1 /*
2 * Copyright (c) 2013 Intel Corporation. All rights reserved.
3 * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved.
4 * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34 /*
35 * This file contains all of the code that is specific to the SerDes
36 * on the QLogic_IB 7220 chip.
37 */
38
39 #include <linux/pci.h>
40 #include <linux/delay.h>
41 #include <linux/module.h>
42 #include <linux/firmware.h>
43
44 #include "qib.h"
45 #include "qib_7220.h"
46
47 #define SD7220_FW_NAME "qlogic/sd7220.fw"
48 MODULE_FIRMWARE(SD7220_FW_NAME);
49
50 /*
51 * Same as in qib_iba7220.c, but just the registers needed here.
52 * Could move whole set to qib_7220.h, but decided better to keep
53 * local.
54 */
55 #define KREG_IDX(regname) (QIB_7220_##regname##_OFFS / sizeof(u64))
56 #define kr_hwerrclear KREG_IDX(HwErrClear)
57 #define kr_hwerrmask KREG_IDX(HwErrMask)
58 #define kr_hwerrstatus KREG_IDX(HwErrStatus)
59 #define kr_ibcstatus KREG_IDX(IBCStatus)
60 #define kr_ibserdesctrl KREG_IDX(IBSerDesCtrl)
61 #define kr_scratch KREG_IDX(Scratch)
62 #define kr_xgxs_cfg KREG_IDX(XGXSCfg)
63 /* these are used only here, not in qib_iba7220.c */
64 #define kr_ibsd_epb_access_ctrl KREG_IDX(ibsd_epb_access_ctrl)
65 #define kr_ibsd_epb_transaction_reg KREG_IDX(ibsd_epb_transaction_reg)
66 #define kr_pciesd_epb_transaction_reg KREG_IDX(pciesd_epb_transaction_reg)
67 #define kr_pciesd_epb_access_ctrl KREG_IDX(pciesd_epb_access_ctrl)
68 #define kr_serdes_ddsrxeq0 KREG_IDX(SerDes_DDSRXEQ0)
69
70 /*
71 * The IBSerDesMappTable is a memory that holds values to be stored in
72 * various SerDes registers by IBC.
73 */
74 #define kr_serdes_maptable KREG_IDX(IBSerDesMappTable)
75
76 /*
77 * Below used for sdnum parameter, selecting one of the two sections
78 * used for PCIe, or the single SerDes used for IB.
79 */
80 #define PCIE_SERDES0 0
81 #define PCIE_SERDES1 1
82
83 /*
84 * The EPB requires addressing in a particular form. EPB_LOC() is intended
85 * to make #definitions a little more readable.
86 */
87 #define EPB_ADDR_SHF 8
88 #define EPB_LOC(chn, elt, reg) \
89 (((elt & 0xf) | ((chn & 7) << 4) | ((reg & 0x3f) << 9)) << \
90 EPB_ADDR_SHF)
91 #define EPB_IB_QUAD0_CS_SHF (25)
92 #define EPB_IB_QUAD0_CS (1U << EPB_IB_QUAD0_CS_SHF)
93 #define EPB_IB_UC_CS_SHF (26)
94 #define EPB_PCIE_UC_CS_SHF (27)
95 #define EPB_GLOBAL_WR (1U << (EPB_ADDR_SHF + 8))
96
97 /* Forward declarations. */
98 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
99 u32 data, u32 mask);
100 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
101 int mask);
102 static int qib_sd_trimdone_poll(struct qib_devdata *dd);
103 static void qib_sd_trimdone_monitor(struct qib_devdata *dd, const char *where);
104 static int qib_sd_setvals(struct qib_devdata *dd);
105 static int qib_sd_early(struct qib_devdata *dd);
106 static int qib_sd_dactrim(struct qib_devdata *dd);
107 static int qib_internal_presets(struct qib_devdata *dd);
108 /* Tweak the register (CMUCTRL5) that contains the TRIMSELF controls */
109 static int qib_sd_trimself(struct qib_devdata *dd, int val);
110 static int epb_access(struct qib_devdata *dd, int sdnum, int claim);
111 static int qib_sd7220_ib_load(struct qib_devdata *dd,
112 const struct firmware *fw);
113 static int qib_sd7220_ib_vfy(struct qib_devdata *dd,
114 const struct firmware *fw);
115
116 /*
117 * Below keeps track of whether the "once per power-on" initialization has
118 * been done, because uC code Version 1.32.17 or higher allows the uC to
119 * be reset at will, and Automatic Equalization may require it. So the
120 * state of the reset "pin", is no longer valid. Instead, we check for the
121 * actual uC code having been loaded.
122 */
qib_ibsd_ucode_loaded(struct qib_pportdata * ppd,const struct firmware * fw)123 static int qib_ibsd_ucode_loaded(struct qib_pportdata *ppd,
124 const struct firmware *fw)
125 {
126 struct qib_devdata *dd = ppd->dd;
127
128 if (!dd->cspec->serdes_first_init_done &&
129 qib_sd7220_ib_vfy(dd, fw) > 0)
130 dd->cspec->serdes_first_init_done = 1;
131 return dd->cspec->serdes_first_init_done;
132 }
133
134 /* repeat #define for local use. "Real" #define is in qib_iba7220.c */
135 #define QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR 0x0000004000000000ULL
136 #define IB_MPREG5 (EPB_LOC(6, 0, 0xE) | (1L << EPB_IB_UC_CS_SHF))
137 #define IB_MPREG6 (EPB_LOC(6, 0, 0xF) | (1U << EPB_IB_UC_CS_SHF))
138 #define UC_PAR_CLR_D 8
139 #define UC_PAR_CLR_M 0xC
140 #define IB_CTRL2(chn) (EPB_LOC(chn, 7, 3) | EPB_IB_QUAD0_CS)
141 #define START_EQ1(chan) EPB_LOC(chan, 7, 0x27)
142
qib_sd7220_clr_ibpar(struct qib_devdata * dd)143 void qib_sd7220_clr_ibpar(struct qib_devdata *dd)
144 {
145 int ret;
146
147 /* clear, then re-enable parity errs */
148 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6,
149 UC_PAR_CLR_D, UC_PAR_CLR_M);
150 if (ret < 0) {
151 qib_dev_err(dd, "Failed clearing IBSerDes Parity err\n");
152 goto bail;
153 }
154 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0,
155 UC_PAR_CLR_M);
156
157 qib_read_kreg32(dd, kr_scratch);
158 udelay(4);
159 qib_write_kreg(dd, kr_hwerrclear,
160 QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
161 qib_read_kreg32(dd, kr_scratch);
162 bail:
163 return;
164 }
165
166 /*
167 * After a reset or other unusual event, the epb interface may need
168 * to be re-synchronized, between the host and the uC.
