xref: /linux/drivers/infiniband/core/addr.c (revision f3a8b6645dc2e60d11f20c1c23afd964ff4e55ae)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/addrconf.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib.h>
49 #include <rdma/rdma_netlink.h>
50 #include <net/netlink.h>
51 
52 #include "core_priv.h"
53 
54 struct addr_req {
55 	struct list_head list;
56 	struct sockaddr_storage src_addr;
57 	struct sockaddr_storage dst_addr;
58 	struct rdma_dev_addr *addr;
59 	struct rdma_addr_client *client;
60 	void *context;
61 	void (*callback)(int status, struct sockaddr *src_addr,
62 			 struct rdma_dev_addr *addr, void *context);
63 	unsigned long timeout;
64 	int status;
65 	u32 seq;
66 };
67 
68 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
69 
70 static void process_req(struct work_struct *work);
71 
72 static DEFINE_MUTEX(lock);
73 static LIST_HEAD(req_list);
74 static DECLARE_DELAYED_WORK(work, process_req);
75 static struct workqueue_struct *addr_wq;
76 
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 		.len = sizeof(struct rdma_nla_ls_gid)},
80 };
81 
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 	int ret;
86 
87 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 		return false;
89 
90 	ret = nla_parse(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 			nlmsg_len(nlh), ib_nl_addr_policy);
92 	if (ret)
93 		return false;
94 
95 	return true;
96 }
97 
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 	const struct nlattr *head, *curr;
101 	union ib_gid gid;
102 	struct addr_req *req;
103 	int len, rem;
104 	int found = 0;
105 
106 	head = (const struct nlattr *)nlmsg_data(nlh);
107 	len = nlmsg_len(nlh);
108 
109 	nla_for_each_attr(curr, head, len, rem) {
110 		if (curr->nla_type == LS_NLA_TYPE_DGID)
111 			memcpy(&gid, nla_data(curr), nla_len(curr));
112 	}
113 
114 	mutex_lock(&lock);
115 	list_for_each_entry(req, &req_list, list) {
116 		if (nlh->nlmsg_seq != req->seq)
117 			continue;
118 		/* We set the DGID part, the rest was set earlier */
119 		rdma_addr_set_dgid(req->addr, &gid);
120 		req->status = 0;
121 		found = 1;
122 		break;
123 	}
124 	mutex_unlock(&lock);
125 
126 	if (!found)
127 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 			&gid);
129 }
130 
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 			     struct netlink_callback *cb)
133 {
134 	const struct nlmsghdr *nlh = (struct nlmsghdr *)cb->nlh;
135 
136 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 	    !(NETLINK_CB(skb).sk) ||
138 	    !netlink_capable(skb, CAP_NET_ADMIN))
139 		return -EPERM;
140 
141 	if (ib_nl_is_good_ip_resp(nlh))
142 		ib_nl_process_good_ip_rsep(nlh);
143 
144 	return skb->len;
145 }
146 
147 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
148 			     const void *daddr,
149 			     u32 seq, u16 family)
150 {
151 	struct sk_buff *skb = NULL;
152 	struct nlmsghdr *nlh;
153 	struct rdma_ls_ip_resolve_header *header;
154 	void *data;
155 	size_t size;
156 	int attrtype;
157 	int len;
158 
159 	if (family == AF_INET) {
160 		size = sizeof(struct in_addr);
161 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
162 	} else {
163 		size = sizeof(struct in6_addr);
164 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
165 	}
166 
167 	len = nla_total_size(sizeof(size));
168 	len += NLMSG_ALIGN(sizeof(*header));
169 
170 	skb = nlmsg_new(len, GFP_KERNEL);
171 	if (!skb)
172 		return -ENOMEM;
173 
174 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
175 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
176 	if (!data) {
177 		nlmsg_free(skb);
178 		return -ENODATA;
179 	}
180 
181 	/* Construct the family header first */
182 	header = (struct rdma_ls_ip_resolve_header *)
183 		skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
184 	header->ifindex = dev_addr->bound_dev_if;
185 	nla_put(skb, attrtype, size, daddr);
186 
187 	/* Repair the nlmsg header length */
188 	nlmsg_end(skb, nlh);
189 	ibnl_multicast(skb, nlh, RDMA_NL_GROUP_LS, GFP_KERNEL);
190 
191 	/* Make the request retry, so when we get the response from userspace
192 	 * we will have something.
