1 /*
2 * Copyright (c) 2005 Voltaire Inc. All rights reserved.
3 * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4 * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5 * Copyright (c) 2005 Intel Corporation. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <net/arp.h>
41 #include <net/neighbour.h>
42 #include <net/route.h>
43 #include <net/netevent.h>
44 #include <net/ipv6_stubs.h>
45 #include <net/ip6_route.h>
46 #include <rdma/ib_addr.h>
47 #include <rdma/ib_cache.h>
48 #include <rdma/ib_sa.h>
49 #include <rdma/ib.h>
50 #include <rdma/rdma_netlink.h>
51 #include <net/netlink.h>
52
53 #include "core_priv.h"
54
55 struct addr_req {
56 struct list_head list;
57 struct sockaddr_storage src_addr;
58 struct sockaddr_storage dst_addr;
59 struct rdma_dev_addr *addr;
60 void *context;
61 void (*callback)(int status, struct sockaddr *src_addr,
62 struct rdma_dev_addr *addr, void *context);
63 unsigned long timeout;
64 struct delayed_work work;
65 bool resolve_by_gid_attr; /* Consider gid attr in resolve phase */
66 int status;
67 u32 seq;
68 };
69
70 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
71
72 static DEFINE_SPINLOCK(lock);
73 static LIST_HEAD(req_list);
74 static struct workqueue_struct *addr_wq;
75
76 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
77 [LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
78 .len = sizeof(struct rdma_nla_ls_gid),
79 .validation_type = NLA_VALIDATE_MIN,
80 .min = sizeof(struct rdma_nla_ls_gid)},
81 };
82
ib_nl_is_good_ip_resp(const struct nlmsghdr * nlh)83 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
84 {
85 struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
86 int ret;
87
88 if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
89 return false;
90
91 ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
92 nlmsg_len(nlh), ib_nl_addr_policy, NULL);
93 if (ret)
94 return false;
95
96 return true;
97 }
98
ib_nl_process_good_ip_rsep(const struct nlmsghdr * nlh)99 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
100 {
101 const struct nlattr *head, *curr;
102 union ib_gid gid;
103 struct addr_req *req;
104 int len, rem;
105 int found = 0;
106
107 head = (const struct nlattr *)nlmsg_data(nlh);
108 len = nlmsg_len(nlh);
109
110 nla_for_each_attr(curr, head, len, rem) {
111 if (curr->nla_type == LS_NLA_TYPE_DGID)
112 memcpy(&gid, nla_data(curr), nla_len(curr));
113 }
114
115 spin_lock_bh(&lock);
116 list_for_each_entry(req, &req_list, list) {
117 if (nlh->nlmsg_seq != req->seq)
118 continue;
119 /* We set the DGID part, the rest was set earlier */
120 rdma_addr_set_dgid(req->addr, &gid);
121 req->status = 0;
122 found = 1;
123 break;
124 }
125 spin_unlock_bh(&lock);
126
127 if (!found)
128 pr_info("Couldn't find request waiting for DGID: %pI6\n",
129 &gid);
130 }
131
ib_nl_handle_ip_res_resp(struct sk_buff * skb,struct nlmsghdr * nlh,struct netlink_ext_ack * extack)132 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
133 struct nlmsghdr *nlh,
134 struct netlink_ext_ack *extack)
135 {
136 if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
137 !(NETLINK_CB(skb).sk))
138 return -EPERM;
139
140 if (ib_nl_is_good_ip_resp(nlh))
141 ib_nl_process_good_ip_rsep(nlh);
142
143 return 0;
144 }
145
ib_nl_ip_send_msg(struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)146 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
147 const void *daddr,
148 u32 seq, u16 family)
149 {
150 struct sk_buff *skb = NULL;
151 struct nlmsghdr *nlh;
152 struct rdma_ls_ip_resolve_header *header;
153 void *data;
154 size_t size;
155 int attrtype;
156 int len;
157
158 if (family == AF_INET) {
159 size = sizeof(struct in_addr);
160 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
161 } else {
162 size = sizeof(struct in6_addr);
163 attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
164 }
165
166 len = nla_total_size(sizeof(size));
167 len += NLMSG_ALIGN(sizeof(*header));
168
169 skb = nlmsg_new(len, GFP_KERNEL);
170 if (!skb)
171 return -ENOMEM;
172
173 data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
174 RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
175 if (!data) {
176 nlmsg_free(skb);
177 return -ENODATA;
178 }
179
180 /* Construct the family header first */
181 header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
182 header->ifindex = dev_addr->bound_dev_if;
183 nla_put(skb, attrtype, size, daddr);
184
185 /* Repair the nlmsg header length */
186 nlmsg_end(skb, nlh);
187 rdma_nl_multicast(&init_net, skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
188
189 /* Make the request retry, so when we get the response from userspace
190 * we will have something.