169 * returns <0 for failure to resync within IBSD_RESYNC_TRIES (not expected)
170 */
171 #define IBSD_RESYNC_TRIES 3
172 #define IB_PGUDP(chn) (EPB_LOC((chn), 2, 1) | EPB_IB_QUAD0_CS)
173 #define IB_CMUDONE(chn) (EPB_LOC((chn), 7, 0xF) | EPB_IB_QUAD0_CS)
174
qib_resync_ibepb(struct qib_devdata * dd)175 static int qib_resync_ibepb(struct qib_devdata *dd)
176 {
177 int ret, pat, tries, chn;
178 u32 loc;
179
180 ret = -1;
181 chn = 0;
182 for (tries = 0; tries < (4 * IBSD_RESYNC_TRIES); ++tries) {
183 loc = IB_PGUDP(chn);
184 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
185 if (ret < 0) {
186 qib_dev_err(dd, "Failed read in resync\n");
187 continue;
188 }
189 if (ret != 0xF0 && ret != 0x55 && tries == 0)
190 qib_dev_err(dd, "unexpected pattern in resync\n");
191 pat = ret ^ 0xA5; /* alternate F0 and 55 */
192 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, pat, 0xFF);
193 if (ret < 0) {
194 qib_dev_err(dd, "Failed write in resync\n");
195 continue;
196 }
197 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
198 if (ret < 0) {
199 qib_dev_err(dd, "Failed re-read in resync\n");
200 continue;
201 }
202 if (ret != pat) {
203 qib_dev_err(dd, "Failed compare1 in resync\n");
204 continue;
205 }
206 loc = IB_CMUDONE(chn);
207 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, 0, 0);
208 if (ret < 0) {
209 qib_dev_err(dd, "Failed CMUDONE rd in resync\n");
210 continue;
211 }
212 if ((ret & 0x70) != ((chn << 4) | 0x40)) {
213 qib_dev_err(dd, "Bad CMUDONE value %02X, chn %d\n",
214 ret, chn);
215 continue;
216 }
217 if (++chn == 4)
218 break; /* Success */
219 }
220 return (ret > 0) ? 0 : ret;
221 }
222
223 /*
224 * Localize the stuff that should be done to change IB uC reset
225 * returns <0 for errors.
226 */
qib_ibsd_reset(struct qib_devdata * dd,int assert_rst)227 static int qib_ibsd_reset(struct qib_devdata *dd, int assert_rst)
228 {
229 u64 rst_val;
230 int ret = 0;
231 unsigned long flags;
232
233 rst_val = qib_read_kreg64(dd, kr_ibserdesctrl);
234 if (assert_rst) {
235 /*
236 * Vendor recommends "interrupting" uC before reset, to
237 * minimize possible glitches.
238 */
239 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
240 epb_access(dd, IB_7220_SERDES, 1);
241 rst_val |= 1ULL;
242 /* Squelch possible parity error from _asserting_ reset */
243 qib_write_kreg(dd, kr_hwerrmask,
244 dd->cspec->hwerrmask &
245 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
246 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
247 /* flush write, delay to ensure it took effect */
248 qib_read_kreg32(dd, kr_scratch);
249 udelay(2);
250 /* once it's reset, can remove interrupt */
251 epb_access(dd, IB_7220_SERDES, -1);
252 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
253 } else {
254 /*
255 * Before we de-assert reset, we need to deal with
256 * possible glitch on the Parity-error line.
257 * Suppress it around the reset, both in chip-level
258 * hwerrmask and in IB uC control reg. uC will allow
259 * it again during startup.
260 */
261 u64 val;
262
263 rst_val &= ~(1ULL);
264 qib_write_kreg(dd, kr_hwerrmask,
265 dd->cspec->hwerrmask &
266 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR);
267
268 ret = qib_resync_ibepb(dd);
269 if (ret < 0)
270 qib_dev_err(dd, "unable to re-sync IB EPB\n");
271
272 /* set uC control regs to suppress parity errs */
273 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG5, 1, 1);
274 if (ret < 0)
275 goto bail;
276 /* IB uC code past Version 1.32.17 allow suppression of wdog */
277 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80,
278 0x80);
279 if (ret < 0) {
280 qib_dev_err(dd, "Failed to set WDOG disable\n");
281 goto bail;
282 }
283 qib_write_kreg(dd, kr_ibserdesctrl, rst_val);
284 /* flush write, delay for startup */
285 qib_read_kreg32(dd, kr_scratch);
286 udelay(1);
287 /* clear, then re-enable parity errs */
288 qib_sd7220_clr_ibpar(dd);
289 val = qib_read_kreg64(dd, kr_hwerrstatus);
290 if (val & QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR) {
291 qib_dev_err(dd, "IBUC Parity still set after RST\n");
292 dd->cspec->hwerrmask &=
293 ~QLOGIC_IB_HWE_IB_UC_MEMORYPARITYERR;
294 }
295 qib_write_kreg(dd, kr_hwerrmask,
296 dd->cspec->hwerrmask);
297 }
298
299 bail:
300 return ret;
301 }
302
qib_sd_trimdone_monitor(struct qib_devdata * dd,const char * where)303 static void qib_sd_trimdone_monitor(struct qib_devdata *dd,
304 const char *where)
305 {
306 int ret, chn, baduns;
307 u64 val;
308
309 if (!where)
310 where = "?";
311
312 /* give time for reset to settle out in EPB */
313 udelay(2);
314
315 ret = qib_resync_ibepb(dd);
316 if (ret < 0)
317 qib_dev_err(dd, "not able to re-sync IB EPB (%s)\n", where);
318
319 /* Do "sacrificial read" to get EPB in sane state after reset */
320 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_CTRL2(0), 0, 0);
321 if (ret < 0)
322 qib_dev_err(dd, "Failed TRIMDONE 1st read, (%s)\n", where);
323
324 /* Check/show "summary" Trim-done bit in IBCStatus */
325 val = qib_read_kreg64(dd, kr_ibcstatus);
326 if (!(val & (1ULL << 11)))
327 qib_dev_err(dd, "IBCS TRIMDONE clear (%s)\n", where);
328 /*
329 * Do "dummy read/mod/wr" to get EPB in sane state after reset
330 * The default value for MPREG6 is 0.
331 */
332 udelay(2);
333
334 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, IB_MPREG6, 0x80, 0x80);
335 if (ret < 0)
336 qib_dev_err(dd, "Failed Dummy RMW, (%s)\n", where);
337 udelay(10);
338
339 baduns = 0;
340
341 for (chn = 3; chn >= 0; --chn) {
342 /* Read CTRL reg for each channel to check TRIMDONE */
343 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
344 IB_CTRL2(chn), 0, 0);
345 if (ret < 0)
346 qib_dev_err(dd,
347 "Failed checking TRIMDONE, chn %d (%s)\n",
348 chn, where);
349
350 if (!(ret & 0x10)) {
351 int probe;
352
353 baduns |= (1 << chn);
354 qib_dev_err(dd,
355 "TRIMDONE cleared on chn %d (%02X). (%s)\n",
356 chn, ret, where);
357 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
358 IB_PGUDP(0), 0, 0);
359 qib_dev_err(dd, "probe is %d (%02X)\n",
360 probe, probe);
361 probe = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
362 IB_CTRL2(chn), 0, 0);
363 qib_dev_err(dd, "re-read: %d (%02X)\n",
364 probe, probe);
365 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
366 IB_CTRL2(chn), 0x10, 0x10);
367 if (ret < 0)
368 qib_dev_err(dd,
369 "Err on TRIMDONE rewrite1\n");
370 }
371 }
372 for (chn = 3; chn >= 0; --chn) {
373 /* Read CTRL reg for each channel to check TRIMDONE */
374 if (baduns & (1 << chn)) {
375 qib_dev_err(dd,
376 "Resetting TRIMDONE on chn %d (%s)\n",
377 chn, where);
378 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
379 IB_CTRL2(chn), 0x10, 0x10);
380 if (ret < 0)
381 qib_dev_err(dd,
382 "Failed re-setting TRIMDONE, chn %d (%s)\n",
383 chn, where);
384 }
385 }
386 }
387
388 /*
389 * Below is portion of IBA7220-specific bringup_serdes() that actually
390 * deals with registers and memory within the SerDes itself.