193 	 */
194 	return -ENODATA;
195 }
196 
197 int rdma_addr_size(struct sockaddr *addr)
198 {
199 	switch (addr->sa_family) {
200 	case AF_INET:
201 		return sizeof(struct sockaddr_in);
202 	case AF_INET6:
203 		return sizeof(struct sockaddr_in6);
204 	case AF_IB:
205 		return sizeof(struct sockaddr_ib);
206 	default:
207 		return 0;
208 	}
209 }
210 EXPORT_SYMBOL(rdma_addr_size);
211 
212 static struct rdma_addr_client self;
213 
214 void rdma_addr_register_client(struct rdma_addr_client *client)
215 {
216 	atomic_set(&client->refcount, 1);
217 	init_completion(&client->comp);
218 }
219 EXPORT_SYMBOL(rdma_addr_register_client);
220 
221 static inline void put_client(struct rdma_addr_client *client)
222 {
223 	if (atomic_dec_and_test(&client->refcount))
224 		complete(&client->comp);
225 }
226 
227 void rdma_addr_unregister_client(struct rdma_addr_client *client)
228 {
229 	put_client(client);
230 	wait_for_completion(&client->comp);
231 }
232 EXPORT_SYMBOL(rdma_addr_unregister_client);
233 
234 int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
235 		     const unsigned char *dst_dev_addr)
236 {
237 	dev_addr->dev_type = dev->type;
238 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 	if (dst_dev_addr)
241 		memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
242 	dev_addr->bound_dev_if = dev->ifindex;
243 	return 0;
244 }
245 EXPORT_SYMBOL(rdma_copy_addr);
246 
247 int rdma_translate_ip(const struct sockaddr *addr,
248 		      struct rdma_dev_addr *dev_addr,
249 		      u16 *vlan_id)
250 {
251 	struct net_device *dev;
252 	int ret = -EADDRNOTAVAIL;
253 
254 	if (dev_addr->bound_dev_if) {
255 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
256 		if (!dev)
257 			return -ENODEV;
258 		ret = rdma_copy_addr(dev_addr, dev, NULL);
259 		dev_put(dev);
260 		return ret;
261 	}
262 
263 	switch (addr->sa_family) {
264 	case AF_INET:
265 		dev = ip_dev_find(dev_addr->net,
266 			((const struct sockaddr_in *)addr)->sin_addr.s_addr);
267 
268 		if (!dev)
269 			return ret;
270 
271 		ret = rdma_copy_addr(dev_addr, dev, NULL);
272 		if (vlan_id)
273 			*vlan_id = rdma_vlan_dev_vlan_id(dev);
274 		dev_put(dev);
275 		break;
276 #if IS_ENABLED(CONFIG_IPV6)
277 	case AF_INET6:
278 		rcu_read_lock();
279 		for_each_netdev_rcu(dev_addr->net, dev) {
280 			if (ipv6_chk_addr(dev_addr->net,
281 					  &((const struct sockaddr_in6 *)addr)->sin6_addr,
282 					  dev, 1)) {
283 				ret = rdma_copy_addr(dev_addr, dev, NULL);
284 				if (vlan_id)
285 					*vlan_id = rdma_vlan_dev_vlan_id(dev);
286 				break;
287 			}
288 		}
289 		rcu_read_unlock();
290 		break;
291 #endif
292 	}
293 	return ret;
294 }
295 EXPORT_SYMBOL(rdma_translate_ip);
296 
297 static void set_timeout(unsigned long time)
298 {
299 	unsigned long delay;
300 
301 	delay = time - jiffies;
302 	if ((long)delay < 0)
303 		delay = 0;
304 
305 	mod_delayed_work(addr_wq, &work, delay);
306 }
307 
308 static void queue_req(struct addr_req *req)
309 {
310 	struct addr_req *temp_req;
311 
312 	mutex_lock(&lock);
313 	list_for_each_entry_reverse(temp_req, &req_list, list) {
314 		if (time_after_eq(req->timeout, temp_req->timeout))
315 			break;
316 	}
317 
318 	list_add(&req->list, &temp_req->list);
319 
320 	if (req_list.next == &req->list)
321 		set_timeout(req->timeout);
322 	mutex_unlock(&lock);
323 }
324 
325 static int ib_nl_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
326 			  const void *daddr, u32 seq, u16 family)
327 {
328 	if (ibnl_chk_listeners(RDMA_NL_GROUP_LS))
329 		return -EADDRNOTAVAIL;
330 
331 	/* We fill in what we can, the response will fill the rest */
332 	rdma_copy_addr(dev_addr, dst->dev, NULL);
333 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
334 }
335 