191 */
192 return -ENODATA;
193 }
194
rdma_addr_size(const struct sockaddr * addr)195 int rdma_addr_size(const struct sockaddr *addr)
196 {
197 switch (addr->sa_family) {
198 case AF_INET:
199 return sizeof(struct sockaddr_in);
200 case AF_INET6:
201 return sizeof(struct sockaddr_in6);
202 case AF_IB:
203 return sizeof(struct sockaddr_ib);
204 default:
205 return 0;
206 }
207 }
208 EXPORT_SYMBOL(rdma_addr_size);
209
rdma_addr_size_in6(struct sockaddr_in6 * addr)210 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
211 {
212 int ret = rdma_addr_size((struct sockaddr *) addr);
213
214 return ret <= sizeof(*addr) ? ret : 0;
215 }
216 EXPORT_SYMBOL(rdma_addr_size_in6);
217
rdma_addr_size_kss(struct __kernel_sockaddr_storage * addr)218 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
219 {
220 int ret = rdma_addr_size((struct sockaddr *) addr);
221
222 return ret <= sizeof(*addr) ? ret : 0;
223 }
224 EXPORT_SYMBOL(rdma_addr_size_kss);
225
226 /**
227 * rdma_copy_src_l2_addr - Copy netdevice source addresses
228 * @dev_addr: Destination address pointer where to copy the addresses
229 * @dev: Netdevice whose source addresses to copy
230 *
231 * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
232 * This includes unicast address, broadcast address, device type and
233 * interface index.
234 */
rdma_copy_src_l2_addr(struct rdma_dev_addr * dev_addr,const struct net_device * dev)235 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
236 const struct net_device *dev)
237 {
238 dev_addr->dev_type = dev->type;
239 memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
240 memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
241 dev_addr->bound_dev_if = dev->ifindex;
242 }
243 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
244
245 static struct net_device *
rdma_find_ndev_for_src_ip_rcu(struct net * net,const struct sockaddr * src_in)246 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
247 {
248 struct net_device *dev = NULL;
249 int ret = -EADDRNOTAVAIL;
250
251 switch (src_in->sa_family) {
252 case AF_INET:
253 dev = __ip_dev_find(net,
254 ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
255 false);
256 if (dev)
257 ret = 0;
258 break;
259 #if IS_ENABLED(CONFIG_IPV6)
260 case AF_INET6:
261 for_each_netdev_rcu(net, dev) {
262 if (ipv6_chk_addr(net,
263 &((const struct sockaddr_in6 *)src_in)->sin6_addr,
264 dev, 1)) {
265 ret = 0;
266 break;
267 }
268 }
269 break;
270 #endif
271 }
272 if (!ret && dev && is_vlan_dev(dev))
273 dev = vlan_dev_real_dev(dev);
274 return ret ? ERR_PTR(ret) : dev;
275 }
276
rdma_translate_ip(const struct sockaddr * addr,struct rdma_dev_addr * dev_addr)277 int rdma_translate_ip(const struct sockaddr *addr,
278 struct rdma_dev_addr *dev_addr)
279 {
280 struct net_device *dev;
281
282 if (dev_addr->bound_dev_if) {
283 dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
284 if (!dev)
285 return -ENODEV;
286 rdma_copy_src_l2_addr(dev_addr, dev);
287 dev_put(dev);
288 return 0;
289 }
290
291 rcu_read_lock();
292 dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
293 if (!IS_ERR(dev))
294 rdma_copy_src_l2_addr(dev_addr, dev);
295 rcu_read_unlock();
296 return PTR_ERR_OR_ZERO(dev);
297 }
298 EXPORT_SYMBOL(rdma_translate_ip);
299
set_timeout(struct addr_req * req,unsigned long time)300 static void set_timeout(struct addr_req *req, unsigned long time)
301 {
302 unsigned long delay;