391 * Post IB uC code version 1.32.17, was_reset being 1 is not really
392 * informative, so we double-check.
393 */
qib_sd7220_init(struct qib_devdata * dd)394 int qib_sd7220_init(struct qib_devdata *dd)
395 {
396 const struct firmware *fw;
397 int ret = 1; /* default to failure */
398 int first_reset, was_reset;
399
400 /* SERDES MPU reset recorded in D0 */
401 was_reset = (qib_read_kreg64(dd, kr_ibserdesctrl) & 1);
402 if (!was_reset) {
403 /* entered with reset not asserted, we need to do it */
404 qib_ibsd_reset(dd, 1);
405 qib_sd_trimdone_monitor(dd, "Driver-reload");
406 }
407
408 ret = request_firmware(&fw, SD7220_FW_NAME, &dd->pcidev->dev);
409 if (ret) {
410 qib_dev_err(dd, "Failed to load IB SERDES image\n");
411 goto done;
412 }
413
414 /* Substitute our deduced value for was_reset */
415 ret = qib_ibsd_ucode_loaded(dd->pport, fw);
416 if (ret < 0)
417 goto bail;
418
419 first_reset = !ret; /* First reset if IBSD uCode not yet loaded */
420 /*
421 * Alter some regs per vendor latest doc, reset-defaults
422 * are not right for IB.
423 */
424 ret = qib_sd_early(dd);
425 if (ret < 0) {
426 qib_dev_err(dd, "Failed to set IB SERDES early defaults\n");
427 goto bail;
428 }
429 /*
430 * Set DAC manual trim IB.
431 * We only do this once after chip has been reset (usually
432 * same as once per system boot).
433 */
434 if (first_reset) {
435 ret = qib_sd_dactrim(dd);
436 if (ret < 0) {
437 qib_dev_err(dd, "Failed IB SERDES DAC trim\n");
438 goto bail;
439 }
440 }
441 /*
442 * Set various registers (DDS and RXEQ) that will be
443 * controlled by IBC (in 1.2 mode) to reasonable preset values
444 * Calling the "internal" version avoids the "check for needed"
445 * and "trimdone monitor" that might be counter-productive.
446 */
447 ret = qib_internal_presets(dd);
448 if (ret < 0) {
449 qib_dev_err(dd, "Failed to set IB SERDES presets\n");
450 goto bail;
451 }
452 ret = qib_sd_trimself(dd, 0x80);
453 if (ret < 0) {
454 qib_dev_err(dd, "Failed to set IB SERDES TRIMSELF\n");
455 goto bail;
456 }
457
458 /* Load image, then try to verify */
459 ret = 0; /* Assume success */
460 if (first_reset) {
461 int vfy;
462 int trim_done;
463
464 ret = qib_sd7220_ib_load(dd, fw);
465 if (ret < 0) {
466 qib_dev_err(dd, "Failed to load IB SERDES image\n");
467 goto bail;
468 } else {
469 /* Loaded image, try to verify */
470 vfy = qib_sd7220_ib_vfy(dd, fw);
471 if (vfy != ret) {
472 qib_dev_err(dd, "SERDES PRAM VFY failed\n");
473 goto bail;
474 } /* end if verified */
475 } /* end if loaded */
476
477 /*
478 * Loaded and verified. Almost good...
479 * hold "success" in ret
480 */
481 ret = 0;
482 /*
483 * Prev steps all worked, continue bringup
484 * De-assert RESET to uC, only in first reset, to allow
485 * trimming.
486 *
487 * Since our default setup sets START_EQ1 to
488 * PRESET, we need to clear that for this very first run.
489 */
490 ret = ibsd_mod_allchnls(dd, START_EQ1(0), 0, 0x38);
491 if (ret < 0) {
492 qib_dev_err(dd, "Failed clearing START_EQ1\n");
493 goto bail;
494 }
495
496 qib_ibsd_reset(dd, 0);
497 /*
498 * If this is not the first reset, trimdone should be set
499 * already. We may need to check about this.
500 */
501 trim_done = qib_sd_trimdone_poll(dd);
502 /*
503 * Whether or not trimdone succeeded, we need to put the
504 * uC back into reset to avoid a possible fight with the
505 * IBC state-machine.
506 */
507 qib_ibsd_reset(dd, 1);
508
509 if (!trim_done) {
510 qib_dev_err(dd, "No TRIMDONE seen\n");
511 goto bail;
512 }
513 /*
514 * DEBUG: check each time we reset if trimdone bits have
515 * gotten cleared, and re-set them.
516 */
517 qib_sd_trimdone_monitor(dd, "First-reset");
518 /* Remember so we do not re-do the load, dactrim, etc. */
519 dd->cspec->serdes_first_init_done = 1;
520 }
521 /*
522 * setup for channel training and load values for
523 * RxEq and DDS in tables used by IBC in IB1.2 mode
524 */
525 ret = 0;
526 if (qib_sd_setvals(dd) >= 0)
527 goto done;
528 bail:
529 ret = 1;
530 done:
531 /* start relock timer regardless, but start at 1 second */
532 set_7220_relock_poll(dd, -1);
533
534 release_firmware(fw);
535 return ret;
536 }
537
538 #define EPB_ACC_REQ 1
539 #define EPB_ACC_GNT 0x100
540 #define EPB_DATA_MASK 0xFF
541 #define EPB_RD (1ULL << 24)
542 #define EPB_TRANS_RDY (1ULL << 31)
543 #define EPB_TRANS_ERR (1ULL << 30)
544 #define EPB_TRANS_TRIES 5
545
546 /*
547 * query, claim, release ownership of the EPB (External Parallel Bus)
548 * for a specified SERDES.
549 * the "claim" parameter is >0 to claim, <0 to release, 0 to query.
550 * Returns <0 for errors, >0 if we had ownership, else 0.
551 */
epb_access(struct qib_devdata * dd,int sdnum,int claim)552 static int epb_access(struct qib_devdata *dd, int sdnum, int claim)
553 {
554 u16 acc;
555 u64 accval;
556 int owned = 0;
557 u64 oct_sel = 0;
558
559 switch (sdnum) {
560 case IB_7220_SERDES:
561 /*
562 * The IB SERDES "ownership" is fairly simple. A single each
563 * request/grant.
564 */
565 acc = kr_ibsd_epb_access_ctrl;
566 break;
567
568 case PCIE_SERDES0:
569 case PCIE_SERDES1:
570 /* PCIe SERDES has two "octants", need to select which */
571 acc = kr_pciesd_epb_access_ctrl;
572 oct_sel = (2 << (sdnum - PCIE_SERDES0));
573 break;
574
575 default:
576 return 0;
577 }
578
579 /* Make sure any outstanding transaction was seen */
580 qib_read_kreg32(dd, kr_scratch);
581 udelay(15);
582
583 accval = qib_read_kreg32(dd, acc);
584
585 owned = !!(accval & EPB_ACC_GNT);
586 if (claim < 0) {
587 /* Need to release */
588 u64 pollval;
589 /*
590 * The only writable bits are the request and CS.