336 static int dst_fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
337 			const void *daddr)
338 {
339 	struct neighbour *n;
340 	int ret;
341 
342 	n = dst_neigh_lookup(dst, daddr);
343 
344 	rcu_read_lock();
345 	if (!n || !(n->nud_state & NUD_VALID)) {
346 		if (n)
347 			neigh_event_send(n, NULL);
348 		ret = -ENODATA;
349 	} else {
350 		ret = rdma_copy_addr(dev_addr, dst->dev, n->ha);
351 	}
352 	rcu_read_unlock();
353 
354 	if (n)
355 		neigh_release(n);
356 
357 	return ret;
358 }
359 
360 static bool has_gateway(struct dst_entry *dst, sa_family_t family)
361 {
362 	struct rtable *rt;
363 	struct rt6_info *rt6;
364 
365 	if (family == AF_INET) {
366 		rt = container_of(dst, struct rtable, dst);
367 		return rt->rt_uses_gateway;
368 	}
369 
370 	rt6 = container_of(dst, struct rt6_info, dst);
371 	return rt6->rt6i_flags & RTF_GATEWAY;
372 }
373 
374 static int fetch_ha(struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
375 		    const struct sockaddr *dst_in, u32 seq)
376 {
377 	const struct sockaddr_in *dst_in4 =
378 		(const struct sockaddr_in *)dst_in;
379 	const struct sockaddr_in6 *dst_in6 =
380 		(const struct sockaddr_in6 *)dst_in;
381 	const void *daddr = (dst_in->sa_family == AF_INET) ?
382 		(const void *)&dst_in4->sin_addr.s_addr :
383 		(const void *)&dst_in6->sin6_addr;
384 	sa_family_t family = dst_in->sa_family;
385 
386 	/* Gateway + ARPHRD_INFINIBAND -> IB router */
387 	if (has_gateway(dst, family) && dst->dev->type == ARPHRD_INFINIBAND)
388 		return ib_nl_fetch_ha(dst, dev_addr, daddr, seq, family);
389 	else
390 		return dst_fetch_ha(dst, dev_addr, daddr);
391 }
392 
393 static int addr4_resolve(struct sockaddr_in *src_in,
394 			 const struct sockaddr_in *dst_in,
395 			 struct rdma_dev_addr *addr,
396 			 struct rtable **prt)
397 {
398 	__be32 src_ip = src_in->sin_addr.s_addr;
399 	__be32 dst_ip = dst_in->sin_addr.s_addr;
400 	struct rtable *rt;
401 	struct flowi4 fl4;
402 	int ret;
403 
404 	memset(&fl4, 0, sizeof(fl4));
405 	fl4.daddr = dst_ip;
406 	fl4.saddr = src_ip;
407 	fl4.flowi4_oif = addr->bound_dev_if;
408 	rt = ip_route_output_key(addr->net, &fl4);
409 	if (IS_ERR(rt)) {
410 		ret = PTR_ERR(rt);
411 		goto out;
412 	}
413 	src_in->sin_family = AF_INET;
414 	src_in->sin_addr.s_addr = fl4.saddr;
415 
416 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
417 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
418 	 * type accordingly.
419 	 */
420 	if (rt->rt_uses_gateway && rt->dst.dev->type != ARPHRD_INFINIBAND)
421 		addr->network = RDMA_NETWORK_IPV4;
422 
423 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
424 
425 	*prt = rt;
426 	return 0;
427 out:
428 	return ret;
429 }
430 
431 #if IS_ENABLED(CONFIG_IPV6)
432 static int addr6_resolve(struct sockaddr_in6 *src_in,
433 			 const struct sockaddr_in6 *dst_in,
434 			 struct rdma_dev_addr *addr,
435 			 struct dst_entry **pdst)
436 {
437 	struct flowi6 fl6;
438 	struct dst_entry *dst;
439 	struct rt6_info *rt;
440 	int ret;
441 
442 	memset(&fl6, 0, sizeof fl6);
443 	fl6.daddr = dst_in->sin6_addr;
444 	fl6.saddr = src_in->sin6_addr;
445 	fl6.flowi6_oif = addr->bound_dev_if;
446 
447 	dst = ip6_route_output(addr->net, NULL, &fl6);
448 	if ((ret = dst->error))
449 		goto put;
450 
451 	rt = (struct rt6_info *)dst;
452 	if (ipv6_addr_any(&fl6.saddr)) {
453 		ret = ipv6_dev_get_saddr(addr->net, ip6_dst_idev(dst)->dev,
454 					 &fl6.daddr, 0, &fl6.saddr);
455 		if (ret)
456 			goto put;
457 
458 		src_in->sin6_family = AF_INET6;
459 		src_in->sin6_addr = fl6.saddr;
460 	}
461 
462 	/* If there's a gateway and type of device not ARPHRD_INFINIBAND, we're
463 	 * definitely in RoCE v2 (as RoCE v1 isn't routable) set the network
464 	 * type accordingly.