303
304 delay = time - jiffies;
305 if ((long)delay < 0)
306 delay = 0;
307
308 mod_delayed_work(addr_wq, &req->work, delay);
309 }
310
queue_req(struct addr_req * req)311 static void queue_req(struct addr_req *req)
312 {
313 spin_lock_bh(&lock);
314 list_add_tail(&req->list, &req_list);
315 set_timeout(req, req->timeout);
316 spin_unlock_bh(&lock);
317 }
318
ib_nl_fetch_ha(struct rdma_dev_addr * dev_addr,const void * daddr,u32 seq,u16 family)319 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
320 const void *daddr, u32 seq, u16 family)
321 {
322 if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
323 return -EADDRNOTAVAIL;
324
325 return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
326 }
327
dst_fetch_ha(const struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const void * daddr)328 static int dst_fetch_ha(const struct dst_entry *dst,
329 struct rdma_dev_addr *dev_addr,
330 const void *daddr)
331 {
332 struct neighbour *n;
333 int ret = 0;
334
335 n = dst_neigh_lookup(dst, daddr);
336 if (!n)
337 return -ENODATA;
338
339 if (!(n->nud_state & NUD_VALID)) {
340 neigh_event_send(n, NULL);
341 ret = -ENODATA;
342 } else {
343 neigh_ha_snapshot(dev_addr->dst_dev_addr, n, dst->dev);
344 }
345
346 neigh_release(n);
347
348 return ret;
349 }
350
has_gateway(const struct dst_entry * dst,sa_family_t family)351 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
352 {
353 if (family == AF_INET)
354 return dst_rtable(dst)->rt_uses_gateway;
355
356 return dst_rt6_info(dst)->rt6i_flags & RTF_GATEWAY;
357 }
358
fetch_ha(const struct dst_entry * dst,struct rdma_dev_addr * dev_addr,const struct sockaddr * dst_in,u32 seq)359 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
360 const struct sockaddr *dst_in, u32 seq)
361 {
362 const struct sockaddr_in *dst_in4 =
363 (const struct sockaddr_in *)dst_in;
364 const struct sockaddr_in6 *dst_in6 =
365 (const struct sockaddr_in6 *)dst_in;
366 const void *daddr = (dst_in->sa_family == AF_INET) ?
367 (const void *)&dst_in4->sin_addr.s_addr :
368 (const void *)&dst_in6->sin6_addr;
369 sa_family_t family = dst_in->sa_family;
370
371 might_sleep();
372
373 /* If we have a gateway in IB mode then it must be an IB network */
374 if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
375 return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
376 else
377 return dst_fetch_ha(dst, dev_addr, daddr);
378 }
379
addr4_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct rtable ** prt)380 static int addr4_resolve(struct sockaddr *src_sock,
381 const struct sockaddr *dst_sock,
382 struct rdma_dev_addr *addr,
383 struct rtable **prt)
384 {
385 struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
386 const struct sockaddr_in *dst_in =
387 (const struct sockaddr_in *)dst_sock;
388
389 __be32 src_ip = src_in->sin_addr.s_addr;
390 __be32 dst_ip = dst_in->sin_addr.s_addr;
391 struct rtable *rt;
392 struct flowi4 fl4;
393 int ret;
394
395 memset(&fl4, 0, sizeof(fl4));
396 fl4.daddr = dst_ip;
397 fl4.saddr = src_ip;
398 fl4.flowi4_oif = addr->bound_dev_if;
399 rt = ip_route_output_key(addr->net, &fl4);
400 ret = PTR_ERR_OR_ZERO(rt);
401 if (ret)
402 return ret;
403
404 src_in->sin_addr.s_addr = fl4.saddr;
405
406 addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
407
408 *prt = rt;
409 return 0;
410 }
411
412 #if IS_ENABLED(CONFIG_IPV6)