591 * Both should be clear
592 */
593 u64 newval = 0;
594
595 qib_write_kreg(dd, acc, newval);
596 /* First read after write is not trustworthy */
597 pollval = qib_read_kreg32(dd, acc);
598 udelay(5);
599 pollval = qib_read_kreg32(dd, acc);
600 if (pollval & EPB_ACC_GNT)
601 owned = -1;
602 } else if (claim > 0) {
603 /* Need to claim */
604 u64 pollval;
605 u64 newval = EPB_ACC_REQ | oct_sel;
606
607 qib_write_kreg(dd, acc, newval);
608 /* First read after write is not trustworthy */
609 pollval = qib_read_kreg32(dd, acc);
610 udelay(5);
611 pollval = qib_read_kreg32(dd, acc);
612 if (!(pollval & EPB_ACC_GNT))
613 owned = -1;
614 }
615 return owned;
616 }
617
618 /*
619 * Lemma to deal with race condition of write..read to epb regs
620 */
epb_trans(struct qib_devdata * dd,u16 reg,u64 i_val,u64 * o_vp)621 static int epb_trans(struct qib_devdata *dd, u16 reg, u64 i_val, u64 *o_vp)
622 {
623 int tries;
624 u64 transval;
625
626 qib_write_kreg(dd, reg, i_val);
627 /* Throw away first read, as RDY bit may be stale */
628 transval = qib_read_kreg64(dd, reg);
629
630 for (tries = EPB_TRANS_TRIES; tries; --tries) {
631 transval = qib_read_kreg32(dd, reg);
632 if (transval & EPB_TRANS_RDY)
633 break;
634 udelay(5);
635 }
636 if (transval & EPB_TRANS_ERR)
637 return -1;
638 if (tries > 0 && o_vp)
639 *o_vp = transval;
640 return tries;
641 }
642
643 /**
644 * qib_sd7220_reg_mod - modify SERDES register
645 * @dd: the qlogic_ib device
646 * @sdnum: which SERDES to access
647 * @loc: location - channel, element, register, as packed by EPB_LOC() macro.
648 * @wd: Write Data - value to set in register
649 * @mask: ones where data should be spliced into reg.
650 *
651 * Basic register read/modify/write, with un-needed acesses elided. That is,
652 * a mask of zero will prevent write, while a mask of 0xFF will prevent read.
653 * returns current (presumed, if a write was done) contents of selected
654 * register, or <0 if errors.
655 */
qib_sd7220_reg_mod(struct qib_devdata * dd,int sdnum,u32 loc,u32 wd,u32 mask)656 static int qib_sd7220_reg_mod(struct qib_devdata *dd, int sdnum, u32 loc,
657 u32 wd, u32 mask)
658 {
659 u16 trans;
660 u64 transval;
661 int owned;
662 int tries, ret;
663 unsigned long flags;
664
665 switch (sdnum) {
666 case IB_7220_SERDES:
667 trans = kr_ibsd_epb_transaction_reg;
668 break;
669
670 case PCIE_SERDES0:
671 case PCIE_SERDES1:
672 trans = kr_pciesd_epb_transaction_reg;
673 break;
674
675 default:
676 return -1;
677 }
678
679 /*
680 * All access is locked in software (vs other host threads) and
681 * hardware (vs uC access).
682 */
683 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
684
685 owned = epb_access(dd, sdnum, 1);
686 if (owned < 0) {
687 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
688 return -1;
689 }
690 for (tries = EPB_TRANS_TRIES; tries; --tries) {
691 transval = qib_read_kreg32(dd, trans);
692 if (transval & EPB_TRANS_RDY)
693 break;
694 udelay(5);
695 }
696
697 if (tries > 0) {
698 tries = 1; /* to make read-skip work */
699 if (mask != 0xFF) {
700 /*
701 * Not a pure write, so need to read.
702 * loc encodes chip-select as well as address
703 */
704 transval = loc | EPB_RD;
705 tries = epb_trans(dd, trans, transval, &transval);
706 }
707 if (tries > 0 && mask != 0) {
708 /*
709 * Not a pure read, so need to write.
710 */
711 wd = (wd & mask) | (transval & ~mask);
712 transval = loc | (wd & EPB_DATA_MASK);
713 tries = epb_trans(dd, trans, transval, &transval);
714 }
715 }
716 /* else, failed to see ready, what error-handling? */
717
718 /*
719 * Release bus. Failure is an error.
720 */
721 if (epb_access(dd, sdnum, -1) < 0)
722 ret = -1;
723 else
724 ret = transval & EPB_DATA_MASK;
725
726 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
727 if (tries <= 0)
728 ret = -1;
729 return ret;
730 }
731
732 #define EPB_ROM_R (2)
733 #define EPB_ROM_W (1)
734 /*
735 * Below, all uC-related, use appropriate UC_CS, depending
736 * on which SerDes is used.
737 */
738 #define EPB_UC_CTL EPB_LOC(6, 0, 0)
739 #define EPB_MADDRL EPB_LOC(6, 0, 2)
740 #define EPB_MADDRH EPB_LOC(6, 0, 3)
741 #define EPB_ROMDATA EPB_LOC(6, 0, 4)
742 #define EPB_RAMDATA EPB_LOC(6, 0, 5)
743
744 /* Transfer date to/from uC Program RAM of IB or PCIe SerDes */
qib_sd7220_ram_xfer(struct qib_devdata * dd,int sdnum,u32 loc,u8 * buf,int cnt,int rd_notwr)745 static int qib_sd7220_ram_xfer(struct qib_devdata *dd, int sdnum, u32 loc,
746 u8 *buf, int cnt, int rd_notwr)
747 {
748 u16 trans;
749 u64 transval;
750 u64 csbit;
751 int owned;
752 int tries;
753 int sofar;
754 int addr;
755 int ret;
756 unsigned long flags;
757
758 /* Pick appropriate transaction reg and "Chip select" for this serdes */
759 switch (sdnum) {
760 case IB_7220_SERDES:
761 csbit = 1ULL << EPB_IB_UC_CS_SHF;
762 trans = kr_ibsd_epb_transaction_reg;
763 break;
764
765 case PCIE_SERDES0:
766 case PCIE_SERDES1:
767 /* PCIe SERDES has uC "chip select" in different bit, too */
768 csbit = 1ULL << EPB_PCIE_UC_CS_SHF;
769 trans = kr_pciesd_epb_transaction_reg;
770 break;
771
772 default:
773 return -1;
774 }
775
776 spin_lock_irqsave(&dd->cspec->sdepb_lock, flags);
777
778 owned = epb_access(dd, sdnum, 1);
779 if (owned < 0) {
780 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
781 return -1;
782 }
783
784 /*
785 * In future code, we may need to distinguish several address ranges,
786 * and select various memories based on this. For now, just trim
787 * "loc" (location including address and memory select) to
788 * "addr" (address within memory). we will only support PRAM
789 * The memory is 8KB.
790 */
791 addr = loc & 0x1FFF;
792 for (tries = EPB_TRANS_TRIES; tries; --tries) {
793 transval = qib_read_kreg32(dd, trans);
794 if (transval & EPB_TRANS_RDY)
795 break;
796 udelay(5);
797 }
798
799 sofar = 0;
800 if (tries > 0) {
801 /*
802 * Every "memory" access is doubly-indirect.
