			qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 				    ret, chn);
215 			continue;
216 		}
217 		if (++chn == 4)
218 			break;  /* Success */
219 	}
220 	return (ret > 0) ? 0 : ret;
221 }
222 
223 /*
224  * Localize the stuff that should be done to change IB uC reset
225  * returns <0 for errors.
226  */
227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228 {
229 	u64 rst_val;
230 	int ret = 0;
231 	unsigned long flags;
232 
233 	rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 	if (assert_rst) {
235 		/*
236 		 * Vendor recommends "interrupting" uC before reset, to
237 		 * minimize possible glitches.
238 		 */
239 		spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 		epb_access(dd, IB_7220_SERDES, 1);
241 		rst_val |= 1ULL;
242 		/* Squelch possible parity error from _asserting_ reset */
243 		qib_write_kreg(dd, kr_hwerrmask,
244 			       dd->cspec->hwerrmask &
245 			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 		/* flush write, delay to ensure it took effect */
248 		qib_read_kreg32(dd, kr_scratch);
249 		udelay(2);
250 		/* once it's reset, can remove interrupt */
251 		epb_access(dd, IB_7220_SERDES, -1);
252 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 	} else {
254 		/*
255 		 * Before we de-assert reset, we need to deal with
256 		 * possible glitch on the Parity-error line.
257 		 * Suppress it around the reset, both in chip-level
258 		 * hwerrmask and in IB uC control reg. uC will allow
259 		 * it again during startup.
260 		 */
261 		u64 val;
262 		rst_val &= ~(1ULL);
263 		qib_write_kreg(dd, kr_hwerrmask,
264 			       dd->cspec->hwerrmask &
265 			       ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
266 
267 		ret = qib_resync_ibepb(dd);
268 		if (ret < 0)
269 			qib_dev_err(dd, "unable to re-sync IB EPB\n");
270 
271 		/* set uC control regs to suppress parity errs */
272 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
273 		if (ret < 0)
274 			goto bail;
275 		/* IB uC code past Version 1.32.17 allow suppression of wdog */
276 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
277 			0x80);
278 		if (ret < 0) {
279 			qib_dev_err(dd, "Failed to set WDOG disable\n");
280 			goto bail;
281 		}
282 		qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
283 		/* flush write, delay for startup */
284 		qib_read_kreg32(dd, kr_scratch);
285 		udelay(1);
286 		/* clear, then re-enable parity errs */
287 		qib_sd7220_clr_ibpar(dd);
288 		val = qib_read_kreg64(dd, kr_hwerrstatus);
289 		if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
290 			qib_dev_err(dd, "IBUC Parity still set after RST\n");
291 			dd->cspec->hwerrmask &=
292 				~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
293 		}
294 		qib_write_kreg(dd, kr_hwerrmask,
295 			dd->cspec->hwerrmask);
296 	}
297 
298 bail:
299 	return ret;
300 }
301 
302 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
303 	const char *where)
304 {
305 	int ret, chn, baduns;
306 	u64 val;
307 
308 	if (!where)
309 		where = "?";
310 
311 	/* give time for reset to settle out in EPB */
312 	udelay(2);
313 
314 	ret = qib_resync_ibepb(dd);
315 	if (ret < 0)
316 		qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
317 
318 	/* Do "sacrificial read" to get EPB in sane state after reset */
319 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
320 	if (ret < 0)
321 		qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
322 
323 	/* Check/show "summary" Trim-done bit in IBCStatus */
324 	val = qib_read_kreg64(dd, kr_ibcstatus);
325 	if (!(val & (1ULL << 11)))
326 		qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
327 	/*
328 	 * Do "dummy read/mod/wr" to get EPB in sane state after reset
329 	 * The default value for MPREG6 is 0.
330 	 */
331 	udelay(2);
332 
333 	ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
334 	if (ret < 0)
335 		qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
336 	udelay(10);
337 
338 	baduns = 0;
339 
340 	for (chn = 3; chn >= 0; --chn) {
341 		/* Read CTRL reg for each channel to check TRIMDONE */
342 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
343 			IB_CTRL2(chn), 0, 0);
344 		if (ret < 0)
345 			qib_dev_err(dd, "Failed checking TRIMDONE, chn %d"
346 				    " (%s)\n", chn, where);
347 
348 		if (!(ret & 0x10)) {
349 			int probe;
350 
351 			baduns |= (1 << chn);
352 			qib_dev_err(dd, "TRIMDONE cleared on chn %d (%02X)."