addr6_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct dst_entry ** pdst)413 static int addr6_resolve(struct sockaddr *src_sock,
414 const struct sockaddr *dst_sock,
415 struct rdma_dev_addr *addr,
416 struct dst_entry **pdst)
417 {
418 struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
419 const struct sockaddr_in6 *dst_in =
420 (const struct sockaddr_in6 *)dst_sock;
421 struct flowi6 fl6;
422 struct dst_entry *dst;
423
424 memset(&fl6, 0, sizeof fl6);
425 fl6.daddr = dst_in->sin6_addr;
426 fl6.saddr = src_in->sin6_addr;
427 fl6.flowi6_oif = addr->bound_dev_if;
428
429 dst = ipv6_stub->ipv6_dst_lookup_flow(addr->net, NULL, &fl6, NULL);
430 if (IS_ERR(dst))
431 return PTR_ERR(dst);
432
433 if (ipv6_addr_any(&src_in->sin6_addr))
434 src_in->sin6_addr = fl6.saddr;
435
436 addr->hoplimit = ip6_dst_hoplimit(dst);
437
438 *pdst = dst;
439 return 0;
440 }
441 #else
addr6_resolve(struct sockaddr * src_sock,const struct sockaddr * dst_sock,struct rdma_dev_addr * addr,struct dst_entry ** pdst)442 static int addr6_resolve(struct sockaddr *src_sock,
443 const struct sockaddr *dst_sock,
444 struct rdma_dev_addr *addr,
445 struct dst_entry **pdst)
446 {
447 return -EADDRNOTAVAIL;
448 }
449 #endif
450
addr_resolve_neigh(const struct dst_entry * dst,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,unsigned int ndev_flags,u32 seq)451 static int addr_resolve_neigh(const struct dst_entry *dst,
452 const struct sockaddr *dst_in,
453 struct rdma_dev_addr *addr,
454 unsigned int ndev_flags,
455 u32 seq)
456 {
457 int ret = 0;
458
459 if (ndev_flags & IFF_LOOPBACK) {
460 memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
461 } else {
462 if (!(ndev_flags & IFF_NOARP)) {
463 /* If the device doesn't do ARP internally */
464 ret = fetch_ha(dst, addr, dst_in, seq);
465 }
466 }
467 return ret;
468 }
469
copy_src_l2_addr(struct rdma_dev_addr * dev_addr,const struct sockaddr * dst_in,const struct dst_entry * dst,const struct net_device * ndev)470 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
471 const struct sockaddr *dst_in,
472 const struct dst_entry *dst,
473 const struct net_device *ndev)
474 {
475 int ret = 0;
476
477 if (dst->dev->flags & IFF_LOOPBACK)
478 ret = rdma_translate_ip(dst_in, dev_addr);
479 else
480 rdma_copy_src_l2_addr(dev_addr, dst->dev);
481
482 /*
483 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
484 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
485 * network type accordingly.
486 */
487 if (has_gateway(dst, dst_in->sa_family) &&
488 ndev->type != ARPHRD_INFINIBAND)
489 dev_addr->network = dst_in->sa_family == AF_INET ?
490 RDMA_NETWORK_IPV4 :
491 RDMA_NETWORK_IPV6;
492 else
493 dev_addr->network = RDMA_NETWORK_IB;
494
495 return ret;
496 }
497
rdma_set_src_addr_rcu(struct rdma_dev_addr * dev_addr,unsigned int * ndev_flags,const struct sockaddr * dst_in,const struct dst_entry * dst)498 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
499 unsigned int *ndev_flags,
500 const struct sockaddr *dst_in,
501 const struct dst_entry *dst)
502 {
503 struct net_device *ndev = READ_ONCE(dst->dev);
504
505 *ndev_flags = ndev->flags;
506 /* A physical device must be the RDMA device to use */
507 if (ndev->flags & IFF_LOOPBACK) {
508 /*
509 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
510 * loopback IP address. So if route is resolved to loopback
511 * interface, translate that to a real ndev based on non
512 * loopback IP address.