803 * We set two bytes of address, then read/write
804 * one or mores bytes of data.
805 */
806
807 /* First, we set control to "Read" or "Write" */
808 transval = csbit | EPB_UC_CTL |
809 (rd_notwr ? EPB_ROM_R : EPB_ROM_W);
810 tries = epb_trans(dd, trans, transval, &transval);
811 while (tries > 0 && sofar < cnt) {
812 if (!sofar) {
813 /* Only set address at start of chunk */
814 int addrbyte = (addr + sofar) >> 8;
815
816 transval = csbit | EPB_MADDRH | addrbyte;
817 tries = epb_trans(dd, trans, transval,
818 &transval);
819 if (tries <= 0)
820 break;
821 addrbyte = (addr + sofar) & 0xFF;
822 transval = csbit | EPB_MADDRL | addrbyte;
823 tries = epb_trans(dd, trans, transval,
824 &transval);
825 if (tries <= 0)
826 break;
827 }
828
829 if (rd_notwr)
830 transval = csbit | EPB_ROMDATA | EPB_RD;
831 else
832 transval = csbit | EPB_ROMDATA | buf[sofar];
833 tries = epb_trans(dd, trans, transval, &transval);
834 if (tries <= 0)
835 break;
836 if (rd_notwr)
837 buf[sofar] = transval & EPB_DATA_MASK;
838 ++sofar;
839 }
840 /* Finally, clear control-bit for Read or Write */
841 transval = csbit | EPB_UC_CTL;
842 tries = epb_trans(dd, trans, transval, &transval);
843 }
844
845 ret = sofar;
846 /* Release bus. Failure is an error */
847 if (epb_access(dd, sdnum, -1) < 0)
848 ret = -1;
849
850 spin_unlock_irqrestore(&dd->cspec->sdepb_lock, flags);
851 if (tries <= 0)
852 ret = -1;
853 return ret;
854 }
855
856 #define PROG_CHUNK 64
857
qib_sd7220_prog_ld(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)858 static int qib_sd7220_prog_ld(struct qib_devdata *dd, int sdnum,
859 const u8 *img, int len, int offset)
860 {
861 int cnt, sofar, req;
862
863 sofar = 0;
864 while (sofar < len) {
865 req = len - sofar;
866 if (req > PROG_CHUNK)
867 req = PROG_CHUNK;
868 cnt = qib_sd7220_ram_xfer(dd, sdnum, offset + sofar,
869 (u8 *)img + sofar, req, 0);
870 if (cnt < req) {
871 sofar = -1;
872 break;
873 }
874 sofar += req;
875 }
876 return sofar;
877 }
878
879 #define VFY_CHUNK 64
880 #define SD_PRAM_ERROR_LIMIT 42
881
qib_sd7220_prog_vfy(struct qib_devdata * dd,int sdnum,const u8 * img,int len,int offset)882 static int qib_sd7220_prog_vfy(struct qib_devdata *dd, int sdnum,
883 const u8 *img, int len, int offset)
884 {
885 int cnt, sofar, req, idx, errors;
886 unsigned char readback[VFY_CHUNK];
887
888 errors = 0;
889 sofar = 0;
890 while (sofar < len) {
891 req = len - sofar;
892 if (req > VFY_CHUNK)
893 req = VFY_CHUNK;
894 cnt = qib_sd7220_ram_xfer(dd, sdnum, sofar + offset,
895 readback, req, 1);
896 if (cnt < req) {
897 /* failed in read itself */
898 sofar = -1;
899 break;
900 }
901 for (idx = 0; idx < cnt; ++idx) {
902 if (readback[idx] != img[idx+sofar])
903 ++errors;
904 }
905 sofar += cnt;
906 }
907 return errors ? -errors : sofar;
908 }
909
910 static int
qib_sd7220_ib_load(struct qib_devdata * dd,const struct firmware * fw)911 qib_sd7220_ib_load(struct qib_devdata *dd, const struct firmware *fw)
912 {
913 return qib_sd7220_prog_ld(dd, IB_7220_SERDES, fw->data, fw->size, 0);
914 }
915
916 static int
qib_sd7220_ib_vfy(struct qib_devdata * dd,const struct firmware * fw)917 qib_sd7220_ib_vfy(struct qib_devdata *dd, const struct firmware *fw)
918 {
919 return qib_sd7220_prog_vfy(dd, IB_7220_SERDES, fw->data, fw->size, 0);
920 }
921
922 /*
923 * IRQ not set up at this point in init, so we poll.
924 */
925 #define IB_SERDES_TRIM_DONE (1ULL << 11)
926 #define TRIM_TMO (15)
927
qib_sd_trimdone_poll(struct qib_devdata * dd)928 static int qib_sd_trimdone_poll(struct qib_devdata *dd)
929 {
930 int trim_tmo, ret;
931 uint64_t val;
932
933 /*
934 * Default to failure, so IBC will not start
935 * without IB_SERDES_TRIM_DONE.
936 */
937 ret = 0;
938 for (trim_tmo = 0; trim_tmo < TRIM_TMO; ++trim_tmo) {
939 val = qib_read_kreg64(dd, kr_ibcstatus);
940 if (val & IB_SERDES_TRIM_DONE) {
941 ret = 1;
942 break;
943 }
944 msleep(20);
945 }
946 if (trim_tmo >= TRIM_TMO) {
947 qib_dev_err(dd, "No TRIMDONE in %d tries\n", trim_tmo);
948 ret = 0;
949 }
950 return ret;
951 }
952
953 #define TX_FAST_ELT (9)
954
955 /*
956 * Set the "negotiation" values for SERDES. These are used by the IB1.2
957 * link negotiation. Macros below are attempt to keep the values a
958 * little more human-editable.
959 * First, values related to Drive De-emphasis Settings.
960 */
961
962 #define NUM_DDS_REGS 6
963 #define DDS_REG_MAP 0x76A910 /* LSB-first list of regs (in elt 9) to mod */
964
965 #define DDS_VAL(amp_d, main_d, ipst_d, ipre_d, amp_s, main_s, ipst_s, ipre_s) \
966 { { ((amp_d & 0x1F) << 1) | 1, ((amp_s & 0x1F) << 1) | 1, \
967 (main_d << 3) | 4 | (ipre_d >> 2), \
968 (main_s << 3) | 4 | (ipre_s >> 2), \
969 ((ipst_d & 0xF) << 1) | ((ipre_d & 3) << 6) | 0x21, \
970 ((ipst_s & 0xF) << 1) | ((ipre_s & 3) << 6) | 0x21 } }
971
972 static struct dds_init {
973 uint8_t reg_vals[NUM_DDS_REGS];
974 } dds_init_vals[] = {
975 /* DDR(FDR) SDR(HDR) */
976 /* Vendor recommends below for 3m cable */
977 #define DDS_3M 0
978 DDS_VAL(31, 19, 12, 0, 29, 22, 9, 0),
979 DDS_VAL(31, 12, 15, 4, 31, 15, 15, 1),
980 DDS_VAL(31, 13, 15, 3, 31, 16, 15, 0),
981 DDS_VAL(31, 14, 15, 2, 31, 17, 14, 0),
982 DDS_VAL(31, 15, 15, 1, 31, 18, 13, 0),
983 DDS_VAL(31, 16, 15, 0, 31, 19, 12, 0),
984 DDS_VAL(31, 17, 14, 0, 31, 20, 11, 0),
985 DDS_VAL(31, 18, 13, 0, 30, 21, 10, 0),
986 DDS_VAL(31, 20, 11, 0, 28, 23, 8, 0),
987 DDS_VAL(31, 21, 10, 0, 27, 24, 7, 0),
988 DDS_VAL(31, 22, 9, 0, 26, 25, 6, 0),
989 DDS_VAL(30, 23, 8, 0, 25, 26, 5, 0),
990 DDS_VAL(29, 24, 7, 0, 23, 27, 4, 0),
991 /* Vendor recommends below for 1m cable */
992 #define DDS_1M 13
993 DDS_VAL(28, 25, 6, 0, 21, 28, 3, 0),
994 DDS_VAL(27, 26, 5, 0, 19, 29, 2, 0),
995 DDS_VAL(25, 27, 4, 0, 17, 30, 1, 0)
996 };
997
998 /*
999 * Now the RXEQ section of the table.