353 				" (%s)\n", chn, ret, where);
354 			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
355 				IB_PGUDP(0), 0, 0);
356 			qib_dev_err(dd, "probe is %d (%02X)\n",
357 				probe, probe);
358 			probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
359 				IB_CTRL2(chn), 0, 0);
360 			qib_dev_err(dd, "re-read: %d (%02X)\n",
361 				probe, probe);
362 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
363 				IB_CTRL2(chn), 0x10, 0x10);
364 			if (ret < 0)
365 				qib_dev_err(dd,
366 					"Err on TRIMDONE rewrite1\n");
367 		}
368 	}
369 	for (chn = 3; chn >= 0; --chn) {
370 		/* Read CTRL reg for each channel to check TRIMDONE */
371 		if (baduns & (1 << chn)) {
372 			qib_dev_err(dd,
373 				"Reseting TRIMDONE on chn %d (%s)\n",
374 				chn, where);
375 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
376 				IB_CTRL2(chn), 0x10, 0x10);
377 			if (ret < 0)
378 				qib_dev_err(dd, "Failed re-setting "
379 					"TRIMDONE, chn %d (%s)\n",
380 					chn, where);
381 		}
382 	}
383 }
384 
385 /*
386  * Below is portion of IBA7220-specific bringup_serdes() that actually
387  * deals with registers and memory within the SerDes itself.
388  * Post IB uC code version 1.32.17, was_reset being 1 is not really
389  * informative, so we double-check.
390  */
391 int qib_sd7220_init(struct qib_devdata *dd)
392 {
393 	const struct firmware *fw;
394 	int ret = 1; /* default to failure */
395 	int first_reset, was_reset;
396 
397 	/* SERDES MPU reset recorded in D0 */
398 	was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
399 	if (!was_reset) {
400 		/* entered with reset not asserted, we need to do it */
401 		qib_ibsd_reset(dd, 1);
402 		qib_sd_trimdone_monitor(dd, "Driver-reload");
403 	}
404 
405 	ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
406 	if (ret) {
407 		qib_dev_err(dd, "Failed to load IB SERDES image\n");
408 		goto done;
409 	}
410 
411 	/* Substitute our deduced value for was_reset */
412 	ret = qib_ibsd_ucode_loaded(dd->pport, fw);
413 	if (ret < 0)
414 		goto bail;
415 
416 	first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
417 	/*
418 	 * Alter some regs per vendor latest doc, reset-defaults
419 	 * are not right for IB.
420 	 */
421 	ret = qib_sd_early(dd);
422 	if (ret < 0) {
423 		qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
424 		goto bail;
425 	}
426 	/*
427 	 * Set DAC manual trim IB.
428 	 * We only do this once after chip has been reset (usually
429 	 * same as once per system boot).
430 	 */
431 	if (first_reset) {
432 		ret = qib_sd_dactrim(dd);
433 		if (ret < 0) {
434 			qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
435 			goto bail;
436 		}
437 	}
438 	/*
439 	 * Set various registers (DDS and RXEQ) that will be
440 	 * controlled by IBC (in 1.2 mode) to reasonable preset values
441 	 * Calling the "internal" version avoids the "check for needed"
442 	 * and "trimdone monitor" that might be counter-productive.
443 	 */
444 	ret = qib_internal_presets(dd);
445 	if (ret < 0) {
446 		qib_dev_err(dd, "Failed to set IB SERDES presets\n");
447 		goto bail;
448 	}
449 	ret = qib_sd_trimself(dd, 0x80);
450 	if (ret < 0) {
451 		qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
452 		goto bail;
453 	}
454 
455 	/* Load image, then try to verify */
456 	ret = 0;        /* Assume success */
457 	if (first_reset) {
458 		int vfy;
459 		int trim_done;
460 
461 		ret = qib_sd7220_ib_load(dd, fw);
462 		if (ret < 0) {
463 			qib_dev_err(dd, "Failed to load IB SERDES image\n");
464 			goto bail;
465 		} else {
466 			/* Loaded image, try to verify */
467 			vfy = qib_sd7220_ib_vfy(dd, fw);
468 			if (vfy != ret) {
469 				qib_dev_err(dd, "SERDES PRAM VFY failed\n");
470 				goto bail;
471 			} /* end if verified */
472 		} /* end if loaded */
473 
474 		/*
475 		 * Loaded and verified. Almost good...
476 		 * hold "success" in ret
477 		 */
478 		ret = 0;
479 		/*
480 		 * Prev steps all worked, continue bringup
481 		 * De-assert RESET to uC, only in first reset, to allow
482 		 * trimming.
483 		 *
484 		 * Since our default setup sets START_EQ1 to
485 		 * PRESET, we need to clear that for this very first run.
486 		 */
487 		ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
488 		if (ret < 0) {
489 			qib_dev_err(dd, "Failed clearing START_EQ1\n");
490 			goto bail;
491 		}
492 
493 		qib_ibsd_reset(dd, 0);
494 		/*
495 		 * If this is not the first reset, trimdone should be set
496 		 * already. We may need to check about this.
497 		 */
498 		trim_done = qib_sd_trimdone_poll(dd);
499 		/*
500 		 * Whether or not trimdone succeeded, we need to put the
501 		 * uC back into reset to avoid a possible fight with the
502 		 * IBC state-machine.
503 		 */
504 		qib_ibsd_reset(dd, 1);
505 
506 		if (!trim_done) {
507 			qib_dev_err(dd, "No TRIMDONE seen\n");
508 			goto bail;
509 		}
510 		/*
511 		 * DEBUG: check each time we reset if trimdone bits have
512 		 * gotten cleared, and re-set them.