513 */
514 ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
515 if (IS_ERR(ndev))
516 return -ENODEV;
517 }
518
519 return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
520 }
521
set_addr_netns_by_gid_rcu(struct rdma_dev_addr * addr)522 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
523 {
524 struct net_device *ndev;
525
526 ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
527 if (IS_ERR(ndev))
528 return PTR_ERR(ndev);
529
530 /*
531 * Since we are holding the rcu, reading net and ifindex
532 * are safe without any additional reference; because
533 * change_net_namespace() in net/core/dev.c does rcu sync
534 * after it changes the state to IFF_DOWN and before
535 * updating netdev fields {net, ifindex}.
536 */
537 addr->net = dev_net(ndev);
538 addr->bound_dev_if = ndev->ifindex;
539 return 0;
540 }
541
rdma_addr_set_net_defaults(struct rdma_dev_addr * addr)542 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
543 {
544 addr->net = &init_net;
545 addr->bound_dev_if = 0;
546 }
547
addr_resolve(struct sockaddr * src_in,const struct sockaddr * dst_in,struct rdma_dev_addr * addr,bool resolve_neigh,bool resolve_by_gid_attr,u32 seq)548 static int addr_resolve(struct sockaddr *src_in,
549 const struct sockaddr *dst_in,
550 struct rdma_dev_addr *addr,
551 bool resolve_neigh,
552 bool resolve_by_gid_attr,
553 u32 seq)
554 {
555 struct dst_entry *dst = NULL;
556 unsigned int ndev_flags = 0;
557 struct rtable *rt = NULL;
558 int ret;
559
560 if (!addr->net) {
561 pr_warn_ratelimited("%s: missing namespace\n", __func__);
562 return -EINVAL;
563 }
564
565 rcu_read_lock();
566 if (resolve_by_gid_attr) {
567 if (!addr->sgid_attr) {
568 rcu_read_unlock();
569 pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
570 return -EINVAL;
571 }
572 /*
573 * If the request is for a specific gid attribute of the
574 * rdma_dev_addr, derive net from the netdevice of the
575 * GID attribute.
576 */
577 ret = set_addr_netns_by_gid_rcu(addr);
578 if (ret) {
579 rcu_read_unlock();
580 return ret;
581 }
582 }
583 if (src_in->sa_family == AF_INET) {
584 ret = addr4_resolve(src_in, dst_in, addr, &rt);
585 dst = &rt->dst;
586 } else {
587 ret = addr6_resolve(src_in, dst_in, addr, &dst);
588 }
589 if (ret) {
590 rcu_read_unlock();
591 goto done;
592 }
593 ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
594 rcu_read_unlock();
595
596 /*
597 * Resolve neighbor destination address if requested and
598 * only if src addr translation didn't fail.
599 */
600 if (!ret && resolve_neigh)
601 ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
602
603 if (src_in->sa_family == AF_INET)
604 ip_rt_put(rt);
605 else
606 dst_release(dst);
607 done:
608 /*
609 * Clear the addr net to go back to its original state, only if it was
610 * derived from GID attribute in this context.
611 */
612 if (resolve_by_gid_attr)
613 rdma_addr_set_net_defaults(addr);
614 return ret;
615 }
616
process_one_req(struct work_struct * _work)617 static void process_one_req(struct work_struct *_work)
618 {
619 struct addr_req *req;
620 struct sockaddr *src_in, *dst_in;
621
622 req = container_of(_work, struct addr_req, work.work);
623
624 if (req->status == -ENODATA) {
625 src_in = (struct sockaddr *)&req->src_addr;
626 dst_in = (struct sockaddr *)&req->dst_addr;
627 req->status = addr_resolve(src_in, dst_in, req->addr,
628 true, req->resolve_by_gid_attr,
629 req->seq);
630 if (req->status && time_after_eq(jiffies, req->timeout)) {
631 req->status = -ETIMEDOUT;
632 } else if (req->status == -ENODATA) {
633 /* requeue the work for retrying again */
634 spin_lock_bh(&lock);
635 if (!list_empty(&req->list))
636 set_timeout(req, req->timeout);
637 spin_unlock_bh(&lock);
638 return;
639 }
640 }
641
642 req->callback(req->status, (struct sockaddr *)&req->src_addr,
643 req->addr, req->context);
644 req->callback = NULL;
645
646 spin_lock_bh(&lock);
647 /*
648 * Although the work will normally have been canceled by the workqueue,
649 * it can still be requeued as long as it is on the req_list.