1000 */
1001 /* Hardware packs an element number and register address thus: */
1002 #define RXEQ_INIT_RDESC(elt, addr) (((elt) & 0xF) | ((addr) << 4))
1003 #define RXEQ_VAL(elt, adr, val0, val1, val2, val3) \
1004 {RXEQ_INIT_RDESC((elt), (adr)), {(val0), (val1), (val2), (val3)} }
1005
1006 #define RXEQ_VAL_ALL(elt, adr, val) \
1007 {RXEQ_INIT_RDESC((elt), (adr)), {(val), (val), (val), (val)} }
1008
1009 #define RXEQ_SDR_DFELTH 0
1010 #define RXEQ_SDR_TLTH 0
1011 #define RXEQ_SDR_G1CNT_Z1CNT 0x11
1012 #define RXEQ_SDR_ZCNT 23
1013
1014 static struct rxeq_init {
1015 u16 rdesc; /* in form used in SerDesDDSRXEQ */
1016 u8 rdata[4];
1017 } rxeq_init_vals[] = {
1018 /* Set Rcv Eq. to Preset node */
1019 RXEQ_VAL_ALL(7, 0x27, 0x10),
1020 /* Set DFELTHFDR/HDR thresholds */
1021 RXEQ_VAL(7, 8, 0, 0, 0, 0), /* FDR, was 0, 1, 2, 3 */
1022 RXEQ_VAL(7, 0x21, 0, 0, 0, 0), /* HDR */
1023 /* Set TLTHFDR/HDR theshold */
1024 RXEQ_VAL(7, 9, 2, 2, 2, 2), /* FDR, was 0, 2, 4, 6 */
1025 RXEQ_VAL(7, 0x23, 2, 2, 2, 2), /* HDR, was 0, 1, 2, 3 */
1026 /* Set Preamp setting 2 (ZFR/ZCNT) */
1027 RXEQ_VAL(7, 0x1B, 12, 12, 12, 12), /* FDR, was 12, 16, 20, 24 */
1028 RXEQ_VAL(7, 0x1C, 12, 12, 12, 12), /* HDR, was 12, 16, 20, 24 */
1029 /* Set Preamp DC gain and Setting 1 (GFR/GHR) */
1030 RXEQ_VAL(7, 0x1E, 16, 16, 16, 16), /* FDR, was 16, 17, 18, 20 */
1031 RXEQ_VAL(7, 0x1F, 16, 16, 16, 16), /* HDR, was 16, 17, 18, 20 */
1032 /* Toggle RELOCK (in VCDL_CTRL0) to lock to data */
1033 RXEQ_VAL_ALL(6, 6, 0x20), /* Set D5 High */
1034 RXEQ_VAL_ALL(6, 6, 0), /* Set D5 Low */
1035 };
1036
1037 /* There are 17 values from vendor, but IBC only accesses the first 16 */
1038 #define DDS_ROWS (16)
1039 #define RXEQ_ROWS ARRAY_SIZE(rxeq_init_vals)
1040
qib_sd_setvals(struct qib_devdata * dd)1041 static int qib_sd_setvals(struct qib_devdata *dd)
1042 {
1043 int idx, midx;
1044 int min_idx; /* Minimum index for this portion of table */
1045 uint32_t dds_reg_map;
1046 u64 __iomem *taddr, *iaddr;
1047 uint64_t data;
1048 uint64_t sdctl;
1049
1050 taddr = dd->kregbase + kr_serdes_maptable;
1051 iaddr = dd->kregbase + kr_serdes_ddsrxeq0;
1052
1053 /*
1054 * Init the DDS section of the table.
1055 * Each "row" of the table provokes NUM_DDS_REG writes, to the
1056 * registers indicated in DDS_REG_MAP.
1057 */
1058 sdctl = qib_read_kreg64(dd, kr_ibserdesctrl);
1059 sdctl = (sdctl & ~(0x1f << 8)) | (NUM_DDS_REGS << 8);
1060 sdctl = (sdctl & ~(0x1f << 13)) | (RXEQ_ROWS << 13);
1061 qib_write_kreg(dd, kr_ibserdesctrl, sdctl);
1062
1063 /*
1064 * Iterate down table within loop for each register to store.
1065 */
1066 dds_reg_map = DDS_REG_MAP;
1067 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1068 data = ((dds_reg_map & 0xF) << 4) | TX_FAST_ELT;
1069 writeq(data, iaddr + idx);
1070 qib_read_kreg32(dd, kr_scratch);
1071 dds_reg_map >>= 4;
1072 for (midx = 0; midx < DDS_ROWS; ++midx) {
1073 u64 __iomem *daddr = taddr + ((midx << 4) + idx);
1074
1075 data = dds_init_vals[midx].reg_vals[idx];
1076 writeq(data, daddr);
1077 qib_read_kreg32(dd, kr_scratch);
1078 } /* End inner for (vals for this reg, each row) */
1079 } /* end outer for (regs to be stored) */
1080
1081 /*
1082 * Init the RXEQ section of the table.
1083 * This runs in a different order, as the pattern of
1084 * register references is more complex, but there are only
1085 * four "data" values per register.
1086 */
1087 min_idx = idx; /* RXEQ indices pick up where DDS left off */
1088 taddr += 0x100; /* RXEQ data is in second half of table */
1089 /* Iterate through RXEQ register addresses */
1090 for (idx = 0; idx < RXEQ_ROWS; ++idx) {
1091 int didx; /* "destination" */
1092 int vidx;
1093
1094 /* didx is offset by min_idx to address RXEQ range of regs */
1095 didx = idx + min_idx;
1096 /* Store the next RXEQ register address */
1097 writeq(rxeq_init_vals[idx].rdesc, iaddr + didx);
1098 qib_read_kreg32(dd, kr_scratch);
1099 /* Iterate through RXEQ values */
1100 for (vidx = 0; vidx < 4; vidx++) {
1101 data = rxeq_init_vals[idx].rdata[vidx];
1102 writeq(data, taddr + (vidx << 6) + idx);
1103 qib_read_kreg32(dd, kr_scratch);
1104 }
1105 } /* end outer for (Reg-writes for RXEQ) */
1106 return 0;
1107 }
1108
1109 #define CMUCTRL5 EPB_LOC(7, 0, 0x15)
1110 #define RXHSCTRL0(chan) EPB_LOC(chan, 6, 0)
1111 #define VCDL_DAC2(chan) EPB_LOC(chan, 6, 5)
1112 #define VCDL_CTRL0(chan) EPB_LOC(chan, 6, 6)
1113 #define VCDL_CTRL2(chan) EPB_LOC(chan, 6, 8)
1114 #define START_EQ2(chan) EPB_LOC(chan, 7, 0x28)
1115
1116 /*
1117 * Repeat a "store" across all channels of the IB SerDes.