513 		 */
514 		qib_sd_trimdone_monitor(dd, "First-reset");
515 		/* Remember so we do not re-do the load, dactrim, etc. */
516 		dd->cspec->serdes_first_init_done = 1;
517 	}
518 	/*
519 	 * setup for channel training and load values for
520 	 * RxEq and DDS in tables used by IBC in IB1.2 mode
521 	 */
522 	ret = 0;
523 	if (qib_sd_setvals(dd) >= 0)
524 		goto done;
525 bail:
526 	ret = 1;
527 done:
528 	/* start relock timer regardless, but start at 1 second */
529 	set_7220_relock_poll(dd, -1);
530 
531 	release_firmware(fw);
532 	return ret;
533 }
534 
535 #define EPB_ACC_REQ 1
536 #define EPB_ACC_GNT 0x100
537 #define EPB_DATA_MASK 0xFF
538 #define EPB_RD (1ULL << 24)
539 #define EPB_TRANS_RDY (1ULL << 31)
540 #define EPB_TRANS_ERR (1ULL << 30)
541 #define EPB_TRANS_TRIES 5
542 
543 /*
544  * query, claim, release ownership of the EPB (External Parallel Bus)
545  * for a specified SERDES.
546  * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
547  * Returns <0 for errors, >0 if we had ownership, else 0.
548  */
549 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
550 {
551 	u16 acc;
552 	u64 accval;
553 	int owned = 0;
554 	u64 oct_sel = 0;
555 
556 	switch (sdnum) {
557 	case IB_7220_SERDES:
558 		/*
559 		 * The IB SERDES "ownership" is fairly simple. A single each
560 		 * request/grant.
561 		 */
562 		acc = kr_ibsd_epb_access_ctrl;
563 		break;
564 
565 	case PCIE_SERDES0:
566 	case PCIE_SERDES1:
567 		/* PCIe SERDES has two "octants", need to select which */
568 		acc = kr_pciesd_epb_access_ctrl;
569 		oct_sel = (2 << (sdnum - PCIE_SERDES0));
570 		break;
571 
572 	default:
573 		return 0;
574 	}
575 
576 	/* Make sure any outstanding transaction was seen */
577 	qib_read_kreg32(dd, kr_scratch);
578 	udelay(15);
579 
580 	accval = qib_read_kreg32(dd, acc);
581 
582 	owned = !!(accval & EPB_ACC_GNT);
583 	if (claim < 0) {
584 		/* Need to release */
585 		u64 pollval;
586 		/*
587 		 * The only writeable bits are the request and CS.
588 		 * Both should be clear
589 		 */
590 		u64 newval = 0;
591 		qib_write_kreg(dd, acc, newval);
592 		/* First read after write is not trustworthy */
593 		pollval = qib_read_kreg32(dd, acc);
594 		udelay(5);
595 		pollval = qib_read_kreg32(dd, acc);
596 		if (pollval & EPB_ACC_GNT)
597 			owned = -1;
598 	} else if (claim > 0) {
599 		/* Need to claim */
600 		u64 pollval;
601 		u64 newval = EPB_ACC_REQ | oct_sel;
602 		qib_write_kreg(dd, acc, newval);
603 		/* First read after write is not trustworthy */
604 		pollval = qib_read_kreg32(dd, acc);
605 		udelay(5);
606 		pollval = qib_read_kreg32(dd, acc);
607 		if (!(pollval & EPB_ACC_GNT))
608 			owned = -1;
609 	}
610 	return owned;
611 }
612 
613 /*
614  * Lemma to deal with race condition of write..read to epb regs
615  */
616 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
617 {
618 	int tries;
619 	u64 transval;
620 
621 	qib_write_kreg(dd, reg, i_val);
622 	/* Throw away first read, as RDY bit may be stale */
623 	transval = qib_read_kreg64(dd, reg);
624 
625 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
626 		transval = qib_read_kreg32(dd, reg);
627 		if (transval & EPB_TRANS_RDY)
628 			break;
629 		udelay(5);
630 	}
631 	if (transval & EPB_TRANS_ERR)
632 		return -1;
633 	if (tries > 0 && o_vp)
634 		*o_vp = transval;
635 	return tries;
636 }
637 
638 /**
639  * qib_sd7220_reg_mod - modify SERDES register
640  * @dd: the qlogic_ib device
641  * @sdnum: which SERDES to access
642  * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
643  * @wd: Write Data - value to set in register
644  * @mask: ones where data should be spliced into reg.
645  *
646  * Basic register read/modify/write, with un-needed acesses elided. That is,
647  * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
648  * returns current (presumed, if a write was done) contents of selected
649  * register, or <0 if errors.
650  */
651 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
652 			      u32 wd, u32 mask)
653 {
654 	u16 trans;
655 	u64 transval;
656 	int owned;
657 	int tries, ret;
658 	unsigned long flags;
659 
660 	switch (sdnum) {
661 	case IB_7220_SERDES:
662 		trans = kr_ibsd_epb_transaction_reg;
663 		break;
664 
665 	case PCIE_SERDES0:
666 	case PCIE_SERDES1:
667 		trans = kr_pciesd_epb_transaction_reg;
668 		break;
669 
670 	default:
671 		return -1;
672 	}
673 
674 	/*
675 	 * All access is locked in software (vs other host threads) and
676 	 * hardware (vs uC access).