650 */
651 cancel_delayed_work(&req->work);
652 if (!list_empty(&req->list)) {
653 list_del_init(&req->list);
654 kfree(req);
655 }
656 spin_unlock_bh(&lock);
657 }
658
rdma_resolve_ip(struct sockaddr * src_addr,const struct sockaddr * dst_addr,struct rdma_dev_addr * addr,unsigned long timeout_ms,void (* callback)(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context),bool resolve_by_gid_attr,void * context)659 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
660 struct rdma_dev_addr *addr, unsigned long timeout_ms,
661 void (*callback)(int status, struct sockaddr *src_addr,
662 struct rdma_dev_addr *addr, void *context),
663 bool resolve_by_gid_attr, void *context)
664 {
665 struct sockaddr *src_in, *dst_in;
666 struct addr_req *req;
667 int ret = 0;
668
669 req = kzalloc(sizeof *req, GFP_KERNEL);
670 if (!req)
671 return -ENOMEM;
672
673 src_in = (struct sockaddr *) &req->src_addr;
674 dst_in = (struct sockaddr *) &req->dst_addr;
675
676 if (src_addr) {
677 if (src_addr->sa_family != dst_addr->sa_family) {
678 ret = -EINVAL;
679 goto err;
680 }
681
682 memcpy(src_in, src_addr, rdma_addr_size(src_addr));
683 } else {
684 src_in->sa_family = dst_addr->sa_family;
685 }
686
687 memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
688 req->addr = addr;
689 req->callback = callback;
690 req->context = context;
691 req->resolve_by_gid_attr = resolve_by_gid_attr;
692 INIT_DELAYED_WORK(&req->work, process_one_req);
693 req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
694
695 req->status = addr_resolve(src_in, dst_in, addr, true,
696 req->resolve_by_gid_attr, req->seq);
697 switch (req->status) {
698 case 0:
699 req->timeout = jiffies;
700 queue_req(req);
701 break;
702 case -ENODATA:
703 req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
704 queue_req(req);
705 break;
706 default:
707 ret = req->status;
708 goto err;
709 }
710 return ret;
711 err:
712 kfree(req);
713 return ret;
714 }
715 EXPORT_SYMBOL(rdma_resolve_ip);
716
roce_resolve_route_from_path(struct sa_path_rec * rec,const struct ib_gid_attr * attr)717 int roce_resolve_route_from_path(struct sa_path_rec *rec,
718 const struct ib_gid_attr *attr)
719 {
720 union {
721 struct sockaddr _sockaddr;
722 struct sockaddr_in _sockaddr_in;
723 struct sockaddr_in6 _sockaddr_in6;
724 } sgid, dgid;
725 struct rdma_dev_addr dev_addr = {};
726 int ret;
727
728 might_sleep();
729
730 if (rec->roce.route_resolved)
731 return 0;
732
733 rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
734 rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
735
736 if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
737 return -EINVAL;
738
739 if (!attr || !attr->ndev)
740 return -EINVAL;
741
742 dev_addr.net = &init_net;
743 dev_addr.sgid_attr = attr;
744
745 ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
746 &dev_addr, false, true, 0);
747 if (ret)
748 return ret;
749
750 if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
751 dev_addr.network == RDMA_NETWORK_IPV6) &&
752 rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
753 return -EINVAL;
754
755 rec->roce.route_resolved = true;
756 return 0;
757 }
758
759 /**
760 * rdma_addr_cancel - Cancel resolve ip request
761 * @addr: Pointer to address structure given previously
762 * during rdma_resolve_ip().