1118 * Although nominally it inherits the "read value" of the last
1119 * channel it modified, the only really useful return is <0 for
1120 * failure, >= 0 for success. The parameter 'loc' is assumed to
1121 * be the location in some channel of the register to be modified
1122 * The caller can specify use of the "gang write" option of EPB,
1123 * in which case we use the specified channel data for any fields
1124 * not explicitely written.
1125 */
ibsd_mod_allchnls(struct qib_devdata * dd,int loc,int val,int mask)1126 static int ibsd_mod_allchnls(struct qib_devdata *dd, int loc, int val,
1127 int mask)
1128 {
1129 int ret = -1;
1130 int chnl;
1131
1132 if (loc & EPB_GLOBAL_WR) {
1133 /*
1134 * Our caller has assured us that we can set all four
1135 * channels at once. Trust that. If mask is not 0xFF,
1136 * we will read the _specified_ channel for our starting
1137 * value.
1138 */
1139 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1140 chnl = (loc >> (4 + EPB_ADDR_SHF)) & 7;
1141 if (mask != 0xFF) {
1142 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES,
1143 loc & ~EPB_GLOBAL_WR, 0, 0);
1144 if (ret < 0) {
1145 int sloc = loc >> EPB_ADDR_SHF;
1146
1147 qib_dev_err(dd,
1148 "pre-read failed: elt %d, addr 0x%X, chnl %d\n",
1149 (sloc & 0xF),
1150 (sloc >> 9) & 0x3f, chnl);
1151 return ret;
1152 }
1153 val = (ret & ~mask) | (val & mask);
1154 }
1155 loc &= ~(7 << (4+EPB_ADDR_SHF));
1156 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1157 if (ret < 0) {
1158 int sloc = loc >> EPB_ADDR_SHF;
1159
1160 qib_dev_err(dd,
1161 "Global WR failed: elt %d, addr 0x%X, val %02X\n",
1162 (sloc & 0xF), (sloc >> 9) & 0x3f, val);
1163 }
1164 return ret;
1165 }
1166 /* Clear "channel" and set CS so we can simply iterate */
1167 loc &= ~(7 << (4+EPB_ADDR_SHF));
1168 loc |= (1U << EPB_IB_QUAD0_CS_SHF);
1169 for (chnl = 0; chnl < 4; ++chnl) {
1170 int cloc = loc | (chnl << (4+EPB_ADDR_SHF));
1171
1172 ret = qib_sd7220_reg_mod(dd, IB_7220_SERDES, cloc, val, mask);
1173 if (ret < 0) {
1174 int sloc = loc >> EPB_ADDR_SHF;
1175
1176 qib_dev_err(dd,
1177 "Write failed: elt %d, addr 0x%X, chnl %d, val 0x%02X, mask 0x%02X\n",
1178 (sloc & 0xF), (sloc >> 9) & 0x3f, chnl,
1179 val & 0xFF, mask & 0xFF);
1180 break;
1181 }
1182 }
1183 return ret;
1184 }
1185
1186 /*
1187 * Set the Tx values normally modified by IBC in IB1.2 mode to default
1188 * values, as gotten from first row of init table.
1189 */
set_dds_vals(struct qib_devdata * dd,struct dds_init * ddi)1190 static int set_dds_vals(struct qib_devdata *dd, struct dds_init *ddi)
1191 {
1192 int ret;
1193 int idx, reg, data;
1194 uint32_t regmap;
1195
1196 regmap = DDS_REG_MAP;
1197 for (idx = 0; idx < NUM_DDS_REGS; ++idx) {
1198 reg = (regmap & 0xF);
1199 regmap >>= 4;
1200 data = ddi->reg_vals[idx];
1201 /* Vendor says RMW not needed for these regs, use 0xFF mask */
1202 ret = ibsd_mod_allchnls(dd, EPB_LOC(0, 9, reg), data, 0xFF);
1203 if (ret < 0)
1204 break;
1205 }
1206 return ret;
1207 }
1208
1209 /*
1210 * Set the Rx values normally modified by IBC in IB1.2 mode to default
1211 * values, as gotten from selected column of init table.
1212 */
set_rxeq_vals(struct qib_devdata * dd,int vsel)1213 static int set_rxeq_vals(struct qib_devdata *dd, int vsel)
1214 {
1215 int ret;
1216 int ridx;
1217 int cnt = ARRAY_SIZE(rxeq_init_vals);
1218
1219 for (ridx = 0; ridx < cnt; ++ridx) {
1220 int elt, reg, val, loc;
1221
1222 elt = rxeq_init_vals[ridx].rdesc & 0xF;
1223 reg = rxeq_init_vals[ridx].rdesc >> 4;
1224 loc = EPB_LOC(0, elt, reg);
1225 val = rxeq_init_vals[ridx].rdata[vsel];
1226 /* mask of 0xFF, because hardware does full-byte store. */
1227 ret = ibsd_mod_allchnls(dd, loc, val, 0xFF);
1228 if (ret < 0)
1229 break;
1230 }
1231 return ret;
1232 }
1233
1234 /*
1235 * Set the default values (row 0) for DDR Driver Demphasis.
1236 * we do this initially and whenever we turn off IB-1.2
1237 *
1238 * The "default" values for Rx equalization are also stored to
1239 * SerDes registers. Formerly (and still default), we used set 2.
1240 * For experimenting with cables and link-partners, we allow changing
1241 * that via a module parameter.