465 	 */
466 	if (rt->rt6i_flags & RTF_GATEWAY &&
467 	    ip6_dst_idev(dst)->dev->type != ARPHRD_INFINIBAND)
468 		addr->network = RDMA_NETWORK_IPV6;
469 
470 	addr->hoplimit = ip6_dst_hoplimit(dst);
471 
472 	*pdst = dst;
473 	return 0;
474 put:
475 	dst_release(dst);
476 	return ret;
477 }
478 #else
479 static int addr6_resolve(struct sockaddr_in6 *src_in,
480 			 const struct sockaddr_in6 *dst_in,
481 			 struct rdma_dev_addr *addr,
482 			 struct dst_entry **pdst)
483 {
484 	return -EADDRNOTAVAIL;
485 }
486 #endif
487 
488 static int addr_resolve_neigh(struct dst_entry *dst,
489 			      const struct sockaddr *dst_in,
490 			      struct rdma_dev_addr *addr,
491 			      u32 seq)
492 {
493 	if (dst->dev->flags & IFF_LOOPBACK) {
494 		int ret;
495 
496 		ret = rdma_translate_ip(dst_in, addr, NULL);
497 		if (!ret)
498 			memcpy(addr->dst_dev_addr, addr->src_dev_addr,
499 			       MAX_ADDR_LEN);
500 
501 		return ret;
502 	}
503 
504 	/* If the device doesn't do ARP internally */
505 	if (!(dst->dev->flags & IFF_NOARP))
506 		return fetch_ha(dst, addr, dst_in, seq);
507 
508 	return rdma_copy_addr(addr, dst->dev, NULL);
509 }
510 
511 static int addr_resolve(struct sockaddr *src_in,
512 			const struct sockaddr *dst_in,
513 			struct rdma_dev_addr *addr,
514 			bool resolve_neigh,
515 			u32 seq)
516 {
517 	struct net_device *ndev;
518 	struct dst_entry *dst;
519 	int ret;
520 
521 	if (src_in->sa_family == AF_INET) {
522 		struct rtable *rt = NULL;
523 		const struct sockaddr_in *dst_in4 =
524 			(const struct sockaddr_in *)dst_in;
525 
526 		ret = addr4_resolve((struct sockaddr_in *)src_in,
527 				    dst_in4, addr, &rt);
528 		if (ret)
529 			return ret;
530 
531 		if (resolve_neigh)
532 			ret = addr_resolve_neigh(&rt->dst, dst_in, addr, seq);
533 
534 		ndev = rt->dst.dev;
535 		dev_hold(ndev);
536 
537 		ip_rt_put(rt);
538 	} else {
539 		const struct sockaddr_in6 *dst_in6 =
540 			(const struct sockaddr_in6 *)dst_in;
541 
542 		ret = addr6_resolve((struct sockaddr_in6 *)src_in,
543 				    dst_in6, addr,
544 				    &dst);
545 		if (ret)
546 			return ret;
547 
548 		if (resolve_neigh)
549 			ret = addr_resolve_neigh(dst, dst_in, addr, seq);
550 
551 		ndev = dst->dev;
552 		dev_hold(ndev);
553 
554 		dst_release(dst);
555 	}
556 
557 	addr->bound_dev_if = ndev->ifindex;
558 	addr->net = dev_net(ndev);
559 	dev_put(ndev);
560 
561 	return ret;
562 }
563 
564 static void process_req(struct work_struct *work)
565 {
566 	struct addr_req *req, *temp_req;
567 	struct sockaddr *src_in, *dst_in;
568 	struct list_head done_list;
569 
570 	INIT_LIST_HEAD(&done_list);
571 
572 	mutex_lock(&lock);
573 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
574 		if (req->status == -ENODATA) {
575 			src_in = (struct sockaddr *) &req->src_addr;
576 			dst_in = (struct sockaddr *) &req->dst_addr;
577 			req->status = addr_resolve(src_in, dst_in, req->addr,
578 						   true, req->seq);
579 			if (req->status && time_after_eq(jiffies, req->timeout))
580 				req->status = -ETIMEDOUT;
581 			else if (req->status == -ENODATA)
582 				continue;
583 		}
584 		list_move_tail(&req->list, &done_list);
585 	}
586 
587 	if (!list_empty(&req_list)) {