677 	 */
678 	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
679 
680 	owned = epb_access(dd, sdnum, 1);
681 	if (owned < 0) {
682 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
683 		return -1;
684 	}
685 	ret = 0;
686 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
687 		transval = qib_read_kreg32(dd, trans);
688 		if (transval & EPB_TRANS_RDY)
689 			break;
690 		udelay(5);
691 	}
692 
693 	if (tries > 0) {
694 		tries = 1;      /* to make read-skip work */
695 		if (mask != 0xFF) {
696 			/*
697 			 * Not a pure write, so need to read.
698 			 * loc encodes chip-select as well as address
699 			 */
700 			transval = loc | EPB_RD;
701 			tries = epb_trans(dd, trans, transval, &transval);
702 		}
703 		if (tries > 0 && mask != 0) {
704 			/*
705 			 * Not a pure read, so need to write.
706 			 */
707 			wd = (wd & mask) | (transval & ~mask);
708 			transval = loc | (wd & EPB_DATA_MASK);
709 			tries = epb_trans(dd, trans, transval, &transval);
710 		}
711 	}
712 	/* else, failed to see ready, what error-handling? */
713 
714 	/*
715 	 * Release bus. Failure is an error.
716 	 */
717 	if (epb_access(dd, sdnum, -1) < 0)
718 		ret = -1;
719 	else
720 		ret = transval & EPB_DATA_MASK;
721 
722 	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
723 	if (tries <= 0)
724 		ret = -1;
725 	return ret;
726 }
727 
728 #define EPB_ROM_R (2)
729 #define EPB_ROM_W (1)
730 /*
731  * Below, all uC-related, use appropriate UC_CS, depending
732  * on which SerDes is used.
733  */
734 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
735 #define EPB_MADDRL EPB_LOC(6, 0, 2)
736 #define EPB_MADDRH EPB_LOC(6, 0, 3)
737 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
738 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
739 
740 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
741 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
742 			       u8 *buf, int cnt, int rd_notwr)
743 {
744 	u16 trans;
745 	u64 transval;
746 	u64 csbit;
747 	int owned;
748 	int tries;
749 	int sofar;
750 	int addr;
751 	int ret;
752 	unsigned long flags;
753 	const char *op;
754 
755 	/* Pick appropriate transaction reg and "Chip select" for this serdes */
756 	switch (sdnum) {
757 	case IB_7220_SERDES:
758 		csbit = 1ULL << EPB_IB_UC_CS_SHF;
759 		trans = kr_ibsd_epb_transaction_reg;
760 		break;
761 
762 	case PCIE_SERDES0:
763 	case PCIE_SERDES1:
764 		/* PCIe SERDES has uC "chip select" in different bit, too */
765 		csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
766 		trans = kr_pciesd_epb_transaction_reg;
767 		break;
768 
769 	default:
770 		return -1;
771 	}
772 
773 	op = rd_notwr ? "Rd" : "Wr";
774 	spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
775 
776 	owned = epb_access(dd, sdnum, 1);
777 	if (owned < 0) {
778 		spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
779 		return -1;
780 	}
781 
782 	/*
783 	 * In future code, we may need to distinguish several address ranges,
784 	 * and select various memories based on this. For now, just trim
785 	 * "loc" (location including address and memory select) to
786 	 * "addr" (address within memory). we will only support PRAM
787 	 * The memory is 8KB.
788 	 */
789 	addr = loc & 0x1FFF;
790 	for (tries = EPB_TRANS_TRIES; tries; --tries) {
791 		transval = qib_read_kreg32(dd, trans);
792 		if (transval & EPB_TRANS_RDY)
793 			break;
794 		udelay(5);
795 	}
796 
797 	sofar = 0;
798 	if (tries > 0) {
799 		/*
800 		 * Every "memory" access is doubly-indirect.
801 		 * We set two bytes of address, then read/write
802 		 * one or mores bytes of data.