1242 */
1243 static unsigned qib_rxeq_set = 2;
1244 module_param_named(rxeq_default_set, qib_rxeq_set, uint,
1245 S_IWUSR | S_IRUGO);
1246 MODULE_PARM_DESC(rxeq_default_set,
1247 "Which set [0..3] of Rx Equalization values is default");
1248
qib_internal_presets(struct qib_devdata * dd)1249 static int qib_internal_presets(struct qib_devdata *dd)
1250 {
1251 int ret = 0;
1252
1253 ret = set_dds_vals(dd, dds_init_vals + DDS_3M);
1254
1255 if (ret < 0)
1256 qib_dev_err(dd, "Failed to set default DDS values\n");
1257 ret = set_rxeq_vals(dd, qib_rxeq_set & 3);
1258 if (ret < 0)
1259 qib_dev_err(dd, "Failed to set default RXEQ values\n");
1260 return ret;
1261 }
1262
qib_sd7220_presets(struct qib_devdata * dd)1263 int qib_sd7220_presets(struct qib_devdata *dd)
1264 {
1265 int ret = 0;
1266
1267 if (!dd->cspec->presets_needed)
1268 return ret;
1269 dd->cspec->presets_needed = 0;
1270 /* Assert uC reset, so we don't clash with it. */
1271 qib_ibsd_reset(dd, 1);
1272 udelay(2);
1273 qib_sd_trimdone_monitor(dd, "link-down");
1274
1275 ret = qib_internal_presets(dd);
1276 return ret;
1277 }
1278
qib_sd_trimself(struct qib_devdata * dd,int val)1279 static int qib_sd_trimself(struct qib_devdata *dd, int val)
1280 {
1281 int loc = CMUCTRL5 | (1U << EPB_IB_QUAD0_CS_SHF);
1282
1283 return qib_sd7220_reg_mod(dd, IB_7220_SERDES, loc, val, 0xFF);
1284 }
1285
qib_sd_early(struct qib_devdata * dd)1286 static int qib_sd_early(struct qib_devdata *dd)
1287 {
1288 int ret;
1289
1290 ret = ibsd_mod_allchnls(dd, RXHSCTRL0(0) | EPB_GLOBAL_WR, 0xD4, 0xFF);
1291 if (ret < 0)
1292 goto bail;
1293 ret = ibsd_mod_allchnls(dd, START_EQ1(0) | EPB_GLOBAL_WR, 0x10, 0xFF);
1294 if (ret < 0)
1295 goto bail;
1296 ret = ibsd_mod_allchnls(dd, START_EQ2(0) | EPB_GLOBAL_WR, 0x30, 0xFF);
1297 bail:
1298 return ret;
1299 }
1300
1301 #define BACTRL(chnl) EPB_LOC(chnl, 6, 0x0E)
1302 #define LDOUTCTRL1(chnl) EPB_LOC(chnl, 7, 6)
1303 #define RXHSSTATUS(chnl) EPB_LOC(chnl, 6, 0xF)
1304
qib_sd_dactrim(struct qib_devdata * dd)1305 static int qib_sd_dactrim(struct qib_devdata *dd)
1306 {
1307 int ret;
1308
1309 ret = ibsd_mod_allchnls(dd, VCDL_DAC2(0) | EPB_GLOBAL_WR, 0x2D, 0xFF);
1310 if (ret < 0)
1311 goto bail;
1312
1313 /* more fine-tuning of what will be default */
1314 ret = ibsd_mod_allchnls(dd, VCDL_CTRL2(0), 3, 0xF);
1315 if (ret < 0)
1316 goto bail;
1317
1318 ret = ibsd_mod_allchnls(dd, BACTRL(0) | EPB_GLOBAL_WR, 0x40, 0xFF);
1319 if (ret < 0)
1320 goto bail;
1321
1322 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1323 if (ret < 0)
1324 goto bail;
1325
1326 ret = ibsd_mod_allchnls(dd, RXHSSTATUS(0) | EPB_GLOBAL_WR, 0x04, 0xFF);
1327 if (ret < 0)
1328 goto bail;
1329
1330 /*
1331 * Delay for max possible number of steps, with slop.
1332 * Each step is about 4usec.
1333 */
1334 udelay(415);
1335
1336 ret = ibsd_mod_allchnls(dd, LDOUTCTRL1(0) | EPB_GLOBAL_WR, 0x00, 0xFF);
1337
1338 bail:
1339 return ret;
1340 }
1341
1342 #define RELOCK_FIRST_MS 3
1343 #define RXLSPPM(chan) EPB_LOC(chan, 0, 2)
toggle_7220_rclkrls(struct qib_devdata * dd)1344 void toggle_7220_rclkrls(struct qib_devdata *dd)
1345 {
1346 int loc = RXLSPPM(0) | EPB_GLOBAL_WR;
1347 int ret;
1348
1349 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1350 if (ret < 0)
1351 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1352 else {
1353 udelay(1);
1354 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1355 }
1356 /* And again for good measure */
1357 udelay(1);
1358 ret = ibsd_mod_allchnls(dd, loc, 0, 0x80);
1359 if (ret < 0)
1360 qib_dev_err(dd, "RCLKRLS failed to clear D7\n");
1361 else {
1362 udelay(1);
1363 ibsd_mod_allchnls(dd, loc, 0x80, 0x80);
1364 }
1365 /* Now reset xgxs and IBC to complete the recovery */
1366 dd->f_xgxs_reset(dd->pport);
1367 }
1368
1369 /*
1370 * Shut down the timer that polls for relock occasions, if needed
1371 * this is "hooked" from qib_7220_quiet_serdes(), which is called
1372 * just before qib_shutdown_device() in qib_driver.c shuts down all
1373 * the other timers
1374 */
shutdown_7220_relock_poll(struct qib_devdata * dd)1375 void shutdown_7220_relock_poll(struct qib_devdata *dd)
1376 {
1377 if (dd->cspec->relock_timer_active)
1378 del_timer_sync(&dd->cspec->relock_timer);
1379 }
1380
1381 static unsigned qib_relock_by_timer = 1;
1382 module_param_named(relock_by_timer, qib_relock_by_timer, uint,
1383 S_IWUSR | S_IRUGO);
1384 MODULE_PARM_DESC(relock_by_timer, "Allow relock attempt if link not up");
1385
qib_run_relock(struct timer_list * t)1386 static void qib_run_relock(struct timer_list *t)
1387 {
1388 struct qib_chip_specific *cs = from_timer(cs, t, relock_timer);
1389 struct qib_devdata *dd = cs->dd;
1390 struct qib_pportdata *ppd = dd->pport;
1391 int timeoff;
1392
1393 /*
1394 * Check link-training state for "stuck" state, when down.
1395 * if found, try relock and schedule another try at
1396 * exponentially growing delay, maxed at one second.
1397 * if not stuck, our work is done.
1398 */
1399 if ((dd->flags & QIB_INITTED) && !(ppd->lflags &
1400 (QIBL_IB_AUTONEG_INPROG | QIBL_LINKINIT | QIBL_LINKARMED |
1401 QIBL_LINKACTIVE))) {
1402 if (qib_relock_by_timer) {
1403 if (!(ppd->lflags & QIBL_IB_LINK_DISABLED))
1404 toggle_7220_rclkrls(dd);
1405 }
1406 /* re-set timer for next check */
1407 timeoff = cs->relock_interval << 1;
1408 if (timeoff > HZ)
1409 timeoff = HZ;
1410 cs->relock_interval = timeoff;
1411 } else
1412 timeoff = HZ;
1413 mod_timer(&cs->relock_timer, jiffies + timeoff);
1414 }
1415
set_7220_relock_poll(struct qib_devdata * dd,int ibup)1416 void set_7220_relock_poll(struct qib_devdata *dd, int ibup)
1417 {
1418 struct qib_chip_specific *cs = dd->cspec;
1419
1420 if (ibup) {
1421 /* We are now up, relax timer to 1 second interval */
1422 if (cs->relock_timer_active) {
1423 cs->relock_interval = HZ;
1424 mod_timer(&cs->relock_timer, jiffies + HZ);
1425 }
1426 } else {
1427 /* Transition to down, (re-)set timer to short interval. */
1428 unsigned int timeout;
1429
1430 timeout = msecs_to_jiffies(RELOCK_FIRST_MS);
1431 if (timeout == 0)
1432 timeout = 1;
1433 /* If timer has not yet been started, do so. */
1434 if (!cs->relock_timer_active) {
1435 cs->relock_timer_active = 1;
1436 timer_setup(&cs->relock_timer, qib_run_relock, 0);
1437 cs->relock_interval = timeout;
1438 cs->relock_timer.expires = jiffies + timeout;
1439 add_timer(&cs->relock_timer);
1440 } else {
1441 cs->relock_interval = timeout;
1442 mod_timer(&cs->relock_timer, jiffies + timeout);
1443 }
1444 }
1445 }
1446