763 * rdma_addr_cancel() is synchronous function which cancels any pending
764 * request if there is any.
765 */
rdma_addr_cancel(struct rdma_dev_addr * addr)766 void rdma_addr_cancel(struct rdma_dev_addr *addr)
767 {
768 struct addr_req *req, *temp_req;
769 struct addr_req *found = NULL;
770
771 spin_lock_bh(&lock);
772 list_for_each_entry_safe(req, temp_req, &req_list, list) {
773 if (req->addr == addr) {
774 /*
775 * Removing from the list means we take ownership of
776 * the req
777 */
778 list_del_init(&req->list);
779 found = req;
780 break;
781 }
782 }
783 spin_unlock_bh(&lock);
784
785 if (!found)
786 return;
787
788 /*
789 * sync canceling the work after removing it from the req_list
790 * guarentees no work is running and none will be started.
791 */
792 cancel_delayed_work_sync(&found->work);
793 kfree(found);
794 }
795 EXPORT_SYMBOL(rdma_addr_cancel);
796
797 struct resolve_cb_context {
798 struct completion comp;
799 int status;
800 };
801
resolve_cb(int status,struct sockaddr * src_addr,struct rdma_dev_addr * addr,void * context)802 static void resolve_cb(int status, struct sockaddr *src_addr,
803 struct rdma_dev_addr *addr, void *context)
804 {
805 ((struct resolve_cb_context *)context)->status = status;
806 complete(&((struct resolve_cb_context *)context)->comp);
807 }
808
rdma_addr_find_l2_eth_by_grh(const union ib_gid * sgid,const union ib_gid * dgid,u8 * dmac,const struct ib_gid_attr * sgid_attr,int * hoplimit)809 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
810 const union ib_gid *dgid,
811 u8 *dmac, const struct ib_gid_attr *sgid_attr,
812 int *hoplimit)
813 {
814 struct rdma_dev_addr dev_addr;
815 struct resolve_cb_context ctx;
816 union {
817 struct sockaddr_in _sockaddr_in;
818 struct sockaddr_in6 _sockaddr_in6;
819 } sgid_addr, dgid_addr;
820 int ret;
821
822 rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
823 rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
824
825 memset(&dev_addr, 0, sizeof(dev_addr));
826 dev_addr.net = &init_net;
827 dev_addr.sgid_attr = sgid_attr;
828
829 init_completion(&ctx.comp);
830 ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
831 (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
832 resolve_cb, true, &ctx);
833 if (ret)
834 return ret;
835
836 wait_for_completion(&ctx.comp);
837
838 ret = ctx.status;
839 if (ret)
840 return ret;
841
842 memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
843 *hoplimit = dev_addr.hoplimit;
844 return 0;
845 }
846
netevent_callback(struct notifier_block * self,unsigned long event,void * ctx)847 static int netevent_callback(struct notifier_block *self, unsigned long event,
848 void *ctx)
849 {
850 struct addr_req *req;
851
852 if (event == NETEVENT_NEIGH_UPDATE) {
853 struct neighbour *neigh = ctx;
854
855 if (neigh->nud_state & NUD_VALID) {
856 spin_lock_bh(&lock);
857 list_for_each_entry(req, &req_list, list)
858 set_timeout(req, jiffies);
859 spin_unlock_bh(&lock);
860 }
861 }
862 return 0;
863 }
864
865 static struct notifier_block nb = {
866 .notifier_call = netevent_callback
867 };
868
addr_init(void)869 int addr_init(void)
870 {
871 addr_wq = alloc_ordered_workqueue("ib_addr", 0);
872 if (!addr_wq)
873 return -ENOMEM;
874
875 register_netevent_notifier(&nb);
876
877 return 0;
878 }
879
addr_cleanup(void)880 void addr_cleanup(void)
881 {
882 unregister_netevent_notifier(&nb);
883 destroy_workqueue(addr_wq);
884 WARN_ON(!list_empty(&req_list));
885 }
886