803 		 */
804 
805 		/* First, we set control to "Read" or "Write" */
806 		transval = csbit | EPB_UC_CTL |
807 			(rd_notwr ? EPB_ROM_R : EPB_ROM_W);
808 		tries = epb_trans(dd, trans, transval, &transval);
809 		while (tries > 0 && sofar < cnt) {
810 			if (!sofar) {
811 				/* Only set address at start of chunk */
812 				int addrbyte = (addr + sofar) >> 8;
813 				transval = csbit | EPB_MADDRH | addrbyte;
814 				tries = epb_trans(dd, trans, transval,
815 						  &transval);
816 				if (tries <= 0)
817 					break;
818 				addrbyte = (addr + sofar) & 0xFF;
819 				transval = csbit | EPB_MADDRL | addrbyte;
820 				tries = epb_trans(dd, trans, transval,
821 						 &transval);
822 				if (tries <= 0)
823 					break;
824 			}
825 
826 			if (rd_notwr)
827 				transval = csbit | EPB_ROMDATA | EPB_RD;
828 			else
829 				transval = csbit | EPB_ROMDATA | buf[sofar];
830 			tries = epb_trans(dd, trans, transval, &transval);
831 			if (tries <= 0)
832 				break;
833 			if (rd_notwr)
834 				buf[sofar] = transval & EPB_DATA_MASK;
835 			++sofar;
836 		}
837 		/* Finally, clear control-bit for Read or Write */
838 		transval = csbit | EPB_UC_CTL;
839 		tries = epb_trans(dd, trans, transval, &transval);
840 	}
841 
842 	ret = sofar;
843 	/* Release bus. Failure is an error */
844 	if (epb_access(dd, sdnum, -1) < 0)
845 		ret = -1;
846 
847 	spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
848 	if (tries <= 0)
849 		ret = -1;
850 	return ret;
851 }
852 
853 #define PROG_CHUNK 64
854 
855 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
856 			      const u8 *img, int len, int offset)
857 {
858 	int cnt, sofar, req;
859 
860 	sofar = 0;
861 	while (sofar < len) {
862 		req = len - sofar;
863 		if (req > PROG_CHUNK)
864 			req = PROG_CHUNK;
865 		cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
866 					  (u8 *)img + sofar, req, 0);
867 		if (cnt < req) {
868 			sofar = -1;
869 			break;
870 		}
871 		sofar += req;
872 	}
873 	return sofar;
874 }
875 
876 #define VFY_CHUNK 64
877 #define SD_PRAM_ERROR_LIMIT 42
878 
879 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
880 			       const u8 *img, int len, int offset)
881 {
882 	int cnt, sofar, req, idx, errors;
883 	unsigned char readback[VFY_CHUNK];
884 
885 	errors = 0;
886 	sofar = 0;
887 	while (sofar < len) {
888 		req = len - sofar;
889 		if (req > VFY_CHUNK)
890 			req = VFY_CHUNK;
891 		cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
892 					  readback, req, 1);
893 		if (cnt < req) {
894 			/* failed in read itself */
895 			sofar = -1;
896 			break;
897 		}
898 		for (idx = 0; idx < cnt; ++idx) {
899 			if (readback[idx] != img[idx+sofar])
900 				++errors;
901 		}
902 		sofar += cnt;
903 	}
904 	return errors ? -errors : sofar;
905 }
906 
907 static int
908 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
909 {
910 	return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
911 }
912 
913 static int
914 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
915 {
916 	return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
917 }
918 
919 /*
920  * IRQ not set up at this point in init, so we poll.
921  */
922 #define IB_SERDES_TRIM_DONE (1ULL << 11)
923 #define TRIM_TMO (30)
924 
925 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
926 {
927 	int trim_tmo, ret;
928 	uint64_t val;
929 
930 	/*
931 	 * Default to failure, so IBC will not start
932 	 * without IB_SERDES_TRIM_DONE.
933 	 */
934 	ret = 0;
935 	for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
936 		val = qib_read_kreg64(dd, kr_ibcstatus);
937 		if (val & IB_SERDES_TRIM_DONE) {
938 			ret = 1;
939 			break;
940 		}
941 		msleep(10);
942 	}
943 	if (trim_tmo >= TRIM_TMO) {
944 		qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
945 		ret = 0;
946 	}
947 	return ret;
948 }
949 
950 #define TX_FAST_ELT (9)
951 
952 /*
953  * Set the "negotiation" values for SERDES. These are used by the IB1.2
954  * link negotiation. Macros below are attempt to keep the values a
955  * little more human-editable.
956  * First, values related to Drive De-emphasis Settings.
957  */
958 
959 #define NUM_DDS_REGS 6
960 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
961 
962 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
963 	{ { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
964 	  (main_d << 3) | 4 | (ipre_d >> 2), \
965 	  (main_s << 3) | 4 | (ipre_s >> 2), \
966 	  ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
967 	  ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
968 
969 static struct dds_init {
970 	uint8_t reg_vals[NUM_DDS_REGS];
971 } dds_init_vals[] = {
972 	/*       DDR(FDR)       SDR(HDR)   */
973 	/* Vendor recommends below for 3m cable */
974 #define DDS_3M 0
975 	DDS_VAL(31, 19, 12, 0, 29, 22,  9, 0),
976 	DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
977 	DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
978 	DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
979 	DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
980 	DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
981 	DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
982 	DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
983 	DDS_VAL(31, 20, 11, 0, 28, 23,  8, 0),
984 	DDS_VAL(31, 21, 10, 0, 27, 24,  7, 0),
985 	DDS_VAL(31, 22,  9, 0, 26, 25,  6, 0),
986 	DDS_VAL(30, 23,  8, 0, 25, 26,  5, 0),
987 	DDS_VAL(29, 24,  7, 0, 23, 27,  4, 0),
988 	/* Vendor recommends below for 1m cable */
989 #define DDS_1M 13
990 	DDS_VAL(28, 25,  6, 0, 21, 28,  3, 0),
991 	DDS_VAL(27, 26,  5, 0, 19, 29,  2, 0),
992 	DDS_VAL(25, 27,  4, 0, 17, 30,  1, 0)
993 };
994 
995 /*
996  * Now the RXEQ section of the table.