588 		req = list_entry(req_list.next, struct addr_req, list);
589 		set_timeout(req->timeout);
590 	}
591 	mutex_unlock(&lock);
592 
593 	list_for_each_entry_safe(req, temp_req, &done_list, list) {
594 		list_del(&req->list);
595 		req->callback(req->status, (struct sockaddr *) &req->src_addr,
596 			req->addr, req->context);
597 		put_client(req->client);
598 		kfree(req);
599 	}
600 }
601 
602 int rdma_resolve_ip(struct rdma_addr_client *client,
603 		    struct sockaddr *src_addr, struct sockaddr *dst_addr,
604 		    struct rdma_dev_addr *addr, int timeout_ms,
605 		    void (*callback)(int status, struct sockaddr *src_addr,
606 				     struct rdma_dev_addr *addr, void *context),
607 		    void *context)
608 {
609 	struct sockaddr *src_in, *dst_in;
610 	struct addr_req *req;
611 	int ret = 0;
612 
613 	req = kzalloc(sizeof *req, GFP_KERNEL);
614 	if (!req)
615 		return -ENOMEM;
616 
617 	src_in = (struct sockaddr *) &req->src_addr;
618 	dst_in = (struct sockaddr *) &req->dst_addr;
619 
620 	if (src_addr) {
621 		if (src_addr->sa_family != dst_addr->sa_family) {
622 			ret = -EINVAL;
623 			goto err;
624 		}
625 
626 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
627 	} else {
628 		src_in->sa_family = dst_addr->sa_family;
629 	}
630 
631 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
632 	req->addr = addr;
633 	req->callback = callback;
634 	req->context = context;
635 	req->client = client;
636 	atomic_inc(&client->refcount);
637 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
638 
639 	req->status = addr_resolve(src_in, dst_in, addr, true, req->seq);
640 	switch (req->status) {
641 	case 0:
642 		req->timeout = jiffies;
643 		queue_req(req);
644 		break;
645 	case -ENODATA:
646 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
647 		queue_req(req);
648 		break;
649 	default:
650 		ret = req->status;
651 		atomic_dec(&client->refcount);
652 		goto err;
653 	}
654 	return ret;
655 err:
656 	kfree(req);
657 	return ret;
658 }
659 EXPORT_SYMBOL(rdma_resolve_ip);
660 
661 int rdma_resolve_ip_route(struct sockaddr *src_addr,
662 			  const struct sockaddr *dst_addr,
663 			  struct rdma_dev_addr *addr)
664 {
665 	struct sockaddr_storage ssrc_addr = {};
666 	struct sockaddr *src_in = (struct sockaddr *)&ssrc_addr;
667 
668 	if (src_addr) {
669 		if (src_addr->sa_family != dst_addr->sa_family)
670 			return -EINVAL;
671 
672 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
673 	} else {
674 		src_in->sa_family = dst_addr->sa_family;
675 	}
676 
677 	return addr_resolve(src_in, dst_addr, addr, false, 0);
678 }
679 EXPORT_SYMBOL(rdma_resolve_ip_route);
680 
681 void rdma_addr_cancel(struct rdma_dev_addr *addr)
682 {
683 	struct addr_req *req, *temp_req;
684 
685 	mutex_lock(&lock);
686 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
687 		if (req->addr == addr) {
688 			req->status = -ECANCELED;
689 			req->timeout = jiffies;
690 			list_move(&req->list, &req_list);
691 			set_timeout(req->timeout);
692 			break;
693 		}
694 	}
695 	mutex_unlock(&lock);
696 }
697 EXPORT_SYMBOL(rdma_addr_cancel);
698 
699 struct resolve_cb_context {
700 	struct rdma_dev_addr *addr;