997  */
998 /* Hardware packs an element number and register address thus: */
999 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1000 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1001 	{RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1002 
1003 #define RXEQ_VAL_ALL(elt, adr, val)  \
1004 	{RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1005 
1006 #define RXEQ_SDR_DFELTH 0
1007 #define RXEQ_SDR_TLTH 0
1008 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1009 #define RXEQ_SDR_ZCNT 23
1010 
1011 static struct rxeq_init {
1012 	u16 rdesc;      /* in form used in SerDesDDSRXEQ */
1013 	u8  rdata[4];
1014 } rxeq_init_vals[] = {
1015 	/* Set Rcv Eq. to Preset node */
1016 	RXEQ_VAL_ALL(7, 0x27, 0x10),
1017 	/* Set DFELTHFDR/HDR thresholds */
1018 	RXEQ_VAL(7, 8,    0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1019 	RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1020 	/* Set TLTHFDR/HDR theshold */
1021 	RXEQ_VAL(7, 9,    2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1022 	RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was  0, 1, 2, 3 */
1023 	/* Set Preamp setting 2 (ZFR/ZCNT) */
1024 	RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1025 	RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1026 	/* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1027 	RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1028 	RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1029 	/* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1030 	RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1031 	RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1032 };
1033 
1034 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1035 #define DDS_ROWS (16)
1036 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1037 
1038 static int qib_sd_setvals(struct qib_devdata *dd)
1039 {
1040 	int idx, midx;
1041 	int min_idx;     /* Minimum index for this portion of table */
1042 	uint32_t dds_reg_map;
1043 	u64 __iomem *taddr, *iaddr;
1044 	uint64_t data;
1045 	uint64_t sdctl;
1046 
1047 	taddr = dd->kregbase + kr_serdes_maptable;
1048 	iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1049 
1050 	/*
1051 	 * Init the DDS section of the table.
1052 	 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1053 	 * registers indicated in DDS_REG_MAP.
1054 	 */
1055 	sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1056 	sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1057 	sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1058 	qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1059 
1060 	/*
1061 	 * Iterate down table within loop for each register to store.
1062 	 */
1063 	dds_reg_map = DDS_REG_MAP;
1064 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1065 		data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1066 		writeq(data, iaddr + idx);
1067 		mmiowb();
1068 		qib_read_kreg32(dd, kr_scratch);
1069 		dds_reg_map >>= 4;
1070 		for (midx = 0; midx < DDS_ROWS; ++midx) {
1071 			u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1072 			data = dds_init_vals[midx].reg_vals[idx];
1073 			writeq(data, daddr);
1074 			mmiowb();
1075 			qib_read_kreg32(dd, kr_scratch);
1076 		} /* End inner for (vals for this reg, each row) */
1077 	} /* end outer for (regs to be stored) */
1078 
1079 	/*
1080 	 * Init the RXEQ section of the table.
1081 	 * This runs in a different order, as the pattern of
1082 	 * register references is more complex, but there are only
1083 	 * four "data" values per register.
1084 	 */
1085 	min_idx = idx; /* RXEQ indices pick up where DDS left off */
1086 	taddr += 0x100; /* RXEQ data is in second half of table */
1087 	/* Iterate through RXEQ register addresses */
1088 	for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1089 		int didx; /* "destination" */
1090 		int vidx;
1091 
1092 		/* didx is offset by min_idx to address RXEQ range of regs */
1093 		didx = idx + min_idx;
1094 		/* Store the next RXEQ register address */
1095 		writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1096 		mmiowb();
1097 		qib_read_kreg32(dd, kr_scratch);
1098 		/* Iterate through RXEQ values */
1099 		for (vidx = 0; vidx < 4; vidx++) {
1100 			data = rxeq_init_vals[idx].rdata[vidx];
1101 			writeq(data, taddr + (vidx << 6) + idx);
1102 			mmiowb();
1103 			qib_read_kreg32(dd, kr_scratch);
1104 		}
1105 	} /* end outer for (Reg-writes for RXEQ) */
1106 	return 0;
1107 }
1108 
1109 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1110 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1111 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1112 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1113 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1114 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1115 
1116 /*
1117  * Repeat a "store" across all channels of the IB SerDes.
1118  * Although nominally it inherits the "read value" of the last
1119  * channel it modified, the only really useful return is <0 for
1120  * failure, >= 0 for success. The parameter 'loc' is assumed to
1121  * be the location in some channel of the register to be modified
1122  * The caller can specify use of the "gang write" option of EPB,
1123  * in which case we use the specified channel data for any fields
1124  * not explicitely written.
1125  */
1126 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1127 			     int mask)
1128 {
1129 	int ret = -1;
1130 	int chnl;
1131 
1132 	if (loc & EPB_GLOBAL_WR) {
1133 		/*
1134 		 * Our caller has assured us that we can set all four
1135 		 * channels at once. Trust that. If mask is not 0xFF,
1136 		 * we will read the _specified_ channel for our starting
1137 		 * value.
1138 		 */
1139 		loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1140 		chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1141 		if (mask != 0xFF) {
1142 			ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1143 						 loc & ~EPB_GLOBAL_WR, 0, 0);
1144 			if (ret < 0) {
1145 				int sloc = loc >> EPB_ADDR_SHF;
1146 
1147 				qib_dev_err(dd, "pre-read failed: elt %d,"
1148 					    " addr 0x%X, chnl %d\n",
1149 					    (sloc & 0xF),
1150 					    (sloc >> 9) & 0x3f, chnl);
1151 				return ret;
1152 			}
1153 			val = (ret & ~mask) | (val & mask);
1154 		}
1155 		loc &=  ~(7 << (4+EPB_ADDR_SHF));
1156 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1157 		if (ret < 0) {
1158 			int sloc = loc >> EPB_ADDR_SHF;
1159 
1160 			qib_dev_err(dd, "Global WR failed: elt %d,"
1161 				    " addr 0x%X, val %02X\n",
1162 				    (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1163 		}
1164 		return ret;
1165 	}
1166 	/* Clear "channel" and set CS so we can simply iterate */
1167 	loc &=  ~(7 << (4+EPB_ADDR_SHF));
1168 	loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1169 	for (chnl = 0; chnl < 4; ++chnl) {
1170 		int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1171 
1172 		ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1173 		if (ret < 0) {
1174 			int sloc = loc >> EPB_ADDR_SHF;
1175 
1176 			qib_dev_err(dd, "Write failed: elt %d,"
1177 				    " addr 0x%X, chnl %d, val 0x%02X,"
1178 				    " mask 0x%02X\n",
1179 				    (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1180 				    val & 0xFF, mask & 0xFF);
1181 			break;
1182 		}
1183 	}
1184 	return ret;
1185 }
1186 
1187 /*
1188  * Set the Tx values normally modified by IBC in IB1.2 mode to default
1189  * values, as gotten from first row of init table.
1190  */
1191 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1192 {
1193 	int ret;
1194 	int idx, reg, data;
1195 	uint32_t regmap;
1196 
1197 	regmap = DDS_REG_MAP;
1198 	for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1199 		reg = (regmap & 0xF);
1200 		regmap >>= 4;
1201 		data = ddi->reg_vals[idx];
1202 		/* Vendor says RMW not needed for these regs, use 0xFF mask */
1203 		ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1204 		if (ret < 0)
1205 			break;
1206 	}
1207 	return ret;
1208 }
1209 
1210 /*
1211  * Set the Rx values normally modified by IBC in IB1.2 mode to default
1212  * values, as gotten from selected column of init table.
1213  */
1214 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1215 {
1216 	int ret;
1217 	int ridx;
1218 	int cnt = ARRAY_SIZE(rxeq_init_vals);
1219 
1220 	for (ridx = 0; ridx < cnt; ++ridx) {
1221 		int elt, reg, val, loc;
1222 
1223 		elt = rxeq_init_vals[ridx].rdesc & 0xF;
1224 		reg = rxeq_init_vals[ridx].rdesc >> 4;
1225 		loc = EPB_LOC(0, elt, reg);
1226 		val = rxeq_init_vals[ridx].rdata[vsel];
1227 		/* mask of 0xFF, because hardware does full-byte store. */
1228 		ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1229 		if (ret < 0)
1230 			break;
1231 	}
1232 	return ret;
1233 }
1234 
1235 /*
1236  * Set the default values (row 0) for DDR Driver Demphasis.
1237  * we do this initially and whenever we turn off IB-1.2
1238  *
1239  * The "default" values for Rx equalization are also stored to
1240  * SerDes registers. Formerly (and still default), we used set 2.
1241  * For experimenting with cables and link-partners, we allow changing
1242  * that via a module parameter.