701 	struct completion comp;
702 };
703 
704 static void resolve_cb(int status, struct sockaddr *src_addr,
705 	     struct rdma_dev_addr *addr, void *context)
706 {
707 	memcpy(((struct resolve_cb_context *)context)->addr, addr, sizeof(struct
708 				rdma_dev_addr));
709 	complete(&((struct resolve_cb_context *)context)->comp);
710 }
711 
712 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
713 				 const union ib_gid *dgid,
714 				 u8 *dmac, u16 *vlan_id, int *if_index,
715 				 int *hoplimit)
716 {
717 	int ret = 0;
718 	struct rdma_dev_addr dev_addr;
719 	struct resolve_cb_context ctx;
720 	struct net_device *dev;
721 
722 	union {
723 		struct sockaddr     _sockaddr;
724 		struct sockaddr_in  _sockaddr_in;
725 		struct sockaddr_in6 _sockaddr_in6;
726 	} sgid_addr, dgid_addr;
727 
728 
729 	rdma_gid2ip(&sgid_addr._sockaddr, sgid);
730 	rdma_gid2ip(&dgid_addr._sockaddr, dgid);
731 
732 	memset(&dev_addr, 0, sizeof(dev_addr));
733 	if (if_index)
734 		dev_addr.bound_dev_if = *if_index;
735 	dev_addr.net = &init_net;
736 
737 	ctx.addr = &dev_addr;
738 	init_completion(&ctx.comp);
739 	ret = rdma_resolve_ip(&self, &sgid_addr._sockaddr, &dgid_addr._sockaddr,
740 			&dev_addr, 1000, resolve_cb, &ctx);
741 	if (ret)
742 		return ret;
743 
744 	wait_for_completion(&ctx.comp);
745 
746 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
747 	dev = dev_get_by_index(&init_net, dev_addr.bound_dev_if);
748 	if (!dev)
749 		return -ENODEV;
750 	if (if_index)
751 		*if_index = dev_addr.bound_dev_if;
752 	if (vlan_id)
753 		*vlan_id = rdma_vlan_dev_vlan_id(dev);
754 	if (hoplimit)
755 		*hoplimit = dev_addr.hoplimit;
756 	dev_put(dev);
757 	return ret;
758 }
759 EXPORT_SYMBOL(rdma_addr_find_l2_eth_by_grh);
760 
761 int rdma_addr_find_smac_by_sgid(union ib_gid *sgid, u8 *smac, u16 *vlan_id)
762 {
763 	int ret = 0;
764 	struct rdma_dev_addr dev_addr;
765 	union {
766 		struct sockaddr     _sockaddr;
767 		struct sockaddr_in  _sockaddr_in;
768 		struct sockaddr_in6 _sockaddr_in6;
769 	} gid_addr;
770 
771 	rdma_gid2ip(&gid_addr._sockaddr, sgid);
772 
773 	memset(&dev_addr, 0, sizeof(dev_addr));
774 	dev_addr.net = &init_net;
775 	ret = rdma_translate_ip(&gid_addr._sockaddr, &dev_addr, vlan_id);
776 	if (ret)
777 		return ret;
778 
779 	memcpy(smac, dev_addr.src_dev_addr, ETH_ALEN);
780 	return ret;
781 }
782 EXPORT_SYMBOL(rdma_addr_find_smac_by_sgid);
783 
784 static int netevent_callback(struct notifier_block *self, unsigned long event,
785 	void *ctx)
786 {
787 	if (event == NETEVENT_NEIGH_UPDATE) {
788 		struct neighbour *neigh = ctx;
789 
790 		if (neigh->nud_state & NUD_VALID) {
791 			set_timeout(jiffies);
792 		}
793 	}
794 	return 0;
795 }
796 
797 static struct notifier_block nb = {
798 	.notifier_call = netevent_callback
799 };
800 
801 int addr_init(void)
802 {
803 	addr_wq = alloc_workqueue("ib_addr", WQ_MEM_RECLAIM, 0);
804 	if (!addr_wq)
805 		return -ENOMEM;
806 
807 	register_netevent_notifier(&nb);
808 	rdma_addr_register_client(&self);
809 
810 	return 0;
811 }
812 
813 void addr_cleanup(void)
814 {
815 	rdma_addr_unregister_client(&self);
816 	unregister_netevent_notifier(&nb);
817 	destroy_workqueue(addr_wq);
818 }
819