1243  */
1244 static unsigned qib_rxeq_set = 2;
1245 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1246 		   S_IWUSR | S_IRUGO);
1247 MODULE_PARM_DESC(rxeq_default_set,
1248 		 "Which set [0..3] of Rx Equalization values is default");
1249 
1250 static int qib_internal_presets(struct qib_devdata *dd)
1251 {
1252 	int ret = 0;
1253 
1254 	ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1255 
1256 	if (ret < 0)
1257 		qib_dev_err(dd, "Failed to set default DDS values\n");
1258 	ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1259 	if (ret < 0)
1260 		qib_dev_err(dd, "Failed to set default RXEQ values\n");
1261 	return ret;
1262 }
1263 
1264 int qib_sd7220_presets(struct qib_devdata *dd)
1265 {
1266 	int ret = 0;
1267 
1268 	if (!dd->cspec->presets_needed)
1269 		return ret;
1270 	dd->cspec->presets_needed = 0;
1271 	/* Assert uC reset, so we don't clash with it. */
1272 	qib_ibsd_reset(dd, 1);
1273 	udelay(2);
1274 	qib_sd_trimdone_monitor(dd, "link-down");
1275 
1276 	ret = qib_internal_presets(dd);
1277 	return ret;
1278 }
1279 
1280 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1281 {
1282 	int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1283 
1284 	return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1285 }
1286 
1287 static int qib_sd_early(struct qib_devdata *dd)
1288 {
1289 	int ret;
1290 
1291 	ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1292 	if (ret < 0)
1293 		goto bail;
1294 	ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1295 	if (ret < 0)
1296 		goto bail;
1297 	ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1298 bail:
1299 	return ret;
1300 }
1301 
1302 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1303 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1304 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1305 
1306 static int qib_sd_dactrim(struct qib_devdata *dd)
1307 {
1308 	int ret;
1309 
1310 	ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1311 	if (ret < 0)
1312 		goto bail;
1313 
1314 	/* more fine-tuning of what will be default */
1315 	ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1316 	if (ret < 0)
1317 		goto bail;
1318 
1319 	ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1320 	if (ret < 0)
1321 		goto bail;
1322 
1323 	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1324 	if (ret < 0)
1325 		goto bail;
1326 
1327 	ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1328 	if (ret < 0)
1329 		goto bail;
1330 
1331 	/*
1332 	 * Delay for max possible number of steps, with slop.
1333 	 * Each step is about 4usec.
1334 	 */
1335 	udelay(415);
1336 
1337 	ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1338 
1339 bail:
1340 	return ret;
1341 }
1342 
1343 #define RELOCK_FIRST_MS 3
1344 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
1345 void toggle_7220_rclkrls(struct qib_devdata *dd)
1346 {
1347 	int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1348 	int ret;
1349 
1350 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1351 	if (ret < 0)
1352 		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1353 	else {
1354 		udelay(1);
1355 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1356 	}
1357 	/* And again for good measure */
1358 	udelay(1);
1359 	ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1360 	if (ret < 0)
1361 		qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1362 	else {
1363 		udelay(1);
1364 		ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1365 	}
1366 	/* Now reset xgxs and IBC to complete the recovery */
1367 	dd->f_xgxs_reset(dd->pport);
1368 }
1369 
1370 /*
1371  * Shut down the timer that polls for relock occasions, if needed
1372  * this is "hooked" from qib_7220_quiet_serdes(), which is called
1373  * just before qib_shutdown_device() in qib_driver.c shuts down all
1374  * the other timers
1375  */
1376 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1377 {
1378 	if (dd->cspec->relock_timer_active)
1379 		del_timer_sync(&dd->cspec->relock_timer);
1380 }
1381 
1382 static unsigned qib_relock_by_timer = 1;
1383 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1384 		   S_IWUSR | S_IRUGO);
1385 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1386 
1387 static void qib_run_relock(unsigned long opaque)
1388 {
1389 	struct qib_devdata *dd = (struct qib_devdata *)opaque;
1390 	struct qib_pportdata *ppd = dd->pport;
1391 	struct qib_chip_specific *cs = dd->cspec;
1392 	int timeoff;
1393 
1394 	/*
1395 	 * Check link-training state for "stuck" state, when down.
1396 	 * if found, try relock and schedule another try at
1397 	 * exponentially growing delay, maxed at one second.
1398 	 * if not stuck, our work is done.
1399 	 */
1400 	if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1401 	    (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1402 	     QIBL_LINKACTIVE))) {
1403 		if (qib_relock_by_timer) {
1404 			if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1405 				toggle_7220_rclkrls(dd);
1406 		}
1407 		/* re-set timer for next check */
1408 		timeoff = cs->relock_interval << 1;
1409 		if (timeoff > HZ)
1410 			timeoff = HZ;
1411 		cs->relock_interval = timeoff;
1412 	} else
1413 		timeoff = HZ;
1414 	mod_timer(&cs->relock_timer, jiffies + timeoff);
1415 }
1416 
1417 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1418 {
1419 	struct qib_chip_specific *cs = dd->cspec;
1420 
1421 	if (ibup) {
1422 		/* We are now up, relax timer to 1 second interval */
1423 		if (cs->relock_timer_active) {
1424 			cs->relock_interval = HZ;
1425 			mod_timer(&cs->relock_timer, jiffies + HZ);
1426 		}
1427 	} else {
1428 		/* Transition to down, (re-)set timer to short interval. */
1429 		unsigned int timeout;
1430 
1431 		timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1432 		if (timeout == 0)
1433 			timeout = 1;
1434 		/* If timer has not yet been started, do so. */
1435 		if (!cs->relock_timer_active) {
1436 			cs->relock_timer_active = 1;
1437 			init_timer(&cs->relock_timer);
1438 			cs->relock_timer.function = qib_run_relock;
1439 			cs->relock_timer.data = (unsigned long) dd;
1440 			cs->relock_interval = timeout;
1441 			cs->relock_timer.expires = jiffies + timeout;
1442 			add_timer(&cs->relock_timer);
1443 		} else {
1444 			cs->relock_interval = timeout;
1445 			mod_timer(&cs->relock_timer, jiffies + timeout);
1446 		}
1447 	}
1448 }
1449